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Abstract

Data exchange is the problem of taking data structured under a source schema and creating an
instance of a target schema. Given a source instance, there may be many solutions – target instances
that satisfy the constraints of the data exchange problem. Previous work has identified two classes of
desirable solutions: canonical universal solutions, and their cores. Query answering in data exchange
amounts to rewriting a query over the target schema to another query that, over a materialized target
instance, gives the result that is semantically consistent with the source (specifically, the “certain
answers”). Basic questions are then: (1) how do these solutions compare in terms of query rewriting?
and (2) how can we determine whether a query is rewritable over a particular solution?

Our goal is to answer these questions. Our first main result is that, in terms of rewritability by
relational algebra queries, the core is strictly less expressive than the canonical universal solution,
which in turn is strictly less expressive than the source. To develop techniques for proving queries
nonrewritable, we establish structural properties of solutions; in fact they are derived from the tech-
nical machinery developed in the rewritability proofs. Our second result is that both the canonical
universal solution and the core preserve the local structure of the data, and that every target query
rewritable over any of these solutions cannot distinguish tuples whose neighborhoods in the source
are similar. This gives us a first simple tool for checking whether a query is nonrewritable over the
canonical universal solution or over the core. We also show that these tools generalize to arbitrary
transformations that preserve the local structure of the data, and investigate an alternative semantics
of query answering in data exchange.
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1. Introduction

Data exchange is the problem of materializing an instance that adheres to a target schema, given an
instance of a source schema and a specification of the relationship between the source and the target.
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This is a very old problem (cf. Housel et al. [HTGL77]) that arises in many tasks where data must
be transferred between independent applications that do not have the same data format. The need
for data exchange has steadily increased over the years. With the proliferation of web data in various
formats and with the emergence of e-business applications that need to communicate data yet remain
autonomous, data exchange has become even more important. Recent surveys summarizing the state
of the art in data exchange are [ABLM10, Bar09, Kol05].

A data exchange setting is a triple (S, T, Σst), where S is the source schema, T is the target schema,
and Σst is a set of source-to-target dependencies that express the relationship between S and T (some
papers also add a set Σt of dependencies that expresses constraints on T). Such a setting gives rise to
the following data exchange problem: given an instance I over the source schema S, find an instance
J over the target schema T such that I together with J satisfy the source-to-target dependencies Σst

(when target dependencies are used, J must also satisfy them). Such an instance J is called a solution
for I in the data exchange setting. In general, there may be many different solutions for a given source
instance I.

One of the basic assumptions in data exchange is that the target instance is autonomous from the
source. That is, once a solution J has been materialized, target queries have to be evaluated over J
only (since the source is no longer available). For a data exchange system, the two key issues are the
choice of a solution to be materialized, and query answering over that materialized solution.

The work of Fagin, Kolaitis, Miller, and Popa [FKMP05, FKP05] started a systematic investigation of
these issues for data exchange settings in which S and T are relational schemas. They isolated a class
of solutions, called universal solutions, possessing good properties that justify selecting them as the
best solutions in data exchange. Universal solutions are the most general among all solutions and, in
a precise sense, they represent the entire space of solutions. It was shown by Fagin et al. [FKMP05]
that under fairly general conditions, universal solutions exist, and a particular universal solution can
be found in polynomial time. This solution, that can be computed by applying the classical chase
procedure (cf. [BV84, MMS79]), is called the canonical universal solution.

Since universal solutions need not be unique, this raises the question of which universal solution to
materialize. A possible answer is based on using minimality as a key criterion for what constitutes
the “best” universal solution [FKP05]. Although universal solutions come in different sizes, all of
them share a unique (up to isomorphism) common “part”, which is nothing else but the core of each
of them, when viewed as relational structures. By definition, the core of a structure is the smallest
substructure that is also a homomorphic image of the structure. The concept of the core originated
in graph theory, where a number of its properties have been established [HN92]. It has been shown
[FKP05] that under fairly general conditions the core of the universal solutions for I is itself a solution
for I. Hence, the core of the universal solutions for I is the smallest universal solution for I, and thus
an ideal candidate for the “best” solution, at least in terms of the space required to materialize it.
Furthermore, in many cases there is a polynomial-time algorithm that computes the core [GN08].

Given a source instance and a data exchange setting, what is the meaning of the “answer” to a query
Q over the target schema? Since there may be multiple solutions to the data exchange problem, the
standard approach is to define it to be the set of certain answers [IL84], that is, those tuples that
appear in Q(J) for every solution J . The goal of query answering in data exchange is to find these
certain answers based on just one materialized target instance.

While for some classes of queries (e.g., unions of conjunctive queries), certain answers to Q could be
obtained by evaluating Q itself over the canonical universal solution or the core [FKMP05, FKP05],
this fails already for conjunctive queries with inequalities. In fact, it is known that there is a Boolean
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conjunctive query Q with inequalities such that Q(J) does not give the certain answers, no matter
which universal solution J is selected, but for some other first-order query Q′ (a rewriting of Q), the
certain answers for Q are given by Q′(J), where J is the canonical universal solution [FKMP05]. But
query rewritability is not a general phenomenon either, as there is a Boolean conjunctive query Q
with inequalities for which there is no such rewriting Q′ [FKMP05].

This leads to the following natural questions:

1. Can the canonical universal solution and the core be compared in terms of the queries that can
be rewritten over each one of them? In other words, is every query rewritable over one of these
solutions also rewritable over the other?

2. Is there a simple way to prove that a query does not have a rewriting over the canonical universal
solution (resp., over the core)?

Our main goal is to answer them. We now give a summary of the main results in the paper.

Query rewritability We investigate queries that can be rewritten by relational algebra, or first
order queries. We look at three kinds of rewritability: over the core, over the canonical universal
solution, and over the source data itself, and prove the following strict inclusions:

rewritable over the rewritable over the rewritable over the

core
(

canonical universal solution
(

source

Tools for proving non-rewritability We use the techniques we developed in the process of com-
paring rewritability of queries to show that every rewritable query is locally source-dependent:
that is, the certain answers to Q cannot distinguish tuples that have the same small neighbor-
hoods in the source. We demonstrate how this tool can be used to give simple proofs that some
queries are not rewritable.

Structural properties of solutions Locality is a standard tool in the study of expressibility
[Gai82, Han65, FSV95, Lib04], and we investigate its applicability in query rewritability and
data exchange transformations. Specifically, we show that solutions such as the core and the
canonical universal solution preserve the local character of the data. In some cases they preserve
isomorphism types of local neighborhoods of tuples, and more generally, they preserve their
logical types (that describe sets of definable first-order properties of neighborhoods).

Extensions We look at a different, universal solutions semantics, and show that, even though
rewritability under this semantics is different from the usual rewritability, it continues to be
locally source-dependent and thus our non-rewritability tools are applicable to it.

Organization. Basic notions related to data exchange, universal solutions, and cores, are presented in
Section 2. In Section 3, we define query rewriting, and show the relationship between query rewriting
over the core, the canonical universal solution, and the source. In Section 4 we define the notion of
being locally source-dependent, prove it for the core and the canonical universal solution and show how
it can be used to prove non-rewritability of queries. In Section 5 we study the structural properties
of both the canonical universal solution and the core, and show that these solutions preserve the local
structure of the data: up to isomorphism in some restricted settings, and up to logical equivalence in
the general setting. In Section 6, we show that our results are robust, in the sense that they can also
be applied in the context of a different semantics for query answering in data exchange. We finish the
paper with some conclusions and suggestions for future work.
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2. Preliminaries

A schema R is a finite sequence 〈R1, . . . , Rm〉 of relation symbols, with each Ri having a fixed arity
ni. An instance I of R assigns to each relation symbol Ri of R a finite ni-ary relation I(Ri). The
domain dom(I) of instance I is the set of all elements that occur in any of the relations I(Ri).

1 The
set of all instances of schema R is denoted by Inst(R). An instance J of R is a subinstance of I
if J(Ri) ⊆ I(Ri), for every i. If at least one of the inclusions is proper, we refer to J as a proper
subinstance of I.

We will sometimes abuse the notation and use Ri to denote both the relation symbol and the relation
I(Ri) that interprets it. Given a tuple t occurring in a relation R, we denote by R(t) the association
between t and R and call it a fact. We often represent an instance by its set of facts.

An m-ary query Q over schema R, where m ≥ 0, is a map that associates with each I ∈ Inst(R) a
subset of dom(I)m, denoted by Q(I), such that Q is closed under isomorphisms (that is, if f is an
isomorphism from I1 to I2, and if t ∈ Q(I1), then f(t) ∈ Q(I2)).

2 We assume that 0-ary queries (or
Boolean queries) are maps from Inst(R) to the Boolean values true and false. From now on, we
assume all queries to be specified in first-order logic (FO), with which we assume familiarity.

Ehrenfeucht-Fräıssé games. The quantifier rank of an FO formula φ, denoted by qr(φ), is the maximum
depth of quantifier nesting in it.

Many proofs in this paper make use of Ehrenfeucht-Fräıssé (EF) games. This game is played in two
instances, I1 and I2, of the same schema, by two players, the spoiler and the duplicator. There is a
fixed nonnegative integer k of rounds. In round i the spoiler selects either an element ci in dom(I1) or
an element ei in dom(I2); if the spoiler selects ci in dom(I1) (resp., ei in dom(I2)) then the duplicator
selects ei in dom(I2) (resp., ci in dom(I1)). The duplicator wins if {(ci, ei) | i ≤ k} defines a partial
isomorphism between I1 and I2. If the duplicator has a winning strategy, to win no matter how the
spoiler plays, we write I1 ≡k I2. A classical result states that I1 ≡k I2 iff I1 and I2 agree on all FO
sentences of quantifier rank at most k [Ehr61, Fra54] (cf. [Lib04]). Also, if ā is an m-tuple in dom(I1)
and b̄ is an m-tuple in dom(I2), where m ≥ 0, we write (I1, ā) ≡k (I2, b̄) whenever the duplicator has
a winning strategy, to win in k rounds no matter how the spoiler plays, but starting from position
(ā, b̄). Then (I1, ā) ≡k (I2, b̄) iff I1 |= φ(ā) ⇔ I2 |= φ(b̄) for every FO formula φ(x̄) of quantifier rank
at most k.

It is well-known (cf. [Lib04]) that for a given schema, there are only finitely many FO formulae of
quantifier rank k, up to logical equivalence. The rank-k type of an m-tuple ā in an instance I is the set
of all formulae φ(x̄) of quantifier rank at most k such that I |= φ(ā). Given the above, there are only

finitely many rank-k types, and each one of them is definable by an FO formula τ
(I,ā)
k (x̄) of quantifier

rank at most k (this formula τ
(I,ā)
k (x̄) is the conjunction of the formulas φ(x̄) in its type).

EF games provide us with a useful tool to prove inexpressibility results for first-order logic. In fact,
from previous remarks one can show that an m-ary query Q is not expressible in FO if and only if for
every k ≥ 0 there exist instances I1 and I2, and m-tuples ā and b̄ in dom(I1) and dom(I2), resp., such
that (I1, ā) ≡k (I2, b̄), the m-tuple ā belongs to Q(I1), but the m-tuple b̄ does not belong to Q(I2).

1An instance can be viewed as a special case of an R-structure A defined as (A, RA
1 , . . . , RA

m), where A is a set (the
universe), and RA

i ⊆ Ani for each i. Thus, in the case of arbitrary structures, the universe may contain elements that
are not present in any of the relations.

2If t = (t1, . . . , tm), then f(t) is defined to be (f(t1), . . . , f(tm)).
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Data exchange setting. Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas with no relation
symbols in common. We refer to S as the source schema and to the Si’s as the source relation symbols.
We refer to T as the target schema and to the Tj ’s as the target relation symbols. We denote by 〈S,T〉
the schema 〈S1, . . . , Sn, T1, . . . , Tm〉. Instances over S will be called source instances, while instances
over T will be called target instances. If I is a source instance and J is a target instance, then (I, J)
denotes an instance K over 〈S,T〉 such that K(Si) = I(Si) and K(Tj) = J(Tj), for i ∈ [1, n] and
j ∈ [1,m].

A source-to-target dependency (std) is a sentence of the form

∀x̄
(

φS(x̄) → ∃ȳ ψT(x̄, ȳ)
)

, (1)

where φS(x̄) is an FO formula over S, and ψT(x̄, ȳ) is a conjunction of atomic formulae over T. We
often write this std simply as φS(x̄) → ∃ȳ ψT(x̄, ȳ). For simplicity, we do not allow constants to occur
anywhere inside an std. Many papers (e.g., [FKMP05, FKP05, GN08]) put an additional restriction
that the formula φS be a conjunction of atomic formulas (that contains all of the variables of x̄); we
do not impose this restriction here. However, we do impose a safety condition on stds. Recall that an
FO-sentence is domain independent if its truth value in an instance I depends only on the tuples of
I, and not on the underlying domain (see [Fag82] for a formal definition). In this paper, we assume
that every std is domain independent.

Example 2.1. The formula ∀x(¬S(x) → T (x)) is not domain independent, while the formula
∀x(R(x) ∧ ¬S(x) → T (x)) is domain independent. In fact, the latter is an example of an std that is
not equivalent to any finite set of stds where the left-hand sides are conjunctions of atomic formulas.
✷

Definition 2.2 (Data exchange setting). A data exchange setting is a triple M = (S,T,Σst),
where S is a source schema, T is a target schema, and Σst is a set of source-to-target dependencies.
The data exchange problem associated with M is the following: Given a source instance I, find a
target instance J such that (I, J) satisfies each std in Σst. Such a J is called a solution for I under
M, or simply a solution for I if M is clear from the context.

We denote by Const an infinite set of all values that may occur in source instances, and, following
the data exchange terminology [FKMP05, FKP05], we call those values constants. We shall denote
constants by a, b, c, . . . , and tuples of constants by ā, b̄, etc. In addition, we also assume an infinite set
Var of elements, disjoint from Const. Elements of Var are called nulls [FKMP05, FKP05], and they
are used to help populate target instances. Nulls are often denoted by n, n1, n2, . . . , and tuples of
nulls by n̄, n̄1, etc. Sometimes we also denote nulls by uppercase letters X,Y,Z, . . . , in order to clearly
distinguish them from constants. That is, the domain of a target instance comes from Const∪ Var. If
I is an instance with values in Const∪Var, then Const(I) denotes the set of all constants occurring in
relations in I, and Var(I) denotes the set of nulls occurring in relations in I. From now on, we assume
that there is a way to distinguish constants from nulls. For example, we may assume that the target
schema T contains an auxiliary predicate C whose interpretation is Const(I) (which can be thought
as the IS NOT NULL condition in SQL). This assumption is used in many of the proofs presented in the
paper.

Two important subclasses of data exchange settings have been identified in the literature [FKMP05,
FKP05], inspired by the local-as-view (LAV) and global-as-view (GAV) classes of data integration
problems (cf. Lenzerini [Len02]):
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• LAV setting: Each dependency in Σst is of the form S(x̄) → ∃ȳ ψT(x̄, ȳ), where S is some relation
symbol in the source schema S, and, as before, ψT(x̄, ȳ) is a conjunction of atomic formulae over
the target schema T.

• GAV setting: Each dependency in Σst is of the form φS(x̄) → T (x̄), where T is some relation
symbol in the target schema T. If φS(x̄) is a conjunctive query (that is, a conjunction of atomic
formulas), we speak of the GAV(CQ) setting.

Universal solutions, canonical universal solution, and core. The next example shows that there can
be more than one solution for a source instance I in a data exchange setting.

Example 2.3. Consider a LAV data exchange setting in which S = {M(·, ·), N(·, ·)}, T = {P (·, ·, ·),
Q(·, ·)} and Σst contains the following stds:

M(x, y) → ∃w∃z(P (x, y, z) ∧Q(w, z)),

N(x, y) → ∃zP (x, y, z).

Notice that the stds in Σst do not completely specify the target. Suppose we have a source instance
I = {M(a, b), N(a, b)}. One possible solution is:

J = {P (a, b, n1), P (a, b, n2), Q(n3, n1)},

where n1, n2, n3 ∈ Var. Another solution, containing no nulls, is

J ′ = {P (a, b, a), Q(b, a)}.

Solution J ′ can be considered to be less general than J , as it gives the same value to variables x and
z even though this requirement is not imposed by the specification. ✷

It has been argued in the literature [FKMP05], that the solution J ′ in the previous example should
not be used for data exchange. In contrast, J is a better possible solution, as it contains no more and
no less than what the specification requires. We formalize this intuition next.

Universal solutions. Here we provide an algebraic specification that selects, among all possible so-
lutions, a special class of solutions called universal. These universal solutions have several good
properties that justify why they are the preferred solutions in data exchange. Before presenting the
main definition of this section, we introduce the useful concept of homomorphism between instances
with values in Const ∪ Var.

Definition 2.4 (Homomorphisms). Let J, J ′ be two instances of R with values in Const ∪ Var. A
homomorphism h : J → J ′ is a mapping from Const(J) ∪ Var(J) to Const(J ′) ∪ Var(J ′) such that

1. h(c) = c for all c ∈ Const(J), and

2. t̄ = (t1, . . . , tk) ∈ J(R) implies h(t̄) = (h(t1), . . . , h(tk)) ∈ J ′(R) for all R ∈ R.

Furthermore, we say that J and J ′ are homomorphically equivalent if there are homomorphisms
h : J → J ′ and h′ : J ′ → J .

Now we are ready to introduce the notion of universal solution [FKMP05].
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Definition 2.5 (Universal solution). If I is a source instance in a data exchange setting, then a
universal solution for I is a solution J for I such that for every solution J ′ for I, there exists a
homomorphism h : J → J ′.

Example 2.6. The solution J ′ in Example 2.3 is not universal, since there is no homomorphism
from J ′ to J . This fact makes precise our earlier intuition that J ′ is less general than J . On the other
hand, it can be easily shown that J has homomorphisms to all solutions, and thus, is universal. ✷

It has been shown that universal solutions possess good properties that justify selecting them (as
opposed to arbitrary solutions) for the semantics of the data exchange problem [FKMP05]. A universal
solution is more general than an arbitrary solution because, by definition, it can be homomorphically
mapped into that solution. This implies that all universal solutions are homomorphically equivalent.
Thus, in a certain sense, each universal solution precisely embodies the space of solutions.

Note that checking the condition in Definition 2.5 requires implicitly the ability to check the (infinite)
space of solutions. Thus, it is not clear at first hand, to what extent the notion of universal solution
is a computable one. Next we introduce two particular universal solutions that can be computed
efficiently.

Canonical universal solution. To deal with the problem of computing universal solutions, Fagin et
al. [FKMP05] proposed to compute a special kind of universal solution, called a canonical universal
solution. The algorithm is based on the classical chase procedure [BV84, MMS79], but we shall define
canonical universal solutions directly.

In the following we show how to compute the canonical universal solution of a source instance I in a
data exchange setting (S,T,Σst). For each std

φS(x̄, ȳ) → ∃w̄ (R1(x̄1, w̄1) ∧ · · · ∧Rk(x̄k, w̄k)) ∈ Σst,

where all Ri’s are in T, the variables in w̄ are exactly the variables that appear in some w̄i, and the
variables in x̄ are exactly the variables that appear in some x̄i, and for each tuple ā of length |x̄|, find
all tuples b̄1, . . . , b̄m such that I |= φS(ā, b̄i), i ∈ [1,m]. Then choose m tuples n̄1, . . . , n̄m of length
|w̄| of fresh distinct null values over Var. Suppose that (i) σ is the mapping from the variables in x̄
to the constants in ā such that σ(x̄) = ā, and (ii) for each j with 1 ≤ j ≤ m, it is the case that σj is
the mapping from the variables in w̄ to the null values in n̄j such that σj(w̄) = n̄j . Relation Ri in the
canonical universal solution for I, i ∈ [1, k], contains tuples

(σ(x̄i), σj(w̄i)), for each j ∈ [1,m] .

Furthermore, the relation Ri in the canonical universal solution for I contains only tuples that are
obtained by applying this algorithm.

Example 2.7. The canonical universal solution (up to isomorphism) for I in Example 2.3, is J =
{P (a, b, n1), P (a, b, n2), Q(n3, n1)}. ✷

Definition 2.8 (Transformation Funiv). For a data exchange setting M = (S,T,Σst), we denote
by FM

univ (or simply by Funiv if M is clear from the context) the transformation from Inst(S) to Inst(T),
such that FM

univ(I) is the canonical universal solution for I under M.
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This definition differs from the standard one in the literature [FKMP05], where a canonical universal
solution is obtained by using the classical chase procedure. Since the result of the chase is not
necessarily unique (it depends on the order in which the chase steps are applied [FKMP05]), there
may be multiple non-isomorphic canonical universal solutions under such a definition. On the other
hand, it is clear that under our definition of canonical universal solution, the canonical universal
solution is unique up to a renaming of nulls.

The next proposition states some useful properties of the transformation Funiv.

Proposition 2.9. [FKMP05] Let M = (S,T,Σst) be a fixed data exchange setting. Then FM
univ(I) is

a universal solution for I, for each instance I of S. Furthermore, there is a polynomial-time algorithm
that computes FM

univ(I) for each instance I of S.

The core. A reason one wants to compute a specific solution for the data exchange problem is to be
able to evaluate queries over the target schema. It is easy to see that universal solutions need not be
isomorphic, and thus any decision to choose any particular one is somewhat arbitrary. To deal with
this problem, it has been proposed to use the core of the universal solutions [FKP05].

Definition 2.10 (Core). A subinstance J of an instance I is called a core of I if there is a homo-
morphism from I to J , but there is no homomorphism from I to a proper subinstance of J .

It follows from the work of Hell and Nes̆et̆ril [HN92, HN04] that every instance has a unique core
(up to isomorphism). It is shown, in particular, that we can take the homomorphism h that maps an
instance I into a core J ′ of I to be a retraction, that is, a homomorphism where h(x) = x for x in
dom(J). It is also shown that every core J∗ of J is an induced subinstance of J , that is, the restriction
of J to the facts that consist uniquely of elements in J∗ is precisely J∗. Furthermore, it is possible to
prove that every universal solution has the same core up to isomorphism [FKP05].

Example 2.11. In Example 2.3, J∗ = {P (a, b, n1), Q(n3, n1)} is the unique core (up to isomor-
phism) of the universal solutions. In fact, J∗ is a subinstance of the canonical universal solution
J = {P (a, b, n1), P (a, b, n2), Q(n3, n1)}, and h defined as the identity on all elements but n2, and
h(n2) = n1, is a homomorphism from J to J∗. Furthermore, there is no homomorphism from J to a
proper subinstance of J∗. ✷

Definition 2.12 (Transformation Fcore). For a data exchange setting (S,T,Σst), we denote by
FM

core (or simply by Fcore if M is clear from the context) the transformation from Inst(S) to Inst(T),
such that FM

core(I) is the core of the universal solutions for I.

The next proposition states some useful properties of the transformation Fcore.

Proposition 2.13. [FKP05] Let M = (S,T,Σst) be a fixed data exchange setting. Then FM
core(I) is a

universal solution for I, for each instance I of S. Furthermore, there is a polynomial-time algorithm
that computes FM

core(I) for each instance I of S.

It can also be proved that the core has the smallest size among all universal solutions [FKP05]. It is
argued that this property confirms that the core is an ideal candidate for the “best” universal solution,
at least in terms of the space required to materialize it.
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3. Query Rewriting

In this section, we study query rewriting in data exchange. Suppose we have a data exchange setting
M = (S,T,Σst), and a query Q over the target schema T. Since there are many possible solutions to
the data exchange problem, the standard approach is to define the semantics of Q in terms of certain
answers.

Definition 3.1 (Certain answers). Let (S,T,Σst) be a data exchange setting. Let Q be an m-ary
query, where m ≥ 0, over schema T, and I a source instance. The certain answers of Q with respect
to I under M, denoted by certainM(Q, I), is the set of all m-tuples ā such that for every solution J
for I under M, we have that ā ∈ Q(J). Equivalently,

certainM(Q, I) =
⋂

J is a solution for I

Q(J).

If Q is a Boolean query, then certainM(Q, I) = true if and only if Q(J) = true for each solution J
for I.

Note that if a tuple belongs to the set of certain answers of a query, then it does not contain any null
values.

The definition of certainM(Q, I) refers to potentially infinitely many solutions. However, we need to
compute it based on some specific solution. That is, given a transformation F : Inst(S) → Inst(T), we
would like to be able to compute certainM(Q, I) as Q′(F(I)) for some query Q′. This is precisely the
notion of rewritability of Q over F. Formally, it is defined as follows.

Definition 3.2 (Query rewriting). Given a data exchange setting M = (S,T,Σst), a mapping
F : Inst(S) → Inst(T) and an m-ary query Q over T, we say that Q is rewritable over F under M (or
simply rewritable over F if M is clear from the context) if there exists an FO formula φ(x1, . . . , xm)
over T such that certainM(Q, I) = {(a1, . . . , am) | F(I) |= φ(a1, . . . , am)}, for every instance I of S.

We shall refer to a query as being rewritable over the canonical universal solution if it is rewritable
over Funiv, and rewritable over the core if it is rewritable over Fcore.

In the first case, we refer to φ as a rewriting of Q over the canonical universal solution, and in the
second case we refer to φ as a rewriting of Q over the core.

As the next proposition shows, rewritability of queries over these transformations is undecidable in
general.

Proposition 3.3. Given a data exchange setting M = (S,T,Σst) and a query Q over T specified
in FO, it is undecidable whether Q is rewritable over the canonical universal solution (resp., over the
core) under M.

We delay the proof of Proposition 3.3 to Section 4.4, where we will be able to use locality tools in
order to prove that a query is not rewritable over the canonical universal solution or the core. The
application of those tools will allow us to simplify the proof of Proposition 3.3 considerably.
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For some classes of queries we know rewritability results. For example, if Q(x1, . . . , xm) is a disjunction
of conjunctive queries with free variables x1, . . . , xm, and if we let Q′(x1, . . . , xm) be the rewriting
Q(x1, . . . , xm)∧∧i∈[1,m]C(xi), then we have certain(Q, I) = Q′(J), where J is an arbitrary universal
solution (recall that C is the predicate whose interpretation is Const(J)). Thus, unions of conjunctive
queries are rewritable over both Funiv and Fcore [FKMP05]. However, it has been shown that if
inequalities of the form x 6= y are allowed in conjunctive queries, rewritings need not exist even in
LAV settings [FKMP05].

While a lot of attention has been paid to identifying cases when the canonical universal solution and
the core can be obtained in polynomial time [FKMP05, FKP05, GN08], not much is known on how
these two solutions compare in terms of query rewriting. Even less is known about how rewritings
over these solutions compare with a different class of rewriting; namely, rewriting over the source.
This type of rewriting is common in data integration and consistent query answering over inconsistent
databases (e.g., see [ABC99, DL97]). Formally, given a data exchange setting M = (S,T,Σst), and
an m-ary query Q over T, we say that Q is rewritable over the source under M if there exists an
m-ary query Q′ over S specified in FO, such that certainM(Q, I) = Q′(I) for every instance I of S.
Similarly to before, we refer to Q′ as a rewriting of Q over the source.

Our main result describes precise relationships between these classes. Recall that we assume queries
to be specified in FO.

Theorem 3.4. The following holds:

• The class of queries rewritable over the core is strictly contained in the class of queries rewritable
over the canonical universal solution.

• The class of queries rewritable over the canonical universal solution is strictly contained in the
class of queries rewritable over the source.

In the rest of the section we prove this result. The first item is proved in Section 3.1 and the second
in Section 3.2.

3.1. Core versus canonical universal solution

Here we prove that the class of queries rewritable over the core is strictly contained in the class of
queries rewritable over the canonical universal solution. This is shown by a theorem and a proposition
below.

Theorem 3.5. Every query that is rewritable over the core is also rewritable over the canonical uni-
versal solution.

The next proposition says that the converse does not hold.

Proposition 3.6. There is a query specified in FO that is rewritable over the canonical universal
solution, but not rewritable over the core.

In the rest of the section we prove these results. We start with Theorem 3.5, which we shall show
follows from Lemma 3.7 below.
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Lemma 3.7. Let M = (S,T,Σst) be a data exchange setting and φ(x̄) an FO formula over T. Then
there exists an FO formula φ′(x̄) such that for every instance I of S and every ā ∈ dom(Funiv(I))

m

(m ≥ 0), it is the case that Funiv(I) |= φ′(ā) if and only if there is a core J ′ of Funiv(I) such that ā ∈
dom(J ′)m and J ′ |= φ(ā).

We now show that Theorem 3.5 follows from Lemma 3.7. Let φ(x̄) be a rewriting of an m-ary query
Q, where m ≥ 0, over the core. Then, from the lemma above, there is an FO formula φ′(x̄) such that
for every instance I of S and every ā ∈ dom(Funiv(I))

m, it is the case that Funiv(I) |= φ′(ā) if and only
if there is a core J ′ of Funiv(I) such that ā ∈ dom(J ′)m and J ′ |= φ(ā). But since tuples belonging to
the certain answers of a query contain no null values, if Fcore(I) |= φ(ā) then ā contains only elements
in Const. Furthermore, all cores of an instance are isomorphic. Since isomorphisms have to be the
identity on constants, we can prove that for every tuple ā of constants,

Fcore(I) |= φ(ā) ⇔ there is a core J ′ of Funiv(I) such that J ′ |= φ(ā) ⇔ Funiv(I) |= φ′(ā).

We conclude that φ′(x̄) ∧
∧

x appears in x̄C(x) is a rewriting of Q over the canonical universal solution.

In order to prove Lemma 3.7, the key ingredient is proving Claim 3.9 which states the following: There
exists a FO formula CoreVar(x1, . . . , xm) over the target schema T such that, for every source instance
I and tuple (n1, . . . , nm) ∈ dom(Funiv(I))

m, it is the case that Funiv(I) |= CoreVar(n1, . . . , nm) if and
only if (n1, . . . , nm) is a tuple of null values that belongs to some core of Funiv(I). The proof of this
fact uses induction on the number m ≥ 1 of variables of the formula. The basis case m = 1 is handled
in Claim 3.8, where we provide a characterization in terms of a set of properties – which are all FO
definable – of when a null value in a universal solution J belongs to a core of J .

Fix a data exchange setting M = (S,T,Σst). We first need a necessary and sufficient condition for
a null value to be in a core of a universal solution. We show such a condition in Claim 3.8. In this
claim we use the following terminology. Let J be an instance of a target schema T. Then we define
the Gaifman graph of the nulls of J [FKMP05] to be an undirected graph in which (1) the nodes are
all the nulls of J , and (2) there is an edge between two nulls whenever the nulls belong to the same
tuple of some relation in J . Given a target structure J and a null value X of J , we define block(X)
as:

block(X) = {Y | Y is a null of J that is in the

connected component of X in the Gaifman graph of the nulls of J},

and we define the null-extension of X given J , denoted by null-ext(X,J), as the following subinstance
of J . For every relation symbol R in T and tuple t ∈ J(R), we have that t belongs to the interpretation
of R in null-ext(X,J) if t contains a null in block(X). We note that if J is a canonical universal solution,
then for every null X of J , the number of tuples in null-ext(X,J) is bounded by the maximum number
of conjuncts that appear in the conclusions of the members of Σst. Also, given a subinstance J ′ of a
target instance J , we define null-ext(J ′, J) as:

null-ext(J ′, J) = J ′ ∪
⋃

{X |X is a null of J ′}

null-ext(X,J).

Claim 3.8. Let I be a source instance, J a universal solution for I and X a null value of J . Then
there exists a core of J containing X if and only if for every pair J ′, J ′′ of target instances, there
exists a homomorphism h′ : J ′′ → J such that X is a null of h′(J ′′) whenever

1. J ′ ⊆ J and |J ′| ≤ |null-ext(X,J)|,
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2. there exists a homomorphism h : null-ext(X,J) → J ′ such that X is not a null of
h(null-ext(X,J)), and

3. J ′ ⊆ J ′′ ⊆ null-ext(J ′, J).

Proof: (⇐) We show that X is in some core of J . Assume that J∗ is a core of J . As noted earlier,
J∗ is an induced subinstance of J . If X is a null value of J∗, then there is nothing to prove. Thus,
assume also that X is not a null of J∗. The main idea behind the rest of the proof is showing that
there exists a substructure JA of J∗ that can be “replaced” by an isomorphic substructure JC of J
that contains X, in order to obtain a new core of J in which X appears.

Since J∗ is a core of J , there exists a homomorphism h∗ : J → J∗ that is the identity on J∗ (here we
are taking advantage of the fact, noted earlier, that the homomorphism mapping J to J∗ can be taken
to be a retraction). Define J ′ as h∗(null-ext(X,J)) and J ′′ as null-ext(J ′, J∗), where null-ext(J ′, J∗) is
well-defined since J ′ is contained in J∗. Then

(1) J ′ ⊆ J and |J ′| ≤ |null-ext(X,J)|;

(2) the restriction of h∗ to null-ext(X,J) is a homomorphism from null-ext(X,J) to J ′ such that X
is not a null of h∗(null-ext(X,J)) (since X is not a null of J∗); and

(3) J ′ ⊆ J ′′ ⊆ null-ext(J ′, J) (where the first inclusion follows from the definition of null-ext(J ′, J∗),
and the second inclusion holds since J∗ ⊆ J , and so J ′′ = null-ext(J ′, J∗) ⊆ null-ext(J ′, J)).

By the hypothesis, these three conditions imply that there exists a homomorphism h′ : J ′′ → J such
that X is a null of h′(J ′′).

Let A be the set of constants and null values of J ′′, and let JA be the subinstance of J induced by A.
Now J ′′ is a subinstance of J∗, because J ′′ = null-ext(J ′, J∗), and it is always true by definition that
null-ext(J1, J2) is a subinstance of J2. Moreover, we now show that JA is also a subinstance of J∗. In
fact, we just noted that J ′′ is a subinstance of the core J∗ of J , which is an induced substructure of J .
Hence every fact in JA, which is the subinstance of J induced by the elements in J ′′, must also belong
to J∗. Next we show that there is a homomorphic image JC of JA such that (i) JC is a subinstance of
J , (ii) JC contains the null value X, and (iii) JA and JC are isomorphic. We shall show that JA can
be replaced in J∗ by JC to construct a core containing null X (as suggested at the beginning of the
proof).

Consider the homomorphism h′ : J ′′ → J . Clearly, h′ is well-defined on JA since every element of JA
belongs to A, and hence to J ′′. We now prove that h′ is also a homomorphism from JA into J , i.e.
h′(JA) is a subinstance of J . We start by proving that if t is a fact in JA \J ′′, then t does not mention
any null, i.e. it consists only of constants. Indeed, let t be a fact of JA \ J ′′. Assume for the sake of
contradiction that t mentions a null Y . Then Y also belongs to J ′′ (because JA is the substructure of
J induced by the elements of J ′′). Since J ′′ = null-ext(J ′, J∗), we have by definition that every fact
in J∗ that mentions a null in J ′′ also belongs to J ′′. But we proved above that JA is a subinstance of
J∗, and hence since t belongs to JA (and so to J∗) and mentions null Y it also belongs to J ′′, which
is a contradiction.

We now show that h′(JA) is a subinstance of J . Since h′ is a homomorphism from J ′′ to J , we only
have to show that if t is a fact in JA \ J ′′ then the image of t under h′ belongs to J . Let t be an
arbitrary fact in JA \ J ′′. Then, as we proved above, t consists only of constants. Thus, the image of
t under h′ is precisely t. By definition, this fact belongs to J .
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Let us define JC as the homomorphic image of JA under h′. Thus, (i) JC is a subinstance of J and
(ii) JC contains the null value X (since X belongs to h′(J ′′) and J ′′ is a subinstance of JA). We prove
next that JA and JC are isomorphic, and later that this implies that JA can be replaced in J∗ by JC
to construct a core containing null X (as suggested before).

We start by proving that the homomorphism h∗ : J → J∗ maps JC = h′(JA) into JA. On the contrary,
assume that this is not the case. We shall show that this leads to a contradiction.

Let us define a function f : J∗ → J∗ as follows:

f(x) =

{

h∗(h′(x)) if x is an element of JA,

x if x is an element of J∗ \ JA.
(2)

By J∗ \ JA, we mean the result of removing those facts from J∗ that are in JA. We observe that f
is the identity outside JA and is the composition h∗ ◦ h′ on JA. Furthermore, f is well-defined since
if an element x appears in some fact of JA and in some fact of J∗ \ JA, then as we now show, x is a
constant and, therefore, h∗(h′(x)) = x. The reason why x is a constant is the following. Assume that
x is a null value in JA. Then x is in J ′′, by construction of JA. However, no null value in J ′′ can also
belong to a fact in J∗ \ J ′′. This is, as before, because J ′′ = null-ext(J ′, J∗), and hence, by definition,
every fact in J∗ that mentions a null in J ′′ also belongs to J ′′.

In the search for our contradiction we show that f : J∗ → J∗ is a homomorphism. Let t be a fact of
J∗. If t is a fact of J∗ \ JA, then f(t) = t, and, therefore, f(t) is a fact of J∗. Otherwise, t is a fact
of JA and, hence, f(t) = h∗(h′(t)). Since h′ is a homomorphism from JA to J , we have that h′(t) is a
fact of J . Thus, given that h∗ is a homomorphism from J to J∗, we have that h∗(h′(t)) is a fact of
J∗. We conclude that f(t) = h∗(h′(t)) is a fact of J∗. So indeed, f : J∗ → J∗ is a homomorphism.

In the search for our contradiction we also prove that every constant in JC = h′(JA) belongs to JA.
Assume, on the contrary, that there is a constant c in JC that does not belong to JA. Then there
is a null Y in JA that is mapped to c by h′. As we just noted, the mapping f defined in (2) is a
homomorphism from J∗ to J∗. Then f(JA) = h∗(h′(JA)) contains strictly fewer nulls than JA, and
hence f maps J∗ into a subinstance of itself with strictly fewer nulls. This contradicts the fact that
J∗ is a core.

Recall that we are assuming, for the sake of contradiction, that h∗ is not a homomorphism from JC
to JA. As we now show, this implies that there exists a null value Y of JC such that h∗(Y ) is not an
element of JA. Indeed, assume on the contrary that every null value in JC = h′(JA) is mapped into
JA by h∗. We prove then that h∗ is a homomorphism from JC to JA. Let t = R(p1, . . . , pn) be a fact
of JC . We now show that h∗(pi) belongs to JA for each i with 1 ≤ i ≤ n. In fact, if pi is a null this
holds by hypothesis, and if pi is a constant then h∗(pi) = pi, and we noted before that each constant
that appears in JC = h′(JA) also appears in JA. We prove next that h∗(t) belongs to JA. But this
is easy since h∗(t) belongs to J∗ (because h∗ : J → J∗ is a homomorphism), every element of h∗(t)
belongs to JA, and by definition JA is an induced substructure of J (and hence also of J∗).

Thus, there exists a null value Y of JC such that h∗(Y ) is not an element (constant or null) of JA. We
know that there exists a null value Z of JA such that h′(Z) = Y (because every element of JC is the
image under h′ of an element in JA), and, hence, it must be the case that f(Z) = h∗(h′(Z)) = h∗(Y )
is not an element of JA. Let us denote f(Z) by W . Since W is not in JA, we have f(W ) = W , by
definition of f . Hence, f(Z) = f(W ), and Z 6= W since Z is in JA and W is not. Therefore f is not
one-to-one, which gives us our desired contradiction, because f is a homomorphism from the core J∗

into itself.
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We prove next that JA and JC are isomorphic. We start by showing that JA is a core. In fact, we
have explained above that no fact in J∗ \ JA can share a null value with a fact of JA. Or, in other
words, the only elements shared by facts in JA and facts in J∗ \ JA are constants. Thus, if JA were
not a core, that is, if there were a homomorphism h′′ mapping JA to a proper instance of itself, then
the mapping h′′′ : J∗ → J∗, defined as h′′′(x) = h′′(x) if x is in JA and h′′′(x) = x if x is in J∗ \ JA,
would also be a homomorphism from J∗ into a proper subinstance of itself. This is a contradiction
because J∗ is a core.

The fact that JA is a core implies that h′ sends distinct null values in JA to distinct null values in JC .
Assume otherwise. Then, given that h∗ is a homomorphism from JC into JA, it must be the case that
h∗ ◦ h′ maps JA into a subinstance of itself with strictly fewer nulls, which contradicts the fact that
JA is a core. Since JC is a homomorphic image of JA, we conclude that JA and JC are isomorphic.
We show next that this implies that JA can be replaced in J∗ by JC , in order to construct a core of
J that contains null value X.

We start by noticing that no null value in JC = h′(JA) belongs to J∗ \ JA. Assume for the sake
of contradiction that null value Y in JC is mentioned in a fact of J∗ \ JA. By definition, Y is the
homomorphic image under h′ of some null value Z in JA. Recall that we proved before that the
mapping f : J∗ → J∗ defined in (2) is a homomorphism. Since Y is in J∗ \ JA, and Z is in JA, and
since we showed that no null is in both J∗ \ JA and JA, it follows that Y and Z are distinct. Thus,
f maps the distinct null values Y and Z to the same element Y , and, hence, f(J∗) has strictly fewer
null values than J∗. This contradicts the fact that J∗ is a core.

Finally, let J∗
X be the instance that is obtained from J∗ by removing all facts in JA and then adding

all facts in JC = h′(JA). Clearly, X appears in J∗
X . We prove next that J∗

X is a core of J , which
finishes the first direction of the proof. In order to prove this it is enough to prove that J∗ and J∗

X

are isomorphic, which is what we do next.

Consider the mapping f∗ : J∗ → J defined as:

f∗(x) =

{

h′(x) if x is an element of JA,

x if x is an element of J∗ \ JA.

First of all, f∗ is well-defined since we have proved that the only elements that are shared by facts in
JA and J∗ \ JA are constants (and, thus, h′(x) = x for each such element x). In addition, it is easy
to see that f∗ is a homomorphism, and, further, f∗(J∗) = J∗

X . Thus, the homomorphic image of J∗

under f∗ is J∗
X . We prove next that no two distinct null values in J∗ are mapped to the same element

in J∗
X by f∗. Assume otherwise. Then there are distinct nulls Y and Z in J∗ such that f∗(Y ) = f∗(Z).

We consider four cases:

1. Z and Y belong to JA. Then h′(Z) = h′(Y ), which contradicts the fact that h′ is one-to-one.
2. Z and Y belong to J∗ \ JA. But f∗ is the identity on J∗ \ JA, which contradicts the fact that
Y 6= Z.

3. Y belongs to JA and Z belongs to J∗ \ JA. But then h′(Y ) = Z, which contradicts the fact
proved above that no null value in JC belongs to J∗\JA (since h′(Y ) is in JC and Z is in J∗\JA).

4. Z belongs to JA and Y belongs to J∗ \ JA. This case is analogous to the previous one.

We conclude that f∗ is an isomorphism from J∗ to J∗
X (since it maps each constant to itself, each null

to a distinct null, and is onto) and hence that J∗
X is a core. This finishes the first direction of the

proof of the claim.

(⇒) By contradiction, assume that there exists a core J∗ of J containing null value X and that there
exist target structures J ′, J ′′ such that:
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1. J ′ ⊆ J and |J ′| ≤ |null-ext(X,J)|,
2. there exists a homomorphism h : null-ext(X,J) → J ′ such thatX is not a null of h(null-ext(X,J)),
3. J ′ ⊆ J ′′ ⊆ null-ext(J ′, J), and

4. there is no homomorphism h′ : J ′′ → J such that X is a null of h′(J ′′).

Let h∗ be a homomorphism from J to J∗ that is the identity on J∗ (again, we are taking advantage
of the fact, noted earlier, that the homomorphism mapping J to J∗ can be taken to be a retraction).
Define function f : J∗ → J∗ as follows:

f(x) =

{

h∗(h(x)) if x is an element of null-ext(X,J∗),

x if x is an element of J∗ \ null-ext(X,J∗).

We observe that f is the identity outside null-ext(X,J∗) and is the composition of h and h∗ on this
extension. Furthermore, f is well-defined since we shall prove that if an element x is mentioned in
some fact of null-ext(X,J∗) and in some fact of J∗ \null-ext(X,J∗), then x is a constant and, therefore,
h∗(h(x)) = x. Indeed, by definition of null-ext(X,J∗), every fact t of J∗ that mentions a null that is
also mentioned in a fact t′ of null-ext(X,J∗) must belong to null-ext(X,J∗), and hence t cannot belong
to J∗ \ null-ext(X,J∗).

Now we show that f : J∗ → J∗ is a homomorphism. Let t be a fact of J∗. If t is a fact of
J∗ \ null-ext(X,J∗), then f(t) = t and, therefore, f(t) is a fact of J∗. Otherwise, t is a fact of
null-ext(X,J∗) and, hence, f(t) = h∗(h(t)). Since h is a homomorphism from null-ext(X,J) to J ′ and
null-ext(X,J∗) ⊆ null-ext(X,J), we have that h(t) is a fact of J ′. Thus, given that J ′ is contained in
J and h∗ is a homomorphism from J to J∗, we have that h∗(h(t)) is a fact of J∗. We conclude that
f(t) = h∗(h(t)) is a fact of J∗.

Next we show that f maps J∗ into a proper subinstance of J∗, which contradicts the fact that J∗

is a core. Since null-ext(X,J∗) ⊆ null-ext(X,J) and h is a homomorphism from null-ext(X,J) to J ′,
we conclude that h(null-ext(X,J∗)) ⊆ J ′. Given that h∗ : J → J∗ is a homomorphism and J ′′ is
a subinstance of J (because J ′ ⊆ J and J ′′ ⊆ null-ext(J ′, J)), the restriction of h∗ to J ′′ is also a
homomorphism from J ′′ to J (because J∗ ⊆ J and h∗ is a homomorphism from J to J∗). Thus, by
the fourth condition mentioned above, we have that X is not a null of h∗(J ′′). Therefore, X is not
a null of h∗(h(null-ext(X,J∗))) since, by hypothesis, h(null-ext(X,J∗)) ⊆ J ′ ⊆ J ′′. Thus, given that
h∗(h(null-ext(X,J∗))) = f(null-ext(X,J∗)) and f is the identity on J∗ \ null-ext(X,J∗), we have that
X is not in the range of f . We conclude that f maps J∗ into a proper subinstance of J∗, which is our
desired contradiction. ✷

The second step to prove Lemma 3.7 is to show that for every m ≥ 1, there exists an FO formula
Core(x1, . . . , xm) that can be used to check whether an m-tuple n̄ of nulls belongs to some core.
More precisely, given a canonical universal solution J of some instance I of S and m ≥ 1, the
predicate CoreVar(x1, . . . , xm) is defined as follows. For every {n1, . . . , nm} ⊆ Var(J), it is the case that
J |= CoreVar(n1, . . . , nm) if and only if there exists a core J∗ of J such that {n1, . . . , nm} ⊆ Var(J∗).
We prove that for each m ≥ 1, the predicate CoreVar(x1, . . . , xm) is definable in FO.

Claim 3.9. For every m ≥ 1, there exists an FO formula CoreVar(x1, . . . , xm) over the target schema
T such that, for every source instance I and tuple (n1, . . . , nm) ∈ dom(Funiv(I))

m, it is the case that
Funiv(I) |= CoreVar(n1, . . . , nm) if and only if (n1, . . . , nm) is a tuple of null values that belongs to some
core of Funiv(I).

Proof: By induction on m. For m = 1 we define CoreVar(x) by establishing that x does not belong
to the interpretation of the predicate C that distinguishes constants and then using Claim 3.8. In
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fact, since we assume a fixed data exchange setting, all conditions in Claim 3.8 can be reduced to:
(1) comparing cardinalities of subinstances up to a fixed size, (2) checking containment of instances
of bounded size, and (3) checking the existence of homomorphisms between subinstances of bounded
size, the predicate CoreVar(x) is clearly definable in FO (even though it is cumbersome to write the
actual FO formula that defines it).

Assume now for the inductive step that CoreVar(x1, . . . , xm) is definable in FO, where m ≥ 1. We
prove that CoreVar(x1, . . . , xm+1) is also definable in FO. The proof relies on the following crucial
property:

(†) For each tuple (n1, . . . , nm+1) ∈ Var(Funiv(I))
m+1 such that nm+1 6= nj, for each j with 1 ≤ j ≤ m,

there exists a core of Funiv(I) that contains n1, . . . , nm+1 if and only if (1) there exists a core of
Funiv(I) that contains n1, . . . , nm, and (2) if J ′ is the instance obtained from Funiv(I) by replacing
nulls n1, . . . , nm with fresh constants c1, . . . , cm, respectively, then nm+1 is in a core of J ′.

Before proving property (†) we show that CoreVar(x1, . . . , xm+1) can be defined in FO with the help of
this property. In fact, if CoreVar(x)|(x1,...,xm) is the FO formula obtained from CoreVar(x) by replacing
every occurrence of an atomic formula C(y) with C(y) ∨

∨

i∈[1,m] y = xi, then CoreVar(x1, . . . , xm+1)
is defined by the following FO formula:

(

(

∨

1≤j≤m

xm+1 = xj
)

∧ CoreVar(x1, . . . , xm)

)

∨

(

(

∧

1≤j≤m

xm+1 6= xj
)

∧ CoreVar(x1, . . . , xm) ∧ CoreVar(xm+1)|(x1,...,xm)

)

.

To finish the proof of Claim 3.9 we need to show that property (†) is true. In order to do that we
first need to prove the following simple but important lemma. Recall that J ′ is the instance that is
obtained from Funiv(I) by replacing nulls n1, . . . , nm with fresh constants c1, . . . , cm, respectively.

Lemma 3.10. Assume that J1 and J2 are instances of T such that nulls n1, . . . , nm belong to both J1

and J2. Let J ′
1 and J ′

2 be instances obtained from J1 and J2, respectively, by replacing nulls n1, . . . , nm
with fresh constants c1, . . . , cm, respectively. Then:

• If there is a homomorphism h : J1 → J2 that is the identity on n1, . . . , nm, there is also a
homomorphism h′ : J ′

1 → J ′
2.

• If there is a homomorphism h′ : J ′
1 → J ′

2, there is also a homomorphism h : J1 → J2 that is the
identity on n1, . . . , nm.

Proof: We now prove the first item. Assume that h : J1 → J2 is a homomorphism that is the identity
on n1, . . . , nm. Let h′ : J ′

1 → J ′
2 be the mapping such that h′(x) is defined as follows for each element

x in J ′
1: If x = ci for some i with 1 ≤ i ≤ m, then h′(x) = ci. Otherwise, h′(x) = h(x), if h(x) 6= ni

for each i with 1 ≤ i ≤ m, and h′(x) = ci, if h(x) = ni for some i with 1 ≤ i ≤ m. Notice that
h′ is well-defined since each element x in J ′

1 that is not of the form ci, for 1 ≤ i ≤ m, belongs to
J1, and thus to the domain of h. Furthermore, h′ is the identity on constants. We prove next that
h′ : J ′

1 → J ′
2 is a homomorphism. Assume that the fact R(t̄) belongs to J ′

1. Let t̄′ be the tuple that is
obtained from t̄ by replacing each occurrence of the constant ci, 1 ≤ i ≤ m, with the null ni. Then,
by construction of J ′

1, it is the case that R(t̄′) belongs to J1, which implies that R(h(t̄′)) belongs to J2
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(because h : J1 → J2 is a homomorphism). Let ū be the tuple that is obtained from h(t̄′) by replacing
each occurrence of the null ni, for 1 ≤ i ≤ m, with the constant ci. Again, by construction, it must
be the case that R(ū) belongs to J ′

2. We prove below that ū = h′(t̄), and hence that R(h′(t̄)) belongs
to J ′

2.

Assume that |ū| = p. It is enough to prove that if u and t are the j-th projection (1 ≤ j ≤ p) of ū
and t̄, respectively, then u = h′(t). We consider three cases: (1) t = ni, for some i with 1 ≤ i ≤ m.
Then h′(t) = ci. On the other hand, by construction the j-th projection of t̄′ is ni, and hence the j-th
projection of h(t̄′) is also ni (because h is the identity on n1, . . . , nm). Finally, by construction the j-th
projection u of ū is ci, which is precisely h′(t), since t = ci. (2) t belongs to J1 and h(t) 6= ci, for each
i with 1 ≤ i ≤ m. Then h′(t) = h(t). On the other hand, by construction the j-th projection of t̄′ is t
(because t 6= ci for each i with 1 ≤ i ≤ m), and hence the j-th projection of h(t̄′) is h(t). Finally, by
construction the j-th projection u of ū is h(t) (because h(t) 6= ni, for each i with 1 ≤ i ≤ m), which is
precisely h′(t). (3) t belongs to J1 and h(t) = ni, for some i with 1 ≤ i ≤ m. Then h′(t) = ci. On the
other hand, by construction the j-th projection of t̄′ is t (because t 6= ci for each i with 1 ≤ i ≤ m),
and hence the j-th projection of h(t̄′) is h(t) = ni. Finally, by construction the j-th projection u of
ū is ci (because h(t) = ni), which is precisely h′(t). Thus, ū = h′(t̄) and, therefore, R(h′(t̄)) is in J ′

2.
We conclude that h′′ : J ′

1 → J ′
2 is a homomorphism.

For the second item assume that h′ : J ′
1 → J ′

2 is a homomorphism. Let h : J1 → J2 be the mapping
such that h(x) is defined as follows for each element x in J1: If x = ni for some i with 1 ≤ i ≤ m,
then h(x) = ni. Otherwise h(x) = h′(x), if h′(x) 6= ci for each i with 1 ≤ i ≤ m, and h(x) = ni, if
h′(x) = ci for some i with 1 ≤ i ≤ m. Notice that h is well-defined since each element x in J1 that
is not of the form ni, for 1 ≤ i ≤ m, belongs to J ′

1, and thus to the domain of h′. Furthermore, h is
the identity on n1, . . . , nm. We prove next that h is the identity on constants. Let d be a constant
in J1. Then d belongs to J ′

1 and h′(d) 6= ci, for each i with 1 ≤ i ≤ m, because h′ is the identity on
constants, and d 6= ci, for each i with 1 ≤ i ≤ m. Thus, h(d) = h′(d) = d. The proof that h : J1 → J2

is a homomorphism is analogous to the one for the first item and left to the reader. ✷

With the help of Lemma 3.10 we can now prove property (†). We start by proving (⇒). Assume that
for some tuple (n1, . . . , nm+1) ∈ Var(Funiv(I))

m+1 such that nm+1 6= nj, for each j with 1 ≤ j ≤ m, it
is the case that there exists a core J of Funiv(I) that contains n1, . . . , nm+1. Then, clearly, condition
(1) holds since J is a core of Funiv(I) and it contains n1, . . . , nm. We prove next that condition (2) also
holds. That is, we prove that if J ′ is the instance obtained from Funiv(I) by replacing nulls n1, . . . , nm
with fresh constants c1, . . . , cm, respectively, then nm+1 is in a core of J ′. Let J ′′ be the instance
obtained from J by replacing nulls n1, . . . , nm with constants c1, . . . , cm, respectively. Clearly, J ′′

contains element nm+1 because nm+1 6= nj, for each j with 1 ≤ j ≤ m. We prove below that, in
addition, J ′′ is a core of J ′.

We start by proving that there exists a homomorphism from J ′ to J ′′. Since J is a core of Funiv(I)
there is a homomorphism h : Funiv(I) → J that is a retraction, i.e. h is the identity on J , and,
in particular, on n1, . . . , nm. Then, by applying the first part of Lemma 3.10 to J1 = Funiv(I) and
J2 = J , we obtain that there exists a homomorphism h′ from J ′

1 = J ′ to the subinstance J ′
2 of J ′ that

is obtained from J2 = J by replacing each occurrence of nulls n1, . . . , nm with constants c1, . . . , cm,
respectively. By definition, J ′

2 = J ′′, and, thus, h′ is a homomorphism from J ′ to J ′′.

We prove next that J ′′ is a core. Assume otherwise. Then there is a homomorphism g from J ′′ into
a proper subinstance J ′′′ of itself. Since c1, . . . , cm are constants in J ′′, they appear in J ′′′. Let J∗ be
the subinstance of J that is obtained from J ′′′ by replacing constants c1, . . . , cm with nulls n1, . . . , nm,
respectively. Then, by applying the second part of Lemma 3.10 to J1 = J , J2 = J∗, J ′

1 = J ′′ and
J ′

2 = J ′′′, we obtain that there is a homomorphism from J1 = J into J2 = J∗. We prove next that J∗
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is a proper subinstance of J , which is our desired contradiction since J is a core.

Since J ′′′ is a proper subinstance of J ′′, there is a fact R(t̄) in J ′′ but not in J ′′′. Let t̄′ be the tuple
that is obtained from t̄ by replacing each occurrence of constant ci, for 1 ≤ i ≤ m, with null ni. By
definition, R(t̄′) belongs to J but not to J∗. We conclude that J∗ is properly contained in J .

We prove next the (⇐) direction of property (†). Assume that for some tuple (n1, . . . , nm+1) ∈
Var(Funiv(I))

m+1 such that nm+1 6= nj, for each j with 1 ≤ j ≤ m, the following holds: (1) there
exists a core J of Funiv(I) that contains n1, . . . , nm, and (2) if J ′ is the instance obtained from Funiv(I)
by replacing nulls n1, . . . , nm with fresh constants c1, . . . , cm, respectively, then nm+1 belongs to some
core J ′′ of J ′. Since c1, . . . , cm are constants in J ′, they appear in J ′′. Let J∗ be the instance
obtained from J ′′ by replacing constants c1, . . . , cm with nulls n1, . . . , nm, respectively. Clearly, J∗ is
a subinstance of Funiv(I) that contains n1, . . . , nm+1. We now prove that, in addition, J∗ is a core of
Funiv(I).

We start by showing that J and J∗ are homomorphically equivalent and that homomorphisms in both
directions can be assumed to be the identity on n1, . . . , nm. First of all, J is a core of Funiv(I), and
hence there is a homomorphism h from Funiv(I) to J that is a retraction, i.e. it is the identity on
elements of J , and, in particular, on n1, . . . , nm. Since J∗ is a subinstance of Funiv(I), the mapping h
is also a homomorphism from J∗ to J that is the identity on n1, . . . , nm. On the other hand, let J ′′′ be
the subinstance of J ′ that is obtained from J by replacing nulls n1, . . . , nm with constants c1, . . . , cm,
respectively. Since J ′′ is a core of J ′ there is a homomorphism from J ′ to J ′′, and, therefore, from
J ′′′ to J ′′ (because J ′′′ is a subinstance of J ′). By definition, both J and J∗ contain nulls n1, . . . , nm.
Then, by applying the second part of Lemma 3.10 to J1 = J , J2 = J∗, J ′

1 = J ′′′ and J ′
2 = J ′′, we

conclude that there is a homomorphism h′ from J to J∗ that is the identity on n1, . . . , nm.

We prove next that |dom(J)| = |dom(J∗)|. Assume otherwise. Suppose first that |dom(J∗)| <
|dom(J)|. Then clearly h ◦ h′ is a homomorphism from J into a proper subinstance of itself, which
is a contradiction since J is a core. Suppose now that |dom(J)| < |dom(J∗)|. Then h′ ◦ h is a
homomorphism from J∗ into a proper subinstance K of itself. But, as we noted before, both h and
h′ are the identity on n1, . . . , nm, and, therefore, h′ ◦ h is a homomorphism from J∗ to K that is the
identity on n1, . . . , nm. Let K ′ be the subinstance of J ′′ that is obtained from K by replacing nulls
n1, . . . , nm with constants c1, . . . , cm, respectively. Then, by applying the first part of Lemma 3.10 to
J1 = J∗ and J2 = K, we conclude that there is a homomorphism from J ′′ into K ′. In addition, it is
not hard to prove that K ′ is a proper subinstance of J ′′. We conclude that there is a homomorphism
from J ′′ into a proper subinstance of itself, which contradicts the fact that J ′′ is a core.

We prove finally that J∗ is a core of Funiv(I). Clearly, h′ ◦ h is a homomorphism from Funiv(I) to J∗.
Assume for the sake of contradiction that J∗ is a not a core, and hence that there is a homomorphism
h′′ from J∗ into a proper subinstance K of itself. We prove next that the mapping h ◦ h′′ ◦ h′ is a
homomorphism from J into a proper subinstance of itself. In fact, we know that h′ maps J into J∗,
that h′′ maps J∗ into K, and that h maps J∗, and, thus, K, into J . Notice that the image of J
under h ◦ h′′ ◦ h′ contains at most |dom(K)| elements. Recall that |dom(J)| = |dom(J∗)|, and, thus,
|dom(K)| < |dom(J)| (because K contains strictly fewer elements than J∗). Therefore, h ◦ h′′ ◦ h′

maps J into a subinstance of itself with strictly fewer elements. We conclude that J is not a core,
which is a contradiction. This finishes the proof of the claim. ✷

Recall that our goal is to construct an FO formula Core(x1, . . . , xn) that checks whether an n-tuple of
nulls belongs to some core. From CoreVar(x1, . . . , xn) we define formula Core(x1, . . . , xn) as follows:

∨

V⊆[1,n]

((

∧

i∈([1,n]\V )

C(xi)

)

∧ CoreVar(x̄V )

)

,
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where x̄V is the tuple that contains all xi with i ∈ V . Intuitively, for a canonical universal solution J
and a tuple ā ∈ dom(J), it is the case that J |= Core(ā) iff there is a core J∗ of J that contains all
the elements in ā.

Proof of Lemma 3.7: We finally have all the ingredients needed for the proof of Lemma 3.7. Take an
arbitrary FO formula φ(x̄), where |x̄| = m. We first transform φ(x̄) into an equivalent FO formula in
prenex normal form, and then we transform the latter into an equivalent formula φ∗(x̄) of the form:

(¬)∃y1(¬)∃y2 . . . (¬)∃yp ψ(x̄, y1, . . . , yp),

where ψ is a quantifier-free formula and (¬) means that the negation may or may not occur in front
of the existential quantifier. We claim that φ′(x̄) defined as

Core(x̄) ∧ (¬)∃y1

(

Core(x̄, y1) ∧ (¬)∃y2 (Core(x̄, y1, y2) ∧ . . .

∧ (. . . ∧ (¬)∃yp (Core(x̄, y1, . . . , yp) ∧ ψ(x̄, y1 . . . , yp)) . . .))
)

satisfies the property that for every instance I of S and every ā ∈ dom(Funiv(I))
m, we have Funiv(I) |=

φ′(ā) if and only if there exists a core J ′ of Funiv(I) such that ā ∈ dom(J ′)m and J ′ |= φ∗(ā). We
prove this by induction on p. This also proves the lemma as φ∗ and φ are equivalent.

Let I be an arbitrary source instance. Assume that J = Funiv(I) and ā ∈ dom(J)m. For p = 0 we have
that φ′(x̄) = Core(x̄)∧ψ(x̄). Assume first J |= Core(ā)∧ψ(ā). Since J |= Core(ā), there is a core J ′ of
J that contains all the elements in ā. Moreover, since ψ is a boolean combination of atomic formulas,
and the restriction of J to the elements in ā is the same as the restriction of J ′ to the elements in ā
(because J ′ is an core of J , and, thus, an induced subinstance), it must be the case that J ′ |= ψ(ā).
On the other hand, assume there is a core J ′ of J such that J ′ |= φ(ā) and all the elements of ā are in
J ′. Since the restriction of J to the elements in ā is the same as the restriction of J ′ to the elements
in ā, and ψ is a boolean combination of atomic formulas, it is the case that J |= Core(ā) ∧ ψ(ā).

For the inductive case, we consider two cases depending on whether ¬ occurs in front of ∃y1. First,
assume that ∃y1 occurs positively in φ∗(x̄) and that ā is a tuple in dom(J)m. If

J |= Core(ā) ∧ ∃y1

(

Core(ā, y1) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(ā, y1, y2, . . . , yp+1) ∧ ψ(ā, y1, y2, . . . , yp+1)) . . .))
)

,

then for some c ∈ dom(J),

J |= Core(ā, c) ∧ (¬)∃y2 (Core(ā, c, y2) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(ā, c, y2, . . . , yp+1) ∧ ψ(ā, c, y2, . . . , yp+1)) . . .)).

Thus, by induction hypothesis, there is a core J ′ of J such that J ′ contains all the el-
ements in āc and J ′ |= (¬)∃y2 . . . (¬)∃yp+1 ψ(ā, c, y2 . . . , yp+1), which implies that J ′ |=
∃y1(¬)∃y2 . . . (¬)∃yp+1 ψ(ā, y1, y2 . . . , yp+1).

On the other hand, if there is a core J ′ of J such that J ′ contains all the elements in ā ∈ dom(J)m

and J ′ |= ∃y1(¬)∃y2 . . . (¬)∃yp+1 ψ(ā, y1, y2 . . . , yp+1), then for some c ∈ dom(J ′), we have that J ′ |=
(¬)∃y2 . . . (¬)∃yp+1 ψ(ā, c, y2 . . . , yp+1). Given that J ′ is a core of J , we have that dom(J ′) ⊆ dom(J)
and, therefore, c ∈ dom(J). Thus, by the induction hypothesis:

J |= Core(ā, c) ∧ (¬)∃y2 (Core(ā, c, y2) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(ā, c, y2, . . . , yp+1) ∧ ψ(ā, c, y2, . . . , yp+1)) . . .)),
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and, hence,

J |= Core(ā) ∧ ∃y1

(

Core(ā, y1) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(ā, y1, y2, . . . , yp+1) ∧ ψ(ā, y1, y2, . . . , yp+1)) . . .))
)

.

Second, assume that ∃y1 occurs negatively in φ∗(x̄) and that b̄ is a tuple in dom(J)m. If

J |= Core(b̄) ∧ ¬∃y1

(

Core(b̄, y1) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(b̄, y1, y2, . . . , yp+1) ∧ ψ(b̄, y1, y2, . . . , yp+1)) . . .))
)

,

then for every c ∈ dom(J), it is the case that J |= Core(b̄) and

J 6|= Core(b̄, c) ∧ (¬)∃y2 (Core(b̄, c, y2) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(b̄, c, y2, . . . , yp+1) ∧ ψ(b̄, c, y2, . . . , yp+1)) . . .)).

Take J ′ to be a core of J that contains all the elements in b̄. By the induction hypothesis, for
every c ∈ dom(J ′), we have that J ′ 6|= (¬)∃y2 . . . (¬)∃yp+1 ψ(b̄, c, y2 . . . , yp+1), which implies that
J ′ |= ¬∃y1(¬)∃y2 . . . (¬)∃yp+1 ψ(b̄, y1, y2 . . . , yp+1).

On the other hand, if

J 6|= Core(b̄) ∧ ¬∃y1

(

Core(b̄, y1) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(b̄, y1, y2, . . . , yp+1) ∧ ψ(b̄, y1, y2, . . . , yp+1)) . . .))
)

.

and there is a core J ′ of J such that b̄ ∈ dom(J ′)m (that is, J |= Core(b̄)), then

J 6|= ¬∃y1

(

Core(b̄, y1) ∧ (¬)∃y2 (Core(b̄, y1, y2) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(b̄, y1, y2, . . . , yp+1) ∧ ψ(b̄, y1, y2, . . . , yp+1)) . . .))
)

.

Thus, there is c ∈ dom(J) such that

J |= Core(b̄, c) ∧ (¬)∃y2 (Core(b̄, c, y2) ∧ . . .

∧ (. . . ∧ (¬)∃yp+1 (Core(b̄, c, y2, . . . , yp+1) ∧ ψ(b̄, c, y2, . . . , yp+1)) . . .)).

Hence, by induction hypothesis, there is a core J ′ of J such that J ′ contains all el-
ements in b̄c and J ′ |= (¬)∃y2 . . . (¬)∃yp+1 ψ(b̄, c, y2 . . . , yp+1), which implies that J ′ 6|=
¬∃y1(¬)∃y2 . . . (¬)∃yp+1 ψ(b̄, y1, y2 . . . , yp+1). This concludes the proof of the lemma. ✷

We finish this section by proving Proposition 3.6.

Proof of Proposition 3.6: Let M = (S,T,Σst) be a data exchange setting, where S =
{R(·, ·), S(·, ·), N(·), M(·)}, T = {S′(·, ·), N ′(·), M ′(·), P (·), T (·)} and Σst is defined as follows. Pred-
icates S′, N ′ and M ′ are defined by means of the following rules:

S(x, y) → S′(x, y),

N(x) → N ′(x),

M(x) → M ′(x).
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Predicate P plays the following role:

∃xR(x, x) → ∃uP (u),

∃x∃y(¬R(x, y) ∧ ¬R(y, x) ∧ x 6= y) → ∃uP (u),

∃x∃y∃z(R(x, y) ∧R(y, z) ∧ ¬R(x, z)) → ∃uP (u),

¬∃x∃yR(x, y) → ∃uP (u),

¬∀x∀y(S(x, y) ↔ R(x, y) ∧ ¬∃z(R(x, z) ∧R(z, y))) → ∃uP (u),

∃x(N(x) ∧M(x)) → ∃uP (u).

Intuitively, if R is not a linear order on the domain of an instance I of S, or R is empty, or S does not
correspond to the successor relation of R, or there is an element in the intersection of N and M , then
P contains at least one element in every solution for I. Finally, predicate T plays the following role:

∃x∃y(R(x, y) ∧N(x) ∧M(y)) → ∃uT (u),

∃x∃y S(x, y) → ∃uT (u).

Intuitively, if in the source instance I (i) there is a pair (a, b) of elements in R such that a belongs
to M and b belongs to N , or (ii) there are at least two elements that are related by S, then the
interpretation of T is nonempty in every solution for I. Notice that if both (i) and (ii) hold in I, then
Funiv(I) contains exactly two nulls in T , while Fcore(I) contains only one.

Let Q be the following query:

∃xP (x) ∨ ∃x∃y(N ′(x) ∧ S′(x, y) ∧ ¬N ′(y)) ∨ ∃x(N ′(x) ∧M ′(x)). (3)

We will prove that Q is rewritable over Funiv and that Q is not rewritable over Fcore.

Let Q′ be the query ∃xP (x) ∨ ∃x∃y(T (x) ∧ T (y) ∧ x 6= y). We show next that Q′ is a rewriting of
Q over the canonical universal solution, that is, for every instance I of S with canonical universal
solution J , it is the case that Q′(J) holds if and only if certainM(Q, I) = true.

• Assume that Q′(J) holds. If J |= ∃xP (x), then every solution J ′ for I satisfies this sentence,
since there is a homomorphism from J to J ′, and, therefore, certainM(Q, I) = true. Thus,
assume that J 6|= ∃xP (x) and J |= ∃x∃y(T (x) ∧ T (y) ∧ x 6= y). Then I(R) is a linear order,
I(S) is the successor relation of this order, and there exists a, b ∈ dom(I) such that R(a, b),
N(a) and M(b). Let J ′ be a solution for I. To prove that certainM(Q, I) = true, we show that
J ′ |= ∃x∃y(N ′(x) ∧ S′(x, y) ∧ ¬N ′(y)) ∨ ∃x(N ′(x) ∧M ′(x)). Assume that J ′ 6|= ∃x∃y(N ′(x) ∧
S′(x, y) ∧ ¬N ′(y)) and, hence, J ′ |= ∀x∀y(N ′(x) ∧ S′(x, y) → N ′(y)). Then, N ′(b) is in J ′ since
N ′(a) is in J ′ and a′ appears before b′ in the order R. We conclude that J ′ |= ∃x(N ′(x)∧M ′(x))
since M ′(b) is in J ′.

• Assume that certainM(Q, I) = true and that Q′(J) does not hold. Then J 6|= ∃xP (x), J |=
∃x∃y(N ′(x)∧S′(x, y)∧¬N ′(y)) ∨ ∃x(N ′(x)∧M ′(x)) and J 6|= ∃x∃y(T (x)∧T (y)∧x 6= y). Hence,
I(R) 6= ∅, I(R) is a linear order, I(S) is the successor relation of this order, all the elements in
I(M) appear before all the elements in I(N) in the order I(R), and there is no element in the
intersection of I(N) and I(M). Let {Jn}n≥0 be a sequence of solutions for I recursively defined
as follows: J0 := J and

Jn+1 := Jn∪{N
′(b) | there exists a ∈ dom(J) such that N ′(a) is in Jn and S′(a, b) is in J}.
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Then J ′ =
⋃

n≥0 Jn is an instance (this is because the union
⋃

n≥0 Jn is finite simply because J is
finite). Furthermore, J ′ is a solution for I such that J ′ 6|= ∃x∃y(N ′(x)∧S′(x, y)∧¬N ′(y)). Clearly,
J ′ does not contain an element in the intersection of N ′ and M ′, that is, J ′ 6|= ∃x(N ′(x)∧M ′(x)),
which contradicts the fact that certainM(Q, I) = true.

Now we prove that Q is not rewritable over Fcore. On the contrary, assume that there exists an FO
sentence φ such that for every instance I of S with core solution J∗, it is the case that J∗ |= φ if
and only if certainM(Q, I) = true. Let k be the quantifier rank of φ. Define instances I1, I2 of S
as follows: Ii(S) is the successor relation of a linear order Ii(R) (i = 1, 2) containing k′ elements,
where k′ is a function of k (to be defined later), I1(N) = {a1}, I1(M) = {b1}, I2(N) = {b2} and
I2(M) = {a2}. Furthermore, (ai, bi) ∈ Ii(R) (i = 1, 2), the distance between ai and bi is k′/2 (i = 1, 2)
and the distance between the first point of Ii(R) and ai is k′/4 (i = 1, 2). It is not hard to see that
certainM(Q, I1) = true and certainM(Q, I2) = false.

The core solutions J∗
1 , J∗

2 for I1, I2 are as follows:

.  .  .

.  .  ..  .  ..  .  .

.  .  ..  .  .

M ′(b1)N ′(a1)
J∗

1
(S′) :

J∗

2
(S′) :

M ′(a2) N ′(b2)

Furthermore, J∗
1 (P ), J∗

2 (P ) are empty and J∗
1 (T ), J∗

2 (T ) contain only one null value. Thus, if k′

is big enough, then J∗
1 ≡k J∗

2 and, therefore, J∗
1 |= φ if and only if J∗

2 |= φ. We conclude that
certainM(Q, I1) = certainM(Q, I2), which leads to a contradiction. (Notice, on the other hand, that
J1 6≡k J2, where J1, J2 are the canonical universal solutions for I1, I2, since J1 contains two null values
in T while J2 contains only one). ✷

3.2. Canonical universal solution versus source

Here we prove that the class of queries rewritable over the canonical universal solution is strictly
contained in the class of queries rewritable over the source. We start by proving that:

Theorem 3.11. Every query that is rewritable over the canonical universal solution is also rewritable
over the source.

And then we show that the converse does not hold:

Proposition 3.12. There is a query specified in FO that is rewritable over the source, but not
rewritable over the canonical universal solution.

In the proof of Theorem 3.11, we use the following terminology. Let M = (S,T,Σst) be a data
exchange setting. Then

ℓS = max {qr(φS) | φS(x̄) → ∃ȳψT(x̄, ȳ) ∈ Σst}

mS = max {1} ∪ {|x̄| | φS(x̄) → ∃ȳψT(x̄, ȳ) ∈ Σst}
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For a source instance I, if J = Funiv(I) and n is a null in J , then the presence of n in J can be
unambiguously identified with the instantiation

φS(c̄) → ∃ȳ ψT(c̄, ȳ) (4)

of some std of the form φS(x̄) → ∃ȳ ψT(x̄, ȳ) in Σst, where φS(c̄) holds in I and n is the null used in J to
witness a variable in ȳ in order to satisfy (4). We call c̄ the witness of n in I, and φS(x̄) → ∃ȳ ψT(x̄, ȳ)
the carrier of n in I. In the same way, we can define for a fact T (ā) in J a pair containing its witness
and carrier in I, as the presence of T (ā) in J can be identified with the instantiation

φS(c̄) → ∃ȳ ψT(c̄, ȳ) (5)

of an std of the form φS(x̄) → ∃ȳ ψT(x̄, ȳ) in Σst (the carrier), where φS(c̄) holds in I (c̄ is the witness,
and it contains all constants in ā), and T (ā) is used in J in order to satisfy ∃ȳψT(c̄, ȳ). Note that if
ā contains only constants, then there is not necessarily a unique pair of witness and carrier for T (ā)
in I.

The following theorem will be used in the proof of Theorem 3.11. In [FK12], a transformation F is
called FO-local if for every k, there is k′ such that whenever I1 ≡k′ I2, then F(I1) ≡k F(I2). It follows
immediately from the next theorem (by letting ā and b̄ be empty) that Funiv is FO-local. The paper
[FK12] made use of our result that Funiv is FO-local.

Theorem 3.13. For every k ≥ 0 there exists k′ ≥ 0 such that, for all source instances I1 and I2, and
tuples of constants ā ∈ dom(Funiv(I1))

m and b̄ ∈ dom(Funiv(I2))
m, where m ≥ 0, if (I1, ā) ≡k′ (I2, b̄)

then (Funiv(I1), ā) ≡k (Funiv(I2), b̄).

Proof: Let I1 and I2 be arbitrary source instances, and denote Funiv(I1) by J1 and Funiv(I2) by J2.
Fix k ≥ 0. We choose k′ to be mS · (k + 1) + ℓS. For each round i, where 0 < i ≤ k, of the k-round
game on (J1, ā) and (J2, b̄), the duplicator’s response qi in J2 (resp., pi in J1) to an element pi in
J1 (resp., qi in J2) played by the spoiler, is defined by looking at the duplicator’s response ēi in I2
(resp., c̄i in I1), in rounds mS · (i − 1) + 1 to mS · i of the k′-round game on (I1, ā) and (I2, b̄), to a
tuple c̄i in I1 (resp., ēi in I2) of length mS, according to a winning strategy provided by the fact that
(I1, ā) ≡k′ (I2, b̄).

Assume that for round i with 0 < i < k the elements played by following this strategy are (1)
(p1, . . . , pi) in J1, (2) (q1, . . . , qi) in J2, (3) (c̄1, . . . , c̄i) in I1, and (4) (ē1, . . . , ēi) in I2. Since we assume
that the c̄i’s and ēi’s are played according to a winning strategy of the duplicator in the k′-round game
on (I1, ā) and (I2, b̄), it is the case that

(I1, ā, c̄1, . . . , c̄i) ≡mS·(k−i+1)+ℓS (I2, b̄, ē1, . . . , ēi).

Also, assume without loss of generality that for round i+1 of the game on (J1, ā) and (J2, ā), the spoiler
picks an element pi+1 in J1 (the case when he picks an element qi+1 in J2 is completely symmetric).
The duplicator response qi+1 in J2 is defined as follows:

• Assume first that pi+1 is a null value. Let c̄ and φS(x̄) → ∃ȳ ψT(x̄, ȳ) be the witness and carrier
for pi+1 in I1, respectively. Also, let y ∈ ȳ be the variable that is witnessed by pi+1 in J1. Assume
that c̄ = (c1, . . . , cr), where r ≤ mS. Then we define c̄i+1 to be the tuple (c1, . . . , cr, c1, . . . , c1)
of length mS (thus, we pad the tuple to be of length mS).
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The duplicator response qi+1 to pi+1 (in the k-round game on (J1, ā) and (J2, b̄)) is defined by
looking at the duplicator response ēi+1 to c̄i+1 in rounds mS · i+1 to mS · (i+1) of the k′-round
game on (I1, ā) and (I2, b̄). More precisely, since qr(φS) ≤ ℓs, and

(I1, ā, c̄1, . . . , c̄i, c̄i+1) ≡mS·(k−i)+ℓS (I2, b̄, ē1, . . . , ēi, ēi+1),

we conclude that φS(ē) holds in I2, where ē is the tuple that contains the first r elements of ēi+1.
Hence, there is a null value that is used in J2 to witness the variable y ∈ ȳ in order to satisfy
∃ȳψT(ē, ȳ). The duplicator response qi+1 to pi+1 is set to be this null value.

• If pi+1 is a constant, it also belongs to I1. Let us define c̄i+1 to be a tuple of length mS that
only contains the element pi+1. Again, the duplicator response qi+1 to pi+1 in the k-round game
on (J1, ā) and (J2, b̄) is defined by looking at the duplicator response ēi+1 to c̄i+1 in rounds
(mS · i+ 1) to mS · (i+ 1) of the k′-round game on (I1, ā) and (I2, b̄). In this case, qi+1 is set to
be the only element that belongs to ēi+1. To finish this part of the proof, we have to show that
our previous choice is correct, that is, we need to show that qi+1 belongs to J2.

Indeed, the presence of pi+1 in J1 can be identified with the instantiation

φS(c̄) → ∃ȳ ψT(c̄, ȳ)

of an std of the form φS(x̄) → ∃ȳ ψT(x̄, ȳ) in Σst, where there is a tuple c̄ of constant symbols
that includes pi+1 such that φS(c̄) holds in the source instance I1. Since |c̄| ≤ mS and i < k,
there exists ē in I2 such that,

(I1, ā, c̄1, . . . , c̄i, c̄i+1, c̄) ≡mS·(k−i−1)+ℓS (I2, b̄, ē1, . . . , ēi, ēi+1, ē).

Thus, it is the case that φS(ē) holds in I2 (since qr(φS) ≤ ℓS), and therefore, qi+1 belongs to J2.

Note that pi+1 is a null if and only if qi+1 is a null.

In order to prove that (J1, ā) ≡k (J2, b̄), it is enough to prove the following by induction on i ≤ k:
if (p1, . . . , pi) and (q1, . . . , qi) are the moves played in J1 and J2, resp., by using the strategy defined
above, then

(

(ā, p1, . . . , pi), (b̄, q1, . . . , qi)
)

is a partial isomorphism between J1 and J2. We do this
next.

For i = 0 the proof is as follows. Assume that T (ā0) is in J1, for some T ∈ T and tuple ā0 of
elements in ā. Let c̄ and φS(x̄) → ∃ȳ ψT(x̄, ȳ) be a pair of witness and carrier for T (ā0) in I1. Since
(I1, ā) ≡ℓS+mS

(I2, b̄), there is a tuple ē of constants in I2 such that (I1, ā, c̄) ≡ℓS (I2, b̄, ē). Then, since
qr(φS) ≤ ℓs, it is also the case that φS(ē) holds in I2, and hence T (b̄0) holds in J2, where b̄0 is the
tuple corresponding to ā0 in b̄.

Assume now that the property holds for i < k. Next we prove it for i + 1. Let (p1, . . . , pi) and
(q1, . . . , qi) be the i moves played in J1 and J2, resp., by following the strategy. Then, by induction
hypothesis,

(

(ā, p1, . . . , pi), (b̄, q1, . . . , qi)
)

is a partial isomorphism between J1 and J2. Assume without
loss of generality that in round i+1 the spoiler picks an element pi+1 in J1 (the case when he picks an
element qi+1 in J2 is completely symmetric). We show that if qi+1 in J2 is the response defined by the
strategy, then

(

(ā, p1, . . . , pi, pi+1), (b̄, q1, . . . , qi, qi+1)
)

is a partial isomorphism between J1 and J2.

Assume, for the sake of contradiction, that this is not the case. Then, without loss of generality,
there is a tuple T (ā′) in J1, where T ∈ T and all the elements of ā′ belong to (ā, p1, . . . , pi+1), such
that T (b̄′) is not in J2, where b̄′ is the corresponding tuple in (b̄, q1, . . . , qi+1). We have, by induction
hypothesis, that pi+1 belongs to ā′, and qi+1 belongs to b̄′. Furthermore, T 6= C, where C is the unary
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relation symbol that distinguishes constants over the target, since pi+1 is a null value if and only if
qi+1 is a null value. Let c̄ and φS(x̄) → ∃ȳ ψT(x̄, ȳ) be a pair of witness and carrier for T (ā′) in I1.
We consider two cases depending on whether pi+1 is a null or a constant.

Assume first that pi+1 is a null value. Then c̄ corresponds to the projection of c̄i+1 over its first |c̄|
elements. Therefore, since

(I1, ā, c̄1, . . . , c̄i, c̄i+1) ≡mS·(k−i)+ℓS (I2, b̄, ē1, . . . , ēi, ēi+1),

it is the case that if ē corresponds to the projection of ēi+1 over its first |c̄| elements, then φS(ē) holds
in I2 (because qr(φS) ≤ ℓS). Furthermore, all nulls in ā′ have witness c̄i+1 in I1, and all nulls in b̄′

have witness ēi+1 in I2. Then by the way the duplicator strategy is defined, in particular from the
facts that (1) constants are preserved from the game on (I1, ā) and (I2, b̄) to the game on (J1, ā) and
(J2, b̄), and (2) for each j ≤ i + 1 such that pj and qj are nulls, both pj and qj witness the same
variable y ∈ ȳ in their carriers, we can conclude that T (b̄′) is in J2, which is a contradiction.

Assume otherwise that pi+1 is a constant (in this case c̄ is not necessarily equal to c̄i+1). Then, since
|c̄| ≤ mS and i < k, there exists ē in I2 such that,

(I1, ā, c̄1, . . . , c̄i, c̄i+1, c̄) ≡mS·(k−i−1)+ℓS (I2, b̄, ē1, . . . , ēi, ēi+1, ē).

Thus, it is the case that φS(ē) holds in I2 (since qr(φS) ≤ ℓS). Furthermore, all nulls in ā′ have
witness c̄, and all nulls in b̄′ have witness ē. Then, by the way the duplicator strategy is defined, in
particular from the facts that (1) constants are preserved from the game on (I1, ā) and (I2, b̄) to the
game on (J1, ā) and (J2, b̄), and (2) for each j ≤ i + 1 such that pj and qj are nulls, both pj and qj
witness the same variable y ∈ ȳ in their carriers, we can conclude that T (b̄′) is in J2, which is again a
contradiction. This concludes the proof. ✷

We are finally ready to prove Theorem 3.11.

Proof of Theorem 3.11: From Theorem 3.13 we conclude that for every FO formula φ(x̄) over T,
there is an FO formula ψ(x̄) over S such that, for every instance I of S and tuple ā of constants in
dom(Funiv(I))

|x̄|,
I |= ψ(ā) ⇐⇒ Funiv(I) |= φ(ā).

Indeed, let qr(φ) be k ≥ 0. From the lemma above, there is k′ ≥ 0 such that, for all source instances
I1 and I2, and tuples ā ∈ dom(Funiv(I1))

|x̄| and b̄ ∈ dom(Funiv(I2))
|x̄| of constants, if (I1, ā) ≡k′ (I2, b̄)

then (Funiv(I1), ā) ≡k (Funiv(I2), b̄). Then it is not hard to see that ψ(x̄) can be defined as:

∨

{(I,ā)|Funiv(I)|=φ(ā)}

τ
(I,ā)
k′ (x̄).

Recall that τ
(I,ā)
k′ (x̄) is the rank-k′ FO type of (I, ā). Note that k′ (which is the quantifier rank of ψ)

depends only on k and Σst. ✷

We conclude this section by proving Proposition 3.12.

Proof of Proposition 3.12: We use the same data exchange setting as in the proof of Proposition 3.6,
but with all references to predicate T ∈ T removed. We also use the same query Q as that in the
proof of Proposition 3.6:

∃xP (x) ∨ ∃x∃y(N ′(x) ∧ S′(x, y) ∧ ¬N ′(y)) ∨ ∃x(N ′(x) ∧M ′(x)).

25



Let φ be the disjunction of all formulae that appear in the left-hand side of an std of the form
ψ → ∃uP (u) in Σst, and Q′ be the following FO sentence over S:

φ ∨ ∃x∃y(R(x, y) ∧N(x) ∧M(y)).

We show next that Q′ is a rewriting of Q over the source, that is, for every instance I of S it is the
case that Q′(I) holds if and only if certainM(Q, I) = true.

• Assume that Q′(I) holds. If I |= φ, then every solution J for I satisfies the sentence ∃xP (x),
and hence certainM(Q, I) = true. If I 6|= φ then I(R) is a linear order and I(S) is the successor
relation of this order. Given that I 6|= φ but Q′(I) holds, it is the case that I |= ∃x∃y(R(x, y) ∧
N(x) ∧M(y)). Thus, there exists a, b ∈ dom(I) such that R(a, b), N(a) and M(b). Let J be a
solution for I. To prove that certainM(Q, I) = true, we show that J |= ∃x∃y(N ′(x)∧S′(x, y)∧
¬N ′(y)) ∨ ∃x(N ′(x) ∧M ′(x)). Assume that J 6|= ∃x∃y(N ′(x) ∧ S′(x, y) ∧ ¬N ′(y)) and, hence,
J |= ∀x∀y(N ′(x) ∧ S′(x, y) → N ′(y)). Then, N ′(b) is in J since N ′(a) is in J and a′ appears
before b′ in the order R. We conclude that J |= ∃x(N ′(x) ∧M ′(x)) since M ′(b) is in J .

• Assume that certainM(Q, I) = true and that Q′(I) does not hold. Let J be the canonical
universal solution of I. Then I 6|= φ, J |= ∃x∃y(N ′(x)∧S′(x, y)∧¬N ′(y)) ∨ ∃x(N ′(x)∧M ′(x))
and I 6|= ∃x∃y(R(x, y) ∧ N(x) ∧M(y)). Hence, I(R) 6= ∅, I(R) is a linear order, I(S) is the
successor relation of this order, all the elements in I(M) appear before all the elements in I(N)
in the order I(R), and there is no element in the intersection of I(N) and I(M). Let {Jn}n≥0

be a sequence of solutions for I recursively defined as follows: J0 := J and

Jn+1 := Jn∪{N
′(b) | there exists a ∈ dom(J) such that N ′(a) is in Jn and S′(a, b) is in J}.

Then J ′ =
⋃

n≥0 Jn is an instance (this is because the union
⋃

n≥0 Jn is finite simply because J is
finite). Furthermore, J ′ is a solution for I such that J ′ 6|= ∃x∃y(N ′(x)∧S′(x, y)∧¬N ′(y)). Since
there is no element in the intersection of I(N) and I(M), it follows that there is no element in
the intersection of J ′(N ′) and J ′(M ′), that is, J ′ 6|= ∃x(N ′(x) ∧M ′(x)). Also, J ′ 6|= ∃xP (x),
since I 6|= φ. This contradicts the fact that certainM(Q, I) = true.

To prove that Q is not rewritable over the canonical universal solution, we can use a similar technique
that the one used in the proof of Proposition 3.6, when showing that Q was not rewritable over the
core. In fact, exactly the same source instances I1 and I2 considered in such proof can be used here,
as certainM(Q, I1) = true, certainM(Q, I2) = false, and the absence of predicate T does not allow
to distinguish between Funiv(I1) and Funiv(I2) in k rounds of the Ehrenfeucht-Fräıssé game. ✷

4. Tools for Proving Non-rewritability

In view of the fact that rewriting is the main approach for obtaining certain answers for target queries,
and that the canonical universal solution and the core are the preferred solutions in data exchange,
it becomes crucial to develop tools that help to decide whether a query admits a rewriting over these
solutions.

In this section, we present such a tool, following the standard approach developed in finite model
theory for proving inexpressibility results (cf. [Lib04]). The main tool for proving inexpressibility
is Ehrenfeucht-Fräıssé games, but since games often involve nontrivial combinatorial arguments, one
often looks for sufficient conditions that guarantee a win for the duplicator. Most commonly used
conditions for FO involve the notions of locality, described in Section 4.2 below.
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We follow the same approach here: we first present a simple game-based criterion, and then use results
of the previous section to introduce a locality-based criterion, and give examples of its applicability.
Finally, we use those results to prove Proposition 3.3, that states that the notion of rewritability is
undecidable.

4.1. A game-based tool

The following is the main technical tool for proving non-rewritability results in data exchange.

Proposition 4.1. Let M = (S,T,Σst) be a data exchange setting, and assume that F is either Funiv

or Fcore. An m-ary query Q, for m ≥ 0, over schema T is not rewritable over F under M if and only
if for all k ≥ 0 there are instances I1 and I2 of S and m-tuples ā ∈ dom(I1)

m and b̄ ∈ dom(I2)
m, such

that (F(I1), ā) ≡k (F(I2), b̄), ā ∈ certainM(Q, I1), but b̄ 6∈ certainM(Q, I2).

Proof: To prove the proposition we consider its “positive” version: An m-ary query Q over schema T
is rewritable over F if and only if there exists k ≥ 0 such that for every pair of instances I1 and I2 of
S and m-tuples ā ∈ dom(I1)

m and b̄ ∈ dom(I2)
m, if (F(I1), ā) ≡k (F(I2), b̄) and ā ∈ certainM(Q, I1),

then b̄ ∈ certainM(Q, I2).

The “only if” part of the positive version of the proposition is proved by taking k to be the quantifier
rank of the rewritingQ′ of Q. In fact, assume that (F(I1), ā) ≡qr(Q′) (F(I2), b̄) and ā ∈ certainM(Q, I1),
where I1 and I2 are instances of S, ā ∈ dom(I1)

m, and b̄ ∈ dom(I2)
m. Since Q′ is a rewriting of Q

over F, the fact that ā ∈ certainM(Q, I1) implies that ā ∈ Q′(F(I1)). But then b̄ ∈ Q′(F(I2)), because
(F(I1), ā) ≡qr(Q′) (F(I2), b̄). We conclude that b̄ ∈ certainM(Q, I2).

For the “if” part, we prove that Q admits the following rewriting Q′:
∨

ā∈certain
M

(Q,I) τ
(F(I),ā)
k (x̄)

(recall that τ
(F(I),ā)
k (x̄) is the rank-k FO type of (F(I), ā)). Assume first that ā1 ∈ certainM(Q, I1).

Then ā1 ∈ Q′(F(I1)), because F(I1) |= τ
(F(I1),ā1)
k (ā1). Assume, on the other hand, that ā1 ∈ Q′(F(I1)).

This means that F(I1) |= τ
(F(I),ā)
k (ā1), for some instance I of S and tuple ā ∈ dom(I)m such that

ā ∈ certainM(Q, I). Thus, (F(I), ā) ≡k (F(I1), ā1), and, therefore, ā1 ∈ certainM(Q, I1). ✷

This result provides us with both necessary and sufficient conditions to obtain non-rewritability results
in data exchange. However, to apply this proposition is often a nontrivial task as it involves not only
playing Ehrenfeucht-Fräıssé games between structures, but also finding two structures I1 and I2 over
schema S such that their transformations F(I1) and F(I2) over the different schema T still allow the
duplicator to win the game (notice that these transformations could “create” null values).

It would be nice then to have a tool for proving non-rewritability results in data exchange such that (1)
it does not involve playing Ehrenfeucht-Fräıssé games between structures, and (2) it does not require
inspecting the transformation F(I) but only the source instance I. We present such tool below, based
on the results of Sections 3.1 and 3.2. As usual, we make use of locality notions as a simple way to
find winning duplicator strategies.

4.2. A locality-based tool

Before presenting our locality-based tool for proving non-rewritability results in data exchange, we
introduce the basic concepts and techniques related to locality as a tool to prove inexpressibility results
for FO.
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Neighborhoods and locality. Though EF games are the main tool to prove inexpressibility results for
FO, finding winning duplicator strategies in such games becomes nontrivial for fairly simple cases. But
often we can avoid those intricate combinatorial arguments by using rather simple sufficient conditions
that guarantee a winning strategy for the duplicator [Fag97]. Most of such conditions are based on
the idea of locality.

Notions of locality [Han65, Gai82, HLN99] have been widely used to prove easy inexpressibility results
for first-order logic and some of its counting extensions [Nur96, Ete97, Nur00]. The intuition under-
lying those notions of locality is that FO cannot express properties that involve nontrivial recursive
computations (such as connectivity, cyclicity, etc). The setting of locality is as follows. The Gaifman
graph G(I) of an instance I of R is the graph whose nodes are the elements of dom(I), and such that
there exists an edge between a and b in G(I) if and only if a and b belong to the same tuple of a
relation I(R), for some R ∈ R. For example, if I is an undirected graph, then G(I) is I itself. The
distance between two elements a and b in I, denoted by ∆I(a, b) (or ∆(a, b), if I is understood), is
the distance between them in G(I). We define ∆(ā, b) as the minimum value of ∆(a, b) where a is an
element of ā.

Given a tuple ā = (a1, . . . , am) ∈ dom(I)m, we define the instance N I
d (ā), called the d-neighborhood of

ā in I, as the restriction of I to the elements at distance at most d from ā, with the members of ā treated
as distinguished elements. That is, if two neighborhoods N I

d (ā) and N I
d (b̄) are isomorphic (written as

N I
d (ā) ∼= N I

d (b̄)), then there is an isomorphism f : N I
d (ā) → N I

d (b̄) such that f(ai) = bi, for 1 ≤ i ≤ m.

For two instances I1 and I2 of the same schema, and m-tuples ā in dom(I1) and b̄ in dom(I2), we write

(I1, ā) ⇆d (I2, b̄)

if there is a bijection f : dom(I1) → dom(I2) such that N I1
d (āc) ∼= N I2

d (b̄f(c)) for every c ∈ dom(I1).
Note that (I1, ā) ⇆d (I2, b̄) implies that the domains of I1 and I2 have the same cardinality.

As we mentioned, the notion of locality allows one to find simple sufficient conditions that ensure
a winning strategy for the duplicator in the Ehrenfeucht-Fräıssé game. This is summarized in the
following theorem:

Theorem 4.2. (see [Gai82, FSV95, HLN99]) The following holds:

• For every number k ≥ 0 there exists a number d ≥ 0 such that N I
d (ā) ∼= N I

d (b̄) implies (I, ā) ≡k

(I, b̄), for every instance I and tuples ā and b̄ of elements in I.

• For every number k ≥ 0 there exists a number d ≥ 0 such that (I1, ā) ⇆d (I2, b̄) implies (I1, ā) ≡k

(I2, b̄), for every pair I1, I2 of instances and tuples ā in dom(I1) and b̄ in dom(I2).

The first part of Theorem 4.2 is directly related to a property of FO known as Gaifman-locality
[Gai82, HLN99], while the second part is related to a property known as Hanf-locality [FSV95, HLN99].
Notice that Gaifman-locality deals with a single instance I at a time, whereas the notion of Hanf-
locality deals with a pair I1, I2 of instances at a time.

The first part of Theorem 4.2 can be further refined. In fact, Gaifman’s theorem [Gai82] implies the
following:

Theorem 4.3. For every k ≥ 0 there are numbers d, ℓ ≥ 0 such that if N I
d (ā) ≡ℓ N

I
d (b̄), then

(I, ā) ≡k (I, b̄), for every instance I and tuples ā and b̄ in I.
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Locality tools for proving non-rewritability results in data exchange. We introduce two new notions of
locality below, that are modifications of the standard notions of locality presented above, and can be
applied in the data exchange scenario to prove non-rewritability results.

Definition 4.4. Given a data exchange setting M = (S,T,Σst) and an m-ary query Q over T, where
m ≥ 0, we say that:

• Q is locally source-dependent in Gaifman-sense under M if there is d ≥ 0 such that for every
instance I of S and for every ā, b̄ ∈ dom(I)m, if N I

d (ā) ∼= N I
d (b̄) then (ā ∈ certainM(Q, I) ⇔

b̄ ∈ certainM(Q, I)).

• Q is locally source-dependent in Hanf-sense under M if there is d ≥ 0 such that for every pair
of instances I1 and I2 of S and for every ā ∈ dom(I1)

m and b̄ ∈ dom(I2)
m, if (I1, ā) ⇆d (I2, b̄)

then (ā ∈ certainM(Q, I1) ⇔ b̄ ∈ certainM(Q, I2)).

We next show that these notions apply to all queries rewritable over the core or the canonical universal
solution.

Theorem 4.5. Let M = (S,T,Σst) be a data exchange setting, and Q a query over T. Assume that
Q is rewritable over transformation Funiv or Fcore. Then Q is locally source-dependent in both Hanf-
and Gaifman-sense under M.

Proof: Recall that τ
(Fcore(I),ā)
k (x̄) is the FO formula that defines the rank-k FO type of (Fcore(I), ā).

Then from Lemma 3.7 we have that for every k ≥ 0, and for every source instance I1 and m-tuple
ā ∈ dom(Funiv(I1))

m of constants, there is an FO formula φ(x̄) over schema T such that for every
source instance I2 and m-tuple b̄ of constants in Funiv(I2)

m,

Funiv(I2) |= φ(b̄) ⇐⇒ Fcore(I2) |= τ
(Fcore(I1),ā)
k (b̄). (6)

As we show next, the latter implies that for every k ≥ 0 the following holds:

(Funiv(I1), ā) ≡qr(φ) (Funiv(I2), b̄) =⇒ (Fcore(I1), ā) ≡k (Fcore(I2), b̄), (7)

for every pair of source instances I1 and I2 and m-tuples of constants ā ∈ dom(Fcore(I1))
m and

b̄ ∈ dom(Fcore(I2))
m. This is because Fcore(I1) |= τ

(Fcore(I1),ā)
k (ā), and hence from (6) we have that

Funiv(I1) |= φ(ā). Thus, if (Funiv(I1), ā) ≡qr(φ) (Funiv(I2), b̄) it must be the case that Funiv(I2) |= φ(b̄),

and hence, again from (6), that Fcore(I2) |= τ
(Fcore(I1),ā)
k (b̄). The latter implies that (Fcore(I1), ā) ≡k

(Fcore(I2), b̄).

On the other hand, from Theorem 3.13 we have that for every k ≥ 0 there exists k′ ≥ 0 such that

(I1, ā) ≡k′ (I2, b̄) =⇒ (Funiv(I1), ā) ≡k (Funiv(I2), b̄), (8)

for every pair of source instances I1 and I2 and m-tuples of constants ā ∈ dom(Funiv(I1))
m and

b̄ ∈ dom(Funiv(I2))
m.

Thus, using (7) and (8) together with Proposition 4.1, one can immediately derive the following:

29



Claim 4.6. Let M = (S,T,Σst) be a data exchange setting, and assume that F is either Funiv or
Fcore. An m-ary query Q, for m ≥ 0, over schema T is not rewritable over F under M if for all
k ≥ 0 there exist instances I1 and I2 of S and m-tuples ā ∈ dom(I1)

m and b̄ ∈ dom(I2)
m, such that

(I1, ā) ≡k (I2, b̄), ā ∈ certainM(Q, I1), but b̄ 6∈ certainM(Q, I2).

Now we conclude the proof of Theorem 4.5. Recall from Theorem 4.2 that for every k ≥ 0 there exists
a number d such that N I

d (ā) ∼= N I
d (b̄) implies (I, ā) ≡k (I, b̄), and that for every k ≥ 0 there exists a

number d such that (I1, ā) ⇆d (I2, b̄) implies (I1, ā) ≡k (I2, b̄). Then the theorem follows directly from
Claim 4.6. ✷

4.3. Applications of the tools

In order to prove that a query is not rewritable over the core or the canonical universal solution, it
suffices to show that it is not locally source dependent in either Hanf- or Gaifman-sense. We now
apply Theorem 4.5 to prove non-rewritability results in extremely simple data exchange settings.
We call a data exchange setting copying if S and T are two copies of the same schema (that is,
S = {R1, . . . , Rn},T = {R′

1, . . . , R
′
n}, and Ri and R′

i have the same arity), and Σst = {Ri(x̄) →
R′
i(x̄) | i = 1, . . . , n}. Note that a copying setting is both LAV and GAV.

We have the following simple lemma about rewritability for copying settings.

Lemma 4.7. Let M = (S,T,Σst) be a copying data exchange setting. A query Q over T is rewritable
over the canonical universal solution under M if and only if it is rewritable over the core under M if
and only if it is rewritable over the source M.

Proof: The source, canonical universal solution, and the core are all identical (up to a renaming of
relation symbols) for a copying data exchange setting. So rewritability for one gives rewritability for
them all. ✷

Corollary 4.8. There is a copying data exchange setting M and an FO formula, with a single free
variable, that is neither rewritable over the canonical universal solution, nor over the core, nor over
the source under M.

Proof: Let M = (S,T,Σst) be the data exchange setting such that S = 〈G(·, ·), R(·)〉, T = 〈G′(·, ·),
R′(·)〉 and Σst = {G(x, y) → G′(x, y), R(x) → R′(x)}. Define a unary query Q over the target
schema as:

R′(x) ∨ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)).

By Lemma 4.7, we need only show that Q is not rewritable over Funiv. Assume that Q is rewritable
over Funiv under M. Then it is locally source-dependent in Gaifman-sense under M, that is, there
exists d ≥ 0 such that for every source instance I and every a, b ∈ dom(I), we have a ∈ certainM(Q, I)
if and only if b ∈ certainM(Q, I) whenever N I

d (a) ∼= N I
d (b).

Define a source instance I as shown in Figure 1: I(G) is the disjoint union of two cycles of length
2d + 2, and I(R) = {c}. Then N I

d (a) ∼= N I
d (b), which implies that a ∈ certainM(Q, I) if and only if

b ∈ certainM(Q, I). However, we now show that a ∈ certainM(Q, I) while b 6∈ certainM(Q, I). Indeed,
if J is an arbitrary solution for I, then J |= R′(a) ∨ ∃y∃z(R′(y) ∧ G′(y, z) ∧ ¬R′(z)) (if J does not
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Figure 1: Instance I of Corollary 4.8.

satisfy the second disjunct, then J |= ∀y∀z(R′(y) ∧ G′(y, z) → R′(z)) and, hence, J |= R′(a) since
R′(c) is true in every solution, and a and c are on the same cycle). Furthermore, if J0 is a target
instance such that J0(G

′) = I(G) and J0(R
′) includes exactly all the points in the cycle containing

a, then J0 is a solution for I. However, J0 6|= Q(b), and thus b 6∈ certainM(Q, I). This contradiction
shows that Q is not rewritable over the canonical universal solution, as desired. ✷

In the previous proof we used our locality tool in Gaifman-sense to prove that a query with one free-
variable does not admit a rewriting. In order to prove that a Boolean query (i.e. a query without
free variables) is not rewritable over Funiv or Fcore, we need to use the locality tool in Hanf-sense, as
shown in the proof of the following corollary:

Corollary 4.9. There is a copying data exchange setting M and a Boolean FO formula that is neither
rewritable over the canonical universal solution, nor over the core, nor over the source under M.

Proof: Let M = (S,T,Σst) be the data exchange setting such that S consists of binary relation E
and unary relations A and B, the schema T consists of binary relation G and unary relations P and
R, and Σst consists of the st-tgds:

E(x, y) → G(x, y)

A(x) → P (x)

B(x) → R(x)

Clearly, M is copying. The query Q over T is defined as:

∃x∃y (P (x) ∧R(y) ∧G(x, y)) ∨ ∃x∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

This is the union of a conjunctive query and a conjunctive query with a single negated relational atom.
By Lemma 4.7, we need only show that Q is not rewritable over the canonical universal solution.

Assume otherwise. We prove below that Q is not locally source-dependent in Hanf-sense under M,
which directly contradicts Theorem 4.5. Recall that for this we need to construct, for every d ≥ 0,
two source instances I1 and I2 such that I1 ⇆d I2 but certainM(Q, I1) 6= certainM(Q, I2).

Define source instances I1 and I2 as shown in Figure 2: I1(E) is a cycle of length 4d+4 with elements

a1, b1, c1, c2, . . . , c4d+2,

I2(E) is the disjoint union of two cycles of length 2d+ 2, the first one with elements

a2, e1, . . . , e2d+1,
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Figure 2: Instances I1 and I2 of Corollary 4.9.

and the second one with elements
b2, e2d+2, . . . , e4d+2,

I1(A) = {a1}, I2(A) = {a2}, I1(B) = {b1} and I2(B) = {b2}.

Let f : dom(I1) → dom(I2) be defined as f(a1) = a2, f(b1) = b2 and











f(ci) = ei if 1 ≤ i ≤ d+ 1 or 2d+ 2 ≤ i ≤ 3d+ 2

f(ci) = e2d+1+i if d+ 2 ≤ i ≤ 2d+ 1

f(ci) = ei−2d−1 if 3d+ 3 ≤ i ≤ 4d+ 2

Clearly, f is a bijection from dom(I1) into dom(I2). Furthermore, a simple case analysis proves that
for every v ∈ dom(I1) it is the case that N I1

d (v) ∼= N I2
d (f(v)). This implies that I1 ⇆d I2. However,

we prove below that certainM(Q, I1) = true while certainM(Q, I2) = false.

Let us consider first I1. Let J1 be the canonical universal solution for I1. Notice that J1 is just a “copy”
of I1 over the target; that is, I1(E) = J1(G), I1(A) = J1(P ) and I1(B) = J1(R). Let J ′

1 be an arbitrary
solution for I1 that does not satisfy the second disjunct ∃x∃y∃z(G(x, z) ∧ G(z, y) ∧ ¬G(x, y)) of Q.
Then it must be the case that the transitive closure of I1(E) is contained in J ′

1(G), and hence that J ′
1

satisfies the first disjunct ∃x∃y(P (x) ∧ R(y) ∧G(x, y)) of Q. This is because a1 ∈ J ′
1(P ), b1 ∈ J ′

1(R)
and (a1, b1) belongs to the transitive closure of I1(E). We conclude that certainM(Q, I1) = true.

Let us consider now I2. Again, the canonical universal solution J2 for I2 is a “copy” of I2 over the
target. Let J ′

2 be the solution for I2 that is obtained from J2 by extending the interpretation of G
with every tuple that belongs to the transitive closure of J2(G). Then clearly J ′

2 6|= ∃x∃y∃z(G(x, z) ∧
G(z, y) ∧¬G(x, y)). Moreover, since a2 is the only element in J ′

2 that belongs to the interpretation of
P , and b2 is the only element in J ′

2 that belongs to the interpretation of R, and a2 and b2 belong to
different connected components of the graph induced by J2(G), it is the case that J ′

2 6|= ∃x∃y(P (x) ∧
R(y) ∧G(x, y)). We conclude that J ′

2 6|= Q, and hence that certainM(Q, I2) = false. ✷

4.4. Rewritability is undecidable

In this section we prove Proposition 3.3, with the help of the locality tools and the non-rewritability
results we have just obtained. Recall that we want to prove the following: Given a data exchange
setting M = (S,T,Σst) and a queryQ over T specified in FO, it is undecidable whetherQ is rewritable
over the canonical universal solution (resp., over the core) under M. Interestingly, it follows from the
proof that this continues to hold even if M is a copying setting.
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Proof of Proposition 3.3: Recall that Trakhtenbrot’s theorem states that the following problem is
undecidable: Given a Boolean FO formula φ over schema R, is there an instance K of R such that
K |= φ? The proof of this theorem is by a reduction from the halting problem for Turing machines
on the empty input, that is, for each Turing machine M one constructs a Boolean FO formula φ such
that M halts on the empty input if and only if there is an instance K such that K |= φ. However,
it is not hard to notice that Trakhtenbrot’s theorem can be proved in a way that all quantification
in φ is restricted to the active domain (cf. [Lib04]). This proves that the following problem is also
undecidable: Given a domain-independent Boolean FO formula, is there an instance K of R such that
K |= φ? In order to prove Proposition 3.3, we reduce the latter problem to the complement of the
problem of checking whether a Boolean FO formula is rewritable over the canonical universal solution
or the core. That is, we show that for each schema R and domain-independent Boolean FO formula φ
over R, one can compute a data exchange setting M = (S,T,Σst) and a Boolean FO formula θ over
T such that the following two facts are equivalent:

1. There is an instance K of R such that K |= φ.

2. θ is not rewritable over the canonical universal solution (resp., the core) under M.

Take an arbitrary schema R and a domain-independent Boolean FO formula φ over R. We show how
to construct M = (S,T,Σst) and θ from φ and R. First of all, it follows from the proof of Corollary
4.9 that if M′ = (S′,T′,Σ′

st) is the data exchange setting such that S′ consists of binary relation E
and unary relations A and B, the schema T′ consists of binary relation G and unary relations P and
R, and Σ′

st consists of the copying stds:

E(x, y) → G(x, y)

A(x) → P (x)

B(x) → R(x),

then the query Q:

∃x∃y (P (x) ∧R(y) ∧G(x, y)) ∨ ∃x∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y))

is rewritable neither over the canonical universal solution nor over the core under M′. Notice, in
addition, that Q is domain independent. Without loss of generality we assume that S′ and R contain
no relation symbols in common. With the help of M′ = (S′,T′,Σ′

st) and Q we can construct M =
(S,T,Σst) and θ as follows:

• S consists of all the relation symbols that are either in R or in S′ (recall that R and S′ are
assumed to be disjoint).

• T consists of all the relation symbols that are either in R′ or in T′, where R′ is a disjoint copy
of R; that is, if R = {R1, . . . , Rn} then R′ = {R′

1, . . . , R
′
n} and Ri and R′

i have the same arity.
Furthermore, we assume without loss of generality that R′ has no relation symbols in common
with either T′ or S′.

• Σst is defined as
Σ′
st ∪ {Ri(x̄) → R′

i(x̄) | 1 ≤ i ≤ n}.

That is, Σst consists of the st-tgds in Σ′
st, that relate source relation symbols in S′ with target

relation symbols in T′ in a way that is consistent with M′, plus a set of copying st-tgds that
transfer the source content of each relation symbol in R into the corresponding target relation
symbol in R′.
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• Finally, θ is defined as φ′ → Q, where φ′ is the Boolean FO formula over R′ that is obtained from
φ by replacing each occurrence of the relation symbol Ri with R′

i, for every i with 1 ≤ i ≤ n.

We prove next that there exists an instance K of R such that K |= φ if and only if θ is not rewritable
over the canonical universal solution (resp., over the core) under M.

Assume that for every instance K of R it is the case that K 6|= φ. Then for every source instance I
of S, and solution J for I under M, we have J 6|= φ′. Assume otherwise. Then the restriction J ′ of J
to the relation symbols in R′ also satisfies φ′ (this is because φ, and hence φ′, is domain independent;
and so, its evaluation does not depend of the interpretation of the relation symbols in R′ that are not
mentioned in φ′), and, therefore, the instance K of R that is obtained from J ′ by setting K(Ri) to
coincide with the interpretation of Ri in J ′, for each 1 ≤ i ≤ n, satisfies φ, which is a contradiction.
This implies that θ is rewritable over the canonical universal solution and over the core simply by the
Boolean constant true.

Assume, on the other hand, that for at least some instance K of R it is the case that K |= φ. We
prove that φ′ → Q is not rewritable over the canonical universal solution, nor over the core, under
M = (S,T,Σst). To prove this it is sufficient to prove that φ′ → Q is not locally source-dependent
under M. In the present case, for each d ≥ 0 we construct source instances I ′1 and I ′2 such that:

• The restriction of both I ′1 and I ′2 to schema R corresponds to the instance K, and

• the restriction of I ′i, for i = 1 or i = 2, to S′ corresponds to the instance Ii used in the proof of
Corollary 4.9.

We now show that I ′1 ⇆d I
′
2. This is because I ′i, for i = 1 or i = 2, essentially consists of the disjoint

union of Ii and K, and we know from the proof of Corollary 4.9 that I1 ⇆d I2. We show below that
certainM(φ′ → Q, I ′1) 6= certainM(φ′ → Q, I ′2).

Let us consider first I ′1. Consider an arbitrary solution J ′
1 for I ′1 under M. Then the restriction J1

of J ′
1 to the relation symbols in T′ is a solution for I1 under M′. From the proof of Corollary 4.9 it

holds that certainM′(Q, I1) = true, and hence J1 |= Q. Since Q is domain independent, it follows
that J ′

1 |= Q. We conclude that certainM(φ′ → Q, I ′1) = true.

Let us consider now I ′2. Since certainM′(Q, I2) = false from the proof of Corollary 4.9, there exists
a solution J2 for I2 under M′ such that J2 6|= Q. Consider now the instance J ′

2 of schema T that
consists of the disjoint union of J2 (over schema T′) and a “copy” of K (over schema R′). Clearly, J ′

2

is a solution for I ′2 under M. The restriction of J ′
2 to the relation symbols in T′ (which is J2) does not

satisfy Q. But since Q is domain independent, we also have J ′
2 6|= Q. Furthermore, the restriction of

J ′
2 to R is a “copy” of K, which satisfies φ. Since φ is a domain-independent query over R, it must be

the case that J ′
2 |= φ. We conclude that J ′

2 |= φ ∧ ¬Q, and hence that certainM(φ → Q, I ′2) = false.
This completes the proof. ✷

Notice that the formula θ = φ′ → Q used in the previous proof is domain independent, since both
φ′ and Q are domain independent. It follows then that the notion of rewritability over the canonical
universal solution, or the core, is undecidable even for queries specified as Boolean and domain-
independent FO formulas.
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5. Structural Properties of Transformations

As another application of the results presented in Sections 3.1 and 3.2, we give some nice structural
properties of the transformations Funiv and Fcore. In particular, we show that they preserve the local
character of the data. That is, tuples with similar neighborhoods in I have similar neighborhoods in
F(I). We call this property local consistency. Based on the types of logical formulae used in the data
exchange settings, we establish different types of local consistency exhibited in data exchange.

5.1. Local consistency

We now introduce the notion of local consistency of transformations from Inst(S) to Inst(T). The
first notion says that neighborhoods around elements common to the input and output instances are
preserved. Informally, if tuples ā and b̄ in dom(I)m, for m > 0, are present in the domain of the
resulting instance J of T, then the isomorphism of sufficiently large neighborhoods of ā and b̄ in I
guarantees that their neighborhoods are isomorphic in J as well. Formally, we define this as follows.

Definition 5.1 (Local consistency). A mapping F : Inst(S) → Inst(T) is locally consistent if for
every m,d ≥ 0 there exists d′ ≥ 0 such that, for every instance I of S and tuples ā, b̄ ∈ dom(I)m, if
N I
d′(ā)

∼= N I
d′(b̄), then

1. ā ∈ dom(F(I))m ⇔ b̄ ∈ dom(F(I))m, and

2. N
F(I)
d (ā) ∼= N

F(I)
d (b̄).

The next theorem guarantees the local consistency of both Funiv and Fcore in the LAV setting.

Theorem 5.2 (Funiv and Fcore are locally consistent for LAV settings). In the LAV setting,
both the canonical universal solution transformation Funiv and the core transformation Fcore are locally
consistent.

The proof of this theorem follows from the two consecutive lemmas below.

Lemma 5.3. In the LAV setting, the canonical universal solution transformation Funiv is locally con-
sistent.

Proof: Let M = (S,T,Σst) be a LAV setting, and fix d ≥ 0. We show that for every source instance
I and tuples ā and b̄ in dom(I)m, if N I

d+1(ā)
∼= N I

d+1(b̄) then

(1.) ā ∈ dom(Funiv(I))
m ⇔ b̄ ∈ dom(Funiv(I))

m, and

(2.) N
Funiv(I)
d (ā) ∼= N

Funiv(I)
d (b̄).

Let I be an arbitrary source instance, and denote Funiv(I) by J . We prove (1.) first. Let ā be
(a1, . . . , am) and b̄ be (b1, . . . , bm). We show that for each i ∈ [1,m], if ai ∈ dom(J) then bi ∈ dom(J).
Assume that ai belongs to dom(J), for some i ∈ [1,m]. This is caused by an std in Σst of the form

S(x̄) → ∃ȳ ψT(x̄, ȳ), (9)
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where S is a source relation symbol, and where there is a tuple c̄ of constant symbols that includes ai
such that S(c̄) holds in the source instance I. It follows that every member of c̄ belongs to N I

d+1(ā).

Let f be a bijection witnessing N I
d+1(ā)

∼= N I
d+1(b̄). Then S(f(c̄)) holds in the source instance I, and

f(ai) = bi belongs to dom(J). In the same way we can show that for each i ∈ [1,m], if bi ∈ dom(J)
then ai ∈ dom(J). This proves that ai ∈ dom(J) if and only if bi ∈ dom(J), for each i ∈ [1,m]. Hence,
ā ∈ dom(J)m if and only if b̄ ∈ dom(J)m.

Now we show that N I
d+1(ā)

∼= N I
d+1(b̄) implies NJ

d (ā) ∼= NJ
d (b̄). We require the following claim.

Claim 5.4. All constants in NJ
d (ā) also belong to N I

d (ā).

Proof of the claim: Recall that for each instance I ′, we denote the Gaifman graph of I ′ by G(I ′). Let
c1 and c2 be distinct constants. Assume now that there is a path in G(J) between c1 and c2 where
every point except the endpoints c1 and c2 are nulls. This is caused by an std in Σst of the form (9),
where there is a tuple c̄ of constant symbols that includes c1 and c2 such that S(c̄) holds in the source
instance I. Hence, c1 and c2 are adjacent in G(I).

We now show that the constants in NJ
d (ā) also belong to N I

d (ā). Let c be a constant different from
all constants in the tuple ā, and such that c ∈ NJ

d (ā). Then there are b0, b1, . . . , bd with b0 a constant
in tuple ā and bd = c, where bi and bi+1 are adjacent in J , for 0 ≤ i < d. Assume that the number
of bi’s that are constant is t (we know 2 ≤ t ≤ d + 1). Let bi1 , . . . , bit be the bi’s that are constant,
with i1 < · · · < it. From what we showed earlier, bij and bij+1

are adjacent in I, for 1 ≤ j < t. So
bi1 , bi2 , . . . , bit gives a path between ā and c in I. Hence, the distance between ā and c in I is at most
t− 1, and c belongs to N I

d (ā), as desired. ✷

Now we continue with the proof of Lemma 5.3. Let s̄ be a tuple of one or more constants and zero or
more nulls such that T (s̄) holds in J for some target relation symbol T , and such that every member
of s̄ is in NJ

d (ā). This is caused by an std in Σst of the form (9), where there is a tuple c̄ of constants
that includes all of the constants of s̄, such that S(c̄) holds in the source I. But s̄ contains at least
one constant, and every constant in s̄ belongs to NJ

d (ā). So s̄ contains some constant in NJ
d (ā), and

hence (from the claim above), in N I
d (ā). Since S(c̄) holds in I, and c̄ contains some constant in N I

d (ā),
it follows that every member of c̄ belongs to N I

d+1(ā).

We just showed that the fact that T (s̄) holds in NJ
d (ā) is caused by an std in Σst of the form (9), where

there is a tuple c̄ of constants in N I
d+1(ā) such that S(c̄) holds in I. Therefore, N I

d+1(ā) completely

determines NJ
d (ā). It follows that N I

d+1(ā)
∼= N I

d+1(b̄) implies NJ
d (ā) ∼= NJ

d (b̄), which finishes the
proof of the lemma. ✷

Lemma 5.5. In the LAV setting, the core transformation Fcore is locally consistent.

Proof: By Lemma 5.3, the canonical universal solution transformation Funiv of a LAV setting is locally
consistent. We shall show that the mapping that maps the canonical universal solution onto the core
is locally consistent. Since the composition of locally consistent transformations is locally consistent,
and constants are preserved from canonical universal solutions to their cores, this is enough to prove
the lemma. The proof proceeds by making use of the algorithm given for computing the core in the
LAV setting [FKP05].

Let J be an instance with nulls. Recall that the Gaifman graph of the nulls of J is an undirected graph
in which (1) the nodes are all the nulls of J , and (2) there is an edge between two nulls whenever the
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nulls belong to the same tuple of some relation in J . A block of nulls is the set of nulls in a connected
component of the Gaifman graph of nulls. If v is a null of J , then we may refer to the block of nulls
that contains v as the block of v. Note that, by the definition of blocks, the set of all nulls of J is
partitioned into disjoint blocks.

Let h be a homomorphism of an instance J . Denote the result of applying h to J by h(J). If h(J)
is a subinstance of J , then we call h an endomorphism of J . An endomorphism h of J is useful if
h(J) 6= J (i.e., h(J) is a proper subinstance of J).

Let J and J ′ be two instances such that the nulls of J ′ form a subset of the nulls of J . Let h be some
endomorphism of J ′, and let B be a block of nulls of J . We say that h is J-local for B if h(x) = x
whenever x 6∈ B. (Since all the nulls of J ′ are among the nulls of J , it makes sense to consider whether
or not a null x of J ′ belongs to the block B of J .) We say that h is J-local if it is J-local for B, for
some block B of J .

We now present an algorithm for computing the core of the universal solutions, when given the
canonical universal solution J [FKP05].

1. Compute the blocks of J , and initialize J ′ to be J .

2. Check whether there exists a useful J-local endomorphism h of J ′. If not, stop with result J ′.

3. Update J ′ to be h(J ′), and return to Step 2.

Let b be the maximal number of existentially quantified variables over all stds in Σst. It follows easily
from the construction of the canonical universal solution J (by chasing with Σst) that b is an upper
bound on the size of a block in J (see e.g. [FKP05]).

Let I be a source database, let J be a canonical universal solution, and let J0 be the core of J . Assume
m ≥ 0 and d ≥ 1 (we do not allow d = 0 for technical convenience, and it is clear that this restriction
is unimportant). We need only show that whenever ā and b̄ are m-tuples with isomorphic (d+ b− 1)-
neighborhoods in the canonical universal solution J , then ā and b̄ have isomorphic d-neighborhoods
in the core. To simplify the wording, let us phrase this by saying that we need only show that the
(d+ b− 1)-neighborhood NJ

d+b−1(ā) determines the d-neighborhood NJ0

d (ā).

Since we are assuming a LAV setting, the stds in Σst are of the form R(x̄) → ∃ȳϕT(x̄, ȳ), where R(x̄)
is an atomic formula, and where ϕT(x̄, ȳ) is a conjunction of atomic formulae. Let n be a null in
NJ
d (ā). Then there is such an std σ in Σst and there is a tuple c̄ of constants where R(c̄) holds in the

source instance I, such that n, and every member of its block, is generated by chasing σ starting with
R(c̄). If every member of c̄ were at least distance d from ā in I (that is, outside of N I

d (ā)) then it is
easy to see that n would be at least distance d+ 1 from ā in J . But this is false, since n ∈ NJ

d (ā). So
some member of c̄ is in N I

d−1(ā), and hence every member of c̄ is in N I
d (ā). We see from the definition

of b that chasing with σ causes every member of the block of n to be in NJ
d+b−1(ā). Hence, if h is an

endomorphism of J , then every member of the block B of v is mapped into NJ
d+b−1(ā) (this is because

paths of length, say, m, that begin with a member a of ā are mapped by each endomorphism into
paths of length at most m that begin with a). So every J-local endomorphism maps the nulls of B
(each of which is in NJ

d+b−1(ā)) into points in NJ
d+b−1(ā).

We now show that there is enough information in NJ
d+b−1(ā) to produce NJ0

d (ā). Hence, the (d+b−1)-

neighborhood NJ
d+b−1(ā) determines the d-neighborhood NJ0

d (ā), which as we noted is sufficient to
prove the lemma.
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Let us call a block special if it contains a null in NJ
d (ā). Consider a modified version of the algorithm

for producing the core where the special blocks are selected first. Thus, the modified version of the
algorithm selects a non-special block with a useful J-local endomorphism in Step 2 only when there is
no special block with a useful J-local endomorphism. We can think of this algorithm as consisting of
two phases. In the first phase, only special blocks are selected, and in the second phase, non-special
blocks are selected. Since, as we showed, every J-local endomorphism maps the nulls of a special
block B (each of which is in NJ

d+b−1(ā)) into points in NJ
d+b−1(ā), it follows easily that there is enough

information in NJ
d+b−1(ā) to carry out the first phase of the algorithm. Let C be the neighborhood

about ā of radius d in J ′ at the end of the first phase (J ′ is as defined in the algorithm). It is fairly
easy to see that C is also the neighborhood about ā of radius d in J ′ at the end of the second phase
(intuitively, no changes take place in C in the second phase, because a useful J-local endomorphism
can only remove tuples, not add tuples.) Since J ′ at the end of the second phase is the core, it follows
that C is NJ0

d (ā). So indeed, there is enough information in NJ
d+b−1(ā) to produce NJ0

d (ā), which was
to be shown. ✷

The previous results stating the local consistency of both Funiv and Fcore do not extend to the GAV
setting, even when restricted to conjunctive queries.

Proposition 5.6. There are GAV(CQ) settings for which the corresponding transformations Funiv

and Fcore are not locally consistent.

Proof: In the GAV setting we have that Fcore(I) ∼= Funiv(I), for each source instance I. So, we may
assume in the following that F = Fcore = Funiv. Consider a data exchange setting M = (S,T,Σst),
where S = 〈E(·, ·), U(·)〉, T = 〈R(·, ·, ·)〉 and Σst contains a single dependency {E(x, y) ∧ U(z) →
R(x, y, z)}. We will show that if d = 2, then for every d′ ≥ 0 there exists an instance I of S and

elements a, b ∈ dom(I) for which N I
d′(a)

∼= N I
d′(b) and N

F(I)
d (a) 6∼= N

F(I)
d (b).

For a given d′ ≥ 0 set I to be the disjoint union of a point c under predicate U and two successor
relations S1 and S2 under predicate E of length 2d′ + 2 and 2d′ + 4 respectively. Choose a to be

the middle point of S1 and b the middle point of S2. Then N I
d′(a)

∼= N I
d′(b) but N

F(I)
d (a) 6∼= N

F(I)
d (b)

(because |N
F(I)
d (a)| < |N

F(I)
d (b)|). ✷

5.2. Local consistency under logical equivalence

We have seen that mappings that arise in the LAV setting are locally consistent, but local consistency
may fail even in some simple GAV settings. To overcome this, we introduce a notion of locality based on
logical equivalence (in particular, FO-equivalence) rather than isomorphism of neighborhoods, and we
prove that in general, the canonical universal solution transformation Funiv and the core transformation
Fcore are locally consistent under FO-equivalence. Here we make explicit use of the results in Sections
3.1 and 3.2.

Definition 5.7 (Local consistency under FO-equivalence). A mapping F : Inst(S) → Inst(T) is
locally consistent under FO-equivalence if for every m,d, k ≥ 0 there exist d′, k′ ≥ 0 such that, for
every instance I of S and tuples ā, b̄ ∈ dom(I)m, if N I

d′(ā) ≡k′ N
I
d′(b̄), then

1. ā ∈ dom(F(I))m ⇔ b̄ ∈ dom(F(I))m, and

2. N
F(I)
d (ā) ≡k N

F(I)
d (b̄).
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Then we obtain the following variation of Theorem 5.2:

Theorem 5.8 (Funiv and Fcore are locally consistent under FO-equivalence). For an arbi-
trary data exchange setting, both the canonical universal solution transformation Funiv and the core
transformation Fcore are locally consistent under FO-equivalence.

Again, this result follows from two consecutive lemmas.

Lemma 5.9. For an arbitrary data exchange setting, the canonical universal solution transformation
Funiv is locally consistent under FO-equivalence.

Proof: Let M = (S,T,Σst) be a data exchange setting. We define

ℓS = max {qr(φS) | φS(x̄) → ∃ȳψT(x̄, ȳ) ∈ Σst}

mS = max {1} ∪ {|x̄| | φS(x̄) → ∃ȳψT(x̄, ȳ) ∈ Σst}

Fix d, k ≥ 0 and m > 0. Let I be an arbitrary source instance. We denote Funiv(I) by J . For each
tuple ā of constants in dom(J)m, there is an FO formula that describes the rank-k type of NJ

d (ā),

that is, an FO formula φd,kJ,ā(x̄) over T such that, for each instance J ′ of T and tuple b̄ of constants in
dom(J ′)m,

J ′ |= φd,kJ,ā(b̄) ⇐⇒ NJ
d (ā) ≡k N

J ′

d (b̄).

It is worth mentioning that qr(φd,kJ,ā) depends only on k, d and m (and not on J and ā).

As we now show, it follows from Theorem 3.13 that there is an FO formula ψd,kJ,ā(x̄) over S such that,

for every source instance I ′ and tuple b̄ of constants in dom(Funiv(I
′))m,

I ′ |= ψd,kJ,ā(b̄) ⇐⇒ Funiv(I
′) |= φd,kJ,ā(b̄). (10)

In fact, Theorem 3.13 tells us that there exists t ≥ 0 such that, for all source instances I1 and I2, and
tuples of constants ā ∈ dom(Funiv(I1))

m and b̄ ∈ dom(Funiv(I2))
m, where m ≥ 0, if (I1, ā) ≡t (I2, b̄)

then (Funiv(I1), ā) ≡
qr(φd,k

J,ā
)

(Funiv(I2), b̄). This tells us that ψd,kJ,ā(x̄) can be chosen to be

∨

{(I′,b))|Funiv(I′)|=φd,k
J,ā

(b̄)}

τ
(I′,b̄)
t (x̄)

(recall that τ
(I′,b̄)
t (x̄) is the rank-t FO type of (I ′, b̄)). Note that qr(ψd,kJ,ā) depends only on k, d and Σst

(and not on J and ā).

Also, from Theorem 4.3, there are s, ℓ ≥ 0 such that for an arbitrary source instance I ′ and tuples b̄1
and b̄2 in dom(I ′) of the same length x ≤ mS +m,

N I′

s (b̄1) ≡ℓ N
I′

s (b̄2) implies (I ′, b̄1) ≡
qr(ψd,k

J,ā
)+ℓS+mS

(I ′, b̄2). (11)

Note that s and ℓ depend only on qr(ψd,kJ,ā), Σst, and m.

Set d′ and k′ to be s and ℓ, resp., as defined above. We show that for each source instance instance I
and tuples ā and tuple b̄ in dom(I)m, if N I

d′(ā) ≡k′ N
I
d′(b̄), then
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(a) ā ∈ dom(Funiv(I))
m ⇔ b̄ ∈ dom(Funiv(I))

m; and

(b) N
Funiv(I)
d (ā) ≡k N

Funiv(I)
d (b̄).

Let I be an arbitrary source instance. We denote Funiv(I) by J . We prove (a) first. Let ā be
(a1, . . . , am) and b̄ be (b1, . . . , bm). We show that for each i ∈ [1,m], if ai ∈ dom(J) then bi ∈ dom(J).
Assume that ai belongs to dom(J), for some i ∈ [1,m]. The presence of ai in J can be identified with
the instantiation

φS(c̄) → ∃ȳ ψT(c̄, ȳ)

of an std of the form φS(x̄) → ∃ȳ ψT(x̄, ȳ) in Σst, where there is a tuple c̄ of constant symbols that
includes ai such that φS(c̄) holds in the source instance I. The length of c̄ is at most mS. Let
xj1 , . . . , xjt be all variables in x̄ such that the value of xjp in c̄, for p ∈ [1, t], does not belong to ā.
Let φ′

S
(ȳ) be the formula ∃xj1, . . . , xjtφS(x̄). Note that qr(φ′

S
) ≤ ℓS +mS, and I |= φ′

S
(ā′) for some

tuple ā′ of elements in ā of length at most mS. Since N I
d′(ā) ≡k′ N

I
d′(b̄), it follows from remark (11)

that (I, ā) ≡ℓS+mS
(I, b̄), and thus, I |= φ′

S
(b̄′), where b̄′ is the tuple of elements in b̄ that corresponds

to ā′ in ā. It is not hard to see that this implies that bi ∈ dom(J). In the same way we can show
that for each i ∈ [1,m], if bi ∈ dom(J) then ai ∈ dom(J). This proves that ai ∈ dom(J) if and only if
bi ∈ dom(J), for each i ∈ [1,m]. Hence, ā ∈ dom(J)m if and only if b̄ ∈ dom(J)m.

Now we prove (b). As we mentioned,

N I
d′(ā) ≡k′ N

I
d′(b̄) implies (I, ā) ≡

qr(ψd,k
J,ā

)
(I, b̄).

But then,
N I
d′(ā) ≡k′ N

I
d′(b̄) implies

(

I |= ψd,kJ,ā(ā) ⇔ I |= ψd,kJ,ā(b̄)
)

.

From remark (10), we have that

N I
d′(ā) ≡k′ N

I
d′(b̄) implies

(

J |= φd,kJ,ā(ā) ⇔ J |= φd,kJ,ā(b̄)
)

,

but since it is always the case that J |= φd,kJ,ā(ā), we also have that

N I
d′(ā) ≡k′ N

I
d′(b̄) implies J |= φd,kJ,ā(b̄).

We conclude that
N I
d′(ā) ≡k′ N

I
d′(b̄) implies NJ

d (ā) ≡k N
J
d (b̄),

which was to be shown. This concludes the proof of the lemma. ✷

Lemma 5.10. For an arbitrary data exchange setting, the core transformation Fcore is locally consis-
tent under FO-equivalence.

Proof: By Lemma 5.9, the canonical universal solution transformation Funiv of a data exchange set-
ting is locally consistent under FO-equivalence. We shall show that the mapping that maps the
canonical universal solution onto the core is also locally consistent under FO-equivalence. Since the
composition of locally consistent transformations under FO-equivalence is also locally consistent under
FO-equivalence, and constants are preserved from canonical universal solutions to their cores, this is
enough to prove the lemma.

Let M = (S,T,Σst) be a data exchange setting, and fix m,d, k ≥ 0. Let I be an arbitrary source

instance. We denote Fcore(I) by J . For each tuple ā of constants in dom(J)m, let φd,kJ,ā(ā) be the FO
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formula that describes the rank-k type of NJ
d (ā). Recall that this formula has the following property:

For every tuple b̄ of constants in dom(J)m,

J |= φd,kJ,ā(b̄) ⇐⇒ NJ
d (ā) ≡k N

J
d (b̄).

It is worth mentioning that qr(φd,kJ,ā) depends only on d and k (and not on J and ā). From Lemma 3.7,

there is an FO formula ψd,kJ,ā(x̄) over T such that, for every tuple b̄ of constants in dom(Funiv(I))
m,

Funiv(I) |= ψd,kJ,ā(b̄) ⇐⇒ J |= φd,kJ,ā(b̄).

Note that qr(ψd,kJ,ā) depends only on k, d and Σst (and not on J and ā). Also, from Theorem 4.3, there

are s, ℓ ≥ 0 such that for every tuples ā and b̄ of constants in dom(Funiv(I))
m,

NFuniv(I)
s (ā) ≡ℓ N

Funiv(I)
s (b̄) implies

(

Funiv(I) |= ψd,kJ,ā(ā) ⇔ Funiv(I) |= ψd,kJ,ā(b̄)
)

.

Note that s and ℓ depend only on qr(ψr,kJ,ā), Σst, and m.

Let d′ = s and k′ = ℓ. Then

N
Funiv(I)
d′ (ā) ≡k′ N

Funiv(I)
d′ (b̄) implies

(

J |= φd,kJ,ā(ā) ⇔ J |= φd,kJ,ā(b̄)
)

.

Since it is always the case that J |= φd,kJ,ā(ā), we obtain that

N
Funiv(I)
d′ (ā) ≡k′ N

Funiv(I)
d′ (b̄) implies J |= φd,kJ,ā(b̄),

and, thus,

N
Funiv(I)
d′ (ā) ≡k′ N

Funiv(I)
d′ (b̄) implies NJ

d (ā) ≡k N
J
d (b̄),

which was to be shown. ✷

We conclude from Theorem 5.8 and Proposition 5.6 that local consistency under FO-equivalence
properly extends local consistency for transformations Funiv and Fcore. We do not know whether this
holds for arbitrary transformations.

5.3. Rewritable queries over locally consistent transformations

Here we show that queries that are rewritable over a transformation F that is locally consistent (under
FO-equivalence) are also locally source-dependent in Gaifman-sense. This strengthens the result in
Corollary 4.8, as it implies that neither the canonical universal solution, nor the core, nor any other
generated solution that has the property of being locally consistent (under FO-equivalence) supports
rewriting for arbitrary first-order queries.

Theorem 5.11. Let M = (S,T,Σst) be a data exchange setting, and Q a query over T. Assume
that Q is rewritable over a transformation F : Inst(S) → Inst(T) under M, where F is either locally
consistent, or locally consistent under FO-equivalence. Then Q is locally source-dependent in Gaifman-
sense under M.

Proof: We only prove the theorem for the case when F is locally consistent under FO-equivalence. The
proof for the other case, that is, when F is locally consistent, is analogous. Let Q′ be a first-order
rewriting of Q over F, that is, an m-ary query over T specified in FO such that for every instance
I of S, we have certainM(Q, I) = Q′(F(I)). By Theorem 4.3, there exist d, k ≥ 0 such that for
every instance J of T and tuples ā, b̄ in dom(J)m, if NJ

d (ā) ≡k N
J
d (b̄), then ā ∈ Q′(J) if and only if

b̄ ∈ Q′(J). Given that F is locally consistent under FO-equivalence, there exist d′, k′ ≥ 0 such that for
every instance I of S and tuples ā, b̄ in dom(I)m, if N I

d′(ā) ≡k′ N
I
d′(b̄), then
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1. ā ∈ dom(F(I))m ⇔ b̄ ∈ dom(F(I))m, and

2. N
F(I)
d (ā) ≡k N

F(I)
d (b̄).

From this we conclude that Q is locally source-dependent in Gaifman-sense, since for every instance
I of S and tuples ā, b̄ in dom(I)m,

N I
d′(ā) ≡k′ N

I
d′(b̄) ⇒ N

F(I)
d (ā) ≡k N

F(I)
d (b̄)

⇒ (ā ∈ Q′(F(I)) ⇔ b̄ ∈ Q′(F(I)))

⇒ (ā ∈ certainM(Q, I) ⇔ b̄ ∈ certainM(Q, I)).

This concludes the proof of the theorem. ✷

Thus, the unary query Q in the proof of Corollary 4.8 does not admit a rewriting over any data
exchange solution that is locally consistent (under FO-equivalence).

5.4. Target dependencies

Several papers have considered an extension of the data exchange setting in which dependencies exist
for the target schema as well [FKMP05, HLS11]. A solution is then required to satisfy those target
dependencies. Based on familiar classes of dependencies (cf. [BV84]), we define extensions of the data
exchange setting with tuple-generating dependencies (tgds) as well as equality-generating dependencies
(egds). The tgds over T are of the form

∀x̄(ϕT(x̄) → ∃ȳ ψT(x̄, ȳ)),

where ϕT(x̄) and ψT(x̄, ȳ) are conjunctions of FO atomic formulae. (There is also a safety condition
that every x in x̄ that actually appears in ψT(x̄, ȳ) also actually appears in ϕT(x̄).)

The egds over T are of the form
∀x̄(ϕT(x̄) → (x1 = x2)),

where ϕT(x̄) is a conjunction of atomic FO formulae, with free variables x̄, and x1, x2 are in x̄. If,
furthermore, the data exchange setting is restricted to LAV or GAV, we shall speak of LAV+tgd
settings, LAV+egd settings, etc.

A target instance J is a solution for a source instance I under a data exchange setting M =
(S,T,Σst,Σt), with stds Σst and target dependencies Σt, if (I, J) satisfies every std in Σst, and,
in addition, J satisfies all target dependencies in Σt. As before, a solution for I under M is universal
if it can be homomorphically mapped into every other solution. As opposed to the case without target
dependencies, it has been noted [FKMP05] that (universal) solutions do not always exist for source
instances in the presence of target dependencies. However, when solutions exist a particular canonical
universal solution can be constructed by using the chase (for a definition see [FKMP05]). Further-
more, the core of such canonical universal solution is also a universal solution [FKP05]. We then define
transformations Funiv and Fcore as partial mappings that are defined only in those source instances
for which a canonical universal solution exists. Furthermore, we say that these transformations are
locally consistent (under FO-equivalence) if they are locally consistent (under FO-equivalence) when
restricted to the source instances for which the transformation is well-defined.

The next proposition cover the four settings of LAV+tgd, GAV+tgd, LAV+egd, and GAV+egd. In
fact, it is not hard to see that the results in the next proposition give us an answer about local consis-
tency for all possible choices of LAV (resp., GAV) with tgds and/or egds. For example, GAV+egd+tgd
is not necessarily locally consistent, since GAV+tgd is not necessarily locally consistent.
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Proposition 5.12.

(a) The transformations Funiv and Fcore of LAV+tgd (or GAV+tgd) settings are not necessarily
locally consistent (under FO-equivalence), even if there is only one target dependency.

(b) The transformations Funiv and Fcore of GAV+egd settings are locally consistent (under FO-
equivalence).

(c) The transformations Funiv and Fcore of LAV+egd settings are not necessarily locally consistent
(under FO-equivalence), even if all of the target dependencies are key dependencies.

Proof: (a) Let M = (S,T,Σst,Σt) be a LAV+tgd (GAV+tgd) setting defined as follows: S =
{S(·, ·),M(·)}, T = {T (·, ·), N(·)}, Σst = {S(x, y) → T (x, y), M(x) → N(x)} and Σt = {T (x, y) ∧
T (y, z) → T (x, z)}. Letm = 1, d = 1 and k = 1. We will show that for these values there is no d′, k′ ≥ 0
such that for every instance I of S and for every a, b ∈ dom(I) ∩ dom(Funiv(I)), if N I

d′(a) ≡k′ N
I
d′(b)

then N
Funiv(I)
d (a) ≡k N

Funiv(I)
d (b) (resp., if N I

d′(a)
∼= N I

d′(b)) then N
Funiv(I)
d (a) ∼= N

Funiv(I)
d (b)). On the

contrary, assume that such d′, k′ exist and let I be an instance of S defined as the disjoint union of
two successor relations of length d′ + 1:

I(S) = {(ai, ai+1) | 1 ≤ i ≤ d′} ∪ {(bi, bi+1) | 1 ≤ i ≤ d′}.

Furthermore, assume that I(M) = {ad′+1}. Then N I
d′(a1) ∼= N I

d′(b1) and N I
d′(a1) ≡k′ N

I
d′(b1). In this

case the predicate T in Funiv(I) is composed by the disjoint union of two linear orders:

Funiv(I)(T ) = {(ai, aj) | 1 ≤ i < j ≤ d′ + 1} ∪ {(bi, bj) | 1 ≤ i < j ≤ d′ + 1}.

Thus, N
Funiv(I)
d (a1) 6≡k N

Funiv(I)
d (b1) since Funiv(I)(N) = {ad′+1} and ad′+1 is at distance 1 from a1.

For the same reason, N
Funiv(I)
d (a1) 6∼= N

Funiv(I)
d (b1).

We note that the previous proof also shows that the transformation Fcore of LAV+tgd (GAV+tgd)
settings is not necessarily locally consistent (under FO-equivalence), as in the setting shown above
Funiv and Fcore coincide.

(b) Let M = (S,T,Σst,Σt) be a GAV+egd setting, where Σt is a set of equality generating depen-
dencies over T, and I an instance of S. If I has a canonical universal solution J , then J is also a
canonical universal solution of I in the GAV setting M′ = (S,T,Σst). But FM′

univ is locally consistent
(under FO-equivalence) by Corollary 5.9, which proves that FM

univ is also locally consistent (under
FO-equivalence), since egds have no effect on constants.

Given that the transformations Funiv and Fcore of GAV+egd settings coincide, the previous proof also
shows that the transformation Fcore of GAV+egd settings is locally consistent (under FO-equivalence).

(c) Let M = (S,T,Σst,Σt) be a LAV+egd setting, where S = {E(·, ·), V (·)}, T = {E′(·, ·), V ′(·),
R1(·, ·), R2(·, ·)}, Σst contains the following source-to-target dependencies:

E(x, y) → E′(x, y),

V (x) → V ′(x),

E(x, y) → ∃u1∃u2∃u3(R1(x, u1) ∧R1(y, u2) ∧R2(u1, u3) ∧R2(u2, u3)),

and Σt contains the following key dependencies:

R1(x, y) ∧R1(x, z) → y = z,

R2(x, y) ∧R2(x, z) → y = z,

R2(y, x) ∧R2(z, x) → y = z.
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Let m = 1, d = 2 and k ≥ 1. We will show that for these values there is no d′, k′ ≥ 0 such that for every

instance I of S and for every a, b ∈ dom(I) ∩ dom(Funiv(I)), if N I
d′(a) ≡k′ N

I
d′(b) then N

Funiv(I)
d (a) ≡k

N
Funiv(I)
d (b) (resp., if N I

d′(a)
∼= N I

d′(b) then N
Funiv(I)
d (a) ∼= N

Funiv(I)
d (b)). On the contrary, assume that

such d′, k′ exist. Define a database instance I with domain {a, a1, . . . , ad′ , b, b1, . . . , bd′ , c} as follows:
I(V ) = {c} and I(E) contains the following tuples:

.  .  . .  .  .a1 ad′ b1ba c bd′

E E E E E E E

As shown in the figure, I(E) is a union of two paths, one containing d′ +2 elements with first element
a and last element c and another path containing d′ + 1 elements with first element b. Observe that
N I
d′(a)

∼= N I
d′(b) and N I

d′(a) ≡k′ N
I
d′(b).

The canonical universal solution Funiv(I) of I can be constructed by first applying the set of source-
to-target dependencies Σst:

.  .  . .  .  .

. . ..

. .

.  .  ..  .  . . .

.

. . . . . . ..

. . . .

a1 ad′ b1ba c bd′

E′ E′E′E′ E′ E′ E′

R1 R1 R1 R1R1R1R1R1 R1 R1 R1 R1 R1 R1

R2 R2 R2R2 R2 R2R2 R2 R2 R2 R2 R2 R2 R2

(where each element in Funiv(I) that is not in dom(I) is a fresh null value), and then applying the set
of key dependencies Σt:

.  .  . .  .  .

.

.

.

.

.  .  . .  .  .

a1 ad′ b1ba c bd′

R2

E′ E′ E′ E′

R1R1

R1

R2

R1

R1

R1R1

E′ E′ E′

In the figures shown above, the symbol • is used to represent null values. Observe that predicate
V ′ in (Funiv(I)) only contains the element c, since the only source-to-target dependency mentioning

predicate V ′ is V (x) → V ′(x). Thus, N
Funiv(I)
d (a) 6≡k N

Funiv(I)
d (b), since the distance between a and

c is at most 2 and there is no a point c′ in N
Funiv(I)
d (b) such that V ′(c′) holds. For the same reason,

N
Funiv(I)
d (a) 6∼= N

Funiv(I)
d (b)

We note that the previous proof also shows that the transformation Fcore of LAV+egd settings is not
necessarily locally consistent (under FO-equivalence) since for the instance I shown above, Funiv(I) =
Fcore(I). ✷

Thus, in most of the cases the transformations Funiv and Fcore in the presence of target dependencies
are not locally consistent (under FO-equivalence).
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6. Universal Solutions Semantics

In this section, we show that many of our results extend to an alternative semantics that is based
completely on the preferred solutions in data exchange: the universal solutions. This semantics was
proposed [FKP05]. One motivation for it is that universal solutions have a special status in data
exchange, and it is thus natural to consider them when defining the semantics of answers. A different
motivation is that sometimes the usual semantics behaves in an unexpected way. For instance, the
proposition below shows the following observation about the certain answers semantics. Suppose we
have a Boolean query Q, and at least for one instance the certain answer to Q is true. Then, to
compute the certain answer to ¬Q, one does not need to look at the data at all: it will always be false.
We shall now state this precisely, and then demonstrate in Example 6.3 that the universal solutions
semantics does not exhibit such a behavior.

Proposition 6.1. Let M = (S,T,Σst) be a data exchange setting. Then for every Boolean query Q
over T, either certainM(Q, I) = false for all instances I of S, or certainM(¬Q, I) = false for all
instances I of S.

Proof: Let Q be a Boolean query over T, and assume that there exists an instance I0 of S such that
certainM(Q, I0) = true. Then we show that for every instance I of S, certainM(¬Q, I) = false.

Let I be an instance of S and J a solution for I. Then given a solution J0 for I0, the instance J ′ defined
as J ′(R) = J(R) ∪ J0(R), for every R ∈ T, is a solution for both I and I0. Since certainM(Q, I0) =
true, Q(J ′) is true and, therefore, there is a solution of I not satisfying ¬Q. We conclude that
certainM(¬Q, I) = false. ✷

Let us take a closer look now to the concept of the certain answers of a query Q. It has been argued
[FKMP05] that the universal solutions should be the preferred solutions to the data exchange problem,
since in a precise sense they are the most general solutions and, thus, they represent the space of all
solutions. This suggests that, in the context of data exchange, the notion of certain answers on
universal solutions may be more fundamental and more meaningful than that of the certain answers.
Thus, it is proposed in [FKP05] that the certain answers on universal solutions semantics, as defined
next, should be used for query answering in data exchange, instead of certain(Q, I).

Definition 6.2 (Certain answers on universal solutions). Given a data exchange setting M =
(S,T,Σst), an m-ary query Q over T, and a source instance I, we define the certain answers on
universal solutions semantics of Q under M as

u-certainM(Q, I) =
⋂

J is a universal solution for I

Q(J).

Clearly, certainM(Q, I) ⊆ u-certainM(Q, I). The next example shows that the universal solution
semantics avoids the problem shown in the previous proposition, that is, there exists a Boolean query
Q such that u-certainM(Q, I1) = true and u-certainM(¬Q, I2) = true, for some instances I1 and I2.

Example 6.3. Given a copying data exchange setting with S = {P (·), R(·)}, T = {P ′(·), R′(·)} and
Σst = {P (x) → P ′(x), R(x) → R′(x)}, let Q be a Boolean query over T defined as ∃x (P ′(x)∧R′(x)).

Define instances I1, I2 of S as {P (a), R(a)} and {P (a), R(b)}, respectively. Then both u-certain(Q, I1)
and u-certain(¬Q, I2) are true (if J is a universal solution for I2, then there is a homomorphism
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h : J → Funiv(I2) = {P ′(a), R′(b)} and, hence, for every null value n in J it could not be the case that
P ′(n) and R′(n) are in J). ✷

Given a mapping F : Inst(S) → Inst(T), we say that the m-ary query Q over schema T is rewritable
over F under the universal solutions semantics, if there exists an m-ary query Q′ specified in FO such
that

u-certainM(Q, I) = Q′(F(I)), for every instance I of S.

While rewritings under the certain answer semantics may not exist even for queries in the class of
conjunctive queries with inequalities, rewritings under the universal solutions semantics exist for a big
class of queries that includes the latter. Indeed, every existential m-ary query Q, that is, a domain-
independent query of the form ∃ȳ φ(x̄, ȳ), where x̄ = (x1, . . . , xm) is the tuple of free variables of Q
and φ is a Boolean combination of atomic formulae, is rewritable over the core under the universal
solution semantics by the formula Q ∧

∧

i∈[1,m]C(xi) [FKP05]. This can be seen as an advantage of
the universal solution semantics against the certain answers semantics.

We say that Q is locally source-dependent under the universal solution semantics in Gaifman-sense, if
there is d ≥ 0 such that for every instance I of S and every ā, b̄ ∈ dom(I)m, whenever N I

d (ā)
∼= N I

d (b̄)
we have that

(

ā ∈ u-certainM(Q, I) ⇔ b̄ ∈ u-certainM(Q, I)
)

.

Also, we say that Q is locally source-dependent under the universal solution semantics in Hanf-sense, if
there is d ≥ 0 such that for every instances I1 and I2 of S and every ā ∈ dom(I1)

m and b̄ ∈ dom(I2)
m,

whenever (I1, ā) ⇆d (I2, b̄) we have that
(

ā ∈ u-certainM(Q, I) ⇔ b̄ ∈ u-certainM(Q, I)
)

.

We now show that the main results of Sections 3 and 4 are preserved when one considers the new
semantics. First, Theorems 3.5 and 3.11 extend to the universal solutions semantics. That is,

Theorem 6.4. Every query that is rewritable over the core under the universal solution semantics is
also rewritable over the canonical universal solution under the universal solution semantics. Further-
more, every query that is rewritable over the canonical universal solution under the universal solution
semantics is also rewritable over the source under the universal solution semantics

Proof: Exactly the same proofs of Theorems 3.5 and 3.11 apply, as they do not rely on the underlying
semantics. ✷

We can also prove the following refinement of Theorem 4.5.

Theorem 6.5. Let M = (S,T,Σst) be a data exchange setting. Every query over T that is rewritable
over the canonical universal solution, or over the core, under the universal solutions semantics, is
locally source-dependent under the universal solutions semantics in both Hanf- and Gaifman-sense.

Proof: By mimicking the proof of Theorem 4.5 in the context of the universal solution semantics. ✷

Thus, Theorem 6.5 can be used as a tool for proving non-rewritability under the new semantics
introduced in this section.

It is then natural to ask what the relationship between the notions of rewritability under the two
semantics is. We now show that the two are incompatible.
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I2I1

. . .

. . .

Figure 3: Instances I1 and I2 of Theorem 6.6.

Theorem 6.6. Let F be either Funiv or Fcore.

1. There is an FO-query Q that is rewritable over F under the usual semantics, but is not rewritable
over F under the universal solutions semantics.

2. There is an FO-query Q that is rewritable over F under the universal solutions semantics, but
is not rewritable over F under the usual semantics.

Proof: We first prove part 1. Consider the LAV (and GAV) setting M = (S,T,Σst), where S = {E},
T = {E′,D} and Σst consists of the following source-to-target dependencies

E(x, y) → E′(x, y), E(x, y) → D(x), E(x, y) → D(y).

Furthermore, define a Boolean query Q as

∃x∃y(E′(x, y) ∧ ¬D(x) ∧ ¬D(y)) → ∃u∃v(E′(u, v) ∧ ¬D(u) ∧ ¬D(v) ∧ ∀z(E′(z, u) → D(z))).

We will prove that Q is not rewritable over F, where F is Funiv or Fcore, under the universal solution
semantics. We concentrate on Funiv since for the data exchange setting M presented above the
transformations Funiv and Fcore coincide.

In view of Theorem 6.5, to prove that Q is not rewritable over F under the universal solution semantics
it is enough to show that it is not locally source-dependent, under the universal solution semantics, in
Hanf-sense. That is, we need to exhibit for every d ≥ 0, two instances I1 and I2 such that I1 ⇆d I2,
u-certainM(Q, I1) = false, but u-certainM(Q, I2) = true. Let I1 and I2 be two source instances such
that I1 is a disjoint union of a directed cycle of length 2d+2 and a successor relation of length 2d+2,
and I2 is a successor relation of length 4d+ 4 (see Figure. 3). It is not hard to see that I1 ⇆d I2.

We have to prove now that u-certainM(Q, I1) = false but u-certainM(Q, I2) = true. First we show
that u-certainM(Q, I1) = false. Let J1 be the canonical universal solution for I1. Consider an
instance J ′

1 such that J1(D) = J ′
1(D) and J ′

1(E
′) is equal to J1(E

′) plus a (directed) cycle of null
values with the same cardinality as the cycle in J1. Then J ′

1 is a universal solution for I1 since the
function sending each null value in J ′

1 to a different element in the cycle of the constants (and that
maintains adjacency) is a homomorphism from J ′

1 to J1. Moreover, given that all the null values in J ′
1

(that is, all the elements that do not belong to the interpretation of predicate D) are in the cycle, it is
not hard to see that the antecedent of Q is true but the consequent is false, and thus, Q(J ′

1) = false

and u-certainM(Q, I1) = false.
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Next, we prove that u-certainM(Q, I2) = true. Assume on the contrary that u-certainM(Q, I2) =
false. Hence, for some universal solution J ′

2 for I2 it is the case that

J ′
2 6|= ∃x∃y(E′(x, y)∧¬D(x)∧¬D(y)) → ∃u∃v(E′(u, v)∧¬D(u)∧¬D(v) ∧ ∀z(E′(z, u) → D(z))).

This implies that J ′
2 contains at least two elements a and b in the relation E′ such that none of them

belongs to the relation D, and

J ′
2 |= ∀u∀v

(

¬(¬D(u) ∧ E′(u, v) ∧ ¬D(v)) ∨ ∃z(E′(z, u) ∧ ¬D(z))
)

.

Since all constants in the canonical universal solution J2 for I2 belong to D, and each universal solution
J for I2 is an extension of I2 such that each element that belongs to J but not to I2 is a null value,
we have that a and b are nulls.

Furthermore, since

J ′
2 |= ∀u∀v

(

¬(¬D(u) ∧ E′(u, v) ∧ ¬D(v)) ∨ ∃z(E′(z, u) ∧ ¬D(z))
)

,

we have that

J ′
2 |= ∀u

(

(¬D(u) ∧ ∃v(E′(u, v) ∧ ¬D(v))) → ∃z(E′(z, u) ∧ ¬D(z))
)

.

The latter implies that there is a non-terminating backward chain in J ′
2 of elements not labeled in D

(nulls) starting from a. But J ′
2 is finite, and hence it contains at least one cycle of null values. This

shows that there is no homomorphism from J ′
2 to J2, contradicting that J ′

2 is a universal solution. We
conclude that Q is not rewritable over F under the universal solutions semantics.

At the same time, it is not hard to see that under the usual semantics, certainM(Q, I) = false for
every source instance I. Therefore, Q is rewritable over F under the usual semantics.

Now we prove part 2. It is known [FKMP05] that there is a conjunctive query Q with one inequality
that is not rewritable over F under the usual semantics. But we mentioned that existential queries
are rewritable over the core under the universal solution semantics and, hence, Q is rewritable over
the core under this semantics. Thus, from Theorem 6.4 we conclude that Q is also rewritable over the
canonical universal solution under the universal solution semantics. ✷

7. Conclusions and Future Work

We focused on query rewriting in data exchange, and showed how the two most studied data exchange
solutions to date (the canonical universal solution and the core) compare in terms of query rewriting.
From this, we developed an easy tool for proving non-existence of query rewritings over both the core
and the canonical universal solution. Unlike isolated results on rewriting that exist in the literature,
our results give easily applicable tools for studying the query rewriting problem.

Since the conference version of this paper was published [ABFL04], the issue of anomalous behavior of
query answering semantics and of alternatives semantics in data exchange has received much attention,
and different notions of query answering semantics have been proposed [LS11, HLS11, AK08]. It would
be interesting to see how these newer results relate to the results presented here. It might be also
interesting to study whether Theorem 3.5 still holds in the presence of target dependencies. The proof
given here, based on Claim 3.8, does not work when target dependencies are allowed, as in such case
the size of the block of a null in the canonical universal solution is not necessarily bounded.

48



References

[ABC99] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query answers in incon-
sistent databases. In Proceedings of the 18th ACM Symposium on Principles of Database
Systems, PODS’99, pages 68–79, 1999.
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