
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Refining Code Ownership With Synchronous Changes

Lile Hattori · Michele Lanza · Romain Robbes

Received: date / Accepted: date

Abstract When mining software repositories, two distinct sources ofinformation are usu-
ally explored: the history log and snapshots of the system. Results of analyses derived from
these two sources are biased by the frequency with which developers commit their changes.
We argue that the usage of mainstream SCM (software configuration management) systems
influences the way that developers work. For example, since it is tedious to resolve con-
flicts due to parallel commits, developers tend to minimize conflicts by not contemporarily
modifying the same file. This however defeats one of the purposes of such systems.

We mine repositories created by our toolSyde, which records changes in a central repos-
itory whenever a file is compiled locally in the IDE (integrated development environment)
by any developer in a multi-developer project. This new source of information can augment
the accuracy of analyses and breaks new ground in terms of howsuch information can assist
developers.

We illustrate how the information we mine provides a refined notion of code ownership
with respect to the one inferred by SCM system data. We demonstrate our approach on three
case studies, including an industrial one. Ownership models suffer from the assumption that
developers have a perfect memory. To account for their imperfect memory, we integrate into
our ownership measurement a model of memory retention, to simulate the effect of memory
loss over time. We evaluate the characteristics of this model for several strengths of memory.

Keywords Code ownership· Mining software repositories· Fine-grained changes·
Software visualization

We gratefully acknowledge the financial support of the SwissNational Science foundation for the project
“GSync” (SNF Project No. 129496).

Lile Hattori · Michele Lanza
REVEAL @ Faculty of Informatics, University of Lugano
Via G. Buffi 13 - 6904 Lugano, Switzerland
Tel.: +41 58 666 42 93, Fax: +41 58 666 45 63
E-mail:{lile.hattori,michele.lanza}@usi.ch

Romain Robbes
PLEIAD Lab, Computer Science Department (DCC), University ofChile
Blanco Encalada 2120, of. 308, Santiago, Chile
Tel.: +56 2 978 4974, Fax: +56 2 689 5531
E-mail: rrobbes@dcc.uchile.cl



2

1 Introduction

To manage the life-cycle of software systems, developers use a number of tools, such as
software configuration management (SCM) systems, bug trackers, discussion boards,etc.
These tools store a large amount of information that is exploited by researchers to under-
stand different aspects of software evolution. SCM repositories, in particular, are a rich
source of information because they contain both the historyof the source code and metadata
describing who was responsible for which change.

A significant number of studies have mined SCM repositories to reveal the nature of
software changes [?,?,?], and to understand the correlation between changes and developer
roles [?,?]. These studies are based on largely adopted SCM systems, such as CVS and
Subversion (SVN). However, any inference derived from suchsystems is subject to the
granularity of information encountered in their repositories.

In their report on the impact of SCM systems, Estublieret al.stated that one of the next
steps for SCM systems was to break the assumption of languageindependence [?]. Contra-
dicting this statement, largely adopted SCM systems are still file-based and do not model
the particularities of a programming language. Hence the changes to software entities must
be reconstructed from the text-level changes stored in the SCM. Combined with thecheck-
out/checkincommands, where a developer checks out the code before an implementation
session, and checks in the changed files after an indefinite period of time, SCM systems
lose precious information about source code changes that cannot be recovered even with
elaborate mining and reverse engineering techniques [?].

Since checking in source code is an intermittent action and development is a continuous
activity, knowledge derived from the history log may deviate from what actually happened.
For example, a technique that spots specialists for parts ofa system based on check-in fre-
quency does not take into account the actual effort spent by developers in terms of time and
written code. Also, the frequency with which developers check in their code is biased by the
lack of language-oriented support for merging parallel changes. Since a developer does not
know whether someone else is changing the same file, studies have shown that they tend to
rush to check in their code [?], and even check in partial changes [?] to avoid dealing with
merge conflicts.

Modern decentralized software control management systems, such as Git1, offer addi-
tional support for parallel development. In Git the check-out/check-in model is replaced
by the clone/pull/push model, with which every developer maintains his own repository
by cloning someone else’s repository. Different from file-based SCM systems, which track
changed files by their names, Git is content-based, which means it tracks changed files by
the contents of their changes. One advantage of this approach is that Git can track the re-
name of a file, contrary to CVS or SVN, for example. However, some of the consequences of
Git’s decentralized model are that commits are not automatically visible to other developers;
instead of one history log, there are as many as the number of repositories created; the logs
of privately owned repositories are not accessible to everyone; and all the changes created in
everyone’s private repositories have to be occasionally merged, and conflicts resolved [?].

The nature of information found in software repositories determines what we can infer
from it [?]. File- and content-based SCM systems store snapshots thatrepresent the system’s
state at points in time, rather than a continuous evolution of the changes made to the system
to bring it from one state to the other. We believe that studies derived from file- and content-

1 Seehttp://git-scm.com/

http://git-scm.com/


3

based SCM systems are threatened by the loss of information that comes with the underlying
models.

We propose the use of a new software repository that is created by our Syde tool to
overcome the limitations of current SCM data. Syde is a collaborative tool that extends
Spyware’s [?] change-centric approach to augment the awareness of a teamof develop-
ers by propagating changesas they happen[?]. Syde offers to developers a collection of
Eclipse plug-ins to keep them aware of which source code artifacts are being changed [?],
and which are the source code changes that can impact on someone’s current work [?]. It
runs concurrently with the project’s SCM system and does notobstruct or modify its usage.
Syde’s repository stores every change performed by every developer at the exact time it hap-
pens. We define a change as every successfully compiled file that has undergone at least one
character edit since the last compilation (See Section 3). Hence, the once approximate data
aboutwhochangeswhat andwhenis now accurate and complete; leading to what we call
synchronous changes.

In this paper we describe how we used Syde’s change history together with the history
logs of these projects to understand the dynamics of the developers, and to create a refined
notion of ownership of the code. Further, we account for the imperfect memory of developers
by integrating in our model of ownership the notion of forgetting: A developer who changed
a file early on may have less actual knowledge of it than another developer who changed it
more recently, even if it was changed less. To conduct this study, we used Syde to record
several development periods in three systems, including a commercial one.

We envision using the technique and findings of this study as afoundation to integrate an
expertise recommender to the set of plug-ins that Syde offers. The recommender will assist
developers to search for help when striving to understand a piece of code. In such cases, the
recommender will show a list of developers who are knowledgeable about the code artifact,
ranking them based on their current knowledge. Thus, we aim at bringing a traditionally
post mortemanalysis to forward engineering to help developers maintain team awareness.

Structure of the paper.In Section 2 we review related work. In Section 3 we detail our
change recording and broadcasting approach and its supporting implementation in the form
of Syde. In Section?? we describe the notion of ownership of file by developers, andthe
effect of time in their ability to recall information. In Section ??, we describe a visualization
we use as support for interpreting the ownership data, the Ownership Map. In Section??we
then use Syde to analyze the history of three software systems, before discussing threats to
the validity of our study in Section??. Finally, we conclude in Section??.

2 Related Work

With Syde, we essentially propose a chance-centric approach to promote team collaboration.
Thus it is related to:

1. tools that support collaboration, and
2. operation-based SCM solutions.

In this work we are primarily interested in the impact of the data captured by Syde on
code ownership; we review the literature on that domain as well.



4

2.1 Tool Support for Collaboration

The continuous adoption of language independent SCM systems in the context of team-
based development influenced the creation of solutions to overcome the workspace isolation
enforced by them [?]. Tool support for collaboration ranges from full-fledged platforms,
such as Jazz.net2 and CollabVS [?], to specific workspace awareness solutions [?,?,?].

Jazz.net is designed to be the central tool for planning, managing and performing de-
velopment activities. It enriches Eclipse and Visual Studio to create a new environment to
support intra and inter-team collaboration, automation, and traceability of code, tasks and is-
sues. Microsoft’s CollabVS extends Visual Studio by addingcommunication channels, such
as text and audio-video chat, browsing of remote unchecked versions of files, and notifica-
tion of developer presence in code elements inside a file [?].

There are a number of valuable efforts to solve some specific problems raised by work-
space isolation generated by SCM systems. More specifically, they recover and broadcast
information about changes that occur between a check out anda check in, which tends to
become more critical as the gap grows larger.

Lighthouse is an Eclipse plug-in that aim at avoiding conflicts by propagating change
events from Eclipse and SCM among workspaces, and showing them on a view of the emerg-
ing design representation of the system [?]. Lighthouse requires a side-by-side presentation
of the design representation and the code, which is only feasible if developers work with
two screens.

Palant́ır is an Eclipse plug-in that addresses direct and indirect merge conflicts [?]. Direct
conflicts are caused by concurrent changes to the same artifact. Indirect ones are caused by
changes in one artifact that affect concurrent changes in another artifact. Palantı́r informs
the involved developers about the existence of conflicts, and their severity (e.g.,it is high if
one of the conflicting versions has already been checked in).

Schneideret al.use a shadow CVS repository to record changes every time thatsomeone
edits a file. The shadow repository is then mined and information about who is working with
what is visually presented to developers to augment group awareness [?].

FASTDash offers to developers real-time information aboutchanges: which team mem-
bers have source files checked out, which files are being viewed, and which classes and
methods are currently under change [?].

The demand for workspace awareness is becoming urgent as intensive and globally dis-
tributed team collaboration becomes the state of the practice. Although the solutions dis-
cussed above increase workspace awareness by working around some of the limitations
imposed by SCM systems, the root of the problem lies in the currently used SCM models,
which offer insufficient support for collaboration.

2.2 Operation-based SCM

The key characteristic of file-based SCM systems is that theyare able to version any type of
document, since documents are represented as files in a computer. In the context of software
development, this rather strong feature comes with a tradeoff: they are unable to model, and
hence, properly version source code changes. Source code istreated as plain text, which
forces developers to deal with textual merging of source code, with consequences that range
from compilation errors to bugs generated from runtime errors.

2 Seehttp://jazz.net

http://jazz.net


5

On the other end of the spectrum there are language-dependent operation-based SCM
systems [?,?,?], which have support for the language model, and version thesystem as a
sequence of change operations. Some advantages of this approach are that operations can be
replayed or rewound to bring the system from one state to another, and merge conflicts can
be resolved with operation-based merge algorithms [?]. However, despite a few noteworthy
efforts to provide operation-based SCM solutions, there isstill a list of issues to be addressed
until they become fully functional.

For example, MolhadoRef, proposed by Diget al. [?], is not a pure operation-based
SCM, but a mixture of state-based and operation-based, i.e., it does not record every change
made by every developer. Instead, it calculates the deltas before changes are checked in; only
refactoring operations are fully recorded. Consequently,there is still loss of information, and
not all system states can be recovered from the MolhadoRef repository.

In previous work, we introduced Spyware, a change-centric solution that records every
change made by one developer. Spyware is able to recover any state of the system [?].
Its main restriction is that it is a one-developer solution,i.e., it does not support a multi-
developer context. Our goal with Syde is to port Spyware’s approach to a multi-developer
context without losing information. Like Spyware, we do notintend to replace file-based
SCM systems, but to complement them by storing additional information.

2.3 Ownership of Files and Expertise of Developers

There have been several works on determining which developer is the most expert in a given
area of a large software system. The rationale behind these approaches is that since no one
can be knowledgeable over the entire system, one can insteadidentify who are the people to
contact to get more information about a given part of the system – the experts. People have
used several data sources to determine the expertise of developers.

Several approaches use SCM data to compute expertise and ownership. They assume
that people gain expertise on a part of the system when they change its implementation.
McDonald and Ackerman used SCM author information to determine the expertise of de-
velopers. They also included technical support data that was available in their particular case
study [?]. Mockus and Herbsleb in contrast, used only change data from the SCM system
as the data source of their Expertise Browser [?]. Gı̂rbaet al. focused more particularly on
ownership, where the owner of a file is the developer with the most expertise on it. They
also used SCM data to compute ownership [?].

Other approaches use different data sources. Anvik and Murphy used bug archive data to
determine implementation expertise, and found that it can serve as a replacement for SCM
data in the cases where the latter is not accurate [?]. Matteret al.determined the expertise of
developers based on the vocabulary they use. They used that expertise information to assign
bugs to developers [?]. Finally, Maet al. introduced the usage expertise, where the expertise
of people using a given piece of code is taken into account, asopposed to the expertise of
the people who implemented it [?].

3 Syde

Syde is a client-server application that manages and storesobject-oriented software systems
implemented in Java. The client is a collection of Eclipse plug-in that both inspect the devel-
oper’s workspace and enrich Eclipse with visualizations that provide awareness information



6

to developers. Figure??shows some of the visualizations provided by Syde, which arecur-
rently grouped into three plug-ins: Inspector Plug-in – responsible for tracking changes –,
Scamp Plug-in – delivers change awareness information –, and Conflicts Plug-in – notifies
developers of potential conflicts.

Fig. 1 Syde screenshots. 1: The Inspector Plug-in. 2: Scamp Plugin -Decorations View. 3: Scamp Plugin -
WordCloud View. 4: Scamp Plugin - Buckets View. 5: The ConflictPlug-in - Conflicts View. 6. The Conflict
Plug-in - Annotation on Java Editor

The Inspector plug-in listens to “build” operations, whichare often linked to “save” op-
erations in Eclipse. Every time a developer compiles a changed file, the Inspector’s listeners
are triggered and send a new version of the file to the server. If the file does not success-
fully compile, a notice of unsuccessful compilation together with the changed file is sent to
the server. The server saves the received information and broadcasts information about the



7

(successfully compiled) changes to all active client instances. Finally, each client instance
of the plug-in displays the broadcasted change informationon the views inside Eclipse’s
workbench. We developed Syde with a number of goals in mind:

– Complement SCM systems.As stated before, our goal is to complement file-based SCM
systems. A software project comprises not only source code,but also requirements,
specification, etc. For now, Syde focuses exclusively on thesource code of a project.

– Be non-intrusive and lightweight.Syde displays the activity of other developers in views
that the developer can simply close or minimize. Thus, Syde provides extra informa-
tion without disrupting or distracting a developer from work. As opposed to holistic and
complex approaches such as Jazz.net or CollabVS our goal is to provide effective collab-
oration support with minimal, lightweight, and complementary changes to the settings
of the developers.

– Enhance awareness.Similar to other solutions to augment workspace awareness,Syde
informs developers about recent changes in the source code that may not have been
checked into the SCM repository yet. A developer can requestthese changes even before
they become available through the SCM. We conducted a qualitative evaluation of our
tool set to provide awareness [?], where developers indicated that they appreciated the
benefits of knowing what others were doing in real-time.

– Enrich SCM history.Similar to the history logs of CVS or Subversion, Syde provides
the history of changes with the following information: changed file, author, and times-
tamp. The fundamental difference is that Syde provides a historic entry for every change
performed on Eclipse, even if they were not checked in lately.

3.1 Design & Implementation

Syde’s overall design and information flow is illustrated inFigure??.

Eclipse

Syde (Client)

Inspector

Viewer

Requestor

(& Conflict Manager)

Syde (Server)

Collector

Notifier

Distributor

Change

Repository

Fig. 2 Syde Architecture.

Syde features the following components:

– The Inspector and the Collector.Syde’s inspector implements listeners to capture from
Eclipse’s workbench the changes performed by a developer. The inspector collects the
actual changes and the metadata. The metadata contains the author’s name, a timestamp,
and status of the change. Syde’s collector receives information from the inspector and
stores it in a centrally accessible repository.



8

– The Notifier and the Viewer.Syde’s notifier maintains a list of client instances that need
to be notified of any change, and is responsible for broadcasting the metadata to all
members of the team. Syde’s client features display information about the changing sys-
tem in views and visual cues within Eclipse itself, thus providing awareness of changes
to all developers.

– The Distributor and the Requestor.Once a developer is aware that certain parts of the
system have changed, he can preempt the underlying classical SCM system and request
from the Syde server an update of specific parts of the code, which are then sent by
Syde’s distributor, and updated in the client’s source base.

We implemented Syde in Java for the Eclipse IDE, with the goalof complementing
the workspace awareness offered by SCM systems. However, its implementation does not
depend on a specific SCM system, and can also be used without one. To explain Syde’s
implementation, we follow the information flow illustratedin Figure??.

TheInspectoris located in Syde’s plug-in and is responsible for monitoring and sending
source code changes to the server. To inspect source code changes, it relies on the follow-
ing strategy. If the project under inspection uses the standard Java Builderfor compila-
tion, theInspectorimplements theIResourceChangeListener interface to listen to
POST BUILD events. Before it sends the changed file to the server, it checks for compila-
tion errors inside the file, and annotates the metadata with this information. Even though the
changed file can group more than one source code change, we argue that this is a reasonable
approach because a developer tends to save (and automatically compile) changes frequently
enough for differencing algorithms, such as the one proposed by Fluriet al.[?], to be able to
precisely find all changes from two subsequent versions. If the project does not use theJava
Builder, theInspectorlistens toPOST CHANGE events, and is therefore unable to check for
compilation errors in the file.

On the server side, theCollector(1) receives the file, (2) versions and saves it, (3) saves
the metadata, and (4) activates theNotifier.

The Notifier manages which developers are connected to Syde for a given project by
keeping a set of projects and, for each project, a set of developers. Immediately after a new
version of a file is available on the server, it broadcasts an alert to all developers. To show the
alerts on Eclipse, theViewer is currently composed of two plug-ins: Scamp and Conflicts.
Finally, theRequestoradds the action “Get last version” to one of Syde’s views, which
requests from theDistributor the latest version of the selected file in the view.

Data. The history log of mainstream SCM systems usually describeswhich files have been
checked in, when and by whom. For example, CVS history logs show: file name, revision,
author, timestamp, author’s comment, and number of lines ofcode added and removed. Sub-
version (SVN) gives the same information, except for the number of lines of code added and
removed. On the other hand, SVN automatically groups file revisions committed together,
whereas this must be reconstructed for CVS data.

Syde’s history log offers the same kind of information3, but forevery changeperformed
by a developer. It shows file name, revision, author, timestamp, and whether the file has
compilation errors or not.

3 In the meantime, Syde records more and more fine-grained information, whose description is outside the
scope of this article.



9

4 Code Ownership

Code ownership quantifies the amount of knowledge each developer has and indicates which
developer owns which artifact of a software system by measuring who has accumulated
more knowledge of each artifact. The notion of code ownership is important in large projects,
where developers do not know each artifact of the system. Code ownership can be used to
answer questions such as “who should fix this bug” [?] or “who should I ask about artifact
XY” [ ?].

We present the measurements that we use to compute code ownership. The general as-
sumption is that whoever performs the greater number of changes on a file, is the one most
knowledgeable in it. We use distinct measurements of code ownership based on three dif-
ferent repository sources: CVS, SVN, and Syde. For CVS and SVN, we adopt the measure-
ment previously introduced by Gı̂rbaet al. [?], whereas for Syde, we present a lightweight
approach to compute code ownership by mainly using historical information contained in
the Syde change logs.

4.1 Measuring Code Ownership with CVS/SVN Logs

The ownership definition based on CVS and SVN logs exclusively uses information con-
tained in their respective logs: file name, revision, author, and number of lines added and
deleted. Since SVN logs do not contain the number of lines added and deleted for each
revision of a file, we implemented a parser to extract this information by comparing every
subsequent revision of a file in the repository.

According to Ĝırba et al. [?], a developer owns a line of code in a file if he was the
one who committed that line. The overall owner of a file is the one who owns the largest
percentage of it. To compute the ownership, we need to first estimate the size of a file. We
only know the number of lines added and deleted, but do not know the initial size of the file,
because we only use information containing in the log history4. Given a filef , let fn be a
revision off , αfn be the author of that revision,afn be the number of lines added, andrfn
the number of lines removed. The size of a file revisionsfn is given by:

s′f0 = 0

s′fn = s′fn−1
+ afn−1

− rfn
sf0 = |min{s′x}|

sfn = sfn−1
+ afn − rfn

To exemplify the size estimation of a file, suppose the following sequence of changes:

f1: 8 lines added, 3 lines deleted;
f2: 7 lines deleted.

We apply the given formulae to estimate the sizes of the files:

s′f0 = 0

s′f1 = 0 + 8− 3 = 5

4 In our case study, we have an industrial system that uses CVS,and two academic systems that use SVN.
For the first, we only had access to the logs, but not to the source code. Thus, we decided to consistently apply
the same approach to all three projects, by estimating the sizeof a file.



10

s′f2 = 5 + 0− 7 = −2

Since there can not be more number of lines deleted than addedin total, we need to
adjust the above values.

sf0 = |min{−2, 5}| = 2

sf1 = 7

sf2 = 0

Given the sizesfn of a file revision, the percentageownα
fn

of lines in a revision owned
by a developerα is given by:

ownα
f0

=

{

1 if α = αf0
0 else

ownα
fn

= ownα
fn−1

sfn−afn

sfn
+

{ afn

sfn
if α = αf0

0 else

From the percentageownα
fn

of lines owned by each developer, the owner of a file revi-
sion is the one who owns the greatest percentage.

This measurement technique relies on the assumption that the number of lines of a file
owned by a developer reflects the amount of effort spent by himto write these lines. How-
ever, the development of a code artifact is not a linear action that can be summed up as the
amount of lines added to a file. Developers do and undo changes, try a couple of alterna-
tives, refactor the code –which may reduce the size of the file–, etc.The knowledge they
retain from an artifact depends more on how much effort they put to implement it, than on
the final result. Thus, this technique can be effective when developers check in their files
frequently. However, if within a team there are developers who frequently check in their
changes and others who work for long periods before checkingin, this technique is prone to
discrepancies.

4.2 Measuring Code Ownership with Syde Logs

We use the history logs provided by Syde to measure code ownership, therefore basing the
definition of ownership on every small change that is being performed on a system.Every
small changemeans every change performed between two save – and consequently compi-
lation – actions. One can argue that the definition of ownership using Syde logs, analogous
to what happens with CVS and SVN logs, is also biased by the frequency with which devel-
opers save their code. However, the way Eclipse works drivesdevelopers to maintain their
code with no compilation errors and hence to save and build files often. Eclipse constantly
shows where compilation errors are, discouraging developers to run or test code with errors,
and in general incites them to fix them as soon as possible.

Given Syde logs, letf be a file,fn a version of this file,αfn the author of that version,
the numberownα

fn
of changes owned by a developerα is given by:

ownα
f0

=

{

1 if α = αf0
0 else

ownα
fn

= ownα
fn−1

+

{

1 if α = αfn
0 else



11

The ownerownfn of a file at a certain version is the one who has accumulated thelargest
number of changes from the creation of the file until the date of the considered version:

ownfn = max{ownα1

fn
, ownα2

fn
, ..., ownαm

fn
}, where m is the total number of developers.

To exemplify how to compute the ownership of a file with Syde log, we show the change
history of a hypothetic fileFoo in Figure??.

Foo

α1

α2

Authors

f1 f4 f5

Fig. 3 Change history of file Foo. This file is currently in version 5 and two developers have changed it.

In this example, we want to find the owner ofFooby the time versionf5 is created. The
number of changes owned by each author at this point is:

ownα1 = 3

ownα2 = 2

The greater numberownf5 of changes owned of filef at revisionf5 is:

ownf5 = max{ownα1 , ownα2} = ownα1

Hence, the owner of filef at revisionf5 is developerα1.

This measurement assumes that developers accumulate knowledge about a class, or file,
but never forget it, even though months or years have passed.This is a rather näıve assump-
tion, since the content of files might change over time. Suppose a developer creates a file
and with 30 Syde changes he introduces 10 lines of code. Later, a second developer edits
the same file and, with 15 Syde changes, he completely changesthe 10 lines of code. The
current ownership measurement based on Syde changes still considers the first developer as
most knowledgeable, whereas the measurement based on CVS/SVN commits considers the
second as most knowledgeable because he currently owns the greater percentage of lines
(assuming that the total number of lines remains constant, the second developer is the owner
of 100% of the lines).

In addition, there is a natural process of forgetting the content and functionality of a
class over time, even though they do not change. To address these issues, we add the notion
of forgetting on the code ownership measurement based on Syde log. Although the mea-
surement based on CVS/SVN logs also ignores the natural process of forgetting, we focus
exclusively on investigating the forgetting effects on theownership measurement based on
Syde logs.

The Forgetting Effect on Code Ownership.Forgetting is a natural process in which old
memories are unable to be recalled from a human’s memory. It has been extensively studied



12

by psychologists, since the pioneering work of Ebbinghaus [?]. The curve that commonly
describes forgetting is expressed asR = e−T/s, whereR is the memory retention,s is the
relative strength of memory, andt is time. Although there has been a continuous discussion
on whether forgetting is best described by a power or exponential function [?,?,?], the dif-
ferences represented by each curve can be considered minimal for the context of ownership
measurement. Thus, we consider the exponential formula introduced above.

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

!"(!#

!")!#

!"*!#

!"+!#

!",!#

$"!!#

!# (# $!# $(# %!# %(# &!# &(# '!# '(# (!#

-#.#(#

-#.#%(#

-#.#$%(#

Memory retention

time (days)

Fig. 4 Forgetting functionR = e−T/s, whereR is the memory retention,s is the relative strength of
memory, andt is time. The higher is the value ofS, the more likely the person will remember an event for a
longer period.

Figure?? shows the plot of the forgetting function for three different values ofs (5,
25, and 125). In the context of code ownership, our time unit is the day. Thes parameter
reflects how long a person might remember the contents of a certain file. The smallers is,
the weaker the memory. For instance, fors = 5, there is around 30% of probability that
a person remembers the contents of a file edited 6 days ago (seeTable ??, page??, for
other figures). This situation could be true in a scenario where this person is developing
multiple systems at the same time, and only makes small changes, which are not sufficient
for him to absorb concrete knowledge of each class. Therefore, the parameters is influenced
by a number of factors that are specific to each project,e.g.,the complexity of the project
or feature, the level of experience of each individual, the accumulated experience of each
individual in the context of the project, the total number ofdevelopers,etc.Hence, it is not
our goal to determine an ideals value for all projects, but to explain how it can be adjusted
according to each scenario.

We include the notion of forgetting in the code ownership measurement by adding the
time factor in the calculation of the ownerownα

fn
of a revision. In the previous formula, the

value 1 was given to a developer for each change he made. With the forgetting measurement,
we use the formulaR = e−T/s to weight this value, which now has a range of(0, 1].

To formalize the new measurement, for each versionfn of a filef , we consider the time
tfn of the creation of versionfn. Given a point in timet, the argumentT of the forgetting
functionR = e−T/s is the amount of time elapsed between the creation of versionfn and
the current timet:

∆tfn = t− tfn



13

Hence, given a point in timet, the new ownership measurement is computed as follows:

∆tf0 = t− tf0

ownα
f0

=

{

e
−∆tf0

s if α = αf0
0 else

∆tf1 = t− tf1

ownα
f1

= ownα
f0

+

{

e
−∆tf1

s if α = αf1
0 else

∆tfn = t− tfn = 0

ownα
fn

= ownα
fn−1

+

{

e
−∆tfn

s if α = αfn
0 else

The ownerownfn of a file at a certain version is the one who has accumulated the
greatest value of weighted knowledge from the creation of the file until the timetfn of the
considered version:

ownfn = max{ownα1

fn
, ownα2

fn
, ..., ownαm

fn
}, where m is the total number of developers.

Recalling the example from Figure??, we added the notion of time in Figure?? to re-
compute the ownership considering the forgetting effect. Analogous to previous example,
we want to find the owner ofFooat the timetf5 of the creation of versionf5.

Foo

{

tf1 tf5

α1

tf4

α2

Authors

∆tf4 = tf5 − tf4

Fig. 5 Change history of file Foo with additional notion of time.

Hence, the value of weighted knowledge accumulated by each developer, given the
strength of memorys = 2, is:

Let tf1 = 1, tf2 = 2, tf3 = 3, tf4 = 4, tf5 = 5,

own
α1

f5
= own

α1

f4
+0 = e

−∆tf1
s +e

−∆tf2
s +0+e

−∆tf4
s +0 = e

−4

2 +e
−3

2 +0+e
−1

2 +0 ≃ 0.96

own
α2

f5
= own

α2

f4
+ 1 = 0 + 0 + e

−∆tf3
s + 0 + e

0 = 0 + 0 + e
−2

2 + 0 + 1 ≃ 1.37



14

The greater valueownf5 of knowledge accumulation for filef at revisionf5 is:
ownf5 = max{ownα1 , ownα2} = ownα2

Even though developerα1 has the greater number of changes, if we consider the forget-
ting effect on knowledge retention and the recency of changes, the owner of filef at revision
f5 is developerα2.

With this new measurement of code ownership, it is possible to adjust the strength of
memorys to prioritize recent changes over old ones. The range ofs most suitable for a
project depends on a number of factors intrinsically related to its characteristics. In Sec-
tion ?? we apply and discuss the influence of the forgetting effect onownership maps of
three projects.

5 Ownership Maps

To visually assess the differences in ownership between versioning system changes and Syde
changes, we display the data using ownership maps.

The Ownership Map visualization was first introduced by Gı̂rbaet al. [?] with the aim
of characterizing behavioral patterns of developers throughout the life-cycle of a software
system. Ĝırba’s Ownership Map was inspired by the visualization proposed by Rysselberghe
and Demeyer [?], where the horizontal axis represented each file of the system, and the
vertical axis represented the time of a change.

In the original ownership map, each line represents a file in the system and time is
represented on the horizontal axis. Every change to a file is shown as a colored disc. The
color of the disc represents the developer who made that change. Finally, the line of the file
is colored according to its current owner. A file can have multiple owners throughout its
history.

We use three distinct ownership maps:CVS/SVN Ownership Map, which presents the
ownership of files according to CVS/SVN commits;Syde Ownership Map, which shows
the ownership of each file according to Syde changes; andDelta Map, which illustrates the
differences in ownership classification of the previous twomaps. In the following, we detail
each map, and explain how we order the files in the maps.

5.1 CVS/SVN Ownership Map

In the CVS/SVN ownership map, each rectangle represents a commit 5. Each developer
is represented by a unique color, which is used to indicate who is the author of a commit
– coloring the rectangle –, and who is the owner of the file at a certain period of time –
coloring the corresponding part of the line.

Figure?? illustrates an example of this map. Recall that the measurement used to com-
pute ownership for CVS/SVN is based on the number of lines added and deleted from each
version, and takes into account the entire history of the fileevenly.

5 We use rectangles instead of circles for SCM logs so that one can differentiate between SCM changes
and Syde changes when both are overlapped on the same map.



15

Foo

Bar

first commit from 

yellow author

yellow author 

becomes the owner

blue author takes 

over the ownership

commits by the 

blue author

yellow author commits but 

does not take over the ownership

time

Fig. 6 Example of CVS/SVN ownership map.

5.2 Syde Ownership Map

In the Syde ownership map, a colored disc represents a Syde-level change, where the color
indicates the author of the change. The line of the file is painted with the color of its owner
at a certain period of time.

time

Foo

Bar

Foo

Bar
s = 5

without forgetting, yellow author remains as owner of Bar,

while with forgetting, blue author takes over Bar 

yellow author was the owner of 

Foo and Bar in the past

blue author does a 

series of changes

Fig. 7 Example of Syde ownership map.

Figure?? shows two Syde ownership maps. The first uses the original Syde ownership
measurement, while the second integrates the forgetting notion, using a value ofS = 5 to
model the strength of memory. It is easy to spot the differences in ownership between the
two maps. Consider fileBar, which experiences a series of changes from the blue author
early on. In the first case, the yellow author remains the owner of Bar, but in the second,
the blue author takes over. We discuss in Section?? the differences in ownership according
to how fast a developer might forget the contents of a file. When forgetting is considered,
the ownership of a file might change at any moment, not just after a file has changed.

5.3 Delta Ownership Map

The Delta ownership map is a combination of the previous two,with rectangles representing
CVS/SVN commits, and discs representing Syde changes. Discs and rectangles receive the
color of the author of the change or commit. The lines are either grey –when there is no



16

difference in ownership classification between Syde and CVS/SVN measurements– or red
–when there is a difference between the measurements.

time

blue author owns the files 

according to both measures

yellow author takes over the ownership

 according to Subversion log

yellow author takes over the 

ownership according to Syde log

Fig. 8 Example of delta ownership map.

Figure?? shows an example of the delta map. In this example, the yellowauthor is the
sole owner of the first file, even though the blue author has oneSyde change. For the second
and third files, the blue author is the owner according to Sydechanges. Yellow takes over
the files according to CVS/SVN measurement after committingchanges on them. After a
sequence of Syde changes, Yellow takes over the third file, ending the differences in classi-
fication in it. Although not seen in this example, the difference in ownership classification
is oftentimes caused by the instant propagation of changes in Syde against the latency in
propagation caused by CVS/SVN commits.

5.4 Ordering of the Files

The order of the files in the ownership map has a large effect onits legibility. We order the
files by their similarity in their change history, instead ofusing the standard alphabetical
order. Using this ordering, the relationships between the files stand out much more, as files
changing at similar times – inherently related to one another – are grouped.

To measure the similarity of the change histories of two files, we use a variant of the
Levenshtein distance [?], which measures the similarity between two sequences by counting
the number of edit operations necessary to transform one into the other. There are three
kinds of operations: Insertion, Deletion and Modification of a sequence of elements. These
operations are defined on abstract sequences of items and arenot related to SCM operations.

In our case, we use the Syde change histories of the files as sequences. The CVS/SVN
maps use the Syde clustering as well, so that the ordering is the same and comparison be-
tween maps is easier. We split the change history in a series of time intervals, and count
the number of changes that affected the file during that interval. This yields a sequence of
change intensities ordered by time. We tried intervals of 1,4, 12 and 24 hours, inspected the
clusters produced in each case, and concluded that a 12 hoursclustering produced the best
results: clustering the greatest number of files that were modified together (e.g.,files that
were modified together were put side by side more often with 12hours intervals than with
other values).

Each edit operation is associated with a cost. To account forthe different nature of
our data, our definitions of the costs vary from the common definition. The Levenshtein
distance is often used to measure the distance between words– where one can assume that



17

the characters are independent –, whereas we are comparing patterns of changes with an
intensity of changes in a given interval. Intuitively, the distance between two characters is
constant, but this assumption does not carry over to changes. Measuring the difference of
intensity of changes allows us to use a more precise distancemetric.

We retain the standard costs of 1 for insertion and deletion operation of items in the
sequence. These operations are primarily used to switch theorder of two time intervals
when items with the same values have nearly identical indices in the two sequences (e.g.,a
burst of changes on filef1 occurred just before a similar burst of changes on filef2).

We use a different definition of the cost for the modification operation. The modification
operation is used to alter the value of an item in the sequenceso that it corresponds to the
value of the item at the same index in the second sequence (e.g.,a burst of changes on file
f1 at timet1 is slightly smaller than the burst of changes off2 at the same time). We define
the cost of a modification operation between two change amountsa andb as:

ModificationCosta,b =







1, if a = 0 andb > 0

1, if b = 0 anda > 0
|b−a|
10

, otherwise
(1)

The rationale behind our choice is that moderate variationsin the intensity of changes
during an interval should result in a lower edit cost than larger ones. On the other hand, a
transition from no changes to any number of changes is alwayscostly.

After computing the Levenshtein distance, we use a hierarchical clustering algorithm to
order the files with respect to their similarity according tothe distance we defined. All the
maps we show in the remainder of the article are ordered usingthis scheme.

6 Case Studies

In previous work, we performed an initial analysis of the history of projects developed by
a single developer [?]. In the context of this article we use the data provided by Syde to
tackle the following research question:How can Syde’s history log help to characterize code
ownership?To discuss this question we analyze three projects: Speed, jArk, and Pacman.

6.1 Presentation of the Projects

Speed6 is a commercial project that was under development at the software factory of CPM-
Braxis7. This software factory was chosen because of its professional characteristics: it has
a well defined production process certified by CMMI-DEV 5 and ISO 9001:2000 standards;
its projects adopt metrics, software reuse, and new technologies for delivering high quality
products.

Pacman and jArk are group projects developed by students in the context of the “Pro-
gramming Fundamentals 2” course given at the University of Lugano. Contrary to Speed,
where we collected data for a brief period, the students usedSyde for the entire duration of
their projects. Hence, we have the full history of development of these projects.

Table??presents the data we gathered for the three projects we monitored in this study.

6 We use pseudonyms to conform with the non-disclosure agreement.
7 Seehttp://www.cpmbraxis.com

http://www.cpmbraxis.com


18

Table 1 Projects studied, the period analyzed for each project, thenumber of java files that were committed
to the SCM repository, the number of files with changes captured by Syde, the number of SCM commits, and
the number of Syde changes.

Project Period Developers Files in SCM Files in Syde Commits Syde Changes
Speed 15 days 4 14 56 26 2,429
jArk 5 weeks 2 146 172 266 23,786
Pacman 5 weeks 2 140 223 149 14,460

The number of files with Syde changes is higher than the numberof files committed
to CVS or SVN. We examined the source code and observed that the main cause of this
disparity is when developers create a class, work on it for a while, but change its location
before checking it in the repository.

An immediate observation we can make is that the changes recorded by Syde are much
more fine-grained than the ones recorded by CVS or SVN: There are two orders of magni-
tude more changes than there are CVS or SVN commits.

Table?? shows the summary statistics of the number of Syde changes and CVS/SVN
commits per day.

Table 2 Summary statistics for Syde changes and CVS/SVN commits per day.

Project Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Speed
CVS 2 4.00 6.00 6.00 8.00 10
Syde 1 48.75 143.50 242.90 367.50 668

jArk
SVN 1 3.00 6.00 7.82 12.75 24
Syde 1 121.00 454.00 792.90 863.80 9,242

Pacman
SVN 1 1.00 4.00 5.14 8.00 17
Syde 5 113.00 300.09 437.90 611.00 2,981

To compute the summary, we removed the days with no changes and no commits (i.e.,
if there was at least one commit or one change, the day is included for both measurements).
For at least 75% of the days, the number of Syde changes is two orders of magnitude higher
than SVN commits for jArk and Pacman (2nd, 3rd, and 4th quartiles). For Speed, for at least
50% of the days the same assumption holds (3rd and 4th quartiles).

Figure??shows an overall view of the Syde ownership maps of the three projects. Since
the full maps are large, we use magnified, readable parts of them for the analyses that follow.

6.2 Characterizing Code Ownerships with Syde

Table?? shows the comparison between the total number of Java files contained in Syde’s
log and the number of these files with differences in ownership classification (deltas) be-
tween Syde and CVS/SVN. According to Table??, the number of Syde changes is two
orders of magnitude higher than the number of commits. Therefore, we expect Syde’s own-
ership measurement to give finer-grained information aboutwho is the current expert on a
file, than the measurement based on CVS/SVN. Speed has a low number of files committed
– only 14 files –, which influences the low value of files with deltas. Pacman and jArk, how-
ever, have a high number of files with differences in classification. The significant number
of commits and the longer period of Syde usage justify the high number of files with deltas.



19

jArk

Pacman

Speed

Fig. 9 Overview of Syde ownership maps of projects Speed, jArk, and Pacman. This picture aims at providing
an overview of the ownership maps of the three projects we studied. It is not meant to be inspected in details
by the reader.

Table 3 Comparison between total number of files and number of files with differences between Syde and
CVS/SVN ownership classifications.

Speed jArk Pacman
Total files 56 172 223
Files with deltas 8 130 122

Speed.Figure ?? shows Syde, CVS, and delta ownership maps for a set of files of the
Speed project. The Syde map suggests that developers dark blue (Bob) and pink (John)
are the owners of the majority of the files, whereas the CVS mapshows that John has not
committed any file. Figure?? reinforces this observation. While John is responsible for40%
of Syde changes, he did not commit any change to CVS. The contrary happens with Alice,
who is responsible for less than 20% of Syde changes, but appears as the major contributor
according to CVS.

We investigated why John did not commit any change to CVS, andthis behavior was
influenced by two factors. The first one was the late adoption of CVS, which was done four
days after the project had started –towards the end of the first week. The second factor was
that John was actively involved in three other projects within the company, and had higher
priority on one of the other projects in the second week of theexperiment. Therefore, he
was only able to commit his changes after the period of the study.

It is evident from the differences between the Syde and CVS maps that the Speed devel-
opers do not commit their code frequently, nor do they present a common behavior. Figure??



20
S
y
d
e
 l
o
g

C
V
S
 l
o
g

D
e
lt
a

 01/22   01/23   01/24   01/25   01/26   01/27   01/28   01/29   01/30   01/31   02/01   02/02   02/03   02/04   02/05   02/06  

Fig. 10 Characterization of ownership of a set of files of the Speed project.

Fig. 11 Distribution of changes per developer for Syde, and commits per developer for CVS/SVN for the
three projects. We include all files that had at least one Sydechange, or at least one commit for CVS/SVN.

leads us to the same conclusion: In the context of Speed, the definition of code ownership
according to Syde is more suitable than the one according to CVS. Based on this, we suggest
that the larger the difference between the effort of a developer (measured as number of small
changes) and the frequency of his commits, the more suitableour approach is in relation to
the one of Ĝırbaet al.However, since the developers of this project reported thatthey were
developing multiple projects at the same time, and that someof them occasionally forgot to
use Syde, further investigation was needed to support our suggestion. We hence performed
the same study on the two other projects at our disposal.



21

Pacman and jArk.Looking at the distribution of changes/commits per developers of Pac-
man and jArk, we observe that there is consistency between Syde changes and SVN com-
mits. The authors who performed the most changes are also theones who committed more,
even though the percentage of Syde changes are higher than the percentage of commits (e.g.,
in jArk, Stefano performed about 80% of Syde changes, and about 55% of the commits). We
know that the students were working together most of the time, or remotely, but frequently
communicating through instant messaging. Contrary to whathappened with Speed, they
were focusing on only one project, and equally splitting theworkload. We believe that these
characteristics influenced the consistent relation between Syde changes and SVN commits.

According to the characteristics of distribution of changes/commits per developers of
Pacman and jArk, the differences in ownership classification based on Syde and SVN are
influenced by the frequency with which the developers commit. In other words, we expect
to see differences in classification during the period between a set of Syde changes and a
commit –when the takeover happens. To investigate where deltas appear, we take a close
look at the maps of one day of work in Pacman.

S
y
d
e
 l
o
g

S
V
N
 l
o
g

D
e
lt
a

Fig. 12 Characterization of ownership of a set of files of the Pacman project.

Figure ?? shows the ownership maps of one day of work for Pacman. By carefully
analyzing the three maps, we notice that in most of the cases adeveloper works on a couple
of files for some time, and commits his changes later. This is the case of filesBoardView
andGameFrame; Creature, Pacman, andGhost; andBoard andLevel.

The Syde and SVN maps show that both developers are often working on the same files
in parallel (e.g.,BoardView, GameFrame, Creature, Pacman, Gost, Board, and
Level). In such cases, when differences between Syde and SVN ownership appear, they
are related to both the frequency of commits and the nature ofthe measurements. While
the measurement based on Syde logs relies on the actual amount of work and time that one



22

spent, the measurement based on CVS/SVN commits relies on the number of lines changed,
which does not reflect directly one’s effort.

For example, imagine that a developer created and implemented a method, tested it,
fixed some tricky defects that took him a considerable time, and finally refactored it. Syde
records every edit step, reflecting how much effort this developer put on implementing this
method, while CVS/SVN only informs the number of lines addedon the file corresponding
to this method. While the later can be a good effort indicator, it is common sense that the
more effort someone puts on a task, the more likely it is that he will remember it.

Based on this, we reaffirm that the larger the difference between the effort of a developer
(measured as number of small changes) and the frequency of the commits, the more suitable
our approach is in relation to the one of Gı̂rbaet al.

6.3 Evaluating Syde Ownership with Forgetting

In Section??, we introduced the concept of forgetting, and incorporatedit in Syde’s mea-
surement of ownership. In this section we evaluate the forgetting effect by comparing the
results of the measurement with different values of strength of memory. The function we

adopted to describe forgetting isR = e
−T
s , whereR is the memory retention,T is time, and

s is the strength of memory. Ideally, the value ofs is empirically determined by comparing
it to the opinions of the developers themselves. However, wedid not have that information
at our disposal. We hence rely on heuristics and compared thebehavior of ownership for
several values ofs. The values ofs that we selected are 5, 25, and 125; we chose powers of
5 since the forgetting function is exponential, and with these 3 values we cover a reasonable
variability of memory retention. According to Table??, a value ofs = 5 reaches a low
memory retention after 10 days (0.14), whiles = 25 reaches the same value after nearly two
months; a value ofs = 125 yields a memory retention that is still strong after that time.

Table 4 Percentage of memory retention after a number of days for the values of strength of memory chosen
for this study: 5, 25, 125.

days
Memory strength 1 5 10 20 30 40 50
s =5 0.82 0.37 0.14 0.02 0.00 0.00 0.00
s =25 0.96 0.82 0.67 0.45 0.30 0.20 0.14
s =125 0.99 0.96 0.92 0.85 0.79 0.73 0.67

To determine the best memory setting for each project, we usetwo heuristics: mini-
mizing the ratio ofshort-termswitches among all the switches, and minimizing the overall
average number of switches per files. A switch happens when a developer takes over the
ownership of a file, but only when the file had a previous owner.A short-term switch is a
switch whose overall duration is four hours or less. Findingthe value ofs that minimizes
these two values leads to a better ownership description, asit minimizes what can be seen as
spurious changes of ownership. Table?? reports both these values for each project and each
memory strength, including the default ownership measurement having a full memory.

To have a finer-grained view of the ownership switches, we also show the distribution of
short and long-term ownership switches among files and memory settings in Figure??. This
figure shows a series of histograms of ownership switches perfile. Thex axis represents the



23

Table 5 Percentage of short-term ownership switches among ownership switches, and average number of
switches per file, per project and memory strength.

short switches switches per file
Memory strength Speed jArk Pacman Speed jArk Pacman
s =5 10.0% 29.6% 44.4% 0.70 0.72 0.57
s =25 32.2% 31.1% 40.5% 1.05 1.08 0.83
s =125 32.1% 32.5% 40.7% 1.00 0.93 0.63
full memory 31.6% 33.3% 41.7% 1.02 0.81 0.60

number of switches, and they axis shows the number of files which had that exact number of
switches throughout their lifetime. The first three columnsshow the histogram considering
the forgetting effect in order of increasing memory strength, whereas the last column does
not consider forgetting. Black bars represent short-term ownership switches, while gray bars
represent all ownership switches.

For all three projects, the majority of the files did not have switches: 28 out of 56 files for
Speed; 120 out of 172 files for jArk; and 159 out of 223 files for Pacman. We removed them
from the histogram in order to increase the resolution of they axis and hence the legibility.

Relationship between number of switches and memory.If we analyze the files by frequency
of switches, the histograms indicate that, overall, a weak memory yields the lowest number
of switches. In other words, the number of files with less switches is larger for smaller values
of s, while the number of files with more switches is larger for larger values ofs. Table??
confirms these observations: The lowest ratio of overall switches per file is consistently
obtained fors = 5, although larger values give a close ratio for the Pacman project. The
maximum is found fors = 25, and it decreases lightly after that.

Speed has a very low number of files with 2 switches or more fors = 5. A stronger
s noticeably increases the number of files with 2 switches. Pacman and jArk contain a
greater number of files with ownership switches, but have an overall smaller ratio of con-
flicts switches per file. Speed is an overall smaller project (at least the package that we
focused on), with twice the number of developers; hence the potential for conflict increases.
On the other hand, jArk and Pacman both have several files witha high number of switches,
indicating that a small number of files receive the majority of the conflicts.

Relationship between memory and short-term switches.Consulting Table??, we observe
that for Speed and jArk, the proportion of short-term switches among overall switches in-
creases as the strength of the memory increases. For Pacman,this trend is true fors = 25,
s = 125, and no forgetting, but the value fors = 5 is surprisingly the highest.s = 5 gives
the overall lowest number of switches, but has a comparable number of short-term switches
with s = 125 or the no forgetting ownership measurement; this gives the impression that
ownership switches are increasing. With a closer look at thehistory, we found that all the 56
short-term ownership switches happened in the first half of the project, on a restricted set of
33 files. The developers of Pacman worked together at the beginning on the model of Pac-
man, and then split: One stayed on the model, while another developed the view. This close
collaboration early on caused a large number of unavoidableshort-term switches: On the
24/04/2009, 23 short-term switches occurred on 10 files containing unit tests; 13 short-term
switches happened on 7 files on 20/04/2009; and 10 other occurred on 10 files on 06/05/09.
This shows that the short-term switches are clustered around specific dates and denote bursts
of activity. As such, they are not artifacts of the usage (or non-usage) of the forgetting effect.



24

Ownership switches per file Short ownership switches per file (within 4 hours)

Fig. 13 Histogram of ownership switches per file according to Syde changes. The first three columns consider
forgetting withs = {5, 25, 125}.

We can conclude that the best setting is again the lower memory value (s = 5) as it dimin-
ishes the overall quantity of switches, even if it is not possible to reduce short-term ones,
which hence increase in proportion.

A detailed view on ownership switches.With these observations in mind, we focus on inves-
tigating the behavior of the switches for the different rates of forgetting. To do so, we take a
close look into a set of classes from jArk. Figure??shows a Syde ownership map where, for
each class, there is one line per eachs value, and the last line for the original measurement
(with no forgetting). The main pattern that we observe is that the stronger the memory is, the
longer it takes for an ownership switch to happen. Furthermore, whens = 125, the behavior
is extremely similar to when developers have a perfect memory. In Figure??, they are in
fact equal (not the case in jArk overall). This might be an indication thats = 125 is too high,
at least for the context of jArk. Indeed, Figure??shows us that developers would have 70%



25

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

5

25

125

model/bonus/StickyBallBonus.java

model/bonus/TheBoxBonus.java

model/bonus/MissileVausBonus.java

model/bonus/LaserVausBonus.java

model/bonus/DoubleLaserVausBonus.java

model/bonus/RemoveLifeBonus.java

model/bonus/LongVausBonus.java

model/bonus/ShortVausBonus.java

model/bonus/AddLifeBonus.java

model/bonus/SlowBallBonus.java

model/bonus/DoubleBallBonus.java

model/bonus/UltraBallBonus.java

Fig. 14 Ownership map of jArk with forgetting notion.

probability to remember a file 50 days after they changed it. In the context of jArk, which
lasted for approximately 35 days, this value is already too high.

Conclusions.As previously stated, the strength of memory is a subjectivevalue that de-
pends on the various characteristics of each project. Therefore there is an optimal range of
values for each project, but there is no optimal value for allprojects. In the case of jArk a
short strength of memory is more suitable, since it is a project with a short duration, and
two developers with no clear division of tasks, thus with dynamic characteristics. In the
case of Speed, even if there is a clear division of tasks, there are more developers involved,
which raises the number of conflicts; it is also more suitableto consider a lower strength of
memory, at least until the project grows in size. In the case of Pacman, a low value of mem-
ory reduces the overall number of conflicts, but keeps the number of short-term ownership
switches nearly constant, and is hence preferable as well. Even if the three projects tend to
benefit from the same memory settings, it is too early to generalize beyond them.

7 Threats to Validity

7.1 Threats to Construct Validity

Construct validity refers to the extent with which our variables are correctly measured. We
identified two potential threats to construct validity:



26

Syde Change Recording.Although Syde checks for compilation errors when a source code
is changed, we do not compute the structural differences from two subsequent versions. As
consequence, any edit to a file is considered as a change, including addition or deletion of
comments and blank lines.

Syde records every change made by a developer as long as he is connected to the Syde
server. Speed was monitored with an early version of Syde with limitations. The history
log collected from Speed is not complete, because some of thedevelopers reported that
they forgot to connect to Syde a couple of times. We minimizedthis issue by offering the
option to automatically connect to the server, however thisinitial version of Syde did not
enable automatic connection by default. This early versionwas also missing a buffer in the
plug-in to save the changes performed while the developer isoffline and to send them to the
server when he connects. Thus a number of changes may have been lost, which may have
influenced the accuracy of our measure.

The jArk and Pacman projects were monitored with a later version of Syde, featuring
both auto-connect enabled by default and a buffer to record offline changes. This allowed
us to record a large portion of the changes that would have been lost with the previous one.
There is however a slight probability that the offline bufferwas full, leading to the loss of a
few changes.

SCM Usage.Syde was used since the beginning of the implementation phase of Speed, but
CVS was only adopted four days later (01/26). This fact couldhave influenced ownership
in the beginning of the project. This was a decision taken by the team and hence beyond our
control. Pacman and jArk adopted Subversion at the beginning of the project, so this threat
does not apply for them.

7.2 Threats to Internal Validity

Internal Validity refers to the validity of our causal conclusions. We identified two potential
threats:

Developer behavior under observation.Since developers knew they were observed, they
may have altered their behavior in ways that we cannot predict. For instance, they may have
committed more – or less – often than usual. Since we monitored our subjects for relatively
long periods of time using non-intrusive tools (SCM change logs and Syde), we think they
had time to get used to it; hence that effect should be weak.

Match of ownership measurements with developers’ opinion.Ideally, we should have col-
lected the developers’ opinion on how much they know about a particular file they edited.
This collection should have been done at fixed intervals throughout the data collection pro-
cess, so we would have points in time to compare our findings with developers’ opinion.
However, we did not collect this information, and showing the map to developers several
months after the data collection requires a perfect memory from them to be able to check
whether the map conforms to their notion of ownership.

7.3 Threats to External Validity

External Validity refers to how much our results can be generalized to other circumstances.
We identified two potential threats to external validity:



27

Number of systems.We monitored three projects – one industrial and two studentprojects
–, featuring a total of 8 developers over a combined time of 28weeks. This is still a relatively
low number of projects and a short period of time (although two of the projects were moni-
tored from start to completion). Moreover, all the projectswere implemented using the same
toolset: the Java programming language and the Eclipse IDE.These restrictions prevent us
from deriving stronger conclusions at this time.

Styles of Developers.Another aspect to be considered is that developers might present di-
verse patterns on saving and compiling, which could influence the results of code ownership
measurement, since it is based on the number of changes each developer produced. We be-
lieve the usage of an IDE such as Eclipse, which outlines the errors still present in the code,
encourages one to compile more often, thus mitigating this threat. In the same fashion,
developers have different patterns of SCM usage. These can be influenced by the develop-
ment process adopted by the team: Agile development encourages developers to check in
their code frequently, while more traditional processes encourage developers to maintain the
repository consistent, which may delay their check-ins.

Since we monitor eight developers, we do not know if we account for all the variability,
even though we did notice large differences in SCM usage behavior with respect to the actual
number of changes performed, which comforted our opinion that our ownership metric is
more resilient than the one based on SCM system usage.

8 Conclusion

In this article we have used the logs of a novel type of software repository to determine
code ownership and to compare the result with the ownership computed exclusively with
SCM-level logs. The new repository stores every change performed by every developer in
a multi-developer project. The repository is managed by Syde, a client-server application
built with the goal of augmenting workspace awareness on a multi-developer environment.
The foundation of Syde is Spyware’s change-centric approach [?], in which each individual
code edit is saved and can be recovered in the future.

Similar to mainstream SCM systems, such as CVS, Syde produces history logs contain-
ing useful information about changes, which can be mined in the same context as the widely
mined CVS logs. The fundamental difference is that Syde’s logs are the result of continuous
edits performed by developers, who do not need to stop their work to submit the changes. In
contrast, CVS logs are the result of explicit check-ins of changes, which can vary according
to team culture, developer habits, and the likelihood of merge conflicts. Hence, we argue
that Syde’s logs reflect what happened in the past more accurately than the ones provided
by mainstream SCM systems.

We mined Syde’s log to determine code ownership and comparedthe result with the one
produced exclusively with CVS or SVN logs. We defined a new ownership measurement
based on the frequency with which developers change the codeof each file; we subsequently
refined the new measurement to add the notion of memory loss onthe definition of code
ownership. That is, a developer who has performed the majority of code edits of a file, but
has not touched it for a long period (when the file underwent significant changes), starts
to lose knowledge of it. In the meantime, the developer who performs the recent changes
becomes more knowledgeable, even though he may not have performed as many edits as the
first one.



28

To validate the Syde ownership measurement, we used the datacollected by Syde, and
the CVS/SVN logs from the development of three distinct projects: Speed, for a period of
15 days; jArk and Pacman for a period of 5 weeks. We monitored eight developers for a
total of 28 man/weeks, or 7 man/months.

We compared the results of the variants of ownership with thehelp of the Ownership
Map, a visualization introduced by Gı̂rba et al. [?], that we extended to fit our data. The
results showed differences between the two classifications, especially when active develop-
ers did not check in their changes frequently –in one case, a developer did not commit any
code for two weeks, significantly skewing the measurement based on SCM data. Based on
this finding, we suggest that our code ownership classification is more accurate than the one
proposed by Ĝırbaet al. [?], as it is less sensitive to the commit habits of developers.

In addition, we suggest that the use of the notion of memory loss when measuring own-
ership reflects a more realistic scenario than assuming a developer remembers everything
regardless of the time passed. We found that models based on smaller memory retention in
general satisfied the two heuristics of minimizing the number of ownership switches and of
minimizing the number of short-term (possibly spurious) ownership switches. However, it
is important to emphasize the subjective nature of forgetting, and thus, that the ideal rate of
forgetting for each project is subject to its characteristics.

The ownership maps are a means to investigate the variation of ownership at a fine-
grained level rather than a visualization to help developers to detect file owners. The visual-
ization has a number of scalability constraints, such as thenumber of developers that can be
distinguished by different colors, and the increasing difficulty for the human eye to spot an
ownership switch as the map is shrunk to show a longer time span within a fixed size.

Therefore, as future work on code ownership, we plan to implement a recommender in
the form of an Eclipse plug-in to help developers to locate those who are knowledgeable
about an artifact of the system. The recommender should allow a developer to query for
experts of a file or a package, and provide a rank of experts. Weintend to use the ownership
measurements investigated in this work to compute the knowledge that each developer who
changed an artifact has at the moment another developer seeks for help. This recommender
will be integrated with the existing set of Syde plug-ins.

We intend to investigate other subjective aspects that influence the knowledge of an indi-
vidual compared to a target group (in our case, a developer compared to a team). Analogous
to the notion of memory loss, there is the learning notion,i.e.,how does one acquire knowl-
edge of a part of the system. However, we believe that the learning curve is more influenced
by individual experience –in general and in the context of a project– than the forgetting
curve. That is, an expert is more likely to understand what a feature does than a newcomer.
We intend to study this notion and model it in order to refine the ownership measurement.

We believe that the data made available by Syde opens new perspectives for several
analyses, such as the understanding of developers’ roles and activities, code ownership,
detection of unstable code,etc.We also believe that since the data is being collected in real
time, we can provide new types of “developer assistance” [?], especially with respect to the
collaborative aspects that Syde supports.

Acknowledgements We would like to thank CPMBraxis and its professionals for using Syde and providing
useful feedback to us. We also thank the students that gentlylet us spy on them.

References


	Introduction
	Related Work
	Syde

