
On the Asymptotic Behavior of Nearest Neighbor Search
Using Pivot-Based Indexes

Benjamin Bustos
PRISMA Research Group

Department of Computer Science
University of Chile

bebustos@dcc.uchile.cl

Nelson Morales
DELPHOS Lab

AMTC
University of Chile

nmorales@ing.uchile.cl

ABSTRACT
This paper presents an asymptotic analysis for the nearest
neighbor search with pivot-based indexes. We extend a pre-
vious analysis based on range queries with fixed tolerance ra-
dius, because there is a probability that the nearest neighbor
is missed. We introduce a probabilistic analysis and then we
show the expected search cost for range-optimal algorithms.
Finally, we also show the analysis of the proposed search
algorithm taking into account the extra CPU time, which
leads to further insights on the efficiency of different imple-
mentations of this algorithm.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing—indexing methods

General Terms
Theory

Keywords
Nearest-neighbor search, pivot-based indexing, asymptotic
analysis

1. INTRODUCTION
The concept of similarity search has applications in a vast

number of fields. For example, content-based retrieval of
similar objects in multimedia databases can be very use-
ful for industrial applications, medicine, molecular biology,
among others. Other applications for similarity search in-
clude machine learning and classification (where a new el-
ement must be classified according to its closest existing
element); image quantization and compression (where only
some vectors can be represented and those that cannot must
be coded as their closest representable point); text retrieval
(where we look for words in a text database allowing a small

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

number of errors, or we look for documents which are simi-
lar to a given query or document); sequence comparison in
computational biology (where we want to find a DNA or
protein sequence in a database allowing some errors due to
typical variations); etc.

All those applications have some common characteristics.
There is a universe of objects and a distance function defined
among them, which in many interesting cases satisfies the
properties of a metric (strict positiveness, symmetry, and
the triangle inequality). That is, the universe of objects to-
gether with the distance function form a metric space. The
similarity between objects is given by their distance in the
defined metric space: the smaller the distance between two
objects, the more similar they are. Thus, for a given applica-
tion there is a finite dataset, which is a subset of the universe
of objects. Later, given a new object from the universe, one
wants to retrieve similar elements found in the dataset.

An important similarity query type is the nearest neigh-
bor (NN) search. In this type of query, one wants to retrieve
from the dataset the most similar object to the query. Sim-
ilarly, a k-NN search returns the k closest objects from the
dataset to the query. Both queries can be easily done by
a sequential scan over the dataset, computing the distance
from the query to every object in the set, and returning
the closest ones. However, this may be too expensive if the
dataset is very large or if the distance function is expensive
to compute. Thus, it is common to define the complexity
of a similarity search in metric spaces as the number of dis-
tances computations required to answer the query.

For this reason, one usually preprocesses the dataset to
build an index to avoid unnecessary distance computations
at query time. For example, pivot-based indexes uses the
distances between the objects from the dataset to some se-
lected objects (the pivots) to discard objects from the sim-
ilarity search without measuring the distance to the query
(see Section 2.2 for details). In this way, the index can be
used to return the nearest neighbor to the query, avoiding
(hopefully) the sequential scan.

This paper presents a formal analysis of nearest neigh-
bor search algorithms for pivot-based indexes. As noted by
Navarro [13], asymptotic analysis is a very important tool
that may lead us to better understand the behavior of in-
dex structures. We base our analysis on a range-optimal
algorithm that works on pivot tables. Then, we extend our
analysis by considering the extra CPU time (not expended
in distance computations) required to perform the search,
and we argue that this is necessary for making the analysis
of NN search with pivot-based indexes meaningful.

Table 1: Notation used in this paper
(U, δ) Metric space
S ⊂ U Dataset
n = |S| Size of the dataset
s, si ∈ S An element of the dataset
cost(δ) Complexity of function

δ(·, ·)
(q, r) Range query with tolerance

r
P ⊂ S Set of pivots
θ ∈ P A pivot
p = |P| Number of selected pivots
lb(q, s) Pivot-based lower bound

distance
ν(r) Probability of not discarding

an element in a (q, r) query
f(x) Distance distribution of δ

F (x) =
∫ x
−∞ f(t)dt Cumulative distribution of

f(x)
δ∗ Distance to the NN

f∗(x) Distribution of δ∗

F ∗(x) =
∫ x
−∞ f

∗(t)dt Cumulative distribution of
f∗(x)

π = Pr(δ∗ > E(δ∗)) Probability that δ∗ is larger
than its expected value

The contributions of this paper are:

• We improve a previous analysis of nearest neighbor
search algorithms, to account the probability of failing
to find the nearest neighbor.

• We present a framework for probabilistic analysis of
nearest neighbor search, and we apply it to the case of
uniform distance distribution.

• We present a nearest neighbor algorithm for pivot-
based indexes, and we analyze it and prove that it
is range-optimal.

• We take into account the extra CPU time in our anal-
ysis, that may be involved in the nearest neighbor
search.

This paper is organized as follows. Section 2 presents the
basics concepts of similarity search in metric spaces and ex-
plains the pivot-based indexing method. Section 3 present
an analysis of pivot-based NN search algorithms that uses
a fixed-search radius. Section 4 presents an introduction
to probabilistic analysis for pivot-based NN search algo-
rithms. Section 5 presents a range-optimal algorithms for
pivot-based indexes and its analysis. Section 6 shows a
model cost that includes the extra CPU time. Finally, Sec-
tion 7 concludes the paper.

2. BASIC CONCEPTS
This section introduces the basic concepts on similarity

search in metric spaces and pivot-based indexing. Table 1
shows the notation used in this paper.

2.1 Similarity search in metric spaces
Let U be the“universe”of valid objects, and let δ : U×U→

R+ be a metric distance function (i.e., it holds the properties

of strict positiveness, symmetry, and the triangle inequality).
The pair (U, δ) is a metric space.

Let S ⊂ U be a data collection (or dataset), and let q ∈ U
be a query object. There are two typical similarity queries
in metric spaces:

• Range query. Given a search radius r ∈ R+, the range
query (q, r) reports all objects from the dataset that
are within a distance r to q, that is, (q, r) = {s ∈
S, δ(s, q) ≤ r}. The subspace V ⊂ U defined by q and
r (i.e., ∀v ∈ V δ(v, q) ≤ r and ∀x ∈ X− V δ(x, q) > r)
is called the query ball.

• k nearest neighbors query (k-NN). It reports the k clos-
est objects from S to q. That is, it returns a set C ⊆ S
such that |S| = k and ∀x ∈ C, y ∈ S − C, δ(x, q) ≤
δ(y, q). In this paper, we are interested in the case
k = 1, which is known as the nearest-neighbor (NN)
search.

Both types of similarity queries can be solved by perform-
ing a sequential scan of the dataset. However, this may be
too slow for practical applications, where the dataset may
contain millions of objects. Thus, efficient similarity search
algorithms works on top of index structures (known as met-
ric access methods), that try to discard objects from the
dataset without computing their distance to q, thus avoid-
ing the sequential scan. While there are several indexing
techniques for metric spaces, in this paper we are specially
interested in pivot-based indexing techniques.

2.2 Pivot-based indexing
Pivot-based indexes select a number of pivot objects from

S, and classify all the other objects according to their dis-
tance from the pivots. The canonical pivot-based range
query algorithm works as follows: Given a range query (q, r)
and a set of p pivots {θ1, . . . , θp}, θi ∈ S, by the triangle
inequality it follows for any u ∈ U and 1 ≤ i ≤ p that
δ(q, u) ≥ |δ(θi, u)− δ(θi, q)|. The objects s ∈ S of interest
are those that satisfy δ(q, s) ≤ r, so one can exclude all the
objects that satisfy |δ(θi, s)− δ(θi, q)| > r for some pivot θi,
without actually evaluating δ(q, s). This discarding criterion
is known as the pivot exclusion condition.

The pivot-based index consists of the pn precomputed dis-
tances δ(θi, s) between every pivot and every object of the
data collection. At query time, the search algorithm com-
putes the p distances between the pivots and q, δ(θi, q).
Those distance calculations correspond the internal com-
plexity of the algorithm, and this complexity is fixed if there
is a fixed number of pivots. Then, it tries to discard ob-
jects by applying the exclusion condition. The list of ob-
jects {s1, . . . , sm} ⊆ S that cannot be discarded, known as
the object candidate list, must be checked directly against
the query. These additional distance calculations δ(si, q)
correspond to the external complexity of the algorithm. The
total complexity of the search is the sum of the internal and
the external complexities.

Examples of pivot-based indexes are Burkhard-Keller Tree
[5], Fixed-Queries Tree (FQT) [1], Fixed-Height FQT [1],
Fixed Queries Array [8], Vantage Point Tree [16], Multi Van-
tage Point Tree [4], Excluded Middle Vantage Point Forest
[17], AESA [15], Linear AESA [12], Spaghettis [7], Maximum
Pruning [14], and Dynamic SSS [6].

NN search algorithms with pivot-based indexes have usu-
ally been built over the range query algorithm. These tech-
niques include [9]:

• Increasing radius: the search performs several range
queries with increasing value of r, until at least one
object lies inside the ball (q, r). If more than one object
is found, the closest one to q is the NN.

• Backtracking with decreasing radius: the search starts
with r = ∞, and it reduces r every time it computes
a distance δ(q, s) that is smaller than r, keeping the
closest object to q found so far. The search finishes
when all objects have been checked.

2.3 Standard cost model
The total time for answering similarity queries in metric

spaces is defined as [9]

dist. comp.× cost(δ) + extra CPU time + I/O time,

where cost(δ) is the complexity of function δ(·, ·). It has been
argued [9, 18] that the most important cost in a similarity
search is the distance computations, thus the cost model is
usually simplified to

dist. comp.

See Navarro [13] for a survey on formal analyses of index-
ing techniques and algorithms for similarity search in metric
spaces.

3. ANALYSIS OF NN SEARCH USING
FIXED-RANGE QUERIES

In this section, we revisit the analysis of NN search al-
gorithms based on range queries with fixed radius, and we
extend it. Let δ∗(q) be the distance to the nearest neighbor
of q (from now on, let us write δ∗ for short). A common way
of studying the cost of search algorithms for 1-NN, is to take
into account that if δ∗ was known, then 1-NN reduces to the
range query (q, δ∗), therefore the expected cost of a 1-NN
search is that of a range query (q,E

(
δ∗
)
) [2]. However, such

analysis does not consider that the cost of a query search
is not linear in the radius, hence the expected cost of using
a query search with radius δ∗ is not the same as the cost
of a query search with radius E

(
δ∗
)
. It also does not con-

sider that searching with fixed radius E
(
δ∗
)

may not find
the nearest neighbor.

3.1 Range based Nearest-Neighbor Queries
Given a range-optimal algorithm (see Section 5) for find-

ing the NN in multidimensional indexes, B̈ı£¡hm [2] suggests
reducing its analysis to the analysis of a range query using
a tolerance radius for the range query equal to the expected
value E(δ∗) of the distance to the nearest neighbor. Con-
cretely, following the analysis by Navarro [13], we have that
if the distances between the elements of the database and
from these to the query are independent and identically dis-
tributed, and if we call TR the cost of such an algorithm, we
have that

E(TR) = p+ n ν(E(δ∗))p, (1)

where p is the number of pivots and ν(·) is the probability
of not discarding an object using the p pivots.

While this analysis may produce a good approximation of
the expected cost of the algorithm, we observe that it does
not consider the fact that any NN search algorithm resorting
to use a range query with fixed value of r0 will fail (return no
elements) with probability Pr(δ∗ > r0). In particular, the
procedure above will require to perform at least one more
distance calculation with probability π = Pr(δ∗ > E(δ∗)).

As using a fixed radius r0 (like E(δ∗)) may produce no
results, the only way to guarantee that the nearest neighbor
will be found is to update the query radius. Some of the
possibilities that we visualize are:

• Doing a linear search in the case of failure. This has
expected cost p + n

(
ν(E(δ∗)p)

)
+ πn, therefore being

of order n.

• Multiplying r0 by some factor greater than one, do the
search and continue updating or stopping depending
on the results of the search.

• Updating r by setting r = E
(
δ∗|δ∗ > E(δ∗)

)
, and up-

date consequently depending on the search result.

Note that any of these schemes (and any algorithm per-
forming a range query with radius E(δ)) will have an ex-
pected cost that is strictly larger than the one from Eq. (1).

Notice also that, in particular, when the distances are
not bounded (i.e., the distance distribution has an infinite
support set), we have that any search algorithm using a finite
query radius r0 is not exact, as it will fail with probability
Pr(δ∗ > r0).

4. PROBABILISTIC ANALYSIS
This section aims to present a brief introduction to the

probabilistic analysis that would be required in order to
properly understand the cost of NN algorithms for pivot-
based indexes. We present some basic calculations and then
apply them to the specific case of the uniform distribution.

4.1 Distribution and expected values of δ∗
We need first to calculate the probability density of δ∗,

that is the distance to the nearest neighbor, when the pivots
are chosen randomly and independently.

As the pivots are chosen randomly, the distance distribu-
tion to any pivot is f(x) (the distance distribution to the ob-
jects in the database), and since δ∗(q) = minni=1 δ(q, si), we
have that δ∗(q) ≥ z ⇐⇒ δ(q, si) ≥ z for any i = 1, . . . , n.
Using that Pr(δ(q, si) ≥ z) = 1 − F (z), and independence,
it follows that Pr

(
δ∗ ≥ z

)
= (1 − F (z))n. Therefore,

Pr(δ∗ ≤ z) = F ∗(z) = 1− (1− F (z))n. That is, δ∗ ∼ f∗(z)
with

f∗(z) = nf(z)(1− F (z))n−1, (2)

and

E
(
δ∗
)

=

∫ s

∞
znf(z)(1− F (z))n−1dz. (3)

Notice that in the general case of k-NN, we have that

Pr
(
δ∗(x) ≥ z

)
=

(
n

k

)
F (z)k−1(1− F (z))n−k+1.

Finally, recall that the probability of not discarding an ele-
ment when performing a search with radius r is (see Navarro
[13]):

ν(r) =

∫ 1

0

f(s) [F (s+ r)− F (s− r)] ds.

4.2 Uniform distribution case
When the distance δ follows a uniform distribution in

[0, 1], f(x) = 1, F (x) = x (within [0,1]) and therefore

f∗(z) = n(1− z)n−1, F ∗(z) = 1− (1− z)n

and, integrating by parts

E(δ∗) =

∫ 1

0

zn(1− z)n−1dz =
1

n+ 1
.

Also π = Pr
(
δ∗ > 1

n+1

)
=
(

n
n+1

)n
→ 1

e
as n grows.

This means that in about 1/3 of the opportunities that the
algorithm is used, it will fail to find the nearest neighbor and
therefore at least one additional range query will be needed.

We also obtain that ν(r) = r(2− r).
As ν(·) is a concave positive function and p ≥ 1, we have

that E(ν(δ∗)) ≤ ν(E
(
δ∗
)
). It follows that as an algorithm

using E
(
δ∗
)

as a search radius will have an expected cost

E(TR) ≥ p+ nν
(
E
(
δ∗
))p

. We conclude that

E(TR) ≥ p+ nν
(
E
(
δ∗
))p ≥ p+ nE

(
ν(δ∗)

)p
(4)

The right side of Eq. (4) is actually the expected cost of
an algorithm that knows δ∗ and performs one range query
with that radius, which is the definition of a range-optimal
search algorithm.

5. RANGE-OPTIMAL ALGORITHMS
A NN search algorithm is range-optimal if it computes the

same number of distances than the canonical range query al-
gorithm using r = δ∗ as search radius. This is an interesting
property, because it means that for such an algorithm there
is no inherent advantage of having or estimating δ∗ a priori
(without knowing the object that is actually the NN) to per-
form the search. An example of a range-optimal algorithm
is the incremental search algorithm by Hjaltason and Samet
[11], that works on hierarchical index structures. Berchtold
et al. [3] proved that this algorithm is range-optimal.

The algorithms for NN search mentioned in Section 2.2
and Section 3 are not range-optimal. So, we now describe
a NN search algorithm that uses the pivot-based index, and
we prove that this algorithm is range-optimal.

The algorithm starts by computing the distances between
all pivots and the query object q. The pivot whose distance
to q is minimum (mindist) is the first NN candidate. Then,
the algorithm computes the lower-bound distances from q to
all objects s ∈ S (excluding the pivots). A lower-bound dis-
tance is computed as lb(q, s) = maxpi=1 |δ(θi, s)− δ(θi, q)|.
Next, the algorithm sorts the objects s ∈ S in ascending or-
der according to their lower-bound distances to q. Starting
with the the object u with smallest lower bound distance,
the algorithm applies the pivot exclusion criterion using as
tolerance radius the distance from the candidate NN to the

query object. If s cannot be discarded, it computes the
distance between s and q. If this distance is smaller than
mindist, it sets u as the new NN candidate and updates
mindist. The process ends when all the objects from S have
been checked or if the lower bound distance of the next ob-
ject in the list is greater than mindist (i.e., no other object
can be closer to q than the actual NN candidate). Algorithm
1 shows the pseudocode for this algorithm.

Algorithm 1 Range-optimal pivot-based NN search algo-
rithm
Require: q ∈ U
Ensure: NN is the nearest neighbor of q in S
1: mindist← minpi=1{δ(θi, q)}
2: NN ← θargmin

p
i=1{δ(θi,q)}

{Computing lower bound distances}
3: for all si ∈ S− P do
4: lb(q, si)← 0
5: for all θj ∈ P do
6: if |δ(si, θj)− δ(θj , q)| > lb(q, si) then
7: lb(q, si)← |δ(si, θj)− δ(θj , q)|
8: end if
9: end for

10: end for
{Sorting objects in S− P by ascending lower bound}

11: S′ ← Sort(S− P)
{Searching for NN}

12: for i = 1 to n− p do
13: if lb(q, s′i) > mindist then
14: break
15: end if
16: if δ(q, s′i) < mindist then
17: mindist← δ(q, s′i)
18: NN ← s′i
19: end if
20: end for
21: return NN

We now prove that Algorithm 1 is range-optimal.

Lemma 5.1. Algorithm 1 returns the correct NN.

Proof. By contradiction, suppose that for a query object
q the algorithm returns an object s ∈ S such that δ(q, s) >
δ∗, and let s∗ be the real NN. This means that the algorithm
stopped checking objects (lines 13 and 14 of the pseudocode)
before finding s∗. Thus, lb(q, s∗) > δ∗ because the algorithm
checks the objects in ascending lower bound distance and the
condition on line 13 had to be true before reaching s∗. But
lb(q, s∗) ≤ δ∗, because lb(q, s∗) is a lower bound distance of
δ, which leads to the contradiction.

Lemma 5.2. Algorithm 1 does not compute any distance
from q to an object s ∈ S such that lb(q, s) > δ∗(q)

Proof. The algorithm sorts the objects s ∈ S − P by
lower bound distance (line 11 of the pseudocode), it checks
the objects in that order, and it stops the search as soon
as lb(q, s) > mindist = δ∗ (by Lemma 5.1). Thus, the
algorithm only computes distances for those s such that
lb(q, s) ≤ δ∗.

Theorem 5.3. Algorithm 1 is range-optimal.

Proof. It follows directly from Lemmas 5.1 and 5.2.

Notice that because a range-optimal search algorithm is
equivalent to one doing a range search with radius r = δ∗,
we obtain that the cost of this algorithm is T = p+nν(δ∗)p

(with distribution f∗ of δ∗), and its expected cost is the
one given by Eq. (4). Therefore, if ν(·) is concave (as we
showed for uniform distance distribution), Algorithm 1 is
more efficient than any possible strategy that uses a fixed-
search radius for finding the nearest neighbor.

6. EXTENDED MODEL COST
In the last section, we showed that range-optimal algo-

rithms computes the minimum number of distances (given a
fixed set of pivots) needed to find the correct nearest neigh-
bor. Thus, under the standard cost model for searching in
metric spaces, any range-optimal algorithm is equivalent.
However, we will show that this is far from true, and that
it is important to consider the extra CPU time to obtain
further insights from the theoretical analysis.

6.1 A CPU-expensive range-optimal NN algo-
rithm

The algorithm we devise is very simple: We will deter-
mine the value of δ∗ so we can perform a range query with
radius r = δ∗ and retrieve the nearest neighbor. The trick
in the algorithm is that we will determine δ∗ at cost zero
and therefore the expected cost of such an algorithm will be
the same of Eq. (4):

E(TR) = p+ nE (ν(δ∗)p) .

To determine δ∗, we use the following procedure. Let
q be the query object. We start evaluating the distances
di = δ(q, θi) for i = 1, . . . , p and constructing the lower
bounds lb(q, sj) = maxi{|di − δ(θi, sj)|}. Without loss of
generality, let us assume these values are ordered such that
j < `⇒ lb(q, sj) ≤ lb(q, s`).

During the search procedure, we will have a nearest neigh-
bor candidate sc (the first one being the closest pivot), and
a search radius d such that δ(q, sc) ≥ d (the first one being
d = 0).

While δ(q, sc) > d we increase d, each time by ε (ε of the
machine) until:

1. either lb(q, sj) = d for some element sj , in which case
evaluate δ(q, sj) and we update our candidate sc := sj
if δ(q, sj) < δ(q, sc), and continue to iterate,

2. either δ(q, sc) = d, in which case we can stop.

The only distances evaluated by this algorithm are those
of elements such that lb(q, sj) < δ∗, therefore it is range-
optimal. Thus, if one only considers distance computations
for analyzing this algorithm, it is equivalent in complexity
to Algorithm 1. Indeed, we observe that the algorithm de-
scribed above strongly relies on the fact that the only cost
involved in search algorithms is the one of evaluating the
distance function while any other calculations are negligible.
This is not very realistic: even if the distance computation
is expensive, the proposed schema performs a huge amount
of calculations (not involving distances), making the asymp-
totic analysis ineffective.

We now consider the extra CPU time for analyzing the
described range-optimal algorithm. Then, we propose two
variants of this algorithm, the last one being at least as
efficient as Algorithm 1.

6.2 Analyzing the range-optimal algorithm
Considering the extra CPU time, the cost of Algorithm

1 is the cost of computing the lower bounds distances (p
distances plus O(n) extra CPU time), the cost of sorting the
lower bounds (O(n logn)), and the distance computations
for the non-discarded objects. Its expected cost is

E(T) = (p+nE
(
ν(δ∗)p

)
) · cost(δ)+O(n logn)+nE

(
ν(δ∗)p

)
.

(5)
This means that if cost(δ) = o(logn) (reasonable for many

practical applications), the most expensive part of the algo-
rithm is the sorting instruction. Now, the question is how
to reduce the extra CPU time.

6.3 CPU-efficient range-optimal algorithms

6.3.1 Using linear selection
One alternative to reduce the CPU time is to replace the

sort instruction in Algorithm 1 by a linear selection instruc-
tion (using the selection in worst-case linear time algorithm,
see Cormen et al. [10], Chapter 9.3) on each iteration of the
last for cycle. The pseudocode is presented in Algorithm 2.

Algorithm 2 Range-optimal pivot-based NN search algo-
rithm with linear selection
Require: q ∈ U
Ensure: NN is the nearest neighbor of q in S
1: mindist← minpi=1{δ(θi, q)}
2: NN ← θargmin

p
i=1{δ(θi,q)}

{Computing lower bound distances}
3: for all si ∈ S− P do
4: lb(q, si)← 0
5: for all θj ∈ P do
6: if |δ(si, θj)− δ(θj , q)| > lb(q, si) then
7: lb(q, si)← |δ(si, θj)− δ(θj , q)|
8: end if
9: end for

10: end for
{Searching for NN}

11: for i = 1 to n− p do
12: s′ ← Select(i, S− P)
13: if lb(q, s′) > mindist then
14: break
15: end if
16: if δ(q, s′) < mindist then
17: mindist← δ(q, s′)
18: NN ← s′

19: end if
20: end for
21: return NN

The complexity of Algorithm 2 is the cost of computing
the lower bounds distances (p distances plusO(n) CPU extra
time), the cost of the selection (O(n) on each iteration of the
last for cycle), and the distance computations for the non-
discarded objects. Its expected cost is

E(T) = (p+nE
(
ν(δ∗)p

)
)·cost(δ)+O(n)+O(n) ·nE

(
ν(δ∗)p

)
.

(6)
Therefore, if nE

(
ν(δ∗)p

)
= o(logn), Algorithm 2 is more

efficient than Algorithm 1. However, it has a worst case of
O(n2) extra CPU time.

6.3.2 Using a heap
A better alternative than using linear selection is to use a

heap to check the objects in order, according to their lower
bound distance. Note that the heap does not require extra
space, as it can be build over the array that stores the lower
bound distances. The pseudocode is showed in Algorithm 3.

Algorithm 3 Range-optimal pivot-based NN search algo-
rithm with a heap

Require: q ∈ U
Ensure: NN is the nearest neighbor of q in S
1: mindist← minpi=1{δ(θi, q)}
2: NN ← θargmin

p
i=1{δ(θi,q)}

{Computing lower bound distances}
3: for all si ∈ S− P do
4: lb(q, si)← 0
5: for all θj ∈ P do
6: if |δ(si, θj)− δ(θj , q)| > lb(q, si) then
7: lb(q, si)← |δ(si, θj)− δ(θj , q)|
8: end if
9: end for

10: end for
{Converting list of objects in S− P in a heap}

11: S′ ←MinHeapify(S− P)
{Searching for NN}

12: for i = 1 to n− p do
13: s′ ← HeapExtractMin(S′)
14: if lb(q, s′) > mindist then
15: break
16: end if
17: if δ(q, s′) < mindist then
18: mindist← δ(q, s′)
19: NN ← s′

20: end if
21: end for
22: return NN

The complexity of Algorithm 3 is the cost of computing
the lower bounds distances (p distances plusO(n) CPU extra
time), the cost of MinHeapify (O(n)), the cost of HeapEx-
tractMin on each iteration of the last for cycle (O(logn)),
and the distance computations for the non-discarded ob-
jects. Its expected cost is:

E(T) = (p+nE
(
ν(δ∗)p

)
)·cost(δ)+O(n)+O(logn)·nE

(
ν(δ∗)p

)
(7)

If nE
(
ν(δ∗)p

)
= o(n), Algorithm 3 is always more efficient

than Algorithm 1 (and it is clearly superior to Algorithm 2).
In the worst case, both Algorithms 1 and 3 have the same
time complexity.

7. CONCLUSIONS
This paper presented a formal analysis of nearest neighbor

search algorithms for pivot-based indexes. We presented a
brief probabilistic analysis, and then showed the expected
cost for range-optimal search algorithms. We also showed
that algorithms based on a fixed-search radius have a prob-
ability to fail returning the nearest neighbor, and that range-
optimal algorithms are always more efficient if the probabil-
ity of not discarding an object is a concave function (e.g., in
the case of uniform distance distribution). Additionally, we

extended our analysis by considering the extra CPU time,
and showed that this is important to be able to distinguish
between different range-optimal algorithms.

The analysis that considers the extra CPU time showed
that the proposed range-optimal algorithms have a com-
plexity of at least O(n), because all of them must com-
pute the lower bound distances for all objects in the dataset.
Thus, if the distance function is not expensive (such as the
Minkowski distances, which are widely used in vector spaces
and are O(d), with d the dimensionality of the space), the
extra CPU time cost cannot be neglected. An interesting
question that this analysis raises is if there is a range-optimal
algorithm for pivot-based indexes that has O(nα) extra CPU
time, with 0 < α < 1.

Further work could consider extending the analysis of the
nearest neighbor search to other indexing schema, like the
ones based on partitioning the spaces into zones, and to
include the I/O cost in the cost model (for indexes stored in
secondary memory). We also observe that while we applied
the probabilistic framework to the analysis of the uniform
distribution, it would be interesting to do the same for some
other distributions. In fact, we consider that determining
theoretical distance distributions that are reasonable for the
analysis is an interesting topic itself.

8. REFERENCES
[1] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.

Proximity matching using fixed-queries trees. In Proc.
5th Combinatorial Pattern Matching (CPM’94),
LNCS 807, pages 198–212, 1994.

[2] C. Böhm. A cost model for query processing in high
dimensional data spaces. ACM Transsactions on
Database Systems, 25(2):129–178, 2000.

[3] C. Böhm, S. Berchtold, and D. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys, 33(3):322–373, 2001.

[4] T. Bozkaya and M. Ozsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In Proc.
ACM International Conference on Management of
Data (SIGMOD’97), pages 357–368, 1997. Sigmod
Record 26(2).

[5] W. Burkhard and R. Keller. Some approaches to
best-match file searching. Communications of the
ACM, 16(4):230–236, 1973.

[6] B. Bustos, O. Pedreira, and N. Brisaboa. A dynamic
pivot selection technique for similarity search. In Proc.
1st International Workshop on Similarity Search and
Applications (SISAP’08), pages 105–112, 2008.

[7] E. Chávez, J. Marroqúın, and R. Baeza-Yates.
Spaghettis: an array based algorithm for similarity
queries in metric spaces. In Proc. String Processing
and Information Retrieval (SPIRE’99), pages 38–46.
IEEE CS, 1999.

[8] E. Chávez, J. Marroqúın, and G. Navarro. Fixed
queries array: A fast and economical data structure
for proximity searching. Multimedia Tools and
Applications (MTAP), 14(2):113–135, 2001.

[9] E. Chávez, G. Navarro, R. Baeza-Yates, and
J. Marroqúın. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, 2001.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press and McGraw-Hill Book Company,
2001.

[11] G. Hjaltason and H. Samet. Ranking in spatial
databases. In Proc. 4th International Symposium on
Advances in Spatial Databases (SSD’95), LNCS 951,
pages 83–95. Springer, 1995.

[12] L. Micó, J. Oncina, and E. Vidal. A new version of the
nearest-neighbor approximating and eliminating
search (AESA) with linear preprocessing-time and
memory requirements. Pattern Recognition Letters,
15:9–17, 1994.

[13] G. Navarro. Analyzing metric space indexes: What
for? In Proc. 2nd International Workshop on
Similarity Search and Applications (SISAP’09), pages
3–10. IEEE CS Press, 2009. Invited paper.

[14] J. Venkateswaran, T. Kahveci, C. M. Jermaine, and
D. Lachwani. Reference-based indexing for metric
spaces with costly distance measures. VLDB Journal,
17(5):1231–1251, 2008.

[15] E. Vidal. An algorithm for finding nearest neighbors
in (approximately) constant average time. Pattern
Recognition Letters, 4:145–157, 1986.

[16] P. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proc. 4th
ACM-SIAM Symposium on Discrete Algorithms
(SODA’93), pages 311–321, 1993.

[17] P. Yianilos. Excluded middle vantage point forests for
nearest neighbor search. In DIMACS Implementation
Challenge, ALENEX’99, Baltimore, MD, 1999.

[18] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach
(Advances in Database Systems). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

