Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Refining Code Ownership With Synchronous Changes

Lile Hattori - Michele Lanza - Romain Robbes

Received: date / Accepted: date

Abstract When mining software repositories, two distinct sourcemfafrmation are usu-
ally explored: the history log and snapshots of the systezsuRs of analyses derived from
these two sources are biased by the frequency with whicHajexes commit their changes.
We argue that the usage of mainstream SCM (software confignrmanagement) systems
influences the way that developers work. For example, sinisetédious to resolve con-
flicts due to parallel commits, developers tend to minimiaeflicts by not contemporarily
modifying the same file. This however defeats one of the mepof such systems.

We mine repositories created by our t&ylde which records changes in a central repos-
itory whenever a file is compiled locally in the IDE (integrdtdevelopment environment)
by any developer in a multi-developer project. This new sewf information can augment
the accuracy of analyses and breaks new ground in terms o$tictwinformation can assist
developers.

We illustrate how the information we mine provides a refinetdon of code ownership
with respect to the one inferred by SCM system data. We detrede®ur approach on three
case studies, including an industrial one. Ownership nsoslgfer from the assumption that
developers have a perfect memory. To account for their ifepememory, we integrate into
our ownership measurement a model of memory retentionmolate the effect of memory
loss over time. We evaluate the characteristics of this rfodseveral strengths of memory.

Keywords Code ownership Mining software repositories Fine-grained changes
Software visualization

We gratefully acknowledge the financial support of the SWissional Science foundation for the project
“GSync” (SNF Project No. 129496).

Lile Hattori - Michele Lanza

REVEAL @ Faculty of Informatics, University of Lugano
Via G. Buffi 13 - 6904 Lugano, Switzerland

Tel.: +41 58 666 42 93, Fax: +41 58 666 45 63

E-mail: {lile.hattori,michele.lanZg@usi.ch

Romain Robbes

PLEIAD Lab, Computer Science Department (DCC), UniversitZhfle
Blanco Encalada 2120, of. 308, Santiago, Chile

Tel.: +56 2 978 4974, Fax: +56 2 689 5531

E-mail: rrobbes@dcc.uchile.cl

1 Introduction

To manage the life-cycle of software systems, developegsausumber of tools, such as
software configuration management (SCM) systems, bugdrackliscussion boardsic.
These tools store a large amount of information that is etqadoy researchers to under-
stand different aspects of software evolution. SCM repasis, in particular, are a rich
source of information because they contain both the higibtlye source code and metadata
describing who was responsible for which change.

A significant number of studies have mined SCM repositorieseveal the nature of
software change®][?,?], and to understand the correlation between changes amdopey
roles [?,?]. These studies are based on largely adopted SCM systents,asuCVS and
Subversion (SVN). However, any inference derived from ssigstems is subject to the
granularity of information encountered in their repos#er

In their report on the impact of SCM systems, Estubdieal. stated that one of the next
steps for SCM systems was to break the assumption of landndgpendence?]. Contra-
dicting this statement, largely adopted SCM systems dltdfilibased and do not model
the particularities of a programming language. Hence tlaagés to software entities must
be reconstructed from the text-level changes stored in @d.SCombined with theheck-
out/checkincommands, where a developer checks out the code before deneptation
session, and checks in the changed files after an indefinitedpef time, SCM systems
lose precious information about source code changes thabtde recovered even with
elaborate mining and reverse engineering technigeles [

Since checking in source code is an intermittent action &veldpment is a continuous
activity, knowledge derived from the history log may degi&iom what actually happened.
For example, a technique that spots specialists for padssggtem based on check-in fre-
guency does not take into account the actual effort spenebgldpers in terms of time and
written code. Also, the frequency with which developersottia their code is biased by the
lack of language-oriented support for merging parallehgjes. Since a developer does not
know whether someone else is changing the same file, stualesshown that they tend to
rush to check in their cod&], and even check in partial changé$ {o avoid dealing with
merge conflicts.

Modern decentralized software control management systemsh as G[ﬂ; offer addi-
tional support for parallel development. In Git the checit/check-in model is replaced
by the clone/pull/push model, with which every developelintans his own repository
by cloning someone else’s repository. Different from fiksbd SCM systems, which track
changed files by their names, Git is content-based, whicmsigdracks changed files by
the contents of their changes. One advantage of this agpisahat Git can track the re-
name of a file, contrary to CVS or SVN, for example. Howevems®f the consequences of
Git's decentralized model are that commits are not autaraliyivisible to other developers;
instead of one history log, there are as many as the numbepositories created; the logs
of privately owned repositories are not accessible to eregyand all the changes created in
everyone’s private repositories have to be occasionallgeatk and conflicts resolve@][

The nature of information found in software repositorietedmines what we can infer
from it [?]. File- and content-based SCM systems store snapshotefirasent the system’s
state at points in time, rather than a continuous evolutfdghechanges made to the system
to bring it from one state to the other. We believe that ssid&rived from file- and content-

1 Seenttp://git-scm conl

http://git-scm.com/

based SCM systems are threatened by the loss of informatiwndmes with the underlying
models.

We propose the use of a new software repository that is adateour Syde tool to
overcome the limitations of current SCM data. Syde is a bollative tool that extends
Spyware’s P] change-centric approach to augment the awareness of adedevelop-
ers by propagating changes they happefi?]. Syde offers to developers a collection of
Eclipse plug-ins to keep them aware of which source cod&etsi are being changed][
and which are the source code changes that can impact on seimearrent work P]. It
runs concurrently with the project's SCM system and doe®hstruct or modify its usage.
Syde’s repository stores every change performed by eveslaleger at the exact time it hap-
pens. We define a change as every successfully compileddii@als undergone at least one
character edit since the last compilation (See Selion &)ck, the once approximate data
aboutwho changesvhat andwhenis now accurate and complete; leading to what we call
synchronous changes

In this paper we describe how we used Syde’s change histgether with the history
logs of these projects to understand the dynamics of thdajmses, and to create a refined
notion of ownership of the code. Further, we account foritingsrfect memory of developers
by integrating in our model of ownership the notion of fotgej: A developer who changed
a file early on may have less actual knowledge of it than amat&éeeloper who changed it
more recently, even if it was changed less. To conduct thidystve used Syde to record
several development periods in three systems, includirgrareercial one.

We envision using the technique and findings of this studyfasrdation to integrate an
expertise recommender to the set of plug-ins that Sydesoffdre recommender will assist
developers to search for help when striving to understaridapf code. In such cases, the
recommender will show a list of developers who are knowlatigabout the code artifact,
ranking them based on their current knowledge. Thus, we aibriaging a traditionally
post mortermanalysis to forward engineering to help developers mairteam awareness.

Structure of the papenn Section[2 we review related work. In Sectioh 3 we detail our
change recording and broadcasting approach and its sugporiplementation in the form
of Syde. In Sectior?? we describe the notion of ownership of file by developers, thed
effect of time in their ability to recall information. In Sten ??, we describe a visualization
we use as support for interpreting the ownership data, theebship Map. In Sectiof?we
then use Syde to analyze the history of three software sgstesfiore discussing threats to
the validity of our study in Sectiof?. Finally, we conclude in Section?.

2 Related Work

With Syde, we essentially propose a chance-centric appitogaromote team collaboration.
Thus it is related to:

1. tools that support collaboration, and
2. operation-based SCM solutions.

In this work we are primarily interested in the impact of trealcaptured by Syde on
code ownership; we review the literature on that domain dk we

2.1 Tool Support for Collaboration

The continuous adoption of language independent SCM sygsterthe context of team-
based development influenced the creation of solutionsetcome the workspace isolation
enforced by them?]. Tool support for collaboration ranges from full-fledgeldtforms,
such as Jazz.nétand CollabVs 7], to specific workspace awareness solutidh3,p].

Jazz.net is designed to be the central tool for planning,agiag and performing de-
velopment activities. It enriches Eclipse and Visual Studi create a new environment to
support intra and inter-team collaboration, automation, teaceability of code, tasks and is-
sues. Microsoft's CollabVS extends Visual Studio by addiojmmunication channels, such
as text and audio-video chat, browsing of remote uncheckeslons of files, and notifica-
tion of developer presence in code elements inside aile [

There are a number of valuable efforts to solve some specdldgms raised by work-
space isolation generated by SCM systems. More specifith#ly recover and broadcast
information about changes that occur between a check ouaameck in, which tends to
become more critical as the gap grows larger.

Lighthouse is an Eclipse plug-in that aim at avoiding cotslicy propagating change
events from Eclipse and SCM among workspaces, and showengadi a view of the emerg-
ing design representation of the syste?h Lighthouse requires a side-by-side presentation
of the design representation and the code, which is onlyitfieag developers work with
two screens.

Palantr is an Eclipse plug-in that addresses direct and indirecgmconflicts P]. Direct
conflicts are caused by concurrent changes to the samecartifdirect ones are caused by
changes in one artifact that affect concurrent changesoathan artifact. Palaitinforms
the involved developers about the existence of conflictdtheir severity €.g.,it is high if
one of the conflicting versions has already been checked in).

Schneideet al.use a shadow CVS repository to record changes every timedhaone
edits a file. The shadow repository is then mined and infaonatbout who is working with
what is visually presented to developers to augment grogpeavess?).

FASTDash offers to developers real-time information alainges: which team mem-
bers have source files checked out, which files are being diemmd which classes and
methods are currently under chan@g [

The demand for workspace awareness is becoming urgeneasive and globally dis-
tributed team collaboration becomes the state of the pechithough the solutions dis-
cussed above increase workspace awareness by workingdasoame of the limitations
imposed by SCM systems, the root of the problem lies in theeatly used SCM models,
which offer insufficient support for collaboration.

2.2 Operation-based SCM

The key characteristic of file-based SCM systems is thatdhewble to version any type of
document, since documents are represented as files in a tenripdhe context of software
development, this rather strong feature comes with a tfadbey are unable to model, and
hence, properly version source code changes. Source cadmisd as plain text, which
forces developers to deal with textual merging of sourcecwadth consequences that range
from compilation errors to bugs generated from runtimerstro

2 Seéhttp://jazz. net

http://jazz.net

On the other end of the spectrum there are language-depenplemration-based SCM
systems ?P,?,?], which have support for the language model, and versiorsyiséem as a
sequence of change operations. Some advantages of thimappre that operations can be
replayed or rewound to bring the system from one state tchencind merge conflicts can
be resolved with operation-based merge algoriththsHowever, despite a few noteworthy
efforts to provide operation-based SCM solutions, thesélisa list of issues to be addressed
until they become fully functional.

For example, MolhadoRef, proposed by Dagal. [?], is not a pure operation-based
SCM, but a mixture of state-based and operation-basedt dees not record every change
made by every developer. Instead, it calculates the dedfasdchanges are checked in; only
refactoring operations are fully recorded. Consequettiéyre is still loss of information, and
not all system states can be recovered from the MolhadoRe&itery.

In previous work, we introduced Spyware, a change-centligtion that records every

change made by one developer. Spyware is able to recovertateyaf the system?|.
Its main restriction is that it is a one-developer solutibe,, it does not support a multi-
developer context. Our goal with Syde is to port Spywarefsragch to a multi-developer
context without losing information. Like Spyware, we do matend to replace file-based
SCM systems, but to complement them by storing additiorfatination.

2.3 Ownership of Files and Expertise of Developers

There have been several works on determining which deveisfige most expert in a given
area of a large software system. The rationale behind thgs®aches is that since no one
can be knowledgeable over the entire system, one can insleaiify who are the people to
contact to get more information about a given part of theesyst the experts. People have
used several data sources to determine the expertise dogere

Several approaches use SCM data to compute expertise arashim They assume
that people gain expertise on a part of the system when thagygehits implementation.
McDonald and Ackerman used SCM author information to deitegrnthe expertise of de-
velopers. They also included technical support data thatawailable in their particular case
study [?]. Mockus and Herbsleb in contrast, used only change data the SCM system
as the data source of their Expertise Brow&gr Girbaet al. focused more particularly on
ownership where the owner of a file is the developer with the most eigeedn it. They
also used SCM data to compute ownership [

Other approaches use different data sources. Anvik and Wurped bug archive data to
determine implementation expertise, and found that it eavesas a replacement for SCM
data in the cases where the latter is not accufjtd/[atteret al. determined the expertise of
developers based on the vocabulary they use. They usedfietise information to assign
bugs to developer#]. Finally, Maet al.introduced the usage expertise, where the expertise
of people using a given piece of code is taken into accountppssed to the expertise of
the people who implemented]

3 Syde
Syde is a client-server application that manages and sbbjest-oriented software systems

implemented in Java. The client is a collection of Eclipsgyph that both inspect the devel-
oper’s workspace and enrich Eclipse with visualizatiord grovide awareness information

to developers. Figure? shows some of the visualizations provided by Syde, whicttare
rently grouped into three plug-ins: Inspector Plug-in -pmssible for tracking changes —,
Scamp Plug-in — delivers change awareness informationd-Camflicts Plug-in — notifies
developers of potential conflicts.

Java Eclipse SOK =

-

n o.. compareTolBucken
ac I & compareAccordingToUnPatn(Bucke
» %, v >Bucket ava (e, on 5/8/09 @ 18:10] ompareAccordingTofalingCranges
Crange java s | iNewChange(Crange)
I o tntuchamescand
‘ o gefalingCranges
I o cearhiChangeso
! ©.~ getTopDeveloperNamed
I
| nts.
I
I
|
I
i
|
I
I
I
I
I
I
[Console €5 syde (fg Scamp g3, U/Scamp/src/scamp/model] | © - 90 B 1| 8 U&= W |<- fanial = O
|)
| | constants
|
I
} ™ Conflict 52 =0
wessage
Ul sdeiiarged
= = Console (€) Syde [t Scamp 5 GAkl [©- 9 B 11| B U /& W< (thomas] = O
—— Game @
GamePanel P——
DoubleLasorvaus THEOBOXBONUS " Sickygaigonus RemoveliieBonus : MsieVeusBonus -/ DoubleLaser Vousonus () Consionts
2 Console € Syde [l Scamp £3 GAKI ©- B 1B U|& W < fanja] © 0
Main Consiants Gam Bal Default.. Explosi.. FastBll Ghostll Rubber.. SiomSal StckyBall UbnBal Bomus Sonuses Level Oueul.. Doutle... Laser... LongVeus Missie... ShodVe. Explosonga -+ BoxBall
-model
fasuaau
[J) AbstractChangeAwareResource java

§) v >Bucket java € ES F

v H
>
>
» §) v Change java
>
>
>
>
»
>

[7) ChangeAwareProjectjava 1.17

[7) ChangeAwareUnitjava 1.23
[7) ChangeAwareUnitWrapper java 1.3
[} Constants java 1.24

§/} v Developer java 16:08 CEST] 1.9
[T} DeveloperPool java 1.14
. » [} FallingChange java 1.2
- e - >

~Tagjava 1.11
™ conflict 3 =0
Message

® scamp.util.StringManipulator added/changed by lile has a newer version (49) in the SCM that has been changed by anja.

@ scamp.util.StringManipulator.reverseString(QString;) added/changed by lile has a newer version (49) in the SCM that has been changed by anja. m
stringManipulator.ReverseString.java added/changed by anja was also inserted/changed by lile, but non is committed.
stringManipulator.ReverseString.isValidString(QString;) added/changed by anja was also inserted/changed by lile, but non is committed. .
stringManipulator.ReverseString added /changed by anja was also inserted/changed by lile, but non is committed. v

Fig. 1 Syde screenshots. 1: The Inspector Plug-in. 2: Scamp Plugéterations View. 3: Scamp Plugin -
WordCloud View. 4: Scamp Plugin - Buckets View. 5: The Confltig-in - Conflicts View. 6. The Conflict
Plug-in - Annotation on Java Editor

The Inspector plug-in listens to “build” operations, whete often linked to “save” op-
erations in Eclipse. Every time a developer compiles a chdfite, the Inspector’s listeners
are triggered and send a new version of the file to the sefvire Ifile does not success-
fully compile, a notice of unsuccessful compilation togettvith the changed file is sent to
the server. The server saves the received information avatibasts information about the

(successfully compiled) changes to all active client insés. Finally, each client instance
of the plug-in displays the broadcasted change informatiorthe views inside Eclipse’s
workbench. We developed Syde with a number of goals in mind:

— Complement SCM systemis stated before, our goal is to complement file-based SCM
systems. A software project comprises not only source cbdealso requirements,
specification, etc. For now, Syde focuses exclusively orsthece code of a project.

— Be non-intrusive and lightweightyde displays the activity of other developers in views
that the developer can simply close or minimize. Thus, Sydeiges extra informa-
tion without disrupting or distracting a developer from WoAs opposed to holistic and
complex approaches such as Jazz.net or CollabVS our gogliietide effective collab-
oration support with minimal, lightweight, and complensytchanges to the settings
of the developers.

— Enhance awarenesSimilar to other solutions to augment workspace awarer®sig
informs developers about recent changes in the source tatlentay not have been
checked into the SCM repository yet. A developer can reghese changes even before
they become available through the SCM. We conducted a gtiaditevaluation of our
tool set to provide awarenesg][where developers indicated that they appreciated the
benefits of knowing what others were doing in real-time.

— Enrich SCM historySimilar to the history logs of CVS or Subversion, Syde preeid
the history of changes with the following information: clgax file, author, and times-
tamp. The fundamental difference is that Syde providestatigsentry for every change
performed on Eclipse, even if they were not checked in lately

3.1 Design & Implementation

Syde’s overall design and information flow is illustrated-igure??.

Eclipse
Syde (Client) Syde (Server)
Inspector T Collector
Viewer -—— Notifier Change
Repository
Requestor

(& Conflict Manager) il

Fig. 2 Syde Architecture.

Syde features the following components:

— The Inspector and the Collect®yde’s inspector implements listeners to capture from
Eclipse’s workbench the changes performed by a developerifispector collects the
actual changes and the metadata. The metadata containglibeésaname, a timestamp,
and status of the change. Syde’s collector receives infiomé&rom the inspector and
stores it in a centrally accessible repository.

— The Notifier and the Viewegyde’s notifier maintains a list of client instances thatchee
to be notified of any change, and is responsible for broathcatte metadata to all
members of the team. Syde’s client features display infitonabout the changing sys-
tem in views and visual cues within Eclipse itself, thus pilong awareness of changes
to all developers.

— The Distributor and the Request@nce a developer is aware that certain parts of the
system have changed, he can preempt the underlying cleS§lb&system and request
from the Syde server an update of specific parts of the codighvere then sent by
Syde’s distributor, and updated in the client’s source base

We implemented Syde in Java for the Eclipse IDE, with the gdadomplementing
the workspace awareness offered by SCM systems. Howevémplementation does not
depend on a specific SCM system, and can also be used witheufTorexplain Syde’s
implementation, we follow the information flow illustrat@dFigure??.

Thelnspectoris located in Syde’s plug-in and is responsible for monitgiand sending
source code changes to the server. To inspect source codgeshat relies on the follow-
ing strategy. If the project under inspection uses the stahdhva Builderfor compila-
tion, thelnspectorimplements thé Resour ceChangeli st ener interface to listen to
POST_BUI LD events. Before it sends the changed file to the server, itkshfiec compila-
tion errors inside the file, and annotates the metadata highrtformation. Even though the
changed file can group more than one source code change, ueetheg this is a reasonable
approach because a developer tends to save (and autoigatizapile) changes frequently
enough for differencing algorithms, such as the one prapbgé-luriet al.[?], to be able to
precisely find all changes from two subsequent versionkelproject does not use thava
Builder, thelnspectoristens toPOST_CHANGE events, and is therefore unable to check for
compilation errors in the file.

On the server side, theollector (1) receives the file, (2) versions and saves it, (3) saves
the metadata, and (4) activates thetifier.

The Notifier manages which developers are connected to Syde for a giegecpby
keeping a set of projects and, for each project, a set of dpeed. Immediately after a new
version of afile is available on the server, it broadcastdemta all developers. To show the
alerts on Eclipse, th¥ieweris currently composed of two plug-ins: Scamp and Conflicts.
Finally, the Requestoradds the action “Get last version” to one of Syde’s views,clvhi
requests from th®istributor the latest version of the selected file in the view.

Data. The history log of mainstream SCM systems usually descriliesh files have been
checked in, when and by whom. For example, CVS history logsvsfile name, revision,
author, timestamp, author’s comment, and number of linesdé added and removed. Sub-
version (SVN) gives the same information, except for the benof lines of code added and
removed. On the other hand, SVN automatically groups filesiews committed together,
whereas this must be reconstructed for CVS data.

Syde’s history log offers the same kind of informalfipbut forevery changgerformed
by a developer. It shows file name, revision, author, tinteptaand whether the file has
compilation errors or not.

3 In the meantime, Syde records more and more fine-grained infamathose description is outside the
scope of this article.

4 Code Ownership

Code ownership quantifies the amount of knowledge eachalgeehas and indicates which
developer owns which artifact of a software system by méagwho has accumulated
more knowledge of each artifact. The notion of code ownersiimportant in large projects,
where developers do not know each artifact of the systeme @aahership can be used to
answer questions such as “who should fix this b®&"dr “who should | ask about artifact
XY"[?].

We present the measurements that we use to compute codesbvpndthe general as-
sumption is that whoever performs the greater number ofgdson a file, is the one most
knowledgeable in it. We use distinct measurements of codeeship based on three dif-
ferent repository sources: CVS, SVN, and Syde. For CVS and, 3% adopt the measure-
ment previously introduced byithaet al.[?], whereas for Syde, we present a lightweight
approach to compute code ownership by mainly using higtbinformation contained in
the Syde change logs.

4.1 Measuring Code Ownership with CVS/SVN Logs

The ownership definition based on CVS and SVN logs exclugiusks information con-

tained in their respective logs: file name, revision, authad number of lines added and
deleted. Since SVN logs do not contain the number of lineeddthd deleted for each
revision of a file, we implemented a parser to extract thierimiation by comparing every
subsequent revision of a file in the repository.

According to Grbaet al. [?], a developer owns a line of code in a file if he was the
one who committed that line. The overall owner of a file is tie evho owns the largest
percentage of it. To compute the ownership, we need to fitshate the size of a file. We
only know the number of lines added and deleted, but do nawvkhe initial size of the file,
because we only use information containing in the log h}Etchiven afilef, let f,, be a
revision of f, a¢, be the author of that revisiony, be the number of lines added, ang
the number of lines removed. The size of a file revisignis given by:

/
Slfo = O,
Sfn = Sfn-1 taf,_ 1 —Tf,
sf, = |mm{s;}|
Sfn = Sfna T af, —Tf,
To exemplify the size estimation of a file, suppose the follgsequence of changes:

f1: 8lines added, 3 lines deleted;
fo: 7 lines deleted.

We apply the given formulae to estimate the sizes of the files:

5, =0
sy, =0+8-3=5

In our case study, we have an industrial system that uses &\@wo academic systems that use SVN.
For the first, we only had access to the logs, but not to theceaade. Thus, we decided to consistently apply
the same approach to all three projects, by estimating thebsaéle.

10

s, =54+0—-T=-2

Since there can not be more number of lines deleted than addethl, we need to
adjust the above values.

sp, = |min{—=2,5}| = 2
sp =17
sp, =0

Given the sizesy, of a file revision, the percentagen§ of lines in a revision owned
by a developet is given by:

1 ifa:af
o Jo
OwWnfo = {0 else

o @ Sfn—Afn
Ownfn - Ownfn—l Sfn +

{ z;: if o= o,
0 else

From the percentagesn§ of lines owned by each developer, the owner of a file revi-
sion is the one who owns the greatest percentage.

This measurement technique relies on the assumption thatutmber of lines of a file
owned by a developer reflects the amount of effort spent bytbiwrite these lines. How-
ever, the development of a code artifact is not a linear ad¢tiat can be summed up as the
amount of lines added to a file. Developers do and undo chaftrges couple of alterna-
tives, refactor the code —which may reduce the size of the, fdte. The knowledge they
retain from an artifact depends more on how much effort theéyt@implement it, than on
the final result. Thus, this technique can be effective wharelbpers check in their files
frequently. However, if within a team there are developeh®virequently check in their
changes and others who work for long periods before chegRirtgis technique is prone to
discrepancies.

4.2 Measuring Code Ownership with Syde Logs

We use the history logs provided by Syde to measure code shipetherefore basing the
definition of ownership on every small change that is beingopmed on a systenkEvery
small changeneans every change performed between two save — and confgqaenpi-
lation — actions. One can argue that the definition of owriprsking Syde logs, analogous
to what happens with CVS and SVN logs, is also biased by thygi&ecy with which devel-
opers save their code. However, the way Eclipse works ddegslopers to maintain their
code with no compilation errors and hence to save and buéd &iften. Eclipse constantly
shows where compilation errors are, discouraging devesdpeaun or test code with errors,
and in general incites them to fix them as soon as possible.

Given Syde logs, lef be a file,f, a version of this file s the author of that version,
the numbepwn§ of changes owned by a developets given by:

1 ifa=ay
A — o
oo { 0 else

1 ifa=
ouny, =ouniy,_+{y o

0 else

11

The ownepwny, of afile ata certain version is the one who has accumulatedrpest
number of changes from the creation of the file until the dateeconsidered version:

(63

owny, = ma:c{own(;l ;own?, .., own?m}, where m is the total number of developers.

To exemplify how to compute the ownership of a file with Sydg lee show the change
history of a hypothetic fil&ooin Figure??.

Foo —Co——O0O0—C0—0O— Authors
| L S o
| L O @
y vy
f1 a5

Fig. 3 Change history of file Foo. This file is currently in versionrildwo developers have changed it.

In this example, we want to find the ownerfado by the time versiory; is created. The
number of changes owned by each author at this point is:

oun® =3
own™? =2

The greater numberun ¢, of changes owned of fil¢ at revisionfs is:
own g, = maz{own®, own*?} = own™
Hence, the owner of filg at revisionfs is developer; .

This measurement assumes that developers accumulateddgmidbout a class, or file,
but never forget it, even though months or years have pa$bétlis a rather ri@e assump-
tion, since the content of files might change over time. Seppdeveloper creates a file
and with 30 Syde changes he introduces 10 lines of code.,laas&cond developer edits
the same file and, with 15 Syde changes, he completely chaingd® lines of code. The
current ownership measurement based on Syde changesssitlers the first developer as
most knowledgeable, whereas the measurement based on @GN 8nmits considers the
second as most knowledgeable because he currently ownsdhegpercentage of lines
(assuming that the total number of lines remains consta@msecond developer is the owner
of 100% of the lines).

In addition, there is a natural process of forgetting theteoihand functionality of a
class over time, even though they do not change. To address ibsues, we add the notion
of forgetting on the code ownership measurement based oe I6gd Although the mea-
surement based on CVS/SVN logs also ignores the naturaégsanf forgetting, we focus
exclusively on investigating the forgetting effects on tvenership measurement based on
Syde logs.

The Forgetting Effect on Code Ownershiporgetting is a natural process in which old
memories are unable to be recalled from a human’s memorgslibkeen extensively studied

12

by psychologists, since the pioneering work of Ebbingh&lisThe curve that commonly
describes forgetting is expressedras= e~7/%, whereR is the memory retention; is the
relative strength of memory, ards time. Although there has been a continuous discussion
on whether forgetting is best described by a power or expaaldanction [?,?,7], the dif-
ferences represented by each curve can be considered riairttee context of ownership
measurement. Thus, we consider the exponential formutadated above.

Memory retention
100 e,
090 4\ o
0.80 1 S

0.70 1 o

~ s=5
RN - —s=25

S~ e s=125

0.10

0.00 T T T T T T ' ' ' ' time (days)
0 5 10 15 20 25 30 35 40 45 50

Fig. 4 Forgetting functionR = e~7/¢, where R is the memory retentions is the relative strength of
memory, and is time. The higher is the value &f, the more likely the person will remember an event for a
longer period.

Figure ?? shows the plot of the forgetting function for three differealues ofs (5,
25, and 125). In the context of code ownership, our time unihe day. The parameter
reflects how long a person might remember the contents oftaiicdile. The smalles is,
the weaker the memory. For instance, foe= 5, there is around 30% of probability that
a person remembers the contents of a file edited 6 days agddbé=??, page??, for
other figures). This situation could be true in a scenarioreltiis person is developing
multiple systems at the same time, and only makes small &samghich are not sufficient
for him to absorb concrete knowledge of each class. Thexefloe parameteris influenced
by a number of factors that are specific to each progdt,the complexity of the project
or feature, the level of experience of each individual, tbeuanulated experience of each
individual in the context of the project, the total numbedef/elopersetc. Hence, it is not
our goal to determine an idealalue for all projects, but to explain how it can be adjusted
according to each scenario.

We include the notion of forgetting in the code ownership soeament by adding the
time factor in the calculation of the ownenm‘?” of a revision. In the previous formula, the
value 1 was given to a developer for each change he made. Weifbrigetting measurement,
we use the formul& = e~7/* to weight this value, which now has a rangeof1].

To formalize the new measurement, for each vergipof a file f, we consider the time
ty, of the creation of versiorf,,. Given a point in time, the argument” of the forgetting

function R = ¢~7/* is the amount of time elapsed between the creation of versiamd
the current time:

Aty, =t —ty,

13

Hence, given a point in timg the new ownership measurement is computed as follows:

Aty =t —ty =0
At if
ownf =ownf 4+4°¢ ° Ta=ar,
fn fn—l 0 else

The ownerown, of a file at a certain version is the one who has accumulated the
greatest value of weighted knowledge from the creation effile until the timet of the
considered version:

a1

owny, = max{ownf ,own?"‘, o ownjﬁm}, where m is the total number of developers.

Recalling the example from Figu?, we added the notion of time in Figu®® to re-
compute the ownership considering the forgetting effectaldgous to previous example,
we want to find the owner dfoo at the timet s, of the creation of versiorfs.

Foo —CO—C—"~0—0—"0O— Authors
| o S o
| - o
tvfl ti"-/l tvfs
N~/

Aty =tp; =g,

Fig. 5 Change history of file Foo with additional notion of time.

Hence, the value of weighted knowledge accumulated by eatblaper, given the
strength of memory = 2, is:

Lettfl = 1,t(f2 = Q,tfg = 3,tf4 = 4,tf5 =5,

—Atfl —Atf —Atf

—a
own?ﬁs1 = 0wn?41+0 =e s +e s +0+e = * +0=e2 +e

F0+e T 40~ 0.96

]
w

7Atf3

—2
oum?‘s2 :own?j+1:0+0+e S 40+ =0+0+e2 +0+1~1.37

14

The greater valuewn s, of knowledge accumulation for filg at revisionfs is:

own g, = maz{own™, own*?} = own?

Even though developer; has the greater number of changes, if we consider the forget-
ting effect on knowledge retention and the recency of chasthe owner of filef at revision
f5 is developers.

With this new measurement of code ownership, it is possibladjust the strength of
memory s to prioritize recent changes over old ones. The range wiost suitable for a
project depends on a number of factors intrinsically reldteits characteristics. In Sec-
tion ?? we apply and discuss the influence of the forgetting effecownership maps of
three projects.

5 Ownership Maps

To visually assess the differences in ownership betweesioréng system changes and Syde
changes, we display the data using ownership maps.

The Ownership Map visualization was first introduced byb@et al. [?] with the aim
of characterizing behavioral patterns of developers thinout the life-cycle of a software
system. Grba’s Ownership Map was inspired by the visualization psgul by Rysselberghe
and Demeyer{], where the horizontal axis represented each file of theegysand the
vertical axis represented the time of a change.

In the original ownership map, each line represents a filhengystem and time is
represented on the horizontal axis. Every change to a filed&/s as a colored disc. The
color of the disc represents the developer who made thageh&mnally, the line of the file
is colored according to its current owner. A file can have ipldtowners throughout its
history.

We use three distinct ownership ma@7/S/SVN Ownership Mapvhich presents the
ownership of files according to CVS/SVN commi8yde Ownership Mapvhich shows
the ownership of each file according to Syde changespai Map which illustrates the
differences in ownership classification of the previous taaps. In the following, we detail
each map, and explain how we order the files in the maps.

5.1 CVS/SVN Ownership Map

In the CVS/SVN ownership map, each rectangle representsrtmtt(ﬂ Each developer
is represented by a unique color, which is used to indicate iwlthe author of a commit
— coloring the rectangle —, and who is the owner of the file atrga period of time —
coloring the corresponding part of the line.

Figure??illustrates an example of this map. Recall that the measeméosed to com-
pute ownership for CVS/SVN is based on the number of linegddahd deleted from each
version, and takes into account the entire history of theefinly.

5 We use rectangles instead of circles for SCM logs so that andaifferentiate between SCM changes
and Syde changes when both are overlapped on the same map.

15

first commit from commits by the
yellow author blue author
| 1
Foo 7 |7 K I
Bar 4 |
yellow author blue author takes yellow author commits but
becomes the owner over the ownership does not take over the ownership

time

Fig. 6 Example of CVS/SVN ownership map.

5.2 Syde Ownership Map

In the Syde ownership map, a colored disc represents a 8ydeehange, where the color
indicates the author of the change. The line of the file istpdimith the color of its owner
at a certain period of time.

yellow author was the owner of blue author does a
Foo and Bar in the past series of changes
Foo e ° / ° « °
Bar e « @ o { ¢ @
Foo | @ ° \) L «i—— . _;
Bar ~ @ « ® L < o—

without forgetting, yellow author remains as owner of Bar,
while with forgetting, blue author takes over Bar

time

Fig. 7 Example of Syde ownership map.

Figure?? shows two Syde ownership maps. The first uses the origina Syahership
measurement, while the second integrates the forgettitigmaising a value of = 5 to
model the strength of memory. It is easy to spot the diffeesrin ownership between the
two maps. Consider fil&ar, which experiences a series of changes from the blue author
early on. In the first case, the yellow author remains the owhe&ar, but in the second,
the blue author takes over. We discuss in Sectiethe differences in ownership according
to how fast a developer might forget the contents of a file. iVioegetting is considered,
the ownership of a file might change at any moment, not just affile has changed.

5.3 Delta Ownership Map

The Delta ownership map is a combination of the previous with, rectangles representing
CVS/SVN commits, and discs representing Syde changess Ristt rectangles receive the
color of the author of the change or commit. The lines areeeigrey —when there is no

16

difference in ownership classification between Syde and/SVS measurements— or red
—when there is a difference between the measurements.

yellow author takes over the ownership
according to Subversion log

blue author owns the files yellow author takes over the
according to both measures ownership according to Syde log

time

Fig. 8 Example of delta ownership map.

Figure?? shows an example of the delta map. In this example, the yellaWwor is the
sole owner of the first file, even though the blue author hasSyde change. For the second
and third files, the blue author is the owner according to Sywmges. Yellow takes over
the files according to CVS/SVN measurement after committingnges on them. After a
sequence of Syde changes, Yellow takes over the third fitihgrihe differences in classi-
fication in it. Although not seen in this example, the diffeze in ownership classification
is oftentimes caused by the instant propagation of chang&yde against the latency in
propagation caused by CVS/SVN commits.

5.4 Ordering of the Files

The order of the files in the ownership map has a large effedsdagibility. We order the
files by their similarity in their change history, insteadusfing the standard alphabetical
order. Using this ordering, the relationships between tke fitand out much more, as files
changing at similar times — inherently related to one anottere grouped.

To measure the similarity of the change histories of two files use a variant of the
Levenshtein distanc€], which measures the similarity between two sequences bytow
the number of edit operations necessary to transform oiwetl@ other. There are three
kinds of operations: Insertion, Deletion and Modificatidrasequence of elements. These
operations are defined on abstract sequences of items andtaetated to SCM operations.

In our case, we use the Syde change histories of the files asrsegs. The CVS/SVN
maps use the Syde clustering as well, so that the orderirgeiséme and comparison be-
tween maps is easier. We split the change history in a sefigse intervals, and count
the number of changes that affected the file during thatvatemhis yields a sequence of
change intensities ordered by time. We tried intervals df 12 and 24 hours, inspected the
clusters produced in each case, and concluded that a 12 ¢lastsring produced the best
results: clustering the greatest number of files that werdified together €.9.,files that
were modified together were put side by side more often withdi#s intervals than with
other values).

Each edit operation is associated with a cost. To accounthfodifferent nature of
our data, our definitions of the costs vary from the commonndafn. The Levenshtein
distance is often used to measure the distance between wavdsre one can assume that

17

the characters are independent —, whereas we are compaitiegns of changes with an
intensity of changes in a given interval. Intuitively, thistdnce between two characters is
constant, but this assumption does not carry over to chaieasuring the difference of
intensity of changes allows us to use a more precise distaptec.

We retain the standard costs of 1 for insertion and deletjmeration of items in the
sequence. These operations are primarily used to switclortfer of two time intervals
when items with the same values have nearly identical isdic¢he two sequences.f.,a
burst of changes on filg1l occurred just before a similar burst of changes onffile

We use a different definition of the cost for the modificatigei@tion. The modification
operation is used to alter the value of an item in the sequsndbat it corresponds to the
value of the item at the same index in the second sequenged burst of changes on file
f1 attimet1 is slightly smaller than the burst of changesfafat the same time). We define
the cost of a modification operation between two change atsawandb as:

1, ifa=0andb >0
ModificationCosf , = { 1, if b=0anda >0 (1)
lb=al ' otherwise

10 >

The rationale behind our choice is that moderate variationke intensity of changes
during an interval should result in a lower edit cost thagéarones. On the other hand, a
transition from no changes to any number of changes is ala@stly.

After computing the Levenshtein distance, we use a hieigatblustering algorithm to
order the files with respect to their similarity accordinghe distance we defined. All the
maps we show in the remainder of the article are ordered tisiagcheme.

6 Case Studies

In previous work, we performed an initial analysis of thetdnig of projects developed by
a single developer?]. In the context of this article we use the data provided bgeStio
tackle the following research questidtiow can Syde’s history log help to characterize code
ownership?To discuss this question we analyze three projects: Spadd,gnd Pacman.

6.1 Presentation of the Projects

Spee is a commercial project that was under development at ttievard factory of CPM-
Braxisl]. This software factory was chosen because of its profeababraracteristics: it has
a well defined production process certified by CMMI-DEV 5 a8©19001:2000 standards;
its projects adopt metrics, software reuse, and new teobies for delivering high quality
products.

Pacman and jArk are group projects developed by studenteicdntext of the “Pro-
gramming Fundamentals 2" course given at the Universityugjdno. Contrary to Speed,
where we collected data for a brief period, the students Bgele for the entire duration of
their projects. Hence, we have the full history of developtd these projects.

Table?? presents the data we gathered for the three projects we oneaiin this study.

6 We use pseudonyms to conform with the non-disclosure agreéemen
7 Seéhtt p: // www. cpnbr axi s. com

http://www.cpmbraxis.com

18

Table 1 Projects studied, the period analyzed for each projecttimeber of java files that were committed
to the SCM repository, the number of files with changes cagthyeSyde, the number of SCM commits, and
the number of Syde changes.

Project | Period | Developers | Filesin SCM | Filesin Syde | Commits | Syde Changes

Speed 15 days 4 14 56 26 2,429
JArk 5 weeks 2 146 172 266 23,786
Pacman| 5 weeks 2 140 223 149 14,460

The number of files with Syde changes is higher than the numbgles committed
to CVS or SVN. We examined the source code and observed thah#in cause of this
disparity is when developers create a class, work on it fohdewbut change its location
before checking it in the repository.

An immediate observation we can make is that the changesdetdy Syde are much
more fine-grained than the ones recorded by CVS or SVN: Therene orders of magni-
tude more changes than there are CVS or SVN commits.

Table?? shows the summary statistics of the number of Syde change€¥8/SVN
commits per day.

Table 2 Summary statistics for Syde changes and CVS/SVN commits per day.

Project Minimum 1st Quartile | Median Mean | 3rd Quartile | Maximum
Speed CVS 2 4.00 6.00 6.00 8.00 10
Syde 1 48.75 | 143.50 | 242.90 367.50 668

ATk SVN 1 3.00 6.00 7.82 12.75 24
Syde 1 121.00 | 454.00| 792.90 863.80 9,242

Pacman SVN 1 1.00 4.00 5.14 8.00 17
Syde 5 113.00 | 300.09 | 437.90 611.00 2,981

To compute the summary, we removed the days with no changesaoommits ice.,
if there was at least one commit or one change, the day isdadlfor both measurements).
For at least 75% of the days, the number of Syde changes isrtéensoof magnitude higher
than SVN commiits for jArk and Pacman (2nd, 3rd, and 4th glesiti For Speed, for at least
50% of the days the same assumption holds (3rd and 4th esutil

Figure?? shows an overall view of the Syde ownership maps of the tmgegs. Since
the full maps are large, we use magnified, readable parteof tbr the analyses that follow.

6.2 Characterizing Code Ownerships with Syde

Table?? shows the comparison between the total number of Java filgaioed in Syde’s
log and the number of these files with differences in ownershassification (deltas) be-
tween Syde and CVS/SVN. According to Tal#ig, the number of Syde changes is two
orders of magnitude higher than the number of commits. Toerewe expect Syde’s own-
ership measurement to give finer-grained information aldwut is the current expert on a
file, than the measurement based on CVS/SVN. Speed has a tobenwf files committed
—only 14 files —, which influences the low value of files withteel Pacman and jArk, how-
ever, have a high number of files with differences in clasifim. The significant number
of commits and the longer period of Syde usage justify thé higmber of files with deltas.

19

P =5
[N R R

|

de

- - PSR | | i T i
jArk

LI L -

% tenntill 10

s

Pacman H

Speed

Fig. 9 Overview of Syde ownership maps of projects Speed, jArk, auhfan. This picture aims at providing
an overview of the ownership maps of the three projects weaestutt is not meant to be inspected in details
by the reader.

Table 3 Comparison between total number of files and number of files vifferences between Syde and
CVS/SVN ownership classifications.

| Speed| jArk | Pacman
Total files 56 172 223
Files with deltas 8 130 122

Speed.Figure ?? shows Syde, CVS, and delta ownership maps for a set of filekeof t
Speed project. The Syde map suggests that developers derkBibb) and pink (John)
are the owners of the majority of the files, whereas the CVS shaws that John has not
committed any file. Figur@?reinforces this observation. While John is responsible 686

of Syde changes, he did not commit any change to CVS. Theargritappens with Alice,
who is responsible for less than 20% of Syde changes, butapps the major contributor
according to CVS.

We investigated why John did not commit any change to CVS,thisdbehavior was
influenced by two factors. The first one was the late adoptfd@\s, which was done four
days after the project had started —towards the end of thenask. The second factor was
that John was actively involved in three other projects inithe company, and had higher
priority on one of the other projects in the second week ofekgeriment. Therefore, he
was only able to commit his changes after the period of thaystu

Itis evident from the differences between the Syde and CVsrttzat the Speed devel-
opers do not commit their code frequently, nor do they premeommon behavior. Figuf®?

20

01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 02/01 02/02 02/03 02/04 02/05 02/06

. o
L 4
L 2
=)
° =
> °
° ° <
S .
@ £
L ° ®- ® Py
° o oot .
- o0 . a» o -
- - e o an o °
- e o e o e g
=)
o
[2]
>
o
1]
1
° ° e
e e —
° °
°
°
H
s o o
[} o ®
[a] ..
°
® .
° ° e o P —
° oo cete © ®e —
= o . e & co
- oo - aw e e co _—
- e o a» et «e H —

=

Fig. 10 Characterization of ownership of a set of files of the Speegkpt.

Speed jArk Pacman

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

HBob " Alice " Mary MJohn M Stefano Thomas M luca " Mark

Fig. 11 Distribution of changes per developer for Syde, and commitsdpeeloper for CVS/SVN for the
three projects. We include all files that had at least one $kidage, or at least one commit for CVS/SVN.

leads us to the same conclusion: In the context of Speed dfitibn of code ownership
according to Syde is more suitable than the one accordiny & 8ased on this, we suggest
that the larger the difference between the effort of a dg@@measured as number of small
changes) and the frequency of his commits, the more suitalslepproach is in relation to
the one of Grbaet al. However, since the developers of this project reportedttiegt were
developing multiple projects at the same time, and that safrtfeem occasionally forgot to
use Syde, further investigation was needed to support @gestion. We hence performed
the same study on the two other projects at our disposal.

21

Pacman and jArk.Looking at the distribution of changes/commits per devetspf Pac-
man and jArk, we observe that there is consistency betwedr 8yanges and SVN com-
mits. The authors who performed the most changes are alsm#sewho committed more,
even though the percentage of Syde changes are higher thparttentage of commits.@.,
in jArk, Stefano performed about 80% of Syde changes, andt&i&®6 of the commits). We
know that the students were working together most of the,toneemotely, but frequently
communicating through instant messaging. Contrary to vhagipened with Speed, they
were focusing on only one project, and equally splittinguleekload. We believe that these
characteristics influenced the consistent relation betviele changes and SVN commits.
According to the characteristics of distribution of chasigemmits per developers of
Pacman and jArk, the differences in ownership classificaiased on Syde and SVN are
influenced by the frequency with which the developers comimibther words, we expect
to see differences in classification during the period betwa set of Syde changes and a
commit —when the takeover happens. To investigate whetasdappear, we take a close
look at the maps of one day of work in Pacman.

pacman/model/Floor.java
pacman/model/Player.java
pacman/model/Monster.java
pacman/model/GhostController.java
pacman/model/Controller.java
pacman/view/BoardView.java
——— pacman/view/GameFrame.java
pacman/model/Creature.java

—.— pacman/model/Pacman.java

pacman/model/Ghost.java

' pacman/model/Board.java

- oo |m(—————————— ——— [) pacman/model/Level.java

pacman/model/Floor.java
} pacman/model/Player.java
pacman/model/Monster java
pacman/model/GhostController.java

pacman/model/Controller.java
pacman/view/BoardView.java
— pacman/view/GameFrame.java
pacman/model/Creature.java
pacman/model/Pacman.java
pacman/model/Ghost.java
pacman/model/Board.java
pacman/model/Level java

SVN log

pacman/model/Floor.java
@1 pacman/model/Player.java
. pacman/model/Monster.java
ano pacman/model/GhostController.java
pacman/model/Controller.java
pacman/view/BoardView.java
pacman/view/GameFrame.java
pacman/model/Creature java
- » q pacman/model/Pacman java

pacman/model/Ghost.java

X R] [] pacman/model/Board.java
o - eveoeE(—————— _— —— pacman/model/Level.java

Fig. 12 Characterization of ownership of a set of files of the Pacmajept.

Figure ?? shows the ownership maps of one day of work for Pacman. Byfudgre
analyzing the three maps, we notice that in most of the cadesedoper works on a couple
of files for some time, and commits his changes later. Thiséscase of fileBoar dVi ew
andGaneFr ane; Cr eat ur e, Pacrman, andGhost ; andBoar d andLevel .

The Syde and SVN maps show that both developers are ofteringask the same files
in parallel €.g.,Boar dVi ew, GaneFr anme, Cr eat ur e, Pacnan, Gost, Boar d, and
Level). In such cases, when differences between Syde and SVN shipappear, they
are related to both the frequency of commits and the natutbeomeasurements. While
the measurement based on Syde logs relies on the actual aofauork and time that one

22

spent, the measurement based on CVS/SVN commits relieeonthber of lines changed,
which does not reflect directly one’s effort.

For example, imagine that a developer created and implesdemtmethod, tested it,
fixed some tricky defects that took him a considerable time, fanally refactored it. Syde
records every edit step, reflecting how much effort this tger put on implementing this
method, while CVS/SVN only informs the number of lines addedhe file corresponding
to this method. While the later can be a good effort indigatas common sense that the
more effort someone puts on a task, the more likely it is tleawtl remember it.

Based on this, we reaffirm that the larger the difference betwthe effort of a developer
(measured as number of small changes) and the frequenay obthmits, the more suitable
our approach is in relation to the one ofrtaet al.

6.3 Evaluating Syde Ownership with Forgetting

In Section??, we introduced the concept of forgetting, and incorpordttéd Syde’s mea-
surement of ownership. In this section we evaluate the torgeeffect by comparing the
results of the measurement with different values of stiemgtmemory. The function we
adopted to describe forgettingfis= e , whereR is the memory retentiory; is time, and

s is the strength of memory. Ideally, the valuesdk empirically determined by comparing
it to the opinions of the developers themselves. Howeverlideot have that information
at our disposal. We hence rely on heuristics and comparetighavior of ownership for
several values of. The values of that we selected are 5, 25, and 125; we chose powers of
5 since the forgetting function is exponential, and withs#h8 values we cover a reasonable
variability of memory retention. According to TabR?, a value ofs = 5 reaches a low
memory retention after 10 days (0.14), while- 25 reaches the same value after nearly two
months; a value of = 125 yields a memory retention that is still strong after thatetim

Table 4 Percentage of memory retention after a number of days for thiesaif strength of memory chosen
for this study: 5, 25, 125.

days
Memory strength ‘ 1| 5] 10| 20| 30| 40| 50
S=5 0.82 | 0.37 | 0.14 | 0.02 | 0.00 | 0.00 | 0.00
s=25 096 | 0.82| 0.67 | 0.45| 0.30 | 0.20 | 0.14
s=125 099 | 096 | 092 | 0.85| 0.79 | 0.73 | 0.67

To determine the best memory setting for each project, wetwseheuristics: mini-
mizing the ratio ofshort-termswitches among all the switches, and minimizing the overall
average number of switches per files. A switch happens whesvelaper takes over the
ownership of a file, but only when the file had a previous owAeshort-term switch is a
switch whose overall duration is four hours or less. Findimg value ofs that minimizes
these two values leads to a better ownership descriptidhpasimizes what can be seen as
spurious changes of ownership. TaBfereports both these values for each project and each
memory strength, including the default ownership measargtaving a full memory.

To have a finer-grained view of the ownership switches, we stt®w the distribution of
short and long-term ownership switches among files and messitings in Figur@?. This
figure shows a series of histograms of ownership switchefilpeThex axis represents the

23

Table 5 Percentage of short-term ownership switches among owmesstitches, and average number of
switches per file, per project and memory strength.

short switches switches per file
Memory strength | Speed | jArk | Pacman | Speed| jArk | Pacman
s=5 10.0% | 29.6% 44.4% 0.70 | 0.72 0.57
s=25 32.2% | 31.1% 40.5% 1.05| 1.08 0.83
s=125 32.1% | 32.5% 40.7% 1.00 | 0.93 0.63
full memory 31.6% | 33.3% 41.7% 1.02 | 0.81 0.60

number of switches, and theaxis shows the number of files which had that exact number of
switches throughout their lifetime. The first three colurshew the histogram considering
the forgetting effect in order of increasing memory stréngthereas the last column does
not consider forgetting. Black bars represent short-tesmesship switches, while gray bars
represent all ownership switches.

For all three projects, the majority of the files did not hawéishes: 28 out of 56 files for
Speed; 120 out of 172 files for jArk; and 159 out of 223 files facfan. We removed them
from the histogram in order to increase the resolution ofthgis and hence the legibility.

Relationship between number of switches and menibrye analyze the files by frequency
of switches, the histograms indicate that, overall, a weakiory yields the lowest number
of switches. In other words, the number of files with lesschés is larger for smaller values
of s, while the number of files with more switches is larger fogtarvalues ok. Table??
confirms these observations: The lowest ratio of overaltgdweis per file is consistently
obtained fors = 5, although larger values give a close ratio for the PacmajegtrolT he
maximum is found fos = 25, and it decreases lightly after that.

Speed has a very low number of files with 2 switches or mores fer 5. A stronger
s noticeably increases the number of files with 2 switchesnacand jArk contain a
greater number of files with ownership switches, but haveenadl smaller ratio of con-
flicts switches per file. Speed is an overall smaller projatti€¢ast the package that we
focused on), with twice the number of developers; hence therpial for conflict increases.
On the other hand, jArk and Pacman both have several filesaNithh number of switches,
indicating that a small number of files receive the majorityhe conflicts.

Relationship between memory and short-term switckmsulting Table??, we observe
that for Speed and jArk, the proportion of short-term swéglamong overall switches in-
creases as the strength of the memory increases. For Paittisanend is true fos = 25,

s = 125, and no forgetting, but the value fer= 5 is surprisingly the highest = 5 gives
the overall lowest number of switches, but has a comparabiger of short-term switches
with s = 125 or the no forgetting ownership measurement; this givesriression that
ownership switches are increasing. With a closer look ahtstery, we found that all the 56
short-term ownership switches happened in the first hali@ptroject, on a restricted set of
33 files. The developers of Pacman worked together at thehiegi on the model of Pac-
man, and then split: One stayed on the model, while anotheladged the view. This close
collaboration early on caused a large number of unavoidstinbet-term switches: On the
24/04/2009, 23 short-term switches occurred on 10 filesadoinig unit tests; 13 short-term
switches happened on 7 files on 20/04/2009; and 10 otherrectan 10 files on 06/05/09.
This shows that the short-term switches are clustered drspecific dates and denote bursts
of activity. As such, they are not artifacts of the usage (or-nsage) of the forgetting effect.

24

Speed
o (=] (=] (=
3N N 3N N
2 2 2 2
w w wn wn
o o o o
T T T T T T T T T T T T T T
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
jArk
3 ® & & &
B
g o o o o
g 2 2 2 2
2 © [t} [te} [te}
o o o o
11 Tl T Frr 1T
2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14
Pacman

30
30
0
0

20
20
20

2 2 2 S
o o o o
123 456 123 456 123 456 123 456
s=5 s=25 s=125 no forgetting
O Ownership switches per file B short ownership switches per file (within 4 hours)

Fig. 13 Histogram of ownership switches per file according to Syadmgles. The first three columns consider
forgetting withs = {5, 25, 125}.

We can conclude that the best setting is again the lower mewadue (= 5) as it dimin-
ishes the overall quantity of switches, even if it is not flolesto reduce short-term ones,
which hence increase in proportion.

A detailed view on ownership switchegl/ith these observations in mind, we focus on inves-
tigating the behavior of the switches for the different sadéforgetting. To do so, we take a
close look into a set of classes from jArk. Figieeshows a Syde ownership map where, for
each class, there is one line per eaakalue, and the last line for the original measurement
(with no forgetting). The main pattern that we observe is the stronger the memory is, the
longer it takes for an ownership switch to happen. Furtheemehens = 125, the behavior

is extremely similar to when developers have a perfect mgntorFigure ??, they are in
fact equal (not the case in jArk overall). This might be ariéation thats = 125 is too high,

at least for the context of jArk. Indeed, Figu?@ shows us that developers would have 70%

25

~ —€—eo o0 —o @ ow—— o5 model/bonus/TheBoxBonus.java

e —(——(——— @ — o o0 @ — ® o ® —«c———5 model/bonus/StickyBallBonus.java

——— 5 model/bonus/MissileVausBonus.java

-o—— 5 model/bonus/DoubleLaserVausBonus.java

-—— 125

.
.
: ——— 5 model/bonus/LaserVausBonus.java
.
.

model/bonus/RemoveLifeBonus.java

5 model/bonus/LongVausBonus.java

5 model/bonus/ShortVausBonus.java

e @ (< 5 model/bonus/AddLifeBonus.java

®————————5 model/bonus/SlowBallBonus.java

ecoe
sss
N
2

oo —coC—oC o 5 model/bonus/DoubleBallBonus.java

e 5 model/bonus/UltraBallBonus.java

oo cox

Fig. 14 Ownership map of jArk with forgetting notion.

probability to remember a file 50 days after they changedithé context of jArk, which
lasted for approximately 35 days, this value is already igh.h

Conclusions.As previously stated, the strength of memory is a subjectalae that de-
pends on the various characteristics of each project. Tdreréhere is an optimal range of
values for each project, but there is no optimal value fopedjects. In the case of jArk a
short strength of memory is more suitable, since it is a ptojéth a short duration, and
two developers with no clear division of tasks, thus with ayic characteristics. In the
case of Speed, even if there is a clear division of taskse ther more developers involved,
which raises the number of conflicts; it is also more suitableonsider a lower strength of
memory, at least until the project grows in size. In the cd$®gaoman, a low value of mem-
ory reduces the overall number of conflicts, but keeps thebmuraf short-term ownership
switches nearly constant, and is hence preferable as walh E the three projects tend to
benefit from the same memory settings, it is too early to gdizerbeyond them.

7 Threats to Validity
7.1 Threats to Construct Validity

Construct validity refers to the extent with which our véities are correctly measured. We
identified two potential threats to construct validity:

26

Syde Change Recordinglthough Syde checks for compilation errors when a sourckeco
is changed, we do not compute the structural differences freo subsequent versions. As
consequence, any edit to a file is considered as a changediimgladdition or deletion of
comments and blank lines.

Syde records every change made by a developer as long asdriscted to the Syde
server. Speed was monitored with an early version of Syde hvititations. The history
log collected from Speed is not complete, because some ddd¢telopers reported that
they forgot to connect to Syde a couple of times. We minimitasl issue by offering the
option to automatically connect to the server, however ithitgal version of Syde did not
enable automatic connection by default. This early versias also missing a buffer in the
plug-in to save the changes performed while the developsflise and to send them to the
server when he connects. Thus a number of changes may havéosgevhich may have
influenced the accuracy of our measure.

The jArk and Pacman projects were monitored with a laterigaref Syde, featuring
both auto-connect enabled by default and a buffer to recfflideochanges. This allowed
us to record a large portion of the changes that would have loséwith the previous one.
There is however a slight probability that the offline buffexs full, leading to the loss of a
few changes.

SCM Usage.Syde was used since the beginning of the implementatiorepdfeSpeed, but
CVS was only adopted four days later (01/26). This fact cdwdlde influenced ownership
in the beginning of the project. This was a decision takerhleyt¢am and hence beyond our
control. Pacman and jArk adopted Subversion at the begynofithe project, so this threat
does not apply for them.

7.2 Threats to Internal Validity

Internal Validity refers to the validity of our causal cousilons. We identified two potential
threats:

Developer behavior under observatio8ince developers knew they were observed, they
may have altered their behavior in ways that we cannot prdelic instance, they may have
committed more — or less — often than usual. Since we mouwitoue subjects for relatively
long periods of time using non-intrusive tools (SCM charagsland Syde), we think they
had time to get used to it; hence that effect should be weak.

Match of ownership measurements with developers’ opinideally, we should have col-
lected the developers’ opinion on how much they know abouwréiqular file they edited.
This collection should have been done at fixed intervalsudjinout the data collection pro-
cess, so we would have points in time to compare our findings deévelopers’ opinion.
However, we did not collect this information, and showing thap to developers several
months after the data collection requires a perfect menmamy them to be able to check
whether the map conforms to their notion of ownership.

7.3 Threats to External Validity

External Validity refers to how much our results can be galiwzd to other circumstances.
We identified two potential threats to external validity:

27

Number of systems/Ne monitored three projects — one industrial and two stugesjects

—, featuring a total of 8 developers over a combined time afi@8ks. This is still a relatively
low number of projects and a short period of time (although tfithe projects were moni-
tored from start to completion). Moreover, all the projegtse implemented using the same
toolset: the Java programming language and the Eclipse TDE&se restrictions prevent us
from deriving stronger conclusions at this time.

Styles of DevelopersAnother aspect to be considered is that developers migkepteli-
verse patterns on saving and compiling, which could infleghe results of code ownership
measurement, since it is based on the number of changes easlbkr produced. We be-
lieve the usage of an IDE such as Eclipse, which outlinesttoesestill present in the code,
encourages one to compile more often, thus mitigating tiieat. In the same fashion,
developers have different patterns of SCM usage. Theseearflbenced by the develop-
ment process adopted by the team: Agile development engesidevelopers to check in
their code frequently, while more traditional processeenage developers to maintain the
repository consistent, which may delay their check-ins.

Since we monitor eight developers, we do not know if we actéamall the variability,
even though we did notice large differences in SCM usagevb@haith respect to the actual
number of changes performed, which comforted our opiniat ttur ownership metric is
more resilient than the one based on SCM system usage.

8 Conclusion

In this article we have used the logs of a novel type of softwapository to determine
code ownership and to compare the result with the ownerdmgpated exclusively with
SCM-level logs. The new repository stores every changeopeed by every developer in
a multi-developer project. The repository is managed byeSwdclient-server application
built with the goal of augmenting workspace awareness onlé-daveloper environment.
The foundation of Syde is Spyware’s change-centric apprfgcin which each individual
code edit is saved and can be recovered in the future.

Similar to mainstream SCM systems, such as CVS, Syde prediis®ry logs contain-
ing useful information about changes, which can be minelersame context as the widely
mined CVS logs. The fundamental difference is that Sydejs kre the result of continuous
edits performed by developers, who do not need to stop thak te submit the changes. In
contrast, CVS logs are the result of explicit check-ins afrayes, which can vary according
to team culture, developer habits, and the likelihood ofgeegonflicts. Hence, we argue
that Syde’s logs reflect what happened in the past more getyuthan the ones provided
by mainstream SCM systems.

We mined Syde'’s log to determine code ownership and comples@sult with the one
produced exclusively with CVS or SVN logs. We defined a new enship measurement
based on the frequency with which developers change theafaeh file; we subsequently
refined the new measurement to add the notion of memory losseodefinition of code
ownership. That is, a developer who has performed the nyjoiiicode edits of a file, but
has not touched it for a long period (when the file underwegmiitant changes), starts
to lose knowledge of it. In the meantime, the developer whdopas the recent changes
becomes more knowledgeable, even though he may not hawemped as many edits as the
first one.

28

To validate the Syde ownership measurement, we used theal&ated by Syde, and
the CVS/SVN logs from the development of three distinct @ct§: Speed, for a period of
15 days; jArk and Pacman for a period of 5 weeks. We monitorgit elevelopers for a
total of 28 man/weeks, or 7 man/months.

We compared the results of the variants of ownership withhislp of the Ownership
Map, a visualization introduced byitBaet al. [?], that we extended to fit our data. The
results showed differences between the two classificatespecially when active develop-
ers did not check in their changes frequently —in one caseyelaper did not commit any
code for two weeks, significantly skewing the measuremesgdan SCM data. Based on
this finding, we suggest that our code ownership classifinas more accurate than the one
proposed by @baet al.[?], as it is less sensitive to the commit habits of developers.

In addition, we suggest that the use of the notion of memay Wehen measuring own-
ership reflects a more realistic scenario than assuming elaj®r remembers everything
regardless of the time passed. We found that models basedalles memory retention in
general satisfied the two heuristics of minimizing the nundd@wnership switches and of
minimizing the number of short-term (possibly spurioushevship switches. However, it
is important to emphasize the subjective nature of fonggtiénd thus, that the ideal rate of
forgetting for each project is subject to its charactarssti

The ownership maps are a means to investigate the variatiowmership at a fine-
grained level rather than a visualization to help develspedetect file owners. The visual-
ization has a number of scalability constraints, such astineber of developers that can be
distinguished by different colors, and the increasing dlifty for the human eye to spot an
ownership switch as the map is shrunk to show a longer time wjthin a fixed size.

Therefore, as future work on code ownership, we plan to implet a recommender in
the form of an Eclipse plug-in to help developers to locatestéhwho are knowledgeable
about an artifact of the system. The recommender should allaeveloper to query for
experts of a file or a package, and provide a rank of expertsni#ied to use the ownership
measurements investigated in this work to compute the kexyd that each developer who
changed an artifact has at the moment another developes &edhelp. This recommender
will be integrated with the existing set of Syde plug-ins.

We intend to investigate other subjective aspects thatanfla the knowledge of an indi-
vidual compared to a target group (in our case, a developepaced to a team). Analogous
to the notion of memory loss, there is the learning noti@n,how does one acquire knowl-
edge of a part of the system. However, we believe that theilegcurve is more influenced
by individual experience —in general and in the context of@get— than the forgetting
curve. That is, an expert is more likely to understand whaiaduire does than a newcomer.
We intend to study this notion and model it in order to refiredlvnership measurement.

We believe that the data made available by Syde opens neweqotikes for several
analyses, such as the understanding of developers’ rokbsetivities, code ownership,
detection of unstable codetc.We also believe that since the data is being collected in real
time, we can provide new types of “developer assistanggegpecially with respect to the
collaborative aspects that Syde supports.

Acknowledgements We would like to thank CPMBraxis and its professionals fangsSyde and providing
useful feedback to us. We also thank the students that genthg spy on them.

References

	Introduction
	Related Work
	Syde

