
Journal Pre-proof

Computing the depth distribution of a set of boxes

Jérémy Barbay, Pablo Pérez-Lantero and Javiel Rojas-Ledesma

PII: S0304-3975(21)00350-9

DOI: https://doi.org/10.1016/j.tcs.2021.06.007

Reference: TCS 12974

To appear in: Theoretical Computer Science

Received date: 2 October 2019

Revised date: 30 December 2020

Accepted date: 1 June 2021

Please cite this article as: J. Barbay, P. Pérez-Lantero and J. Rojas-Ledesma, Computing the depth distribution of a set of boxes,
Theoretical Computer Science, doi: https://doi.org/10.1016/j.tcs.2021.06.007.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2021 Published by Elsevier.

https://doi.org/10.1016/j.tcs.2021.06.007
https://doi.org/10.1016/j.tcs.2021.06.007

Computing the Depth Distribution of a Set of Boxes

Jérémy Barbaya,1, Pablo Pérez-Lanterob,1, Javiel Rojas-Ledesmaa,1

aDepartamento de Ciencias de la Computación, Universidad de Chile, Chile.
bDepartamento de Matemática y Ciencia de la Computación, Universidad de Santiago, Chile.

Abstract

Motivated by the analysis of range queries in databases, we introduce the

computation of the depth distribution of a set B of n d-dimensional boxes (i.e.,

axis aligned d-dimensional hyperrectangles), which generalizes the computation

of the Klee’s measure and maximum depth of B. We present an algorithm to

compute the depth distribution running in time within O(n
d+1
2 log n), using space

within O(n log n), and refine these upper bound for various measures of difficulty

of the input instances. Moreover, we introduce conditional lower bounds for this

problem which not only provide insights on how fast the depth distribution can

be computed, but also clarify the relation between the Depth Distribution

problem and other fundamental problems in computer science.

Key words: Depth Distribution, Klee’s Measure, Matrix Multiplication,

Maximum Depth, Sets of Boxes, High dimensional data

1. Introduction

Problems studied in computational geometry have found important appli-

cations in the processing and querying of massive databases [1], such as the

computation of the Maxima of a set of points [2, 4], or compressed data struc-

tures for Point Location and Rectangle Stabbing [3]. In particular, we

Email addresses: jeremy@barbay.cl (Jérémy Barbay), pablo.perez.l@usach.cl (Pablo
Pérez-Lantero), jrojas@dcc.uchile.cl (Javiel Rojas-Ledesma)

1This work was supported by projects CONICYT Fondecyt/Regular nos 1170366 and
1160543, and CONICYT-PCHA/Doctorado Nacional/2013-63130209 (Chile). Pablo Pérez-
Lantero was partially supported by projects DICYT 041933PL Vicerrectoŕıa de Investigación,
Desarrollo e Innovación USACH (Chile), and Programa Regional STICAMSUD 19-STIC-02.

Preprint submitted to Theoretical Computer Science June 3, 2021

consider cases where the input or queries are composed of d-dimensional boxes

(i.e., axis aligned hyperrectangles in Rd): in the context of databases it corre-

sponds for instance to a search for objects for sale within the intersection of

ranges in price, availability and quality ratings.

Consider a set B of n d-dimensional boxes, for fixed (constant) d. We focus on

two measures on such a set of boxes: the Klee’s measure and the maximum depth1.

The Klee’s measure of B is the size of the “shadow” projected by B, more formally,

the volume of the union of the boxes in B. Originally suggested on the line by

Klee [21], its computation is well studied in higher dimensions [7, 8, 9, 10, 27],

and can be done in time within O(nd/2), using an algorithm introduced by

Chan [10] based on a new paradigm called “Simplify, Divide and Conquer”. The

maximum depth of B is the maximum number of boxes covering a same point, and

its computational complexity is similar to that of Klee’s measure’s, converging

to the same complexity within O(nd/2) [10].

Hypothesis. The known algorithms to compute these two measures are all

strikingly similar, to the point that Chan [10] states that all known techniques

used for computing the Klee’s measure can be applied to the computation of the

maximum depth. That would suggest a reduction from one to the other, but

those two measures are completely distinct: the Klee’s measure is a volume whose

value might be a real number, while the maximum depth is a cardinality whose

value is an integer in the range [1..n]. Is there any way to formalize the

close relationship between the computation of these two measures?

Our Results. We give a first step towards such a formalization, in the form of a

new problem, which we show to be intermediary in terms of the techniques

being used, between the Klee’s measure and the maximum depth, and with

interesting applications and results of its own. We introduce the notion of

depth distribution of a set B of n boxes in Rd, formed by the vector of n values

1We use capital letters to highlight names of Problems, and serif font to highlight names

of measures of a set of boxes.

2

(V1, . . . , Vn), where Vi corresponds to the volume covered by exactly i boxes

from B. The depth distribution of the set B can be interpreted as a probability

distribution function (hence the name): if a point p is selected uniformly at

random from the region covered by the boxes in B, the probability that p hits

exactly k boxes from B is (Vk/
∑n

i=1 Vi), for all k ∈ [1..n].

The depth distribution refines both the Klee’s measure and the maximum

depth. It is a measure finer than the Klee’s measure in the sense that the Klee’s

measure of a set B can be obtained in time linear in the size n of B by summing

the components of the depth distribution of B. Similarly, the depth distribution is

a measure finer than the maximum depth in the sense that the maximum depth of

a set B can be obtained in linear time by finding the largest i ∈ [1..n] such that

Vi 6= 0. For an example of practical application of depth distribution, consider

the case of a car dealer’s website receiving queries about car within some range

of price, safety rates or oil consumption rates per mile. Each query composed of

r such ranges corresponds to a box in dimension r. The depth distribution of the

set of queries received by a given dealer is a distribution of the interest of the

clients in the space of all possible cars, and can server such dealer in guiding its

future purchases in order to better satisfy the desires expressed by the clients

queries.

We present computational upper bounds for the Depth distribution prob-

lem. In the classical computational complexity model where one studies the worst

case over instances of fixed size n, the trivial approach (of partitioning the space

into cells that are completely contained within all the boxes that they intersect),

results in a solution with prohibitive running time within O(nd+1). Simple

variants of the techniques previously used to compute the Klee’s measure [10, 27]

result in a solution running in time within O(nd/2+1), using linear space, or

a solution running in time within O(n(d/2+1/2 log n), but using space within

O(nd/2 log n). We combine those two techniques into a single one which computes

the depth distribution in time within O(n
d+1
2 log n), using space within O(n log n).

We also analyze the computation of the depth distribution of a set of boxes in

the refined complexity model where one studies the worst case complexity over

3

additional parameters which describe the difficulty of the instance beyond its

size [4, 20]. We consider distinct measures of difficulty for the instances of

these problems, such as the profile of the input set [13] and the treewidth of the

intersection graph of the boxes [22], and describe algorithms in these models to

compute the depth distribution, the Klee’s measure and the maximum depth.

To complement these results, we study computational lower bounds for the

Depth distribution problem. We show that this problem generalizes not

only the Klee’s Measure and Maximum Depth problems, but many other

problems generally considered unrelated to sets of boxes. For instance, we

prove that the classical Matrix Multiplication problem is a special case of

the Depth distribution problem, a minor step towards answering the open

question of the computational complexity of the Klee’s Measure posed by

Chan [9], and more importantly, yields a lower bound for the computational

complexity of the depth distribution for d as small as 2 within Ω(n
ω
2), where ω

is the Matrix Multiplication exponent. Such a lower bound suggests that

the generalization of Klee’s Measure and the Maximum Depth problems

comes at a price: one cannot solve the Depth Distribution problem in the

same asymptotic running time than the former two.

After a short overview of the known results on the Klee’s Measure and

the Maximum Depth problems (in Section 2), we present in Section 3 different

algorithms for computing the depth distribution of a set of boxes. Then, in

Section 4, we introduce conditional lower bounds for the Depth distribution

problem, and conclude in Section 5 with a discussion on discrete variants and

further refinements of the analysis.

2. Background

The techniques used to compute the Klee’s measure have evolved over time,

and can all be used to compute the maximum depth. We retrace some of the

main results, which inspire the algorithms we present in Section 3.

4

b1

b2

b1

b2Γ Γ

(a) (b)

Figure 1: An illustration in dimensions 2 (a) and 3 (b) of two boxes b1, b2 equivalent to slabs

when restricted to the box Γ. The Klee’s measure of {b1, b2} within Γ is the area (resp. volume)

of the shadowed region in (a) (resp. (b)).

The computation of the Klee’s measure of a set B of n d-dimensional boxes

was first posed by Klee [21] in 1977. After some initial progresses [6, 15, 21],

Overmars and Yap [27] described a solution running in time within O(nd/2 log n).

This remained the best solution for more than 20 years until 2013, when Chan

[10] presented a simpler and faster algorithm running in time within O(nd/2).

The algorithms described by Overmars and Yap [27] and by Chan [10],

respectively, take both advantage of solutions to the special case of the problem

where all the boxes are slabs. A box b is said to be a slab within another box Γ

if b ∩ Γ = {(x1, . . . , xd) ∈ Γ | α ≤ xi ≤ β}, for some integer i ∈ [1..d] and some

real values α, β (see Figure 1 for an illustration). Overmars and Yap [27] showed

that, if all the boxes in B are slabs inside the domain box Γ, then the Klee’s

measure of B within Γ can be computed in linear time (provided that the boxes

have been pre-sorted in each dimension).

Overmars and Yap’s algorithm [27] is based on a technique originally described

by Bentley [6]: solve the static problem in d dimensions by combining a data

structure for the dynamic version of the problem in d − 1 dimensions with a

plane sweep over the d-th dimension. The algorithm starts by partitioning the

space into O(nd/2) rectangular cells such that the boxes in B are equivalent to

slabs when restricted to each of those cells. Then, the algorithm builds a tree-like

5

data structure whose leaves are the cells of the partition, supporting insertion

and deletion of boxes during the plane sweep while keeping track of the Klee’s

measure of the boxes.

Chan’s algorithm [10] is a simpler divide-and-conquer algorithm, where the

slabs are simplified and removed from the input before the recursive calls (Chan

[10] named this technique Simplify, Divide and Conquer, SDC for short). To

obtain the recursive subproblems, the algorithm assigns a constant weight of 2
i+j
2

to each (d-2)-face intersecting the domain and orthogonal to the i-th and j-th

dimensions, i, j ∈ [1..d]. Then, the domain is partitioned into two sub-domains

by the hyperplane x1 = m, where m is the weighted median of the (d-2)-faces

orthogonal to the first dimension. This yields a decrease by a factor of 22/d in

the total weight of the (d-2)-faces intersecting each sub-domain. Chan [10] uses

this, and the fact that slabs have no (d-2)-face intersecting the domain, to prove

that the SDC algorithm runs in time within O(nd/2).

Unfortunately, there are sets of n boxes in Rd which require partitions of the

space into a number of cells within Ω(nd/2) to ensure that every box in the set

is equivalent to a slab when restricted to each cell. Hence, without a radically

new technique, any algorithm based on this approach will run in time within

Ω(nd/2).

The only lower bound known for the computational complexity of the Klee’s

Measure problem, other than the trivial Ω(n), was proved by Fredman and

Weide [15] in the linear decision tree model. They showed a bound within

Ω(n log n) by reducing the ε-Closeness problem to the Klee’s Measure

problem on intervals. In higher dimensions, Chan [9] introduced a conditional

lower bound of Ω(nd/2 − o(1)) for any combinatorial algorithm, via a reduction

from the parameterized k-Clique problem in which, given a graph on n nodes,

the goal is to decide whether there are k that form a clique. The reduction

allows to argue that, with current knowledge [? ? ? ?], one cannot hope for a

purely combinatorial algorithm for the Klee’s Measure problem that beats

O(nd/2) time by more than polylogarithmic factors. He described an analogous

argument for the Maximum Depth problem [10]. As a consequence, recent

6

work have focused on the study of special cases which can be solved faster than

Ω(nd/2), like for instance when all the boxes are orthants [10], α-fat boxes [7],

or cubes [8]. In turn, we show in Section 3.2 that there are measures which

gradually separate easy instances for these problems from the hard ones.

In the next section, we present an algorithm for the computation of the

depth distribution inspired by a combination of the approaches described above,

outperforming naive applications of those techniques.

3. Algorithms Computing the Depth Distribution

We combine the techniques previously used to compute the Klee’s measure [10,

27] into an algorithm to compute the depth distribution of a set of n d-boxes in

time within O(n
d+1
2 log n), using O(n log n)-space. We present this algorithm

in Section 3.1, and then, in Section 3.2, we refine this upper bound for various

measures of difficulty of the input instances of the Depth distribution problem.

3.1. Worst-case Analysis

We introduce an algorithm to compute the depth distribution inspired by a

combination of the techniques introduced by Chan [10], and by Overmars and

Yap [27], for the computation of the Klee’s measure. As in those approaches, the

algorithm partitions the domain Γ into O(nd/2) cells inside which every box in

B is equivalent to a slab. After that, it computes the depth distribution within

each cell, and combines those solutions into the final answer. Two main issues

must be addressed: how to compute the depth distribution when the boxes are

slabs, and how to partition the domain efficiently.

We first address the special case of slabs. We show in Lemma 1 that computing

the depth distribution of a set of n d-dimensional slabs within a domain Γ can be

done by using an algorithm to multiply polynomials of degree at most n.

Lemma 1. Let B be a set of n d-dimensional boxes whose intersection with a

domain box Γ are slabs. The computation of the depth distribution (V1, . . . , Vn)

of B within Γ can be performed via a multiplication of d polynomials of degree at

most n.

7

Proof. Assume w.l.o.g. that no box in B covers completely the domain Γ. For all

i ∈ [1..d], let Bi be the subset of slabs that are orthogonal to the i-th dimension,

and let
(
V i

1 , . . . , V
i
n

)
be the depth distribution within Γ of the intervals that result

from projecting Bi into the i-th dimension. We associate a polynomial Pi(x) of

degree n with each Bi as follows:

• let Γi be the projection of the domain Γ into the i-th dimension, and

• let V i
0 be the length of the region of Γi not covered by a box in Bi (i.e.,

V i
0 = (|Γi| −

∑n
j=1 V

i
j)); then

• Pi(x) =
∑n

j=0 V
i
j · xj .

Since any slab entirely covers the domain in all the dimensions but the one to

which it is orthogonal, any point p has depth k in B if and only if it has depths

j1 in B1, j2 in B2, . . . , and jd in Bd, such that j1 + j2 + . . .+ jd = k. Thus, for

all k ∈ [0..n]:

Vk =
∑

0≤j1,...,jd≤n
j1+...+jd=k

(
d∏

i=1

V i
ji

)
,

which is precisely the (k + 1)-th coefficient of P1(x) · P2(x) · . . . · Pd(x). Thus,

this product yields the depth distribution (V1, . . . , Vn) of B in Γ.

Using standard Fast Fourier Transform techniques, two polynomials can be

multiplied in O(n log n)-time (considering elementary arithmetic operations over

the coefficients, such as additions and multiplications, as primitive operations

that consume constant time) [12]. Moreover, the depth distribution of a set of

intervals (i.e., when d = 1) can be computed in linear time after sorting, by a

simple scan-line algorithm, as can be done for the Klee’s measure [10]. Thus, as a

consequence of Lemma 1, when the boxes in B are slabs within a domain box Γ,

the depth distribution of B inside Γ can be computed in time within O(n log n).

Corollary 1. Let B be a set of n d-dimensional boxes whose intersections with

a d-dimensional box Γ are slabs. The depth distribution of B inside Γ can be

computed in time within O(n log n).

8

A naive application of previous techniques for the Klee’s Measure prob-

lem [10, 27] to the computation of the depth distribution yields poor results:

• On one hand, combining the result described in Corollary 1 with the

partition of the space and data structure described by Overmars and Yap

[27] yields an algorithm to compute the depth distribution in time within

O(n
d+1
2 log n), but using prohibitive space within Θ(nd/2 log n).

• On the other hand, combining the result in Corollary 1 with Chan’s

partition of the space [10], yields an algorithm using space linear in the

number of boxes, but running in time within Θ(n
d
2 +1 log n) (i.e., paying

an extra O(n
1
2)-factor for the reduction in space usage of Overmars and

Yap [27]).

We combine these two approaches into a recursive algorithm which achieves the

best features of both: it runs in time within O(n
d+1
2 log n), and uses O(n log n)-

space. As in Chan’s approach [10] we use a recursive simplify, divide and conquer

algorithm, but we show that the running time is asymptotically the same as if the

partition and data structure described by Overmars and Yap [27] were used (see

Algorithm 1 for a detailed description). With each recursive step, the domain

becomes smaller. When the domain is small enough such that all the boxes

within it are slabs, we compute the depth distribution using Corollary 1 (base case,

steps 1-4). We apply a simplification step before each recursive call removing

the boxes that cover the entire domain and updating a value which keeps track

of the number of such boxes (steps 6-8). To obtain the smaller domains for the

recursive calls, we cut the current domain into two by a hyperplane, using for

this the weighted median of the (d-2)-faces of the boxes orthogonal to the first

dimensions (steps 9-12).

2As in Chan’s approach [10], we consider the weight of a (d-2)-face orthogonal to dimensions

xi, xj to be 2
i+j
d , for i, j ∈ [1..d]. In particular, the weight of a (d-2)-face orthogonal to x1

and xj , for j ∈ [1..d] is 2
j+1
d . (see Section 2 for more details)

9

Algorithm 1 SDC-DDistribution(B,Γ, c, (V1, . . . , Vn))

Input: A set B of n boxes in Rd; a d-dimensional domain box Γ; the number c

of boxes not in B but in the original set that completely contain Γ; and a

vector (V1, . . . , Vn) representing the depth distribution computed so far.

1: if no box in B has a (d-2)-face intersecting Γ (i.e., all the boxes are slabs)

then

2: Compute the depth distribution
(
V ′1 , . . . , V

′
|B|

)
of B within Γ using Corol-

lary 1

3: for i ∈ [1..|B|] do

4: Vi+c ← Vi+c + V ′i

5: else

6: Let B0 ⊆ B be the subset of boxes completely containing Γ

7: c← c+ |B0|

8: Let B′ = B \ B0

9: Let m be the weighted median 2of the (d-2)-faces orthogonal to x1

10: Split Γ into ΓL,ΓR by the hyperplane x1 = m

11: Rename the dimensions so that x1, . . . , xd becomes x2, . . . , xd, x1

12: Let BL and BR be the subsets of B′ intersecting ΓL and ΓR respectively

13: Call SDC-DDistribution(BL,ΓL, c, (V1, . . . , Vn))

14: Call SDC-DDistribution(BR,ΓR, c, (V1, . . . , Vn))

To analyze this algorithm, we first bound in Lemma 2 the height of its

recursion tree with respect to the size B, and then bound in Theorem 1 its

running time and space usage.

Lemma 2. Let B be a set of n boxes in Rd, and Γ be a domain box. When

Algorithm 1 is executed with B and Γ as input, the height h of its recursion tree

is at most d
2 log n+O(1).

Proof. As described in Section 2, we consider the weight of a (d-2)-face orthogonal

to dimensions xi, xj to be the value 2
i+j
d (which is always between 1 and 4). Let

10

W be the total weight of the (d-2)-faces of B that intersect Γ. We will show that

h ≤ dd/2 logW e, thus proving the desired bound since W ∈ O(n) 3.

First, consider a (d-2)-face orthogonal to the i-th and j-th axes, with i, j > 1.

After the renumbering in step 11, its weight changes from 2
i+j
d to 2

i−1+j−1
d =

2
i+j
d −

2
d , i.e., decreasing by a factor of 22/d. Therefore, after each recursive

invocation the total weight of such (d-2)-faces decrease by a factor of 22/d.

Next, consider a (d-2)-face orthogonal to dimensions x1 and xj , with j > 1.

After renumbering the axes, its weight changes from 2
1+j
d to 2

d+j−1
d = 2

1+j
d + d−2

d ,

thus increasing by a factor of 2d−2d. However, after the partition of Γ into ΓL

and ΓR in step 10, the total weight of the (d-2)-faces orthogonal to the first

dimension and intersecting either subcell decreases by a factor of 2. This is due

to the weighted median partition, and the fact that each such (d-2)-face cannot

intersect the interior of ΓL and ΓR at the same time. Therefore, this implies a a

net decrease by a factor of 22/d in the weights of such (d-2)-faces as well.

Since the total weight of all (d-2)-faces intersecting the domain drops by a

factor of 22/d after each recursive invocation, any path in the recursion tree can

have length at must dlog22/d W e = dd/2 logW e. Thus the height of the recursion

tree can be at most this value.

Theorem 1. Let B be a set of n boxes in Rd. The depth distribution of B can

be computed in time within O(n
d+1
2 log n), using space within O(n log n).

Proof. First, we show that the running time T (n) of Algorithm 1 is within

O(n
d+1
2 log n). We can charge the number of boxes in the set to the number

of (d-1)-faces intersecting the domain: if a box in B does not have a (d-1)-face

intersecting the domain, then it covers the entire domain, and it would have

been simplified (steps 6-8). Note that the (d-1)-faces orthogonal to dimension x1

cannot intersect both the sub-domains ΓL and ΓR of the recursive calls at the

same time (because the algorithm uses a hyperplane orthogonal to x1 to split

3The arguments to prove the lemma are very similar to the those presented by Chan [10]

for the Klee’s Measure problem, we include them here ‘aiming for completeness.

11

the domain into ΓL and ΓR). Hence, although at the d-th level of the recursion

there are 2d recursive calls, any (d-1)-face can appear in at most 2d−1 of those.

In general, for any i, there are at most 2i recursive calls at the i-th level of

recursion, but any (d-1)-face of the original set can intersect at most 2di/de(d−1)

of the cells corresponding to the domain of those calls. Hence, the total number

of (d-1)-faces which “survive” until the i-th level of the recursion tree is within

O(n2i(d−1)/d) (a similar argument was used by Overmars and Yap [27] to bound

the running time of the data structure they introduced): the ceiling can be

ignored within the asymptotic notation, as it is hiding constants depending only

on d.

Let h be the height of the recursion tree of Algorithm 1. By Lemma 2 we know

that h ∈ d
2 log n+O(1). To bound T (n), we analyze separately the total cost

TI(n) of the interior nodes of the recursion tree (i.e., the nodes corresponding

to recursive calls which fail the base case condition in step 1) from the total cost

TL(n) of the leaves of the recursion tree.

Since, the cost of each interior node is linear in the number of (d-1)-faces

intersecting the corresponding domain, TI(n) is bounded by:

TI(n) ∈
h∑

i=1

O
(
n · 2i(d−1)/d

)
⊆ O

(
n

h∑
i=1

2i(d−1)/d

)
⊆ O

(
n · 2

d−1
d h
)

⊆ O
(
n · 2

d−1
d

d
2 log n

)
(as h ∈ d

2
log n+O(1))

= O
(
n · n

d−1
2

)
= O

(
n

d+1
2

)
To analyze the total cost of the leaves of the recursion tree, first note that the

total number l of such recursive calls is within O(nd/2). Let n1, . . . , nl denote the

number of (d-1)-faces in each of those recursive calls, respectively. Note that TL(n)

is within O(
∑l

i=1 ni log ni) because the result of Lemma 1 is used in step 1 of the

algorithm. Besides, since the number of (d-1)-faces which survive until the h-th

12

level of the recursion tree is within O(n
d−1
2),

∑l
i=1 ni ∈ O(n

d+1
2). That bound,

and the fact that log ni ≤ log n, for all i ∈ [1..l], yields TL(n) ∈ O(n
d+1
2 log n).

As T (n) = TI(n) + TL(n), the bound for the running time follows.

With respect to the space used by the algorithm, note that only one path in

the recursion tree is active at any moment, and that at most O(n) extra space is

needed within each recursive call. Since the height of the recursion tree is within

O(log n), the total space used by the algorithm is clearly within O(n log n).

Note that in the algorithm SDC-DDistribution, the depth distribution is ac-

cumulated into a parameter. This is only to simplify the description and analysis

of the algorithm, and does not impact its computational or space complexity.

The initialization of the parameters of the algorithm SDC-DDistribution should

be done as shown in Algorithm 2.

Algorithm 2 DDistribution(B,Γ)
Input: A set B of n boxes in Rd, a d-dimensional domain box Γ

Output: The depth distribution of B within Γ

1: (V1, V2, . . . , Vn)← (0, 0, . . . , 0)

2: SDC-DDistribution(B,Γ, 0, (V1, V2, . . . , Vn))

3: return (V1, V2, . . . , Vn)

The bound for the running time in Theorem 1 is worse than that of computing

the Klee’s measure (and maximum depth) by a factor within O(
√
n log n), which

raises the question of the optimality of the bound: we consider this matter in

Section 4.

3.2. Adaptive Analysis

Even though the asymptotic complexity of O(n
d+1
2 log n) is the best we know

so far for the Depth distribution problem in the worst case, the constructions

for which that bound is met are rather artificial. From a practical perspective

there are many instances which can be solved faster. While some of those “easy”

instances can be mere particular cases, others could be hints of some hidden

13

measures of difficulty of the Depth distribution problem. We show that there

are at least two such difficulty measures, gradually separating instances of the

same size n into various classes of difficulty. Informally, the first one measures

how separable the boxes are by means of axis-aligned hyperplanes, while the

second one measures how “complex” are the interactions between the boxes in

the set.

3.2.1. A Profile-Sensitive Algorithm for the Depth distribution problem

A special type of set of boxes commonly arising in practice is that where the

set has bounded profile [13, 26]. The i-th profile pi of a set B of d-dimensional

boxes is the maximum number of boxes intersected by any hyperplane orthogonal

to the i-th dimension; and the profile p of B is p = mini∈[1..d]{pi}. D’Amore

et al. [13] showed how to compute its value in linear time (after sorting the

coordinates of the boxes in each dimension).

We show in the following lemma that the depth distribution can be computed

in time sensitive to the profile of the input set.

Theorem 2. Let B be a set of n boxes in Rd with profile p, and Γ be a d-

dimensional domain box. The depth distribution of B within Γ can be computed

in time within O(n log n+ np
d−1
2 log p) ⊆ O(n

d+1
2 log n).

Proof. We describe an algorithm which partitions the domain Γ into disjoint

cells, computes the depth distribution within each cell, and combines the results

into the final answer. For this, it sweeps the boxes with a hyperplane orthogonal

to the dimension with smallest profile, and after every 2p endpoints of the boxes,

it creates a new cell cutting the space with a hyperplane orthogonal to this

dimension. This yields a partition of Γ into O(n/p) cells, each intersecting at

most O(p) boxes. Finally, the algorithm computes the depth distribution of B

within each cell in time within O(p
d+1
2 log p), and obtains the depth distribution

of B within Γ by summing the respective components of the depth distribution

within each slab. In total, this takes time within O(n log n+ np
d−1
2 log p).

14

The theorem above automatically yields refined results for the computation

of the Klee’s measure and maximum depth of a set of boxes B. However, applying

the technique in an ad-hoc way to these problems yields a slightly better bound:

Corollary 2. Let B be a set of n boxes in Rd with profile p, and Γ be a d-

dimensional domain box. The Klee’s measure and maximum depth of B within Γ

can be computed in time within O(n log n+ np
d−2
2) ⊆ O(nd/2).

The algorithms from Theorem 2 and Corollary 2 asymptotically outperform

previous ones in the sense that their running time is never worse than previous

algorithms by more than a constant factor when the profile p is within O(n1−ε),

for some constant ε > 0.

An orthogonal approach is to consider how complex are the interactions

between the boxes in the input set B, analyzing, for instance, the intersection

graph of B. We study such a technique in the next section.

3.2.2. Adaptivity to the Treewidth and Degeneracy of the Intersections Graph

The treewidth of a graph is a concept which captures how “close” to a tree

the graph is. The treewidth was introduced independently several times under

different names, and many graph problems that are NP-hard for general graphs

can be solved in polynomial time for graphs with small treewidth (see Sections

10.4 and 10.5 of Kleinberg and Tardos’s book [22] for a nice overview). We

describe below a technique to improve the running time of the depth distribution

of sets of boxes whose intersection graphs have small treewidth.

A k-degenerate graph is an undirected graph in which every subgraph has a

vertex of degree at most k [24]. The degeneracy of a graph G is the smallest value

k such that G is k-degenerate. Every k-degenerate graph accepts an ordering of

the vertices (called degenerate ordering) in which every vertex is connected with

at most k of the vertices that precede it.

In the following lemma we show that this ordering can be used to compute

the depth distribution of a set B of n boxes in running time sensitive to the

degeneracy of the intersection graph of B.

15

Lemma 3. Let B be a set of n d-boxes, let Γ be a domain d-box, and let k be

the degeneracy of the intersection graph G of B. The depth distribution of B in Γ

can be computed in time within O(n logd n+ e+ nk
d+1
2), where e ∈ O(n2) is the

number of edges of G.

Proof. We describe an algorithm that runs in time within the bound in the

lemma. The algorithm first computes the intersection graph G of B in time

within O(n logd n + e) [14], as well as the k-degeneracy of this graph and a

degenerate ordering O of the vertices in time within O(n+ e) [25]. For i ∈ [1..n]

let O[1..i] denote the first i vertices of O, and O[i] denote the i-th vertex of O.

The algorithm then iterates over O maintaining the invariant that, after the i-th

step, the depth distribution within Γ of the boxes corresponding to vertices in

O[1..i] has been correctly computed.

For any subset U of vertices of G, let DDΓ
B(U) denote the depth distribution

within Γ of the boxes in B corresponding to the vertices in U . From DDΓ
B(O[1..i-1])

(which the algorithm “knows” after the (i-1)-th iteration), DDΓ
B(O[1..i]) can be

obtained as follows: (i.) let P be the subset of O[1..i-1] adjacent to O[i]; (ii.)

compute DD
O[i]
B (P ∪{O[i]}) in time within O(k

d+1
2 log k) using Algorithm 1 (note

that the domain this time is O[i] itself, instead of Γ); (iii.) add to (DDΓ
B(O[1..i]))1

the value of (DD
O[i]
B (P ∪ O[i]))1; and (iv.) for all j = [2..k+1], subtract from

(DDΓ
B(O[1..i]))j−1 the value of (DD

O[i]
B (P ∪O[i]))j and add it to (DDΓ

B(O[1..i-1]))j .

Since the updates to the depth distribution in each step take time within

O(k
d+1
2 log k), and there are n such steps, the lemma follows.

The degeneracy k of a graph G is always at most the treewidth t of G [22]

(i.e. k ≤ t). Thus, the algorithm described above is sensitive to the treewidth of

the intersection graph.

Theorem 3. Let B be a set of n boxes in Rd, let Γ be a d-dimensional domain box,

and let t be the treewidth of the intersection graph G of the boxes in B. The depth

distribution of B within Γ can be computed in time within O(n logd n+e+nt
d+1
2),

where e ∈ O(n2) is the number of edges of G.

16

Unlike the algorithm sensitive to the profile described in Section 3.2.1,

this algorithm can run in time within O(n1+ d+1
2) (e.g., when k ∈ Θ(n)) in

the worst-case, which is better than the O(n
d+1
2) complexity of algorithm

SDC-DDistribution only for values of the degeneracy k within O(n1− 2
d). A

simple dove-tailing combination yields a solution whose asymptotic running time

is the best of both.

As in the case of the algorithm sensitive to the profile of the input instance,

applying the same technique in an ad-hoc fashion to the Klee’s Measure and

Maximum Depth problems yields improved solutions:

Corollary 3. Let B be a set of n boxes in Rd, let Γ be a d-dimensional box, and

let t be the treewidth of the intersection graph G of B. The Klee’s measure and

maximum depth of B within Γ can be computed in time within O(n logd n+e+nt
d
2),

where e ∈ O(n2) is the number of edges of G.

The algorithms for the Depth distribution problem described here, even

those taking advantage of distinct measures of difficulty of the input, are com-

putationally more expensive than their analogy for the Klee’s Measure and

Maximum Depth problems. In the next section, we argue on why such a

gap in the computational complexity of these problems might require major

breakthrough results.

4. Lower Bounds for the Depth distribution problem

The only non-trivial lower bound known for the computational complexity of

the Depth distribution problem is Ω(n log n) [15] (in the decision tree model

with linear tests), which follows from the fact that this problem has the Klee’s

Measure problem as a special case (see Section 2 for details). Note, however,

that this bound is known to be tight only when the input is a set of intervals

(i.e., d = 1). For higher dimensions, the lower bound of Ω(nd/2) conjectured by

Chan in 2008 [9] for the computational complexity of the Klee’s Measure

problem can be extended analogously to the computational complexity of the

Depth distribution problem. Again, note that there is a gap between this

17

conjectured lower bound and the upper bound of O(n
d+1
2 log n) described in

Section 3.

In this section we study whether the gap between the computational com-

plexities of the Depth distribution problem and the Klee’s Measure and

Maximum Depth problems can be eluded. Although we do not know the answer

to this question yet, we argue that it is in fact a very hard (and relevant) question

about not only boxes, but other central problems in Computer Science. We show

that proving that such a gap can be eluded implies breakthrough results for two

fundamental problems in computer science, the Integer Multiplication and

Matrix Multiplication problems:

• First, we consider in Section 4.1 the case when all the boxes are slabs, and

the input is given pre-sorted in each dimension. Both the Klee’s measure

and the maximum depth of such instances can be computed in linear time.

We show that if there is an algorithm computing the depth distribution of

such instances in linear time then there is also a linear-time algorithm for

multiplying two n-bit numbers, which would contradict a conjecture of

Schönhage and Strassen [30] for the Integer Multiplication problem,

widely accepted by the community [16, 18].

• Then, in Section 4.2 we consider the planar case of the Depth distri-

bution problem. The Klee’s measure and maximum depth of a set of n

rectangles can be computed in time within O(n log n) [10]. We show that

any algorithm computing the depth distribution in time within O(n log n)

can be transformed into an algorithm which multiplies two n× n matrices

in time within O(n2 log n). Thus, any such algorithm for the Depth dis-

tribution problem would solve a fundamental and long-standing question

for the Matrix Multiplication problem [11, 17, 29, 31].

4.1. Conditional lower bound for the case of sorted slabs

Let Γ be a domain d-box, and let B be a set of n d-boxes which are all slabs

within Γ. Suppose that, together with Γ and B, we are given as part of the input

18

the relative order of the endpoints of the boxes in B in each dimension. It is well

known that both the Klee’s measure and maximum depth of B can be computed

in linear time under these settings [10, 27]. We argue that the same is not true

for the depth distribution: we prove that computing the depth distribution of B

requires time within Ω(n log n), unless two n-bit integers can be multiplied in

time within o(n log n).

Computing the product of two n-bit integers, known as the Integer Multi-

plication problem, is an important fundamental problem in algorithmic number

theory, algebra and theoretical computer science [23]. A naive approach leads

to an algorithm that uses O(n2) bit operations, but in 1963 Karatsuba and

Ofman [19] showed how to reduce the number of operations to within O(nlog2 3).

In a major breakthrough, in 1971, Schönhage and Strassen [30] described an

efficient algorithm for multiplying integers using fast polynomial multiplication,

and running in time within O(n · log n · log log n). Since then, the prevailing (and

widely accepted) conjecture has always been that the computational complexity

of this problem is within Θ(n log n) [16, 18, 30].

We show that any algorithm A for the Depth distribution problem over a

set of pre-sorted slabs can be used to multiply two n-bit integers via a reduction

using O(n) bit operations. We do this in two steps: first, in Lemma 4, we show

that any two polynomials with non-negative integer coefficients can be multiplied

using A, and then in Theorem 4, using the fact that the product of two n-bits

integers can be obtained by means of an algorithm for polynomial multiplication,

we prove the conditional lower bound. Since the Integer Multiplication

problem is usually studied in the multi-tape Turing machine model (also referred

to as the bit-complexity model) [28], we show that our reduction can be executed

in linear time on a 3-tape Turing machine. Thus, the conditional lower bound

described here also applies to any computational model with at least as much

power as a multi-tape Turing machine (which is already a highly restrictive

computational model).

19

Lemma 4. Let P (x), Q(x) be two m-degree polynomials with integer coefficients

in [0..(2m − 1)], and let n = 2m2 (i.e., n is a bound for the size in bits of the

representations of P,Q). There is a set B with 2m rectangles, and a rectangle Γ

such that:

1. Both the domain Γ, and the set B, can be computed in time within O(n);

2. All the rectangles, including Γ have their endpoints in [0..m2m];

3. All the rectangles of B are slabs in Γ, and the relative order of their endpoints

in each dimension is known;

4. If the depth distribution of B within Γ can be computed in time T (n), then

the polynomial P (x) ·Q(x) can be computed in time within O(T (n) + n).

Proof. Given P (x) and Q(x), we create a set B with 2m rectangles, and a domain

rectangle Γ, such that from the depth distribution (V1, V2, . . . , V2m) of B within Γ,

the coefficients of P (x) ·Q(x) can be obtained via a simple linear time procedure.

Let pi and qi denote the i-th coefficient of P (x) and Q(x), respectively, for all

i = [1..m]. Choose B and Γ as follows (see Figure 2 for an illustration):

1. Take Γ as the rectangle {(x, y) | 0 ≤ x ≤
∑m

j=0 pi, 0 ≤ y ≤
∑m

j=0 qi};

2. Take B = Bp ∪ Bq, where Bp and Bq are the sets of slabs (orthogonal to the

x and y axes, respectively) defined as:

Bp =
m⋃
i=1

{
bpi =

{
(x, y) ∈ Γ | 0 ≤ x ≤

i∑
k=0

pm−k

}}

Bq =
m⋃
i=1

{
bqi =

{
(x, y) ∈ Γ | 0 ≤ y ≤

i∑
k=0

qm−k

}}
.

Let Γx, Γy denote the intervals resulting from projecting Γ to the x and y

axes, respectively, and let |I| denote the length of any interval I. Bp is defined so

that when its m rectangles are projected to the x-axis, the length of the region

in Γx covered by exactly k rectangles is precisely pk, for all k = [0..m]. Thus, if

we let (V x
1 , . . . , V

x
m) denote the depth distribution of the projection of Bp to the

20

p4

p2

p1

p0

q1q3q4

Γ

∑4
i=0 qi

8 7

6

5

5

5

4

4

4

3

2

1

x2

x1

∑4
i=0 pi

bq1 bq2, b
q
3

bq4

bp1, b
p
2

bp3

bp4

Figure 2: A product P (n) ·Q(n) as an instance of Depth Distribution, for P (n) =

p4n4 + p2n2 + p1n + p0, and Q(n) = q4n4 + q3n3 + q1n. The set of rectangles

generated is B = Bp ∪ Bq, where Bp = {bp1, b
p
2, b

p
3, b

p
4} and Bq = {bq1, b

q
2, b

q
3, b

q
4}. The

number within each cell indicates the depth of the corresponding region. The lines to

the left of (resp. below) the x1 axis (resp. the x2 axis) illustrate the intervals that

would result from projecting Bp (resp. Bq) to x1 (resp. to x2). The numbers over

curly brackets indicate the length of the region delimited by the brackets.

x-axis within Γx, and let V x
0 = |Γx| −

∑m
i=1 V

x
i , then pk = V x

k , for all k = [0..m].

Analogous observations can be made for Q(x),Bq,Γy and (V y
0 , V

y
1 , . . . , V

y
m).

Let ck denote the k-th coefficient of P (x) ·Q(x). Since any point p has depth

k in B if and only if it has depth i in Bp and j in Bq such that i+ j = k, for all

k ∈ [1..2m] we have:

Vk =
∑

0≤i,j≤m
i+j=k

V x
i · V

y
j =

∑
0≤i,j≤m
i+j=k

pi · qj = ak

Thus, the 2m components of the depth distribution of B within Γ are precisely

the first 2m coefficients (in descending order of the exponents) of P (x) ·Q(x).

Besides, the constant coefficient of the product is given by |Γ| −
∑m

i=1 Vi, where

|Γ| is the volume of Γ. Therefore, the product P (x) · Q(x) can be obtained

almost directly from the Depth Distribution of B and Γ.

Now, let us analyze the running time of this reduction in a 3-Tapes Turing

Machine (the input and output tapes, and one additional tape to keep the

21

partial sums). We assume the input tape contains first all the coefficients of

P (x) in descending order of the exponents, and then all the coefficients of Q(x).

To produce the set Bp the coefficients of P (x) are read one by one, keeping

track of the partial sum of the ones read so far in the additional tape. To

process the i-th coefficient of P (x) we add pi to the partial sum, and write to

the output tape the box bpi . Note that, to represent each endpoint of a box in

B, dlog(m · 2m)e-bits suffice, and thus processing each coefficient of P (x) costs

within O(log(m · 2m)) operations. Therefore, the total operations required to

produce Bp is within O(m log(m · 2m)) ⊆ O(m logm+m2) ⊆ O(n). The same

is true for Bq, and therefore also for B. Besides, Γ can be computed also trivially

with O(m) operations. Finally, let A be an algorithm which computes the depth

distribution of B within Γ in time T (n). We execute A over B,Γ, and produce

the polynomial P (x) ·Q(x) from the output of A as already described, which can

be done with a total number of operations linear in size of the representation of

P (x) ·Q(x). To complete the proof, let us bound the bits required to represent

P (x) ·Q(x). Note that P (x) ·Q(x) has at most 2m coefficients, and since each

of those coefficients is the sum of at most 2m coefficients of P (x) and Q(x),

the number of bits required to represent it is within O(log(2m · 2m)) ⊆ O(m).

Therefore, the total number of bits in P (x) ·Q(x) is within O(n).

Since the product of two n-bit integers can be obtained from the product of

two polynomials with non-negative integer coefficients, the result of Lemma 4

yields the following conditional lower bound for the Depth distribution

problem on pre-sorted slabs:

Theorem 4. Let Γ be a domain d-box, and let B be a set of d-boxes which are

all slabs within Γ, and let n be a the number of bits required to represent B and Γ.

The depth distribution of B within Γ cannot be computed in time within o(n log n)

unless two n-bit integers can be multiplied using within o(n log n) bit operations.

Proof. Suppose there exists an algorithm A which computes the depth distribution

of B within Γ using T (n) ∈ o(n log n) bit operations. Let a, b be two n-bit

integers. Assume that n is a power of 2 (if not, we can add padding zeros until

22

this condition is met), and let m =
√
n. The product c = a · b can be computed

using A as follows:

1. Split a and b into m blocks {a1, . . . , am} and {b1, . . . , bm}, respectively, such

that each block has m bits, and

a =
m−1∑
i=0

ai2
im, b =

m−1∑
i=0

bi2
im (equivalently, express a, b in base 2m);

2. Let Pa(x), Pb(x) be the m-degree polynomials defined as

Pa(x) =

m−1∑
i=0

aix
i, Pb(x) =

m−1∑
i=0

bix
i (note that a = Pa(2m), b = Pb(2

m));

3. Compute Pc(x) = Pa(x) · Pb(x) using algorithm A as in Lemma 4;

4. Finally, perform carrying mod (2m + 1) over the coefficients of Pc(x) in

ascending order of their exponents to obtain c.

This procedure, inspired by Schönhage and Strassen’s algorithm [30], performs

within O(T (n) + n) operations on a 3-tapes Turing machine. This is clear for

the first two steps, and for the third one it directly derives from Lemma 4. For

the fourth step, note that Pc(x) has at most 2m coefficients, each of those being

the sum of at most 2m coefficients of Pa(x) and Pb(x). Thus, the number of bits

required to represent each coefficient of Pc(x) is within O(log(2m · 2m)) ⊆ O(m),

and the total number of bits in Pc(x) is within O(n).

Therefore, proving that the depth distribution of a set of sorted slabs can be

computed in the same running time than its Klee’s measure or its maximum depth,

would contradict Schönhage and Strassen’s conjecture [30] of the optimality of

Θ(n log n) for the complexity of the Integer Multiplication problem.

4.2. Conditional lower bound for sets of planar boxes

For general sets of boxes in the Euclidean plane, one can also argue that

the Depth distribution problem is computationally harder than the Klee’s

Measure and the Maximum Depth problems. Proving the opposite would

23

imply breakthrough results in the long-standing problem of Matrix Multipli-

cation. We prove that any instance of Matrix Multiplication can be solved

by using an algorithm which computes the depth distribution of a set of planar

boxes. For this, we make use of the following simple observation:

Observation. Let A,B be two n×n matrices of real numbers, and let Ci denote

the n× n matrix that results from multiplying the n× 1 vector corresponding to

the i-th column of A with the 1× n vector corresponding to the i-th row of B.

Then, AB =
∑n

i=1 Ci.

We show in Theorem 5 that multiplying two n× n matrices can be done by

transforming the input into a set of O(n2) axis aligned rectangles, and computing

the depth distribution of the resulting set. Moreover, this transformation can be

done in linear time, thus, the theorem yields a conditional lower bound for the

computation of the depth distribution.

Theorem 5. Let A,B be two n × n matrices of non-negative real numbers.

There is a set B of planar boxes of size within O(n2), and a domain box Γ, such

that the depth distribution of B within Γ can be projected to obtain the value of

the product AB. Moreover, the set B can be computed in O(n2) time.

Proof. We create a gadget to represent each Ci. Within the i-th gadget, there will

be a rectangular region for each coefficient of Ci with the value of that coefficient

as area (see Figure 3 for a general outlook of such instance). We arrange the

boxes so that two of such rectangular regions have the same depth if and only if

they represent the same respective coefficients of two different matrices Ci and

Ci′ (formally, they represent some coefficients (Ci)j,k and (Ci′)j′,k′ , respectively,

such that i 6= i′, j = j′, and k = k′).

We describe a set B of 5n2 planar boxes (one box for each of the n2 coefficients

of A, two boxes for each of the n2 coefficients of B, and 2n2 additional boxes)

such that, for each i, j ∈ [1..n], the (2ni + 2j + 1)-th component of the depth

distribution of B is equal to the component ABi,j of the product AB. Such a

set can be constructed in linear time as follows (see Figure 4 on page 30 for a

graphical representation of such an instance):

24

. . .

. . .

. . .

..
.

. . .

A1,i

A2,i

An,i

Bi,1 Bi,2 Bi,n

..
.

..
.

C1 Ci Cn

a) b)

. . .

(Ci)1,1 (Ci)1,2 (Ci)1,n

(Ci)2,1 (Ci)2,2 (Ci)2,n

(Ci)n,1 (Ci)n,2 (Ci)n,n

. . .

Γ

∑n
j=1B1,j

∑n
j=1Bi,j

∑n
j=1Bn,j

∑ i
m

ax
j
{A

i,
j
}

Ci

Figure 3: An outlook of the instance generated for the product AB: we add a

gadget for each C1, . . . , Cn, within a domain Γ as in a). In b), a representation

of Ci with 2n boxes, the volumes of the rectangular regions correspond to the

coefficients of Ci (the regions in a gadget must have different depths to avoid

that their areas are added into a same component of the depth distribution).

• Let the domain Γ = {(x, y) | 0 ≤ x ≤
∑

i

∑
j Bi,j , 0 ≤ y ≤

∑
i maxj{Ai,j}}.

• For all i ∈ [1..n] we create a gadget for Ci that covers the entire domain

in the y-direction, and that spans from Cstart
i =

∑i−1
j=1

∑n
k=0Bj,k to

Cend
i = Cstart

i +
∑n

k=0Bi,k in the x-direction. This step can be done in

O(n2) time by pre-computing the partial sums needed for the constructions.

• Within the gadget for Ci we place one box for each Aj,i and two boxes for

each Bi,j , for i, j ∈ [1..n], as follows: the one corresponding to Aj,i will span

Ci entirely in the x-direction, and is bounded by (
∑j

k=1 maxn
l=1{Ak,l}) ≤

y ≤ (Aj,i +
∑j

k=1 maxn
l=1{Ak,l}) in the y-direction. For Bi,j we place

two identical boxes entirely spanning Ci in the y-direction, and in the

x-direction bounded by (Cstart
i +

∑j−1
k=1Bi,k) ≤ x ≤ Cend

i . Again, by

pre-computing and storing the partial sums needed for the construction

we can perform this step in time within O(n2).

• Finally, we add 2n2 boxes to ensure that rectangular regions corresponding

to two coefficients Ci,j and Ci,k in different rows j, k of a same Ci do not

share the same depth, for all i, j, k ∈ [1..n] . For this, for all j ∈ [1..n] we

25

add 2n identical boxes entirely spanning the domain in the x-direction,

and spanning from (
∑j

k=1 maxn
l=1{Ak,l}) to (

∑
i maxj{Ai,j})) in the y-

direction.

Note that in the instance generated, for i, j ∈ [1..n]:

• a region has odd depth if and only if its area is equal to some coefficient of

any Ci;

• the regions corresponding to coefficients of the i-th rows have depth between

(2in+ 3) and (4in+ 1);

• within the gadget for each Ci, the rectangular region with volume corre-

sponding to the coefficient Ci,j has depth (2ni + 2j + 1), and no other

rectangular region within the gadget has that depth;

• two regions have the same depth if and only if they represent the same

respective coefficients of two matrices Ci and Ci′ .

The arguments above and the fact that, by definition of the depth distribution,

the volumes of regions with the same depth are accumulated together, yield the

result of the theorem.

The optimal time to compute the product of two n × n matrices in an

arithmetic circuit [17] is still an intriguing open question. It can naturally be

computed using within O(n3) arithmetic operations. However, Strassen showed

in 1969 that within O(n2.81) arithmetic operations are enough [31]. This gave

rise to a new area of research, where the central question is to determine the value

of the exponent of the computational complexity of square matrix multiplication,

denoted ω, and defined as the minimum value such that two n× n matrices can

be multiplied using within O(nω+ε) arithmetic operations for any ε > 0.

The result of Theorem 5 directly yields a conditional lower bound on the

complexity of the Depth distribution problem: in particular, if the depth

distribution of n boxes in the plane can be computed in time within O(n log n),

then Matrix Multiplication can be computed in time within O(n2 log n),

26

implying that ω = 2. However, this would be a great breakthrough in the area, the

best known upper bound to date is approximately ω ≤ 2.37, when improvements

in the last 30 years [11, 17, 29] have been in the range [2.3728, 2.3754].

Note that although the reduction described in the proof of Theorem 5 works

only for matrices with non-negative coefficients, this fact does not weaken the

result in the theorem. The multiplication of two matrices with some negative

coefficients can be obtained from the multiplication of two matrices with only

positive coefficients, and such a transformation requires only time linear in the

size of the matrices. Moreover, even for the multiplication of boolean matrices

(i.e., matrices with all its coefficients either zero or one) the best bound known so

far for ω is the same as for the general problem [34]. Since the set B of Theorem 5

can be obtained using within O(n) arithmetic operations in an arithmetic circuit,

we obtain the following conditional lower bound:

Corollary 4 (Conditional lower bound). Computing the depth distribution of a

set B of n d-dimensional boxes requires within Ω(n1+c) arithmetic operations,

for some constant c > 0, unless two n × n matrices can be multiplied using a

number of arithmetic operations within O(n2+ε), for any constant ε > 0

In the next section we summarize the results described in this article and

present some future directions of research on the Depth Distribution problem.

5. Discussion

The computation of the depth distribution generalizes not only that of the

Klee’s measure and the maximum depth, but also generalizes many other central

problems with no apparent relation to orthogonal boxes (such as Matrix

Multiplication and its generalizations). As a measure, the depth distribution

captures many of the features in common between the Klee’s measure and the

maximum depth, so that any new upper bound on the computation of the

depth distribution will yield corresponding results for the computation of those

two measures. Nevertheless, we know of no direct reduction from the Depth

distribution problem to Klee’s Measure or the Maximum Depth problems,

27

and in fact we argued that such reduction is unlikely. We discuss below some

further issues to ponder about these measures.

Discrete variants. In practice, multidimensional range queries are applied to a

database of multidimensional points. This yields discrete variants of each of the

problems previously discussed, such as the Discrete Klee’s Measure problem

defined by Yildiz et al.. In this discrete variant, the input is composed not only

of a set B of n boxes, but also of a set S of m points. The goal is now to compute

not the volume of the union of the boxes, but the number (and/or the list) of

points which are covered by those boxes. Inspired by this definition, we define

a discrete version of the Maximum Depth problem (which points are covered

by the maximum number of boxes) and of the Depth distribution problem

(how many and which points are covered by exactly i boxes, for i ∈ [1..n]).

Interestingly enough, the computational complexity of these discrete variants

is much less than that of their continuous versions when there are reasonably

few points [33]: the discrete variant becomes hard only when there are many

more points than boxes [1]. Nevertheless, “easy” configurations of the boxes also

yield “easy” instances in the discrete case: it will be interesting to analyze the

discrete variants of these problems according to the profile of the input set, and

according to the degeneracy and treewidth of its intersection graph, which we

introduced for the continuous versions in Section 3.2.

Tighter Bounds. Chan [9] conjectured that any combinatorial algorithm which

computes the Klee’s measure or the maximum depth of a set of n boxes in Rd

requires running time within Ω(nd/2). This conjectured lower bound on the

computation of the Klee’s measure applies of course to the more general problem

of computing the depth distribution. However, the running time of the algorithm

described in Section 3.1 can be worse than that lower bound by a factor within

O(
√
n log n). The gap between the asymptotic upper and lower bounds on the

computational complexity of the Depth distribution problem could be closed

either by finding an improved algorithm, or by proving more restrictive lower

bounds: it is not clear which is the best candidate. The depth distribution of

28

a set of boxes yields much more information than its Klee’s measure (actually,

a large part of this information can be ignored during the computation of the

Klee’s measure). This may hint that computing the depth distribution is actually

asymptotically harder than the special cases, and that proving more restrictive

lower bounds is plausible. We were able to argue in Section 3.2 that at least in

two dimensions this is the case, but it is unclear whether (or how) that argument

can be extended to higher dimensions.

Special cases of the input. As a consequence of the lower bound conjectured

by Chan [9], recent work on the computation of the Klee’s measure [7, 8, 10]

have focused on the study of special cases which can be solved in time within

o(nd/2). For instance, Chan showed [10] that when all the boxes are orthants

the Klee’s measure can be computed in time within O(nd/3 polylog n); various

authors showed [5, 7, 8, 10] that the Klee’s measure of a set of hypercubes can be

computed in time within O(n(d+1)/3 polylog n); and Yildiz and Suri showed [32]

that the case of 2-grounded boxes can be solved in time within O(n(d−1)/2 log2 n),

for any dimension d ≥ 3. Similar improvements for the computation of the depth

distribution of such special cases are likely. An interesting question is whether in

some of these special cases, one can show that the difficulty of computing the

depth distribution is asymptotically equivalent to that of computing the Klee’s

measure.

29

A
1
,1

B1,1

B1,2

B1,n

Bn,1

Bn,2

Bn,n

2n+ 3

4n+ 3

2n2 + 3

2n+ 2

4n+ 2

2n2 + 2

4n+ 1

4n

2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

2

2

2

2

2

2n1

1

1

1

1

1

2n

2n

m
ax

i {
A

1
,i }

m
ax

i {
A

2
,i }

m
ax

i {
A

n
,i }

A
2
,1

A
n
,1

A
1
,n

A
2
,n

A
n
,n

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .

2n+ 5

2n+ 4

4n+ 5

4n+ 4

6n+ 1

6n

2 4 2n

2n

4n

2n2

2 4 2n

2n+ 3

2n+ 2

4n+ 1

4n

2n+ 5

2n+ 4

. . .

. . .

4n+ 3

4n+ 2

4n+ 5

4n+ 4

6n+ 1

6n

2n2 + 5

2n2 + 4

2n2+

2n2 + 2n

2n+1
2n2 + 3

2n2 + 2

2n2 + 5

2n2 + 4

2n2+

2n2 + 2n

2n+1

. . .

∑n

i=1
B1,i

∑n

i=1
Bn,i

.

.

..
.

B2,1

B2,2

B2,n

2n+ 3

4n+ 3

2n2 + 3

2n+ 2

4n+ 2

2n2 + 2

4n+ 1

4n

2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

2

2

1

1

1

. . .

.

2n+ 5

2n+ 4

4n+ 5

4n+ 4

6n+ 1

6n

2 4 2n

2n2 + 5

2n2 + 4

2n2+

2n2 + 2n

2n+1

∑n

i=1
B2,i

. . .
A

1
,2

A
2
,2

A
n
,2

C1 C2 Cn

Γ

Figure 4: Illustration of an instance of Depth Distribution generated for the product AB. The (red) values inside each rectangular area denote the

depth of the respective region they are in. The small arrows indicate that the boxes they delimit span the entire domain in the direction they point to.

The small numbers in the corner of each box indicate the number of exact copies of the box added to the instance (intuitively, the weight of the box).

The double-lined (blue) box is the domain Γ. Finally, the numbers over curly brackets indicate the length of the region delimited by the brackets.

30

References

[1] M. Abo Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via geometric

resolutions: Worst-case and beyond. In T. Milo and D. Calvanese, editors,

Proceedings of the 34th ACM Symposium on Principles of Database Systems

(PODS), Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 213–

228. ACM, 2015. ISBN 978-1-4503-2757-2. doi: 10.1145/2745754.2745776.

URL http://doi.acm.org/10.1145/2745754.2745776.

[2] P. Afshani. Fast computation of output-sensitive maxima in a word

RAM. In C. Chekuri, editor, Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), Portland, Oregon,

USA, January 5-7, 2014, pages 1414–1423. SIAM, 2014. ISBN 978-1-

61197-338-9, 978-1-61197-340-2. doi: 10.1137/1.9781611973402.104. URL

http://dx.doi.org/10.1137/1.9781611973402.104.

[3] P. Afshani, L. Arge, and K. G. Larsen. Higher-dimensional orthogonal range

reporting and rectangle stabbing in the pointer machine model. In T. K.

Dey and S. Whitesides, editors, Symposuim on Computational Geometry

(SoCG), Chapel Hill, NC, USA, June 17-20, 2012, pages 323–332. ACM,

2012. ISBN 978-1-4503-1299-8. doi: 10.1145/2261250.2261299. URL http:

//doi.acm.org/10.1145/2261250.2261299.

[4] P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal geometric algo-

rithms. Journal of the ACM (JACM), 64(1):3:1–3:38, Mar. 2017. ISSN

0004-5411. doi: 10.1145/3046673. URL http://doi.acm.org/10.1145/

3046673.

[5] P. K. Agarwal. An improved algorithm for computing the volume of the union

of cubes. In D. G. Kirkpatrick and J. S. B. Mitchell, editors, Proceedings of

the 26th ACM Symposium on Computational Geometry (SoCG), Snowbird,

Utah, USA, pages 230–239. ACM, 2010. ISBN 978-1-4503-0016-2. doi:

10.1145/1810959.1811000. URL http://doi.acm.org/10.1145/1810959.

1811000.

31

http://doi.acm.org/10.1145/2745754.2745776
http://dx.doi.org/10.1137/1.9781611973402.104
http://doi.acm.org/10.1145/2261250.2261299
http://doi.acm.org/10.1145/2261250.2261299
http://doi.acm.org/10.1145/3046673
http://doi.acm.org/10.1145/3046673
http://doi.acm.org/10.1145/1810959.1811000
http://doi.acm.org/10.1145/1810959.1811000

[6] J. L. Bentley. Algorithms for Klee’s rectangle problems. Technical report,

Computer Science Department, Carnegie Mellon University, 1977.

[7] K. Bringmann. An improved algorithm for Klee’s measure problem on

fat boxes. Computational Geometry, Theory and Applications (CGTA),

45(5-6):225–233, 2012. doi: 10.1016/j.comgeo.2011.12.001. URL http:

//dx.doi.org/10.1016/j.comgeo.2011.12.001.

[8] K. Bringmann. Bringing order to special cases of Klee’s Measure Problem. In

K. Chatterjee and J. Sgall, editors, Mathematical Foundations of Computer

Science 2013 - 38th International Symposium (MFCS), Klosterneuburg,

Austria, August 26-30, 2013. Proceedings, volume 8087 of Lecture Notes in

Computer Science (LNCS), pages 207–218. Springer, 2013. ISBN 978-3-642-

40312-5. doi: 10.1007/978-3-642-40313-2 20. URL http://dx.doi.org/

10.1007/978-3-642-40313-2_20.

[9] T. M. Chan. A (slightly) faster algorithm for Klee’s Measure Prob-

lem. In M. Teillaud, editor, Proceedings of the 24th ACM Symposium

on Computational Geometry (SoCG), College Park, MD, USA, June 9-11,

2008, pages 94–100. ACM, 2008. doi: 10.1145/1377676.1377693. URL

http://doi.acm.org/10.1145/1377676.1377693.

[10] T. M. Chan. Klee’s Measure Problem made easy. In 54th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), Berkeley, CA,

USA, 26-29 October, 2013, pages 410–419. IEEE Computer Society, 2013.

ISBN 978-0-7695-5135-7. doi: 10.1109/FOCS.2013.51. URL http://dx.

doi.org/10.1109/FOCS.2013.51.

[11] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic

progressions. In A. V. Aho, editor, Proceedings of the 19th Annual ACM

Symposium on Theory of Computing (STOC), 1987, New York, New York,

USA, pages 1–6. ACM, 1987. ISBN 0-89791-221-7. doi: 10.1145/28395.28396.

URL http://doi.acm.org/10.1145/28395.28396.

32

http://dx.doi.org/10.1016/j.comgeo.2011.12.001
http://dx.doi.org/10.1016/j.comgeo.2011.12.001
http://dx.doi.org/10.1007/978-3-642-40313-2_20
http://dx.doi.org/10.1007/978-3-642-40313-2_20
http://doi.acm.org/10.1145/1377676.1377693
http://dx.doi.org/10.1109/FOCS.2013.51
http://dx.doi.org/10.1109/FOCS.2013.51
http://doi.acm.org/10.1145/28395.28396

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms (3. ed.). MIT Press, 2009. ISBN 978-0-262-03384-8. URL

http://mitpress.mit.edu/books/introduction-algorithms.

[13] F. d’Amore, V. H. Nguyen, T. Roos, and P. Widmayer. On optimal cuts of

hyperrectangles. Computing, 55(3):191–206, 1995. doi: 10.1007/BF02238431.

URL http://dx.doi.org/10.1007/BF02238431.

[14] H. Edelsbrunner. A new approach to rectangle intersections part i. 13(3-4):

209–219, 1983.

[15] M. L. Fredman and B. W. Weide. On the complexity of computing the

measure of ∪n1 [ai, bi]. Communications of the ACM (CACM), 21(7):540–544,

1978. doi: 10.1145/359545.359553. URL http://doi.acm.org/10.1145/

359545.359553.

[16] M. Fürer. Faster integer multiplication. SIAM Journal on Computing

(SICOMP), 39(3):979–1005, 2009. doi: 10.1137/070711761. URL https:

//doi.org/10.1137/070711761.

[17] F. L. Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima,

K. Nagasaka, F. Winkler, and Á. Szántó, editors, International Symposium

on Symbolic and Algebraic Computation (ISSAC), Kobe, Japan, July 23-25,

2014, pages 296–303. ACM, 2014. ISBN 978-1-4503-2501-1. doi: 10.1145/

2608628.2608664. URL http://doi.acm.org/10.1145/2608628.2608664.

[18] D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multi-

plication. Journal of Complexity (JOC), 36:1–30, 2016. doi: 10.1016/j.jco.

2016.03.001. URL https://doi.org/10.1016/j.jco.2016.03.001.

[19] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on

Automata. Soviet Physics-Doklady, 7:595–596, 1963.

[20] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for

finding maximal vectors. In J. O’Rourke, editor, Proceedings of the First

33

http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1007/BF02238431
http://doi.acm.org/10.1145/359545.359553
http://doi.acm.org/10.1145/359545.359553
https://doi.org/10.1137/070711761
https://doi.org/10.1137/070711761
http://doi.acm.org/10.1145/2608628.2608664
https://doi.org/10.1016/j.jco.2016.03.001

Annual Symposium on Computational Geometry (SoCG), Baltimore, Mary-

land, USA, June 5-7, 1985, pages 89–96. ACM, 1985. ISBN 0-89791-163-6.

doi: 10.1145/323233.323246. URL http://doi.acm.org/10.1145/323233.

323246.

[21] V. Klee. Can the measure of ∪n1 [ai, bi] be computed in less than o(n log n)

steps? The American Mathematical Monthly, 84(4):284–285, 1977.

[22] J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006.

ISBN 978-0-321-37291-8.

[23] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical

Algorithms, 3rd Edition. Addison-Wesley, 1998. ISBN 0201896842. URL

http://www.worldcat.org/oclc/312898417.

[24] D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of

Mathematics (CJM), 22:1082–1096, 1970.

[25] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. Journal of the ACM (JACM), 30(3):417–427,

July 1983. ISSN 0004-5411. doi: 10.1145/2402.322385. URL http://doi.

acm.org/10.1145/2402.322385.

[26] V. H. Nguyen and P. Widmayer. Binary space partitions for sets of hy-

perrectangles. In Algorithms, Concurrency and Knowledge: 1995 Asian

Computing Science Conference (ACSC), Pathumthani, Tailand, December

11-13, 1995, Proceedings, pages 59–72, 1995. doi: 10.1007/3-540-60688-2 35.

URL https://doi.org/10.1007/3-540-60688-2_35.

[27] M. H. Overmars and C. Yap. New upper bounds in Klee’s measure problem.

SIAM Journal on Computing (SICOMP), 20(6):1034–1045, 1991. doi:

10.1137/0220065. URL http://dx.doi.org/10.1137/0220065.

[28] C. H. Papadimitriou. Computational complexity. Academic Internet Publ.,

2007. ISBN 978-1-4288-1409-7.

34

http://doi.acm.org/10.1145/323233.323246
http://doi.acm.org/10.1145/323233.323246
http://www.worldcat.org/oclc/312898417
http://doi.acm.org/10.1145/2402.322385
http://doi.acm.org/10.1145/2402.322385
https://doi.org/10.1007/3-540-60688-2_35
http://dx.doi.org/10.1137/0220065

[29] L. Roditty and V. V. Williams. Subquadratic time approximation algorithms

for the girth. In Y. Rabani, editor, Proceedings of the Twenty-Third Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), Kyoto, Japan,

January 17-19, 2012, pages 833–845. SIAM, 2012. ISBN 978-1-61197-210-8.

doi: 10.1137/1.9781611973099. URL http://portal.acm.org/citation.

cfm?id=2095183&CFID=63838676&CFTOKEN=79617016.

[30] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Com-

puting, 7(3-4):281–292, 1971. doi: 10.1007/BF02242355. URL https:

//doi.org/10.1007/BF02242355.

[31] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13(4):354–356, Aug. 1969. ISSN 0029-599X.

[32] H. Yildiz and S. Suri. On Klee’s measure problem for grounded boxes.

In T. K. Dey and S. Whitesides, editors, Symposuim on Computational

Geometry (SoCG), Chapel Hill, NC, USA, June 17-20, 2012, pages 111–120.

ACM, 2012. ISBN 978-1-4503-1299-8. doi: 10.1145/2261250.2261267. URL

http://doi.acm.org/10.1145/2261250.2261267.

[33] H. Yildiz, J. Hershberger, and S. Suri. A discrete and dynamic version of

klee’s measure problem. In Proceedings of the 23rd Annual Canadian Con-

ference on Computational Geometry (CCCG), Toronto, Ontario, Canada,

August 10-12, 2011, 2011. URL http://www.cccg.ca/proceedings/2011/

papers/paper28.pdf.

[34] H. Yu. An improved combinatorial algorithm for boolean matrix multi-

plication. In M. M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speck-

mann, editors, 42nd International Colloquium on Automata, Languages,

and Programming (ICALP), Proceedings, Part I, Kyoto, Japan, volume

9134 of Lecture Notes in Computer Science, pages 1094–1105. Springer,

2015. ISBN 978-3-662-47671-0. doi: 10.1007/978-3-662-47672-7 89. URL

http://dx.doi.org/10.1007/978-3-662-47672-7_89.

35

http://portal.acm.org/citation.cfm?id=2095183&CFID=63838676& CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095183&CFID=63838676& CFTOKEN=79617016
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF02242355
http://doi.acm.org/10.1145/2261250.2261267
http://www.cccg.ca/proceedings/2011/papers/paper28.pdf
http://www.cccg.ca/proceedings/2011/papers/paper28.pdf
http://dx.doi.org/10.1007/978-3-662-47672-7_89

Declaration of interests

☐ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Introduction
	Background
	Algorithms Computing the Depth Distribution
	Worst-case Analysis
	Adaptive Analysis
	A Profile-Sensitive Algorithm for the Depth distribution problem
	Adaptivity to the Treewidth and Degeneracy of the Intersections Graph

	Lower Bounds for the Depth distribution problem
	Conditional lower bound for the case of sorted slabs
	Conditional lower bound for sets of planar boxes

	Discussion

