
Data Exchange beyond Complete Data

MARCELO ARENAS, Pontificia Universidad Católica de Chile

JORGE PÉREZ, Universidad de Chile

JUAN REUTTER, University of Edinburgh and Pontificia Universidad Católica de Chile

In the traditional data exchange setting, source instances are restricted to be complete in the sense that
every fact is either true or false in these instances. Although natural for a typical database translation
scenario, this restriction is gradually becoming an impediment to the development of a wide range of appli-
cations that need to exchange objects that admit several interpretations. In particular, we are motivated by

two specific applications that go beyond the usual data exchange scenario: exchanging incomplete informa-

tion and exchanging knowledge bases.
In this paper, we propose a general framework for data exchange that can deal with these two applica-

tions. More specifically, we address the problem of exchanging information given by representation systems,
which are essentially finite descriptions of (possibly infinite) sets of complete instances. We make use of
the classical semantics of mappings specified by sets of logical sentences to give a meaningful semantics to
the notion of exchanging representatives, from which the standard notions of solution, space of solutions,
and universal solution naturally arise. We also introduce the notion of strong representation system for a

class of mappings, that resembles the concept of strong representation system for a query language. We
show the robustness of our proposal by applying it to the two applications mentioned above: exchanging
incomplete information and exchanging knowledge bases, which are both instantiations of the exchanging
problem for representation systems. We study these two applications in detail, presenting results regarding
expressiveness, query answering and complexity of computing solutions, and also algorithms to materialize
solutions.

Categories and Subject Descriptors: H.2.5 [Heterogeneous Databases]: Data translation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Data exchange, knowledge exchange, data integration, representation

system, metadata management, schema mapping

ACM Reference Format:

Marcelo Arenas, Jorge Pérez and Juan Reutter, 2013. Data Exchange beyond Complete Data. J. ACM , ,
Article (January), 60 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

In the typical data exchange and data transformation settings, one is given a source
schema and a target schema, a schema mapping M that specifies the relationship
between the source and the target, and an instance I of the source schema. The basic

We would like to thank the anonymous referees for many helpful comments. Arenas was supported by
Fondecyt grant 1090565, Pérez by Fondecyt grant 11110404 and by VID grant U-Inicia 11/04, Universidad
de Chile, and Reutter by EPSRC grant G049165 and FET-Open project FoX.
Author’s addresses: M. Arenas, Department of Computer Science, Pontificia Universidad Católica de Chile;
Jorge Pérez, Department of Computer Science, Universidad de Chile; J. Reutter, School of Informatics, Uni-
versity of Edinburgh
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© ACM 0004-5411//01-ART $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:2 M. Arenas et al.

problem then that one wants to address is how to materialize an instance of the target
schema that reflects the source data as accurately as possible [Fagin et al. 2005a]. In
data exchange terms, the problem is how to materialize the best solution for I under
M.

In this traditional setting, source instances are restricted to be complete: every fact
in them is either true or false. Although natural for a typical data translation scenario,
this restriction is gradually becoming an impediment to a wide range of applications
that need to exchange objects that admit several interpretations. We are motivated by
two such applications: exchanging incomplete information and exchanging knowledge
bases.

— Exchanging Incomplete Information: Universal solutions have been proposed as
the preferred solutions for data exchange. Given a source instance I and a schema
mapping M, a universal solution J is a target instance that represents, in a precise
sense, all the possible solutions for I [Fagin et al. 2005a]. Even in the scenario in
which mappings are specified by source-to-target tuple-generating dependencies (st-
tgds), it has been noted that universal solutions need null values to correctly reflect
the data in the source [Fagin et al. 2005a]. Thus, the preferred solutions in this sce-
nario are incomplete databases [Imielinski and Lipski 1984]. But what if one needs to
exchange data from these target instances with null values? What is the semantics
of data exchange in this case? This issue has been raised before by Afrati et al. in the
context of query answering [Afrati et al. 2008] and also by Fagin et al. in the context
of metadata management [Fagin et al. 2009]. But the problem is much wider, as it is
not even clear what a good translation is for a source instance with null values, even
in the simplest of data exchange settings. Just as an example of the questions that
need to be answered, given a source instance with null values, is a target instance
with null values enough to correctly represent the source information?

— Exchanging Knowledge Bases. Nowadays several applications use knowledge
bases to represent their data. A prototypical example is the Semantic Web, where
repositories store information in the form of RDFS graphs [Hayes 2004] or OWL
specifications [Patel-Schneider et al. 2004]. In both cases, we have not only data but
also rules that allow one to infer new data. Thus, in a data exchange application
over the Semantic Web, one would naturally have as input a schema mapping and a
source specification consisting of data together with some rules, and then one would
like to create a target specification materializing data and creating new rules to cor-
rectly represent the knowledge in the source. This immediately raises the question
of what does it mean for a target knowledge base to be a valid translation of a source
knowledge base? Or, in data exchange terms, when does a target knowledge base can
be considered as a solution for a source knowledge base under a schema mapping?
And more importantly, what constitutes a good solution for a source knowledge base?
These questions motivate the development of a general knowledge exchange frame-
work.

In this paper, we propose a general framework for data exchange that can deal with
the above two applications. More specifically, we address the problem of exchanging
information given by representation systems, which are essentially finite descriptions
of (possibly infinite) sets of complete instances. We make use of the classical semantics
of mappings specified by sets of logical sentences to give a meaningful semantics to the
notion of exchanging representatives, thus not altering the usual semantics of schema
mappings. From this, the standard notions of solution, space of solutions, and universal
solution naturally arise. We also introduce the notion of strong representation system
for a class of mappings, which resembles the concept of strong representation system
for a query language [Imielinski and Lipski 1984; Grahne 1991]. A strong representa-

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :3

tion system for a class C of mapping is, intuitively, a closed system in the sense that for
every representative I in the system and mapping M in C, the space of solutions of I
under M can be represented in the same system.

As our first application, we study the exchange of incomplete information. One of
the main issues when managing incomplete information is that most of its associated
tasks, in particular query answering, are considerably harder compared with the clas-
sical setting of complete data [Imielinski and Lipski 1984; Grahne 1991]. Thus, it is
challenging to find representation systems that are expressive enough to deserve in-
vestigation, while admitting efficient procedures for practical data exchange purposes.

In this paper, we study the representation system given by positive conditional ta-
bles, which are essentially conditional tables [Imielinski and Lipski 1984] that do not
use negation. For positive conditional tables we show that, given a mapping specified
by st-tgds, it is possible to materialize universal solutions and compute certain an-
swers to unions of conjunctive queries in polynomial time, thus matching the complex-
ity bounds of traditional data exchange. But more importantly, we show that positive
conditional tables are expressive enough to form a strong representation system for the
class of mappings specified by st-tgds. We prove that this result is optimal in the sense
that the main features of positive conditional tables are needed to obtain a strong
representation system for this class of mappings. Moreover, we prove that instances
with null values, that have been widely used as a representation system in data ex-
change [Fagin et al. 2005a; Libkin 2006; Afrati et al. 2008; Libkin and Sirangelo 2008;
Fagin et al. 2009], do not form a strong representation system for the class of map-
pings specified by st-tgds, and thus, cannot correctly represent the space of solutions
of a source instance with null values. Finally, we show that positive conditional in-
stances can be used in schema mapping management to solve some fundamental and
problematic issues that arise when combining the composition and inverse operators
[Bernstein 2003; Bernstein and Melnik 2007].

We then apply our framework to knowledge bases. A knowledge base is composed of
explicit data, in our context a relational database, plus implicit data given in the form
of a set of logical sentences Σ. This set Σ states how to infer new data from the ex-
plicit data. The semantics of a knowledge base is given by its set of models, which are
all the instances that contain the explicit data and satisfy Σ. In this sense, a knowl-
edge base is also a representation system and, thus, can be studied in our general
framework. In fact, by applying this framework we introduce the notion of knowledge
exchange, which is the problem of materializing a target knowledge base that correctly
represents the source information. We then study several issues including the com-
plexity of recognizing knowledge-base solutions, the problem of characterizing when a
knowledge base can be considered a good solution, and the problem of computing such
knowledge-base solutions for mappings specified by full st-tgds (which are st-tgds that
do not use existential quantification). Our results are a first step towards the devel-
opment of a general framework for exchanging specifications that are more expressive
than the usual database instances. In particular, this framework can be used in the ex-
change of RDFS graphs and OWL specifications, a problem becoming more and more
important in Semantic Web applications.

We have structured the paper into three parts. We present some terminology and
our general exchange framework for representation systems in Sections 2 and 3. In
Sections 4, 5 and 6, we present our results regarding the exchange of incomplete infor-
mation. Finally, in Sections 7 and 8, we introduce and study the problem of exchanging
knowledge bases.

It is important to mention that this article is a substantially extended version of
[Arenas et al. 2011]. Besides containing the complete proofs of all the results stated
in [Arenas et al. 2011], this version includes new material. In Section 4, we present

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:4 M. Arenas et al.

a more detailed analysis of the features needed in positive conditional instances to
obtain a strong representation system for st-tgds (Proposition 4.9). Sections 4 and 5.2
give a detailed description of the chase procedures for positive conditional instances
and conditional instances, with both st-tgds and equality-generating dependencies,
which are not explained in [Arenas et al. 2011]. In this version of the paper, we have
also fixed an error in a result in [Arenas et al. 2011], where it is stated that the problem
of verifying, given a mapping M specified by st-tgds and positive conditional instances
I and J , whether J is a solution for I under M is in NP. The proof of this result was
incorrect.∗ In fact, in Theorem 5.11 in this paper we prove that this problem is ΠP

2 -
complete. Section 8 also presents substantial new material. In particular, we present
in this section algorithm OPTIMALSAFE (together with a proof of its correctness in
Theorem 8.9) to compute optimal-safe sets in the context of knowledge exchange. This
algorithm is not presented in [Arenas et al. 2011].

2. PRELIMINARIES

A schema S is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a
fixed arity ni ≥ 0. Let D be a countably infinite domain. An instance I of S assigns
to each relation symbol Ri of S a finite relation RI

i ⊆ D
ni . INST(S) denotes the set of

all instances of S. We denote by dom(I) the set of all elements that occur in any of the
relations RI

i . We say that Ri(t) is a fact of I if t ∈ RI
i . We sometimes denote an instance

by its set of facts.
Given schemas S1 and S2, a schema mapping (or just mapping) from S1 to S2 is a

subset of INST(S1) × INST(S2). We say that J is a solution for I under M whenever
(I, J) ∈ M. The set of all solutions for I under M is denoted by SOLM(I). Let S1 and
S2 be schemas with no relation symbols in common and Σ a set of first-order logic (FO)
sentences over S1 ∪ S2. A mapping M from S1 to S2 is specified by Σ, denoted by M =
(S1,S2,Σ), if for every (I, J) ∈ INST(S1)×INST(S2), we have that (I, J) ∈ M if and only
if (I, J) satisfies Σ. Notice that mappings are binary relations, and thus we can define
the composition of mappings as for the composition of binary relations. Let M12 be a
mapping from schema S1 to schema S2 and M23 a mapping from S2 to schema S3. Then
M12 ◦M23 is a mapping from S1 to S3 given by the set {(I, J) ∈ INST(S1)× INST(S3) |
there exists K such that (I,K) ∈ M12 and (K, J) ∈ M23} [Fagin et al. 2005b].

2.1. Dependencies

A relational atom over S is a formula of the form R(x̄) with R ∈ S and x̄ a tuple of (not
necessarily distinct) variables. A tuple-generating dependency (tgd) over a schema S

is a sentence of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where ϕ(x̄, ȳ) and ψ(x̄, z̄) are
conjunctions of relational atoms over S. The left-hand side of the implication in a tgd
is called the premise, and the right-hand side the conclusion. A full tgd is a tgd with
no existentially quantified variables in its conclusion. We usually omit the universal
quantifier when writing tgds.

Given disjoint schemas S1 and S2, a source-to-target tgd (st-tgd) from S1 to S2 is a
tgd in which the premise is a formula over S1 and the conclusion is a formula over S2.
As for the case of full tgds, a full st-tgd is an st-tgd with no existentially quantified
variables in its conclusion. In this paper, we assume that all sets of dependencies are
finite.

2.2. Queries and certain answers

A k-ary query Q over a schema S, with k ≥ 0, is a function that maps every instance
I ∈ INST(S) into a k-relation Q(I) ⊆ dom(I)k. In this paper, CQ is the class of con-

∗This fact was kindly brought to our attention by Pablo Barceló.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :5

junctive queries and UCQ is the class of unions of conjunctive queries. If we extend
these classes by allowing equalities or inequalities, then we use superscripts = and

6=, respectively. Thus, for example, UCQ 6= is the class of unions of conjunctive queries
with inequalities. Let M be a mapping from a schema S1 to a schema S2, I an instance
of S1 and Q a query over S2. Then certainM(Q, I) denotes the set of certain answers of
Q over I under M, that is, certainM(Q, I) =

⋂
J∈SOLM(I)Q(J).

3. SCHEMA MAPPINGS AND REPRESENTATION SYSTEMS

A (usual) database instance I is said to contain complete information as every fact
R(t) is either true or false in I. In that sense, there is a single possible interpretation
of the information in I. On the other hand, in a database instance with incomplete
information some values are unknown (which are usually represented by null values)
and, hence, one is not certain about its content. In that sense, one has several possible
interpretations for the information in such instances. In the same spirit, a knowledge
base usually has several models, which represent different ways to interpret the rules
or axioms in the knowledge base. In this section, we present the notion of representa-
tion system [Imielinski and Lipski 1984; Antova et al. 2007], which is a general way
to deal with objects that admit different interpretations, and then we show how to
extend a schema mapping to deal with representation systems. This extension is fun-
damental for our study as it allows us to extend, in a simple and natural way, the
data exchange framework proposed by Fagin et al. [Fagin et al. 2005a] to the case of
database instances with incomplete information as well as to the case of knowledge
bases.

3.1. Exchanging information given by representation systems

A representation system is composed of a set W of representatives and a function rep
that assigns a set of instances to every element in W. We assume that every represen-
tation system (W, rep) is uniform in the sense that for every W ∈ W, there exists a
relational schema S, that is called the type of W , such that rep(W) ⊆ INST(S) [Imielin-
ski and Lipski 1984]. Representation systems are used to describe sets of possible in-
terpretations in a succinct way. Typical examples of representation systems are Codd
tables, naive tables, conditional tables [Imielinski and Lipski 1984], and world-set de-
compositions [Antova et al. 2007].

Assume that M is a mapping from a schema S1 to a schema S2. Given a set X of
instances of S1, define SOLM(X) as

⋃
I∈X SOLM(I). That is, SOLM(X) is the set of

possible solutions for the instances in X . In the following definition, we use SOLM(·)
to extend the notion of solution to the case of representation systems.

Definition 3.1. Let R = (W, rep) be a representation system, M a mapping from
a schema S1 to a schema S2 and V ,W elements of W of types S1 and S2, respectively.
Then W is an R-solution for V under M if rep(W) ⊆ SOLM(rep(V)).

In other words, given a representation system R = (W, rep) and V ,W ∈ W, it holds
that W is an R-solution for V under a mapping M if for every J ∈ rep(W), there exists
I ∈ rep(V) such that (I, J) ∈ M.

Assume given a representation system R = (W, rep) and a mapping M. An element
of W can have a large number of R-solutions under M, even an infinite number in
some cases, and, thus, it is natural to ask what is a good solution for this element
under M. Next we introduce the notion of universal R-solution, which is a simple
extension of the concept of R-solution introduced in Definition 3.1.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:6 M. Arenas et al.

Definition 3.2. Let R = (W, rep) be a representation system, M a mapping from
a schema S1 to a schema S2 and V ,W elements of W of types S1 and S2, respectively.
Then W is a universal R-solution for V under M if rep(W) = SOLM(rep(V)).

This new notion captures the intuition of exactly representing the space of possible
solutions of the interpretations of an element of a representation system. Notice that
if M is a set of st-tgds and V is a complete instance, this definition boils down to the
notion of universal solutions given in [Fagin et al. 2005a]. However, in the following
sections we show that this is generally not the case when V is not a complete instance.

3.2. Strong representation systems for a class of mappings

The classical work on incomplete databases [Imielinski and Lipski 1984] defines the
notion of strong representation system for a class of queries. In fact, the classical result
in [Imielinski and Lipski 1984] about these systems states that conditional tables are
a strong representation system for relational algebra. In our context, we are interested
in defining the notion of strong representation system for a class of mappings.

Definition 3.3. Let C be a class of mappings and (W, rep) a representation system.
Then (W, rep) is a strong representation system for C if for every mapping M ∈ C from
a schema S1 to a schema S2, and for every U ∈ W of type S1, there exists W ∈ W of
type S2 such that rep(W) = SOLM(rep(U)).

In other words, a representation system R = (W, rep) is a strong representation sys-
tem for a class of mappings C if for every mapping M ∈ C from a schema S1 to a schema
S2, and for every U ∈ W of type S1, a universal R-solution for U under M can be repre-
sented in the same system (it is an element of W). Notice that if C allows for mappings
in which no solution exist for some of their instances, then any strong representation
system for C must be able to represent the empty set of instances.

4. STRONG REPRESENTATION SYSTEMS FOR ST-TGDS

As pointed out before, one of the goals of this paper is to study the problem of ex-
changing databases with incomplete information. To this end, we first borrowed from
[Imielinski and Lipski 1984; Antova et al. 2007] the notion of representation system,
which gives us a way to represent databases with incomplete information, and then we
introduced the notion of strong representation system for a class of mappings, which
essentially tell us that a particular way of representing databases with incomplete
information is appropriate for a class of mappings. In this section, we apply these con-
cepts to the widely used class of mappings specified by st-tgds and, in particular, we
answer the question of what is a good representation system for this class. Notice that
our mappings only contain instances with complete information. Thus, as opposed to
previous work [Fagin et al. 2005a; Libkin 2006; Fagin et al. 2009], we make a clear dis-
tinction between instances participating in a mapping and incomplete instances that
are used as representatives for spaces of solutions.

The starting points for our study are naive tables, which are widely used in the
data exchange context [Fagin et al. 2005a; Libkin 2006; Fagin et al. 2009], and condi-
tional tables, which are known to be an expressive way to represent databases with
incomplete information [Imielinski and Lipski 1984]. In Section 4.1, we define the rep-
resentation systems based on these two types of tables, together with a representation
system based on positive conditional tables, a fragment of conditional tables proposed
in this paper. In Section 4.2, we show that both conditional tables and positive con-
ditional tables form strong representation systems for the class of mappings given by
st-tgds, and we also show that naive tables are not expressive enough to form such a
system. Finally, in Section 4.3, we give strong evidence that positive conditional ta-

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :7

bles are the right representation system for the class of mappings specified by st-tgds,
by proving that the main features in these instances are needed to obtain a strong
representation system for this class.

4.1. Naive and conditional instances

Our database instances are constructed by using elements of a countably infinite set
D. To represent incomplete information we assume the existence of a countably infi-
nite set N of labeled nulls, disjoint with D. To differentiate from nulls we call constant
values the elements in D. Fix a relational schema S for this section. Then a naive in-
stance I of S assigns to each relation symbol R ∈ S of arity k, a finite k-ary relation
RI ⊆ (D ∪ N)k, that is, a k-ary relation including constants and null values. A con-
ditional instance extends the notion of naive instance with a local condition attached
to each fact. More precisely, an element-condition is a positive Boolean combination
(only connectives ∧ and ∨ are allowed) of formulas of the form x = y and x 6= y, with
x ∈ N and y ∈ (D ∪ N). Then a conditional instance I of S assigns to each relation
symbol R of arity k, a pair (RI , ρIR), where RI ⊆ (D ∪ N)k and ρIR is a function that
associates to each tuple t ∈ RI an element-condition ρIR(t) (the local condition of the
fact R(t) [Imielinski and Lipski 1984]).

To define the sets of interpretations associated to naive and conditional instances,
we need to introduce some terminology. Given a naive or conditional instance I, define
nulls(I) as the set of nulls mentioned in I. If I is a conditional instance, nulls(I) also
includes the nulls mentioned in the local conditions of I (conditional instances might
contain nulls that occur only in their local conditions, see, e.g., [Imielinski and Lipski
1984]). Moreover, given a null substitution ν : nulls(I) → D, define ν(RI) = {ν(t) | t ∈
RI}, where ν(t) is obtained by replacing every null n in t by its image ν(n). Finally,
given a naive instance I of a schema S, an instance I of S and a null substitution
ν : nulls(I) → D, say that ν(I) is contained in I, denoted by ν(I) ⊆ I, if ν(RI) ⊆ RI for
every R ∈ S. Then for every naive instance I, and slightly abusing notation, define the
set of representatives of I, denoted by repnaive(I), as:

{I ∈ INST(S) | there exists ν : nulls(I) → D such that ν(I) ⊆ I}. (1)

Moreover, for every conditional instance I, define the set of representatives of I, de-
noted by repcond(I), as follows. Given an element-condition ϕ and a null substitution
ν : V → D, where V is a set of nulls that contains every null value mentioned in
ϕ, notation ν |= ϕ is used to indicate that ν satisfies ϕ in the usual sense. More-
over, given a null substitution ν : nulls(I) → D and R ∈ S, define ν(RI , ρIR) as
{ν(t) | t ∈ RI and ν |= ρIR(t)}. Finally, given a conditional instance I of a schema
S, an instance I of S and a null substitution ν : nulls(I) → D, say that ν(I) is con-
tained in I, denoted by ν(I) ⊆ I, if ν(RI , ρIR) ⊆ RI for every R ∈ S. Then repcond(I) is
defined again as in (1).

We use repnaive and repcond to define two fundamental representation systems. As-
sume that Wnaive and Wcond are the set of all possible naive instances and condi-
tional instances (over all possible relational schemas), respectively. Then Rnaive =
(Wnaive, repnaive) and Rcond = (Wcond, repcond) are representation systems.

We conclude this section by introducing a fragment of the class of conditional in-
stances that will be extensively used in this paper. We say that an element-condition
is positive if it does not mention any formula of the form x 6= y. Then a conditional
instance I of S is said to be positive if for every R ∈ S and t ∈ RI , it holds that ρIR(t)
is a positive element-condition. We denote by Wpos the set of all positive conditional
instances, by reppos the restriction of function repcond to the class of positive conditional

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:8 M. Arenas et al.

instances, and by Rpos the representation system (Wpos, reppos). When it is clear from
the context, we just use rep instead of repnaive, repcond or reppos.

4.2. Building a strong representation system for st-tgds

Fagin et al. showed in [Fagin et al. 2005a] that for the class of mappings specified by
st-tgds, naive instances are enough to represent the space of solutions of any complete
database. More precisely, assuming that M = (S1,S2,Σ12), where Σ12 is a set of st-tgds,
we have that for every instance I1 of S1, there exists a naive instance I2 of S2 such
that rep(I2) = SOLM(I1). Thus, given that the target data generated by a mapping
can be used as the source data in other mappings, it is natural to ask whether the
same result holds when naive instances are considered as source instances. That is,
it is natural to ask whether for every mapping M specified by a set of st-tgds and
for every source naive instance I1, there exists a target naive instance I2 such that
rep(I2) = SOLM(rep(I1)). Unfortunately, the following proposition shows that it is not
the case.

PROPOSITION 4.1. Naive instances do not form a strong representation system for
the class of mappings specified by st-tgds.

PROOF. Let S1 = {P (·, ·)}, S2 = {T (·), R(·, ·)} and Σ12 a set consisting of the follow-
ing st-tgds:

P (x, y) → R(x, y),

P (x, x) → T (x).

Moreover, let I be a naive instance of S1 such that P I = {(n, a)}, where n is a null
value and a is a constant. Next we prove that if J is a naive instance of S2, then
rep(J) 6= SOLM(rep(I)). The intuition behind this proof is that a naive instance can-
not represent the fact that if n is given value a in some representative of I, then T (a)
holds in every solution for that representative.

For the sake of contradiction, assume that J is a naive instance over S2 such that
SOLM(rep(I)) = rep(J). We first prove that TJ = ∅. If there exists a tuple t in TJ ,
then for every J ∈ rep(J), it holds that T J 6= ∅. Let I1 be an instance of S1 such that:

P I1 = {(c, a)},

where c is an element from D such that c 6= a, and J1 be an instance of S2 such that:

RJ1 = {(c, a)},

T J1 = ∅.

Then we have that I1 ∈ rep(I), J1 ∈ SOLM(I1) and J1 6∈ rep(J) (since T J1 = ∅). But
this contradicts our initial assumption that SOLM(rep(I)) = rep(J).

Now let I2 be an instance of S1 such that:

P I2 = {(a, a)},

and J2 be an instance of S2 such that:

RJ2 = {(a, a)},

T J2 = {a}.

Given that I2 ∈ rep(I), J2 ∈ SOLM(I2) and rep(J) = SOLM(rep(I)), we conclude
that J2 ∈ rep(J). Thus, there exists a null substitution ν : nulls(J) → D such that
ν(RJ) ⊆ RJ2 and ν(TJ) ⊆ T J2 . But then given that above we prove that TJ = ∅, we

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :9

have that if J3 is the instance:

RJ3 = {(a, a)},

T J3 = ∅,

then ν(RJ) ⊆ RJ3 and ν(TJ) ⊆ T J3, and, hence, J3 ∈ rep(J). Thus, given that
rep(J) = SOLM(rep(I)), we conclude that J3 ∈ SOLM(rep(I)) and, therefore, there
exists I3 ∈ rep(I) such that J3 ∈ SOLM(I3). Given that (I3, J3) satisfies Σ12, RJ3 =
{(a, a)} and T J3 = ∅, we have that I3 is the empty instance of S1. But this leads to
a contradiction, since the empty instance of S1 is not a representative of I. This con-
cludes the proof of the proposition.

What should be added to naive instances to obtain a strong representation system for
the class of mapping given by st-tgds? A natural candidate are the local conditions
presented in Section 4.1, as shown in the following example. In this example, and in
the rest of the paper, we assume that ⊤ is an arbitrary element-condition that always
holds (for example, n = n with n ∈ N).

Example 4.2. Let M and I be as in the specification at the beginning of the proof
of Proposition 4.1, and J be a conditional instance that contains the following facts
and conditions in the relations R and T :

R(n, a) ⊤
T (n) n = a

Then it can be proved that rep(J) = SOLM(rep(I)).

In the previous example, we use only positive element-conditions to represent the
space of solutions of the source naive instance. Thus, it is natural to ask whether
this is a general phenomenon, or whether one needs to consider non-positive element-
conditions of the form x 6= y to find a strong representation system for the class of
mappings specified by st-tgds. In the following theorem, we prove that positive condi-
tions are indeed enough.

THEOREM 4.3. Positive conditional instances form a strong representation system
for the class of mappings specified by st-tgds.

In order to prove Theorem 4.3, we present an algorithm that, given a mapping
M = (S1,S2,Σ12), where Σ12 is a finite set of st-tgds, and a positive conditional in-
stance I over S1, returns a positive conditional instance J that is a universal Rcond-
solution for I under M. The algorithm is based on the chase procedure, as usual in
data exchange [Fagin et al. 2005a]. In particular, our procedure is based on the chase
algorithms presented in [Grahne 1991], and is similar to the one recently proposed
in [Grahne and Onet 2011]. Notice that, as shown in Proposition 4.1 and Example 4.2,
the straightforward application of the chase may not deliver the expected result, as
naive instances do not form a strong representation system for the class of mappings
specified by st-tgds. Thus, one needs to modify the chase procedure to take into consid-
eration the element-conditions in positive conditional instances. In particular, one has
to consider that some relationships between null values can fire the application of a
dependency, and one has to make explicit these relationships in the generated tuples
by using new element-conditions. We first show the basic ideas behind our algorithm
in an example.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:10 M. Arenas et al.

Example 4.4. Let S1 = {P (·, ·), R(·, ·)}, S2 = {S(·, ·), T (·)} and Σ12 a set consisting of
the following st-tgds:

P (x, y) → S(x, y),

R(x, x) → T (x).

Moreover, let I be a positive conditional instance given by:

P (n1, n2) ⊤
R(n1, n2) (n1 = a),

where n1 and n2 are null values and a is a constant. To create a universal Rpos-solution
J , the procedure works as follows. For the first dependency, it works as the classical
chase, that is, it adds tuple (n1, n2) to SJ with ⊤ as local condition. For the second
dependency, the procedure considers fact that this dependency should be fired when
condition n1 = n2 holds. In this case, the procedure also needs to carry along the
element-condition n1 = a. Thus, it adds the tuple (n1) to TJ , but this time the local
condition consists of the conjunction of (n1 = a) with (n1 = n2). Summing up, the
following instance is constructed:

S(n1, n2) ⊤
T (n1) (n1 = a) ∧ (n1 = n2)

It can be shown that this instance is a universal Rpos-solution for I under M.

Naturally, one can ask whether the same procedure can be defined if we now as-
sume that we start with any arbitrary (not necessarily positive) conditional instance.
It turns out that this is indeed the case, and thus the same technique can also be used
to show that conditional instances also form a strong representation system for the
class of mappings specified by st-tgds. This gives us an alternative system to deal with
incomplete information in schema mappings.

THEOREM 4.5. Conditional instances form a strong representation system for the
class of mappings specified by st-tgds.

We now move to the definition of the algorithm and its proof of correctness, from which
we obtain Theorem 4.3 and Theorem 4.5 as corollaries. The following terminology will
be extensively used in our procedure. Given a conditional instance I, the domain of I,
denoted by dom(I), is the set of all elements that occur in any of the relations of I or in
any element-condition of I. Given a tuple x̄, |x̄| denotes the length of x̄, x ∈ x̄ indicates
that variable x is mentioned in x̄, and g : x̄ → U indicates that g is a function from
the variables mentioned in x̄ to a set U . Moreover, given tuples x̄ and ȳ and a function
g : ȳ → U , x̄ ⊆ ȳ indicates that every variable occurring in x̄ is also mentioned in ȳ,
(x̄, ȳ) is a tuple obtained by putting the elements of x̄ followed by the elements of ȳ,
and g(x̄) is a tuple obtained by replacing every x ∈ x̄ by g(x). Finally, given disjoint
relational schemas S1 and S2, a CQ=-TO-CQ dependency from S1 to S2 is a formula
∀x̄∀ȳ (ϕ(x̄, ȳ) ∧ θ → ∃z̄ ψ(x̄, z̄)), where ϕ and ψ are conjunction of relational atoms over
S1 and S2, respectively, and θ is a conjunction of equalities between variables in x̄ and
ȳ. We usually omit the universal quantifiers of CQ=-TO-CQ dependencies, just as we
do with st-tgds. A mapping M = (S1,S2,Σ12) is specified by CQ=-TO-CQ dependencies
if Σ12 is a finite set of CQ=-TO-CQ dependencies from S1 to S2. Notice that every st-
tgd is a CQ=-TO-CQ dependency. Thus, we lose no generality if we define our chase
procedure for the class of CQ=-TO-CQ dependencies.

In order to guarantee the correctness of the chase procedure, we require all depen-
dencies to be in a normal form in which each variable in the premise appears exactly
once in the relational atoms. Formally, assume that λ is a CQ=-TO-CQ dependency

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :11

ϕ(x̄, ȳ) ∧ θ → ∃z̄ ψ(x̄, z̄), where ϕ, ψ are conjunctions of relational atoms and θ is a con-
junction of equalities. Then λ has the unique appearance property if every variable in
(x̄, ȳ) occurs exactly once in ϕ(x̄, ȳ). Notice that this requirement is without loss of gen-
erality, as every CQ=-TO-CQ dependency can be transformed in polynomial time into
an equivalent CQ=-TO-CQ dependency having the unique appearance property. More
specifically, assume that λ is a CQ=-TO-CQ-dependency ϕ(x̄, ȳ) ∧ θ → ∃z̄ ψ(x̄, z̄) of the
form described above. Start the transformation process with λ′ = λ. Then, for every
variable x in x̄, let n be the number of times that x occurs in ϕ. Choose n fresh variables
x1, . . ., xn and replace the i-th occurrence of x in ϕ by xi, for every i ∈ {1, . . . , n}. Next,
replace all occurrences of x in θ and ψ by the variable x1, and add to θ the formula
x2 = x1 ∧ · · · ∧ xn = x1. Repeat the procedure for every variable in ȳ. Clearly, λ′ has the
unique appearance property, and it is equivalent to λ.

We are now ready to define the chase procedure for conditional instances. The input of
this procedure is a mapping M = (S1,S2,Σ12), where Σ12 is a finite set of CQ=-TO-CQ
dependencies having the unique appearance property, and a conditional instance I of
S1. The output of this procedure is a conditional instance chaseΣ12

(I) of S2 that is a
universal Rcond-solution for I under M. The algorithm works as follows. It starts by
initializing chaseΣ12

(I) as the empty conditional instance. Then for every dependency
λ in Σ12, the algorithm includes the following elements into chaseΣ12

(I). Assume that

λ = ϕ(x̄, ȳ) ∧ θ(ū, v̄) → ∃z̄ ψ(x̄, z̄),

where (1) ϕ(x̄, ȳ) = R1(x̄1, ȳ1) ∧ · · · ∧ Rk(x̄k, ȳk), (2) x̄i ⊆ x̄ for every i ∈ {1, . . . , k}, (3)
ȳi ⊆ ȳ for every i ∈ {1, . . . , k}, (4) ψ(x̄, z̄) = T1(w̄1, z̄1) ∧ · · · ∧ Tℓ(w̄ℓ, z̄ℓ), (5) w̄j ⊆ x̄ for
every j ∈ {1, . . . , ℓ}, (6) z̄j ⊆ z̄ for every j ∈ {1, . . . , ℓ}, and (7) θ(ū, v̄) is a conjunction of
equalities such that ū ⊆ x̄ and v̄ ⊆ ȳ. Then for every variable substitution f : (x̄, ȳ) →
dom(I), the algorithm verifies whether (f(x̄i), f(ȳi)) ∈ RI

i for every i ∈ {1, . . . , k}. If
this is the case, it chooses a variable substitution g : z̄ → N such that g(z̄) is a tuple
of pairwise distinct fresh null values, and then for every j ∈ {1, . . . , ℓ}, it includes the
following elements into chaseΣ12

(I):

— If relation T
chaseΣ12

(I)
j does not contain the tuple (f(w̄j), g(z̄j)), then it is added, and

element-condition ρ
chaseΣ12

(I)
Tj

(f(w̄j), g(z̄j)) is initially defined as:

ρIR1
(f(x̄1), f(ȳ1)) ∧ · · · ∧ ρIRk

(f(x̄k), f(ȳk)) ∧ θ(f(ū), f(v̄)). (2)

— If relation T
chaseΣ12

(I)
j already contains the tuple (f(w̄j), g(z̄j)), then formula (2) is

added as a disjunct of the element-condition ρ
chaseΣ12

(I)
Tj

(f(w̄j), g(z̄j)).

It should be noticed that formula θ(f(ū), f(v̄)) in (2) could not be, strictly speaking,
an element-condition as it may contain comparisons between constant values (recall
that element-conditions allow only comparisons between constants and nulls, and be-
tween nulls). For the sake of readability, we will use θ(f(ū), f(v̄)) in (2) as it were
an element-condition, as any comparison between constant values can be easily elimi-
nated to generate an equivalent element-condition: a = a and a 6= a have to be replaced
by n = n and n 6= n, respectively, where n is a fixed null value, while a = b and a 6= b
have to be replaced by n 6= n and n = n, respectively, assuming that a and b are distinct
constants.

Next we show the correctness of the chase procedure.

THEOREM 4.6. Let M = (S1,S2,Σ12), where Σ12 is a finite set of CQ=-TO-CQ de-
pendencies having the unique appearance property, and I be a conditional instance of
S1. Then, chaseΣ12

(I) is a universal Rcond-solution for I under M.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:12 M. Arenas et al.

PROOF. In this proof, we use the following terminology. Given tuples ā = (a1, . . . , aℓ),
b̄ = (b1, . . . , bℓ) and c̄ = (ai1 , . . . , aik), where 1 ≤ ij ≤ ℓ for every j ∈ {1, . . . , k} (that is,
c̄ ⊆ ā), tuple πc̄(b̄) is defined as (bi1 , . . . , bik). Moreover, J is used to denote chaseΣ12

(I).
In what follows, we show that rep(J) = SOLM(rep(I)).

— First, we prove that rep(J) ⊆ SOLM(rep(I)). That is, we prove that for every J ∈
rep(J), there exists an instance I ∈ rep(I) such that (I, J) |= Σ12.
Let J ∈ rep(J), and assume that ν is a null substitution ν : nulls(J) → D such that
ν(J) ⊆ J . Then let I = γ(I), where γ is a substitution for I defined as follows. For
every n ∈ nulls(J), if n ∈ nulls(I), then let γ(n) = ν(n), and otherwise let γ(n) = c,
where c is an arbitrary constant (we shall later see that these nulls are not important
in the proof). Next we prove that (I, J) |= Σ12.
Consider an arbitrary dependency in Σ12 of the form ϕ(x̄, ȳ) ∧ θ(ū, v̄) → ∃z̄ ψ(x̄, z̄),
where (1) ϕ(x̄, ȳ) = R1(x̄1, ȳ1) ∧ · · · ∧ Rk(x̄k, ȳk), (2) x̄i ⊆ x̄ for every i ∈ {1, . . . , k}, (3)
ȳi ⊆ ȳ for every i ∈ {1, . . . , k}, (4) ψ(x̄, z̄) = T1(w̄1, z̄1) ∧ · · · ∧ Tℓ(w̄ℓ, z̄ℓ), (5) w̄j ⊆ x̄ for
every j ∈ {1, . . . , ℓ}, (6) z̄j ⊆ z̄ for every j ∈ {1, . . . , ℓ}, and (7) θ(ū, v̄) is a conjunction
of equalities such that ū ⊆ x̄ and v̄ ⊆ ȳ. Then assume that t̄1, t̄2 is a pair of tuples
of constants from dom(I) such that |t̄1| = |x̄|, |t̄2| = |ȳ| and I |= R1(πx̄1

(t̄1), πȳ1
(t̄2)) ∧

· · · ∧Rk(πx̄k
(t̄1), πȳk

(t̄2)) ∧ θ(πū(t̄1), πv̄(t̄2)). Next we prove that there exists a tuple t̄3
such that |t3| = |z̄| and J |= ψ(t̄1, t̄3), from which we conclude that (I, J) satisfies
dependency ϕ(x̄, ȳ) ∧ θ(ū, v̄) → ∃z̄ ψ(x̄, z̄), as t̄1, t̄2 are arbitrary tuples from dom(I).
Given that I = γ(I), there exist tuples ā, b̄ from dom(I) such that γ(ā) = t̄1, γ(b̄) =
t̄2 (recall ā may contain constants as well as nulls and, thus, γ(ā) is obtained by
replacing each null e in ā by its image γ(e), and likewise for b̄). Thus, given that
I |= R1(πx̄1

(t̄1), πȳ1
(t̄2)) ∧ · · · ∧Rk(πx̄k

(t̄1), πȳk
(t̄2)) ∧ θ(πū(t̄1), πv̄(t̄2)), we conclude that

(πx̄i
(ā), πȳi

(b̄)) ∈ RI
i and γ |= ρIRi

(πx̄i
(ā), πȳi

(b̄)) for every i ∈ {1, . . . , k}, and we also

conclude that γ |= θ(πū(ā), πv̄(b̄)). Next we prove that (ā, b̄) fires a step of the chase
procedure. Define a function f from the variables mentioned in x̄, ȳ to the values
mentioned in ā, b̄ as follows:
— For every variable x mentioned in x̄, if x occurs in x̄i (1 ≤ i ≤ k), then define f(x)

as the value assigned to variable x in the tuple πx̄i
(ā).

— For every variable y mentioned in ȳ, if y occurs in ȳi (1 ≤ i ≤ k), then define f(y)
as the value assigned to variable y in the tuple πȳi

(b̄).
It is important to notice that function f is well defined as ϕ(x̄, ȳ)∧ θ(ū, v̄) → ∃z̄ ψ(x̄, z̄)
has the unique appearance property and, thus, every variable mentioned in x̄, ȳ oc-
curs exactly once in ϕ(x̄, ȳ). Moreover, we have by definition of f that f(x̄) = ā and
f(ȳ) = b̄, from which we conclude that f(x̄i) = πx̄i

(ā) and f(ȳi) = πȳi
(b̄) for every i ∈

{1, . . . , k}. Thus, given that (πx̄i
(ā), πȳi

(b̄)) ∈ RI
i for every i ∈ {1, . . . , k}, we have that

(f(x̄i), f(ȳi)) ∈ RI
i for every i ∈ {1, . . . , k}. Hence, tuple (ā, b̄) fires a step of the chase

procedure which chooses a variable substitution g : z̄ → N such that g(z̄) is a tu-
ple of pairwise distinct fresh null values, and then includes the facts T1(f(w̄1), g(z̄1)),
. . ., Tℓ(f(w̄ℓ), g(z̄ℓ)) into J , and it includes ρIR1

(f(x̄1), f(ȳ1)) ∧ · · · ∧ ρIRk
(f(x̄k), f(ȳk)) ∧

θ(f(ū), f(v̄)) as a disjunct of each element-condition ρJTi
(f(w̄i), g(z̄i)) (1 ≤ i ≤ ℓ).

Let n̄ = g(z̄) and t̄3 = ν(n̄). Next we prove that J |= ψ(t̄1, t̄3). Given that
γ |= ρIRi

(πx̄i
(ā), πȳi

(b̄)) for every i ∈ {1, . . . , k}, we have that γ |= ρIRi
(f(x̄i), f(ȳi))

for every i ∈ {1, . . . , k} (recall that f(x̄i) = πx̄i
(ā) and f(ȳi) = πȳi

(b̄) for ev-
ery i ∈ {1, . . . , k}). Thus, given that γ and ν coincides on nulls(I) ∩ nulls(J), we
conclude that ν |= ρIRi

(f(x̄i), f(ȳi)) for every i ∈ {1, . . . , k}. Similarly, given that

γ |= θ(πū(ā), πv̄(b̄)), we conclude that γ |= θ(f(ū), f(v̄)) and, hence, ν |= θ(f(ū), f(v̄)).
Thus, given that for every i ∈ {1, . . . , ℓ}, it holds that (f(w̄i), g(z̄i)) ∈ TJ

i and

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :13

ρIR1
(f(x̄1), f(ȳ1))∧· · ·∧ρIRk

(f(x̄k), f(ȳk))∧θ(f(ū), f(v̄)) is a disjunct in ρJTi
(f(w̄i), g(z̄i)),

we conclude that (ν(f(w̄i)), ν(g(z̄i))) ∈ T
ν(J)
i for every i ∈ {1, . . . , ℓ}. Therefore, given

that for every i ∈ {1, . . . , ℓ}:

ν(f(w̄i)) = ν(πw̄i
(ā)) = πw̄i

(ν(ā)) = πw̄i
(γ(ā)) = πw̄i

(t̄1),
ν(g(z̄i)) = ν(πz̄i(n̄)) = πz̄i(ν(n̄)) = πz̄i(t̄3),

we conclude that (πw̄i
(t1), πz̄i(t3)) ∈ T J

i for every i ∈ {1, . . . , ℓ} since ν(J) ⊆ J . From
this we deduce that J |= ψ(t̄1, t̄3), which was to be shown.

— Second, we prove that SOLM(rep(I)) ⊆ rep(J). More precisely, we prove that for
every I ∈ rep(I) and J ∈ SOLM(I), there exists a null substitution ν : nulls(J) → D

such that ν(J) ⊆ J , from which we conclude that J ∈ rep(J).
Let I, J be instances of S1 and S2, respectively, such that I ∈ rep(I) and J ∈
SOLM(I). Then there exists a null substitution γ : nulls(I) → D such that γ(I) ⊆ I.
We use γ as follows to define a null substitution ν : nulls(J) → D such that ν(J) ⊆ J .
For every element n in nulls(I) ∩ nulls(J), let ν(n) = γ(n). For the rest of the null
values in nulls(J), substitution ν is defined according to the steps of the chase in
which these nulls are generated. More precisely, let λ be a dependency in Σ12 of the
form ϕ(x̄, ȳ) ∧ θ(ū, v̄) → ∃z̄ψ(x̄, z̄), where (1) ϕ(x̄, ȳ) = R1(x̄1, ȳ1) ∧ · · · ∧ Rk(x̄k, ȳk),
(2) x̄i ⊆ x̄ for every i ∈ {1, . . . , k}, (3) ȳi ⊆ ȳ for every i ∈ {1, . . . , k}, (4) ψ(x̄, z̄) =
T1(w̄1, z̄1) ∧ · · · ∧ Tℓ(w̄ℓ, z̄ℓ), (5) w̄j ⊆ x̄ for every j ∈ {1, . . . , ℓ}, (6) z̄j ⊆ z̄ for ev-
ery j ∈ {1, . . . , ℓ}, and (7) θ(ū, v̄) is a conjunction of equalities such that ū ⊆ x̄
and v̄ ⊆ ȳ. Moreover, let f : (x̄, ȳ) → dom(I) be a variable substitution such that
(f(x̄i), f(ȳi)) ∈ RI

i for every i ∈ {1, . . . , k}, and let g : z̄ → N be a variable substitution
such that g(z̄) = n̄ is a tuple of pairwise distinct fresh null values. Then the value of
null substitution ν over the nulls in n̄ is defined by considering two cases.
— If γ does not satisfy the element condition ρIR1

(f(x̄1), f(ȳ1))∧· · ·∧ρIRk
(f(x̄k), f(ȳk))∧

θ(f(ū), f(v̄)), then let ν assign to each null in n̄ an arbitrary constant (we shall
later see that these nulls are not important in the proof).

— Assume that γ satisfies condition ρIR1
(f(x̄1), f(ȳ1)) ∧ · · · ∧ ρIRk

(f(x̄k), f(ȳk)) ∧
θ(f(ū), f(v̄)). Then by definition of the chase procedure, it must be the case that
for each i ∈ {1, . . . , k}, conditional instances I contains the fact Ri(f(x̄i), f(ȳi)),
and γ satisfies ρIRi

(f(x̄i), f(ȳi)). We thus obtain that I |= ϕ(γ(f(x̄)), γ(f(ȳ))) ∧
θ(γ(f(ū)), γ(f(v̄))). Therefore, given that J ∈ SOLM(I), there must be a tuple c̄
(of constants) in dom(J) of length |z̄| such that J |= ψ(γ(f(x̄)), c̄). Then define ν so
that it maps each null n in n̄ to the corresponding element in c̄ (that is, the element
from c̄ occurring in the same position as n).

Next we prove that ν(J) ⊆ J . Assume that for a relation Tp (1 ≤ p ≤ ℓ) and a tuple

t̄ in dom(J), it holds that ν(t̄) ∈ T
ν(J)
p . We need to show that ν(t̄) ∈ T J

p . Given that

ν(t̄) ∈ T
ν(J)
p , it holds that t̄ is an element of TJ

p and ν |= ρJTp
(t̄). Thus, by the defini-

tion of the chase procedure, we have that there exists a disjunct β in ρJTp
(t̄) that was

generated in one of the steps of the chase, and such that ν |= β. Assume that this step
corresponds to a dependency λ defined as above, in which we use variable substitu-
tions f : (x̄, ȳ) → dom(I) and g : z̄ → N (satisfying the same conditions as above).
Then I contains the fact Ri(f(x̄i), f(ȳi)), for every i ∈ {1, . . . , k}. Moreover, given ν
and γ coincide in nulls(I) ∩ nulls(J) and ν |= β, we have that γ |= β. Therefore, we
have that γ satisfies ρIRi

(f(x̄i), f(ȳi)) for every i ∈ {1, . . . , k}, and that γ also satisfies
θ(f(ū), f(v̄)), from which we conclude that I |= ϕ(γ(f(x̄)), γ(f(ȳ)))∧θ(γ(f(ū)), γ(f(v̄))).
Hence, given that J ∈ SOLM(I), there must be a tuple c̄ (of constants) in dom(J) of
length |z̄| such that J |= ψ(γ(f(x̄)), c̄). But we have defined ν to map the nulls in t̄

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:14 M. Arenas et al.

to the element that corresponds to the same position in c̄, so that ν(t̄) corresponds
exactly to (πw̄p

(γ(f(x̄))), πz̄p(c̄)), from which we deduce that ν(t̄) belongs to T J
p as

J |= ψ(γ(f(x̄)), c̄). This concludes the proof of the theorem.

It turns out that when starting with a positive conditional instance I, one can com-
pletely avoid using negation in element-conditions generated by the chase procedure.
More precisely, we had argued before that to deal with the comparison between con-
stant values introduced by the chase, we need to replace conditions a = a and a 6= a by
n = n and n 6= n, respectively, where a is a constant and n is a fixed null value, while
a = b and a 6= b have to be replaced by n 6= n and n = n, respectively, assuming that
a and b are distinct constants. Thus, if we start with a positive conditional instance,
then the only inequality that may be generated by the chase is n 6= n. To avoid us-
ing this condition, the chase procedure can be modified as follows. Before adding an
element-condition θ(f(ū), f(v̄)) in a step of this procedure, we propagate the condition
(n 6= n) over θ(f(ū), f(v̄)) by replacing (n 6= n) ∧ ϕ by (n 6= n) and (n 6= n) ∨ ϕ by ϕ,
until either (n 6= n) disappears or the result of the process is (n 6= n). Once the prop-
agation process has been finished, the resulting element-condition is used if it is not
the element-condition (n 6= n). For example, if we apply this procedure to the element-
condition (n1 = n2 ∧ n 6= n), then we obtain (n 6= n) and no target tuples are generated
in this step of the chase. On the other hand, if we apply it to the element-condition
(n1 = n2 ∧n 6= n)∨ (n1 = a), then we obtain (n1 = a), and the chase uses (n1 = a) when
constructing the element-conditions of the target tuples.

From now on, we assume that we work with the modified version of the chase just
introduced when considering positive conditional instances. In this case, it is clear that
the chase introduces no inequalities in element-conditions and, thus, we have that:

PROPOSITION 4.7. Let M = (S1,S2,Σ12), where Σ12 is a finite set of CQ=-TO-CQ
dependencies, and I be a positive conditional instance of S1. Then chaseΣ12

(I) is a posi-
tive conditional instance of S2.

Theorem 4.3 now follows from the above proposition and Theorem 4.6.

4.3. Positive conditional instances are the needed fragment

In the previous section, we show that both conditional instances and positive condi-
tional instances form strong representation systems for the class of mappings speci-
fied by st-tgds. Given these alternatives, it is natural to ask whether there exist other
possible strong representation systems for this class of mappings and which one could
be considered as the right system for this class. In this section, we give strong evidence
that positive conditional instances are the right representation system for mappings
specified by st-tgds, by proving that the main features in these instances are needed
to obtain a strong representation system for this class of mappings.

In a positive conditional instance, a local condition is attached to each fact. The
distinctive features of these local conditions are the use of disjunction, equalities of
the form n1 = n2, with n1, n2 ∈ N, and equalities of the form n = c, with n ∈ N

and c ∈ D. In this section, we show that if one removes any of these features and
keeps the other two, then the resulting representation system does not form a strong
representation system for the class of mappings specified by st-tgds. More precisely,
given a positive conditional instance I of a relational schema S, we say that I is null-
comparison free if no local condition in I mentions a formula of the form n1 = n2 with
n1, n2 ∈ N, and we say that I is null-constant-comparison free if no local condition in
I mentions a formula of the form n = c with n ∈ N and c ∈ D. Moreover, we say that

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :15

I is disjunction free if for every R ∈ S and t ∈ RI , it holds that ρIR(t) does not mention
Boolean connective ∨.

THEOREM 4.8. None of the following form a strong representation system for the
class of mappings specified by st-tgds: (1) null-comparison free positive conditional in-
stances, (2) null-constant-comparison free positive conditional instances and (3) dis-
junction free positive conditional instances.

The previous theorem is a corollary of the following stronger result, that shows that
the three distinctive features of the local conditions of positive conditional instances
are indeed needed to represent the spaces of solutions of naive instances, which are in
turn needed to represent the spaces of solutions of complete instances.

PROPOSITION 4.9.

(1) There exist a mapping M = (S1,S2,Σ12), where Σ12 is a set of st-tgds, and a naive
instance I of S1 such that for every positive conditional instance J of S2 that is
null-comparison free, it holds that rep(J) 6= SOLM(rep(I)).

(2) There exist a mapping M = (S1,S2,Σ12), where Σ12 is a set of st-tgds, and a naive
instance I of S1 such that for every positive conditional instance J of S2 that is
null-constant-comparison free, it holds that rep(J) 6= SOLM(rep(I)).

(3) There exist a mapping M = (S1,S2,Σ12), where Σ12 is a set of st-tgds, and a naive
instance I of S1 such that for every positive conditional instance J of S2 that is
disjunction free, it holds that rep(J) 6= SOLM(rep(I)).

PROOF. (1) Let S1 = {P (·, ·)}, S2 = {T (·), R(·, ·)} and Σ12 a set consisting of the
following st-tgds:

P (x, y) → R(x, y),

P (x, x) → T (x).

Moreover, let I be a naive instance of S1 such that:

P I = {(n1, n2)},

where n1 and n2 are distinct null values. Next we show that M and I satisfy the
statement of the proposition.

For the sake of contradiction, assume that J is a positive conditional instance over
S2 such that J is null-comparison free and SOLM(rep(I)) = rep(J). Let c ∈ D be a con-
stant that is not mentioned in any of the element-conditions of J , and ν : nulls(J) → D

be a null substitution such that ν(n) = c for every n ∈ nulls(J).
Let t ∈ TJ . We first prove that ν 6|= ρJT (t). If ρJT (t) is equal to ⊤, then ν(t) belongs to

T J for every J ∈ rep(J). But then we conclude that SOLM(rep(I)) 6= rep(J) since if I1
is an instance of S1 such that:

P I1 = {(c1, c2)},

where c1, c2 are distinct elements from D, and J1 is an instance of S2 such that:

RJ1 = {(c1, c2)},

T J1 = ∅,

then we have that I1 ∈ rep(I), J1 ∈ SOLM(I1) and J1 6∈ rep(J) (since ν(t) 6∈ T J1).
Thus, we conclude that ρJT (t) is not equal to ⊤, from which we have that ν 6|= ρJT (t)

since ρJT (t) is a positive Boolean combination of conditions of the form x = d, where
x ∈ N and d ∈ D, and ν(x) = c with c 6= d.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:16 M. Arenas et al.

Let t ∈ RJ . Second, we prove that if ν |= ρJR (t), then ρJR (t) = ⊤ and ν(t) = (c, c). As

above, we note that if ρJT (t) is not equal to ⊤, then we have that ν 6|= ρJT (t) since ρJT (t)
is a positive boolean combination of conditions of the form x = d, where x ∈ N and
d ∈ D, and ν(x) = c with c 6= d. Thus, we have that ρJR (t) = ⊤. Now assume, for the
sake of contradiction, that ν(t) 6= (c, c). Moreover, assume without loss of generality
that ν(t) = (c1, c2), where c1, c2 ∈ D and c 6= c1. Then given that ν(n) = c for every
n ∈ nulls(J), we conclude that t = (c1, x), where x ∈ (D ∪ N). Hence, given that
ρJR (t) = ⊤, we have that for every J ∈ rep(J), relation RJ includes a tuple of the form
(c1, d), where d ∈ D. But then we conclude that SOLM(rep(I)) 6= rep(J) since if I2 is
an instance of S1 such that:

P I2 = {(c, c)},

and J2 is an instance of S2 such that:

RJ2 = {(c, c)},

T J2 = {c},

then we have that I2 ∈ rep(I), J2 ∈ SOLM(I2) and J2 6∈ rep(J) (since RJ2 does not
include a tuple of the form (c1, d) with d ∈ D). Thus, we have obtained a contradiction,
from which we conclude that ν(t) = (c, c).

Let J = ν(J). From the previous two results, we conclude that either J is the
empty instance of S2 or J is an instance of S2 such that RJ = {(c, c)} and T J = ∅.
By definition of Σ12 and given that the empty instance of S1 is not in rep(I), we con-
clude that J cannot be the empty instance of S2 (since SOLM(rep(I)) = rep(J) and
J ∈ rep(J)). Hence, we have that RJ = {(c, c)} and T J = ∅. Let I be an instance of S1

such that I ∈ rep(I) and J ∈ SOLM(I) (such an instance exists since J ∈ rep(J)
and SOLM(rep(I)) = rep(J)). Given that I ∈ rep(I) and RJ = {(c, c)}, we have
that P I = {(c, c)}. But then we deduce that c ∈ T J since (I, J) satisfies dependency
P (x, x) → T (x), which contradicts the fact that T J = ∅. This concludes the proof of part
(1) of the proposition.

(2) Let S1 = {A(·), B(·)}, S2 = {S(·), T (·)} and Σ12 a set consisting of the following
st-tgds:

A(x) ∧B(x) → S(x),

B(x) → T (x).

Moreover, let I be a naive instance over S1 such that:

AI = {a},

BI = {n},

where a ∈ D and n ∈ N. Next we show that M and I satisfy the statement of the
proposition.

For the sake of contradiction, assume that J is a positive conditional instance over
S2 that is null-constant-comparison free and SOLM(rep(I)) = rep(J). Let b ∈ D such
that a 6= b and b is not mentioned in J , I be an instance of S1 such that:

AJ = {a},

BJ = {b},

and J be instance of S2 such that:

SJ = ∅,

T J = {b}.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :17

We have that I ∈ rep(I) and J ∈ SOLM(I). Thus, given that SOLM(rep(I)) = rep(J),
we have that J ∈ rep(J). Hence, there exists a substitution ν : nulls(J) → D such that
ν(SJ , ρJS) ⊆ SJ and ν(TJ , ρJT) ⊆ T J . Let ν⋆ : nulls(J) → D be a substitution defined as
follows:

ν⋆(x) =





a ν(x) = b

b ν(x) = a

ν(x) ν(x) 6= a and ν(x) 6= b

Moreover, let J⋆ be an instance of S2 such that:

SJ⋆

= ∅,

T J⋆

= {a}.

Then given that b does not occur in J and J does not mention any condition of the
form x = c with x ∈ N and c ∈ D, we conclude that ν⋆(SJ , ρJS) ⊆ SJ⋆

and ν⋆(TJ , ρJT) ⊆

T J⋆

from the fact that ν(SJ , ρJS) ⊆ SJ and ν(TJ , ρJT) ⊆ T J . Therefore, we have that
J⋆ ∈ rep(J), from which we conclude that J⋆ ∈ SOLM(rep(I)) (since SOLM(rep(I)) =
rep(J)). Thus, there exists I⋆ ∈ rep(I) such that J⋆ ∈ SOLM(I⋆). By definition of
I, we have that BI⋆

6= ∅ and, hence, we have that BI⋆

= {a} since (I⋆, J⋆) satisfies
dependencyB(x) → T (x) and T J⋆

= {a}. Then from the fact that a ∈ AI⋆

(by definition
of I), we conclude that a must be in SJ⋆

since (I⋆, J⋆) satisfies dependency A(x) ∧
B(x) → S(x). But this contradicts the fact that SJ⋆

= ∅, and concludes the proof of part
(2) of the proposition.

(3) Let S1 = {A(·), B(·), C(·)}, S2 = {S(·), T (·)} and Σ12 a set consisting of the follow-
ing tgds:

A(x) ∧B(y) ∧C(y) → S(x),

B(x) → T (x).

Moreover, let I be a naive instance over S1 such that:

AI = {a},

BI = {n},

CI = {c1, c2},

where a, c1, c2 are pairwise distinct elements from D and n ∈ N. Next we show that M
and I satisfy the statement of the proposition.

For the sake of contradiction, assume that J is a positive conditional instance over
S2 such that J is disjunction free and SOLM(rep(I)) = rep(J). Moreover, without loss
of generality assume that for every R ∈ S2 and t ∈ RJ , it holds that either ρJR (t) = ⊤
or ρJR (t) does not mention any condition of the form x = x with x ∈ N.

It is important to notice that in the proof, we extensively use the fact that for every
R ∈ S2 and t ∈ RJ , element-condition ρJR (t) is a conjunction of conditions of the form
either x = y with x, y ∈ N or x = c with x ∈ N and c ∈ D (given that J is disjunction
free). Thus, in particular, if a substitution ν does not satisfy a conjunct in ρJR (t), then

ν 6|= ρJR (t). The following four claims will be used in the proof of the proposition.

CLAIM 4.10.

(1) There exists t ∈ TJ such that ρJT (t) = ⊤.

(2) For every J ∈ SOLM(rep(I)), it holds that T J 6= ∅.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:18 M. Arenas et al.

(3) For every J ∈ SOLM(rep(I)), if a 6∈ SJ , then there exists an element d ∈ T J such
that d 6= c1 and d 6= c2.

PROOF. The ideas in the proof of part (1) of Proposition 4.9 can be used to prove this
claim.

CLAIM 4.11. There exists a tuple t ∈ SJ such that t = a.

PROOF. For the sake of contradiction, assume for every t ∈ SJ , it holds that t 6= a.
Then let I1 be an instance of S1 such that:

AI1 = {a},

BI1 = {c1},

CI1 = {c1, c2},

and let J1 be an instance of S2 such that:

SJ1 = {a},

T J1 = {c1}.

Given that I1 ∈ rep(I), (I1, J1) |= Σ12 and SOLM(rep(I)) = rep(J), we conclude that
J1 ∈ rep(J). Thus, there exists a substitution ν1 : nulls(J) → D such that ν1(J) ⊆ J1.
Let c ∈ D be a constant such that c 6= a, c is not mentioned in J and c 6= ν1(x) for every
x ∈ nulls(J), and let ν⋆1 : nulls(J) → D be a substitution defined from ν1 as follows:

ν⋆1 (x) =

{
c ν1(x) = a

ν1(x) ν1(x) 6= a

Finally, assume that J⋆
1 = ν⋆1 (J). It is easy to see that for every R ∈ S2 and t ∈ RJ , if

ν⋆1 |= ρJR (t), then ν1 |= ρJR (t). Thus, given that T J1 = {c1}, we conclude by condition (2)
in Claim 4.10 and the definition of ν⋆1 that:

T J⋆
1 = {c1}.

Moreover, given that ν⋆1 (x) 6= a for every x ∈ nulls(J) and t 6= a for every t ∈ SJ , we
conclude that a 6∈ SJ⋆

1 . Since J⋆
1 ∈ rep(J) and SOLM(rep(I)) = rep(J), we have that

J⋆
1 ∈ SOLM(rep(I)). But this contradicts condition (3) in Claim 4.10 since a 6∈ SJ⋆

1 and
T J⋆

1 = {c1}.

Let E be a set of nulls recursive defined as follows: (1) if t ∈ TJ , t = n with n ∈ N and
ρJT (t) = ⊤, then n ∈ E; (2) if t ∈ TJ , t = n with n ∈ N, and every conjunct in ρJT (t) is of
the form x = y with x, y ∈ E, then n ∈ E. Moreover, for every c ∈ D, let E(c) be a set of
nulls recursive defined as follows: (1) if n ∈ E, then n ∈ E(c); (2) if t ∈ TJ , t = n with
n ∈ N, and every conjunct in ρJT (t) is of the form either x = y with x, y ∈ E(c) or x = c
with x ∈ E(c), then n ∈ E(c).

CLAIM 4.12.

(1) If d1, d2 are distinct elements from D, then E(d1) ∩ E(d2) = E.

(2) If c ∈ D and ν : nulls(J) → D is a substitution such that ν(TJ , ρJT) = {c}, then for
every x ∈ E(c), it holds that ν(x) = c.

PROOF. (1) By definition of E(d1) and E(d2), we have that E ⊆ E(d1) ∩ E(d2) and,
thus, we only need to show that E(d1) ∩ E(d2) ⊆ E. Next we show by induction on the
structure of E(d1) that for every z ∈ E(d1), if z ∈ E(d2), then z ∈ E.

— If z ∈ E(d1) because z ∈ E, then the property trivially holds.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :19

— Assume that there exists a tuple t ∈ TJ such that t = z, every conjunct in ρJT (t) is
of the form either x = y with x, y ∈ E(d1) or x = d1 with x ∈ E(d1). If z ∈ E(d2),
then given that there is only one tuple t′ in TJ such that t′ = z, we have that
every conjunct in ρJT (t) is of the form either x = y with x, y ∈ E(d2) or x = d2 with

x ∈ E(d2). Thus, given that d1 6= d2, we conclude that every conjunct in ρJT (t) is of
the form x = y with x, y ∈ (E(d1) ∩ E(d2)). Therefore, from the induction hypothesis
we conclude that every conjunct in ρJT (t) is of the form x = y with x, y ∈ E. Hence,
we have that z ∈ E.

(2) We first prove by induction that for every x ∈ E, it holds that ν(x) = c.

— Assume that there exists t ∈ TJ such that t = x and ρJT (t) = ⊤. Then we have that

ν(t) ∈ ν(TJ , ρJT) and, therefore, ν(x) = c since ν(TJ , ρJT) = {c}.

— Assume that there exists a tuple t ∈ TJ such that t = x, ρJT (t) 6= ⊤ and every

conjunct in ρJT (t) is of the form y = z with y, z ∈ E. Then given that ν(u) = c for every

variable umentioned in ρJT (t) (by induction hypothesis), we have that ν |= ρJT (t) and,

therefore, ν(t) ∈ ν(TJ , ρJT). Hence, we conclude that ν(x) = c since ν(TJ , ρJT) = {c}.

We now prove by induction that for every x ∈ E(c), it holds that ν(x) = c.

— If x ∈ E, then we have proved that ν(x) = c.
— Assume that there exists a tuple t ∈ TJ such that t = x, every conjunct in ρJT (t) is

of the form either y = z with y, z ∈ E(c) or y = c with y ∈ E(c). Then given that
ν(u) = c for every variable u mentioned in ρJT (t) (by induction hypothesis), we have

that ν |= ρJT (t) and, therefore, ν(t) ∈ ν(TJ , ρJT). Hence, we conclude that ν(x) = c

since ν(TJ , ρJT) = {c}.

We have shown that there exists a tuple t ∈ SJ such that t = a. Given that SJ is a
set, we conclude that such a tuple is unique. In what follows, we denote by ta the only
tuple in SJ such that ta = a.

CLAIM 4.13.

(1) No conjunct in ρJS (ta) is of the form x = d with x ∈ N and d ∈ D.

(2) If x = y is a conjunct in ρJS (ta) with x, y ∈ N, then x, y ∈ E.

PROOF. (1) For the sake of contradiction, assume that ρJS (ta) mentions a conjunct
of the form u = d with u ∈ N and d ∈ D. Moreover, assume without loss of generality
that d 6= c1. Next we show that these assumptions lead to a contradiction.

For every x ∈ nulls(J), let cx ∈ D be a fresh constant (cx is not mentioned in J ,
cx 6= a, cx 6= c1 and cx 6= cy for every y ∈ nulls(J) such that x 6= y). Moreover, let
ν2 : nulls(J) → D be a substitution defined as follows:

ν2(x) =

{
c1 x ∈ E(c1)

cx otherwise

Finally, let J2 = ν2(J). Next we show that ν2(T
J , ρJT) = {c1}. By condition (1) in Claim

4.10, we have that ν2(T
J , ρJT) 6= ∅. Thus, to show that ν2(T

J , ρJT) = {c1}, we prove that

for every e ∈ D such that e 6= c1, it holds that e 6∈ ν2(T
J , ρJT).

Assume, for the sake of contradiction, that there exists e ∈ D such that e 6= c1 and
e ∈ ν2(T

J , ρJT). Then there exists a tuple t0 ∈ TJ such that ν2 |= ρJT (t0) and either

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:20 M. Arenas et al.

t0 = e or t0 = z with z ∈ N and ν2(z) = cz = e. Given that ν2 |= ρJT (t0), we have by

definition of ν2 that every conjunct in ρJT (t0) is of the form either x = y with x, y ∈ E(c1)
or x = c1 with x ∈ E(c1). Next we obtain a contradiction by considering two cases.

— Assume that t0 = z with z ∈ N such that ν2(z) = cz = e. Then given that every
conjunct in ρJT (t0) is of the form either x = y with x, y ∈ E(c1) or x = c1 with
x ∈ E(c1), we conclude that z ∈ E(c1). But then by definition of ν2, we conclude that
ν2(z) = c1, which leads to a contradiction since c1 6= cz.

— Assume now that t0 = e. Then consider again instance J1 defined in the proof of
Claim 4.11. Given that J1 ∈ rep(J), there exists a substitution ν1 : nulls(J) → D

such that ν1(J) ⊆ J1. Since ν1(T
J , ρJT) = {c1}, we have by condition (2) in Claim

4.12 that ν1(x) = c1 for every x ∈ E(c1). Thus, given that every conjunct in ρJT (t0) is
of the form either x = y with x, y ∈ E(c1) or x = c1 with x ∈ E(c1), we conclude that
ν1 |= ρJT (t0). But then we have that e ∈ ν1(T

J , ρJT), which leads to a contradiction

since e 6= c1 and ν1(T
J , ρJT) = {c1}.

We just proved that ν2(T
J , ρJT) = {c1} and, thus, T J2 = {c1} since J2 = ν2(J). Given

that ρJT (ta) mentions a conjunct of the form u = d with u ∈ N and d ∈ D, we conclude

that ν2 6|= ρJS (ta) since ν2(x) 6= d for every x ∈ nulls(J) (recall that c1 6= d and for every
x ∈ nulls(J), it holds that cx 6= d since d is mentioned in J). Thus, given that ta is the
only tuple in TJ such that ta = a and ν2(x) 6= a for every x ∈ nulls(J), we conclude
that a 6∈ SJ2 . But this contradicts condition (3) of Claim 4.10 since J2 ∈ SOLM(rep(I))
(recall that J2 ∈ rep(J) and SOLM(rep(I)) = rep(J)), a 6∈ SJ2 and T J2 = {c1}. This
concludes the proof of condition (1) of the claim.

(2) Let ν2 be the substitution defined in (1), and J2 = ν2(J). We proved in (1) that
T J2 = {c1}. Thus, from condition (3) in Claim 4.10, we conclude that a ∈ SJ2 . Therefore,
given that ν2(x) 6= a for every x ∈ nulls(J) and SJ2 = ν2(S

J , ρJS), we conclude that

ν2 |= ρJS (ta). Hence, if x = y is a conjunct in ρJS (ta) with x, y ∈ N, then we have that
x, y ∈ E(c1) (by definition of ν2). In the same way, it can be proved that if x = y is a
conjunct in ρJS (ta) with x, y ∈ N, then x, y ∈ E(c2). Thus, given that E(c1) ∩ E(c2) = E

(see condition (1) in Claim 4.12), we conclude that if x = y is a conjunct in ρJS (ta) with
x, y ∈ N, then x, y ∈ E.

We finally have all the necessary ingredients to prove the proposition. Let d ∈ D be a
constant such that d 6= c1 and d 6= c2. Moreover, let I⋆ be an instance of S1 such that:

AI⋆

= {a},

BI⋆

= {d},

CI⋆

= {c1, c2},

and J⋆ an instance of S2 such that:

SJ⋆

= ∅,

T J⋆

= {d}.

Given that I⋆ ∈ rep(I), (I⋆, J⋆) |= Σ12 and SOLM(rep(I)) = rep(J), we conclude that
J⋆ ∈ rep(J). Thus, there exists a substitution ν⋆ : nulls(J) → D such that ν⋆(J) ⊆ J⋆.
In fact, by condition (2) of Claim 4.10 and definition of J⋆, we have that ν⋆(J) =
J⋆. Thus, we have that ν⋆(TJ , ρJT) = {d} and, therefore, ν⋆(x) = d for every x ∈ E
(by condition (2) of Claim 4.12 and given that E ⊆ E(d)). Hence, we conclude from
conditions (1) and (2) of Claim 4.13 that ν⋆ |= ρJS (ta) and, thus, we have that a ∈

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :21

ν⋆(SJ , ρJS). We infer that a ∈ SJ⋆

, which leads to a contradiction since SJ⋆

= ∅. This
concludes the proof of part (3) of the proposition.

5. DATA EXCHANGE WITH POSITIVE CONDITIONAL INSTANCES

In the data exchange setting, one is given a mapping M from a source schema to a
target schema and a source instance I, and the goal is to materialize a solution J for
I under M. This setting has been widely studied in the literature, where many im-
portant problems have been addressed in order to develop data exchange tools. In this
section, we focus on three of the most important tasks in data exchange: materializing
solutions, computing certain answers to target queries, and checking whether a target
instance is a solution for a source instance under a mapping [Fagin et al. 2005a], and
show how these tasks are performed in the presence of positive conditional instances.
In particular, we prove that the fundamental problems of materializing solutions and
computing certain answers to target queries can be solved efficiently in this extended
data exchange scenario, thus showing that positive conditional instances not only al-
low a uniform way of dealing with the exchange of incomplete information, but also
that they can be used in practice.

5.1. Materializing solutions

The most important problem in data exchange is the problem of materializing a good
solution for a given source instance. For the class of mappings specified by st-tgds, uni-
versal solutions have been identified as the preferred solutions [Fagin et al. 2005a],
and polynomial-time algorithms have been developed to compute these solutions [Fa-
gin et al. 2005a], which have allowed the construction of practical data exchange tools.
In the context of a representation system R, universal R-solutions are the preferred
option as they are able to exactly represent the spaces of solutions of the source data.
Thus, to show that positive conditional instances can be used in practice, one needs
to develop an efficient algorithm for computing universal Rpos-solutions (recall that
Rpos is the representation system consisting of positive conditional instance). In the
following theorem, we show that the chase for conditional instances developed in Sec-
tion 4 meets this requirements. It is important to notice that the schema mapping is
assumed to be fixed in the theorem, which is the usual assumption when studying the
complexity of materializing solutions in data exchange [Fagin et al. 2005a].

THEOREM 5.1. Fix a mapping M = (S1,S2,Σ12), where Σ12 is a set of st-tgds.
Then for every positive conditional instance I of S1, one can compute its universal Rpos-
solution chaseΣ12

(I) in polynomial time.

PROOF. Let M = (S1,S2,Σ12) be a mapping such that Σ12 is a set of st-tgds, and let
I be a positive conditional instance of S1. First, we note that by using the algorithm
described in section 4.2, the set Σ12 can be transformed in polynomial time into a
set Σ′

12 of dependencies in CQ=-TO-CQ, in which each dependency λ of Σ′
12 has the

unique appearance property. Consider a dependency λ in Σ′
12 of form ϕ(x̄, ȳ)∧θ(x̄′, ȳ′) →

∃z̄ ψ(x̄, z̄), and assume that x̄ is an n-ary tuple and ȳ is a m-ary tuple. It is not difficult
to see that the maximum number of chase steps that could be fired for λ is bounded by
| dom(I)|n+m, which is polynomial since we are considering Σ12 fixed. Moreover, it is
easy to see from the definition of the chase procedure presented in section 4.2 that each
step can be performed in polynomial time. It follows that chaseΣ12

(I) can be computed
in polynomial time.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:22 M. Arenas et al.

5.2. Computing certain answers

A second fundamental problem in data exchange is the task of computing certain an-
swers to target queries. In our context, this problem is defined as follows. Given a
positive conditional instance I of a schema S and a query Q over S, define Q(I) as⋂

I∈rep(I)Q(I). Moreover, given a mapping M from a schema S1 to a schema S2, a pos-

itive conditional instance I of S1 and a query Q over S2, the set of certain answers of
Q over I under M, denoted by certainM(Q, I), is defined as:

⋂

J :J is an Rpos-solution for I under M

Q(J).

It should be noticed that this definition of certain answers, in the presence of an incom-
plete source instance I, coincides with the definition in [Afrati et al. 2008] for the case
of naive instances (which is the representation system used in [Afrati et al. 2008]).
Given a data exchange setting M from a schema S1 to a schema S2, and a k-ary query
Q over S2, we consider in this section the following decision problem:

Problem: CERTAINANSWERS(M, Q)
Input: A positive conditional instance I of S1 and a k-tuple t of elements

from D

Question: Does t belong to certainM(Q, I)?

In the previous problem, we assume that the data exchange setting M and the query
Q are fixed. Thus, we are interested in the data complexity of the problem of computing
certain answers [Vardi 1982].

It was proved in [Fagin et al. 2005a] that for the class of mappings specified by
st-tgds, each universal solution of an instance I can be directly used to compute the
certain answers of any unions of conjunctive queries. In the following proposition, we
show that this result can be extended to any query if one considers universal Rpos-
solutions.

PROPOSITION 5.2. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds, I a positive
conditional instance of S1 and Q an arbitrary query over S2. Then for every universal
Rpos-solution J for I under M, it holds that certainM(Q, I) = Q(J).

PROOF. This proposition can be easily proved by considering that rep(J) =
SOLM(rep(I)), and that rep(K) ⊆ SOLM(rep(I)) for each positive conditional instance
K that is an Rpos-solution for I under M. In fact, we have that:

certainM(Q, I) =
⋂

K :K is an Rpos-solution for I under M

Q(K)

=
⋂

K :K is an Rpos-solution for I under M

(⋂

K ∈ rep(K)

Q(K)

)

=
⋂

K ∈ rep(J)

Q(K)

= Q(J)

In Theorem 5.1, we showed that if a mapping M is specified by a set of st-tgds, then
there exists a polynomial time algorithm that, given a source instance I, computes a

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :23

universal Rpos-solution J for I under M. Moreover, from the results in [Grahne 1991],
it is possible to conclude that for every union of conjunctive queries Q, there exists
a polynomial time algorithm that, given a positive conditional instance J , computes
Q(J). From these results, we conclude that:

THEOREM 5.3. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds, and Q be a
union of conjunctive queries over S2. Then CERTAINANSWERS(M, Q) can be solved in
polynomial time.

This result coincides with the upper bound in [Fagin et al. 2005a] for the problem of
computing certain answers to a union of conjunctive queries in a usual data exchange
setting, thus giving more evidence that positive conditional instances can be used in
practical data exchange tools.

We conclude this section by pointing out that Fagin et al. also showed in [Fagin
et al. 2005a] that the above polynomial-time upper bound holds if one considers unions
of conjunctive queries with at most one inequality per disjunct. Here we show the
corresponding result for our framework, which is proved by a nontrivial extension of
the techniques in [Fagin et al. 2005a] for the case of positive conditional instances.

THEOREM 5.4. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds, and Q be a
union of conjunctive queries over S2 with at most one inequality per disjunct. Then
CERTAINANSWERS(M, Q) can be solved in polynomial time.

Before presenting the proof of the theorem, we introduce the necessary terminology,
and describe the main strategy. To compute the certain answers, we use a strategy
based on some ideas from [Fagin et al. 2005a]. The main idea is as follows. Let I
be a conditional instance of schema S1, and M = (S1,S2,Σ12) be a mapping such
that Σ12 is a set of st-tgds. First, notice that, to decide whether a tuple t̄ belongs to
certainM(Q(x̄), I), we can substitute t̄ in Q, and check whether certainM(Q(t̄), I) is
true. For this reason, we shall assume from now on that Q is a Boolean query.

Now, since query Q in the statement of the theorem is a union of conjunctive queries
with at most one inequality per disjunct, we know that Q can be written as Q1 ∨ Q2,
where Q1 is a disjunction of conjunctive queries (without inequalities), and Q2 is a
disjunction of conjunctive queries containing one inequality per disjunct. Now consider
an arbitrary disjunct Q′ of Q2 of the form ∃x̄(ϕ(x̄)∧x 6= x′), where ϕ(x̄) is a conjunction
of relational atoms and variables x, x′ are mentioned in x̄. Then the negation of Q′ is
equivalent to an equality-generating dependency, which is a dependency of the form

ϕ(x̄) → x = x′.

Thus, the negation of Q2 can be represented as a set ΣQ2
of equality-generating depen-

dencies. In a nutshell, in order to compute the certain answers of Q, the idea is to chase
the universal Rpos-solution for I under M with the set ΣQ2

of equality-generating de-
pendencies, in order to obtain a conditional instance J that represents all the solutions
for I under M that satisfy ΣQ2

(and thus, falsify Q2), and then pose the query Q1 over
the conditional instance J .

Before describing the algorithm in detail, we need to formalize the notion of chas-
ing a conditional instance with a set of equality-generating dependencies. Let I be
a positive conditional instance of a schema S, and Σ be a set of equality-generating
dependencies over S. Notice that our function rep is open to the addition of new tu-
ples, and thus we cannot hope for a representation that captures exactly the set of
instances in rep(I) that satisfies Σ. However, as the following example illustrates, we
can always obtain a conditional instance that represents the minimal models of the set
{I ∈ rep(I) | I |= Σ}; that is, a conditional instance J such that (1) every I ∈ rep(I)

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:24 M. Arenas et al.

that satisfies Σ belongs to rep(J), (2) all instances in rep(J) belong to rep(I), and (3)
ν(J) |= Σ, for every valid substitution ν of J .

Example 5.5. Let S1 = {P (·, ·), R(·)}, and Σ a set that contains only the equality-
generating dependency:

P (x, y) ∧R(x) → x = y

Moreover, let I be a positive conditional instance given by:

P (n1, n2) ⊤
R(n3) ⊤

Then the conditional instance J given by:

P (n1, n2) (n1 6= n3)
P (n1, n1) (n1 = n3)
R(n3) ⊤

satisfies the conditions (1), (2) and (3) given above.

In example 5.5, we started with a positive conditional instance, and ended up with a
conditional instance with an inequality in its element-conditions. Thus, unfortunately,
this approach is not useful for querying answering purposes, as it is well known that,
in general, querying conditional tables can be intractable [Imielinski and Lipski 1984;
Grahne 1991]. Instead, we follow a different approach, and extend the definition of con-
ditional instances allowing them to contain global conditions [Grahne 1991]. It should
be noticed that we only use conditional instances with global conditions as a tool to
prove Theorem 5.4 (we are not introducing them as a new representation system to
study).

Formally, given a schema S, a conditional instance I of S with global condition is
formed by an element-condition ξI and an assignment (RI , ρIR) for every relation sym-
bol R ∈ S, where RI ⊆ (D ∪N)k if k is the arity of R, and ρIR is a function that assigns
to each tuple t ∈ RI an element-condition ρIR(t). Moreover, we also need to redefine the
function repcond that assigns to every conditional instance in Wcond a set of instances.
Let I be a conditional instance of a relational schema S with global element-condition
ξI . Given a null substitution ν : nulls(I) → D and R ∈ S, recall that we define ν(RI , ρIR)
as {ν(t) | t ∈ RI and ν |= ρIR(t)}. Then repcond(I) is the following set of instances:

{I ∈ INST(S) | there exists ν : nulls(I) → D such that ν |= ξI

and for every R ∈ S, it holds that ν(RI , ρIR) ⊆ RI}.

Example 5.6. (Example 5.5 continued) The conditional instance J with global con-
dition given by

P (n1, n2) ⊤
R(n3) ⊤

and ξJ = ((n1 6= n3)∨ (n1 = n2)), satisfies the conditions (1), (2) and (3) that state that
J captures the minimal models of I and Σ.

From Example 5.6 one can infer that, if I is a positive conditional instance and Σ is
a set of equality-generating dependencies, then it is possible to represent the minimal
models of I and Σ with a conditional instance in which all element-conditions except
for the global condition are positive. Moreover, it can also be shown that the global
condition that is needed is not arbitrary, but it is always a conjunction of conditions of

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :25

form

ψ ∨ (x = y),

where ψ is a positive Boolean combination (only connectives ∧ and ∨ are allowed) of
formulas of the form u 6= v. We shall denote these element-conditions as Horn element-
conditions. Furthermore, we say that a conditional instance I of a schema S with global
condition is Horn if (1) ξI is either ⊤ or a nonempty conjunction of Horn element-
conditions, and (2) for every R ∈ S, it holds that ρIR(t) is a positive element-condition
for every t ∈ RI (notice that positive conditional instances I are a special case of Horn
instances in which ξI = ⊤).

The reason we prefer to use Horn conditional instances, instead of arbitrary condi-
tional instances (such as the one given in Example 5.5), is made clear with the follow-
ing result (which proof can be found in the appendix):

PROPOSITION 5.7. Let I be a Horn conditional instance of a schema S, and Q a
union of conjunctive queries over S. Then Q(I) =

⋂
I∈rep(I)Q(I) can be computed in

polynomial time.

Thus, regarding query answering, Horn conditional instances are as good as positive
conditional instances. Moreover, the following proposition confirms the intuition that
Horn conditional instances are enough for representing the minimal models of a posi-
tive conditional instance I and a set of equality-generating dependencies Σ. The proof
of the proposition is in the appendix.

PROPOSITION 5.8. Let I be a positive conditional instance of a schema S, and Σ a
set of equality-generating dependencies over S. Then there is a polynomial-time proce-
dure that satisfies the following.

— If rep(I) ∩ {I ∈ INST(S) | I |= Σ} is not empty, then the procedure computes a Horn
conditional instance J , such that (1) every I ∈ rep(I) that satisfies Σ belongs to
rep(J), (2) all instances in rep(J) belong to rep(I), and (3) ν(J) |= Σ, for every valid
substitution ν of J .

— If rep(I) ∩ {I ∈ INST(S) | I |= Σ} is empty, then the procedure stops and returns
failure.

We now have all the necessary ingredients to prove Theorem 5.4.

PROOF OF THEOREM 5.4: As explained before, let Q = Q1∨Q2, where Q1 is a disjunc-
tion of conjunctive queries (without inequalities), and Q2 is a disjunction of conjunctive
queries each conjunctive query with exactly one inequality. Then the negation of Q2 is
equivalent to the conjunction of a set ΣQ2

of equality-generating dependencies. Simi-
larly as in [Fagin et al. 2005a], we can use the following algorithm to solve the certain
answers problem for a conjunctive query Q for a given positive conditional instance I
over a mapping M = (S1,S2,Σ12).

(1) Let J = chaseΣ12
(I). Then compute K so that it represents the minimal models of

J and ΣQ2
, by using the procedure in Proposition 5.8.

(2) If the procedure returns failure, then answer true.
(3) If the procedure returns an instance K, then answer true if Q1(K) = true, and

answer false if Q1(K) = false

We now show that the described procedure correctly computes the certain answer for
Q over I. We have three cases:

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:26 M. Arenas et al.

— The procedure returns failure. By Proposition 5.8 we have that there is no solution
J in rep(J) such that J |= ΣQ2

. It follows that every solution J ∈ rep(J) satisfies
Q2, and since rep(J) = SOLM(rep(I)), we obtain that certainM(Q, I) = true.

— The procedure returns K, and it is the case that Q1(K) = true. Since rep(J)
⋂
{J ∈

INST(S2) | J |= ΣQ2
} ⊆ rep(K) and J is a universal solution, we have that in every

solution K for I under M that satisfies Q2 it is the case that Q1(K) = true. Then
for every solution J of I over M, it is either the case that J 6|= ΣQ2

, or Q1(J) =
true, or in other words, either J satisfies Q2, or J satisfies Q1. We conclude that
certainM(Q, I) = true.

— The procedure returns K, and it is the case that Q1(K) = false. Then there exists an
instanceK ∈ rep(K) such thatQ1(K) = false. Then let ν be a valid substitution for K
such that ν(K) ⊆ K. Since Q1 is a monotone query, it follows that Q1(ν(K)) = false.
Furthermore, by Proposition 5.8, we have that ν(K) satisfies ΣQ2

, and thus ν(K)
does not satisfy any of the disjuncts in Q2. Since by Proposition 5.8 we know that
ν(K) is a solution for I under M, we have that certainM(Q, I) = false.

That this algorithm runs in polynomial time follows from the facts that (1) J and K
can be computed in polynomial time (Theorem 5.1 and Proposition 5.8, respectively),
(2) computing the certain answers of a union of conjunctive queries over a Horn condi-
tional instance is in polynomial time (Proposition 5.7).

5.3. Complexity of recognizing solutions

In a traditional data exchange setting, deciding whether an instance J is a solution
for I under a fixed mapping M = (S1,S2,Σ12) can be solved by checking whether
(I, J) |= Σ12, which gives a straightforward polynomial-time procedure when Σ12 is
a set of FO sentences. For the case of naive instances, positive conditional instances
and conditional instances, this problem becomes more challenging. In this section, we
study the complexity of this problem when the inputs are not necessarily complete
instances. One of the motivations of studying this problem is to establish a complexity-
theoretic separation between positive conditional instances and (general) conditional
instances. This gives evidence in favor of using positive conditional instances instead
of conditional instances as a representation system for st-tgds.

In some proofs in this section, and also in some proofs in Section 6, we use the notions
of closed-down on the left and closed-up on the right mappings [ten Cate and Kolaitis
2010]. A mapping M is said to be closed-down on the left if for every (I, J) ∈ M and
instance I ′ such that I ′ ⊆ I, it holds that (I ′, J) ∈ M, and it is said to be closed-up on
the right if for every (I, J) ∈ M and instance J ′ such that J ⊆ J ′, it holds that (I, J ′) ∈
M. Another notion that we need is closure under target homomorphisms [ten Cate and
Kolaitis 2010], which generalizes the property of being closed-up on the right. Given
instances I and J of the same schema S, a homomorphism h from I to J is a function
h : dom(I) → dom(J) such that for every relational symbol R in S and tuple t ∈ RI , it
holds that h(t) ∈ RJ . Moreover, given a set K ⊆ D, we say that a homomorphism h is
the identity over K, if h(a) = a for every element a ∈ K. A mapping M is closed under
target homomorphisms if for every (I, J) ∈ M and homomorphism h : J → J ′ such that
h is the identity over dom(I) ∩ dom(J), it holds that (I, J ′) ∈ M [ten Cate and Kolaitis
2010]. It is known that every mapping M specified by a set of st-tgds is closed-down
on the left, closed-up on the right, and closed under target homomorphisms [ten Cate
and Kolaitis 2010].

Our first result states that checking whether a positive conditional instance is an
Rpos-solution of an instance with complete information, which is represented as a naive
instance without null values, can be solved in polynomial time.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :27

PROPOSITION 5.9. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds. Then the
problem of verifying, given a naive instance I of S1 without null values and a positive
conditional instance J of S2, whether J is an Rpos-solution for I under M can be solved
in polynomial time.

PROOF. Let J be a positive conditional instance and I a naive-instance without null
values. Consider the instance ν(J) where ν is a substitution that replaces every null
value in J by a fresh constant (appearing neither in I nor in J). Notice that ν falsifies
all element conditions in J except for those that are equivalent to ⊤. Thus, every tuple
in ν(J) is a tuple of the form ν(t̄) such that t̄ has element condition equivalent to ⊤ in
J . We claim that J is an Rpos-solution of I under M if and only if (I, ν(J)) |= Σ12.

Assume first that J is an Rpos-solution of I under M. We need to prove that
(I, ν(J)) |= Σ12. Since ν(J) ∈ rep(J), we know that there exists an instanceK ∈ rep(I)
such that (K, ν(J)) |= Σ12. Now given that K ∈ rep(I), and since I is a complete in-
stance we know that I ⊆ K. Thus, we have that I ⊆ K and (K, ν(J)) |= Σ12, and then
since M = (S1,S2,Σ12) is given by st-tgds we know that it is closed-down on the left,
thus obtaining (I, ν(J)) |= Σ12. This completes this part of the proof.

Assume now that (I, ν(J)) |= Σ12. We need to prove that J is an Rpos-solution of I
under M. For this we prove that for every J ∈ rep(J) there exists K ∈ rep(I) such that
(K, J) |= Σ12. Let J ∈ rep(J), then there exists a substitution ξ such that ξ(J) ⊆ J . We
next prove that there exists an instance K ∈ rep(I) such that (K, ξ(J)) |= Σ12. Notice
that since M = (S1,S2,Σ12) is specified by st-tgds, then it is closed-up on the right,
and thus from (K, ξ(J)) |= Σ12 we obtain that (K, J) |= Σ12. Consider now a function
h with domain dom(ν(J)) such that h(ν(x)) = ξ(x). Since ν assigns a fresh constant to
every null in J (and is the identity over the constants in J) we have that function h
is well-defined. Moreover, we know that for every tuple ν(t̄) in ν(J) it holds that t̄ has
element condition equivalent to ⊤ in J , and thus, for every ν(t̄) in ν(J) the tuple ξ(t̄)
is in ξ(J). Furthermore, by the definition of h we obtain that h(ν(t̄)) = ξ(t̄) for every
ν(t̄) in ν(J), implying that h(ν(J)) ⊆ ξ(J). Thus, notice that h is a function from ν(J)
to ξ(J) that is the identity over all the constants mentioned in J (and maps the fresh
constants in ν(J) to other constants in ξ(J)). In particular, h is a function that is the
identity over all the values in I. Thus, since (I, ν(J)) |= Σ12 and since mappings given
by st-tgds are closed under target homomorphisms, we obtain that (I, h(ν(J))) |= Σ12,
and thus, (I, ξ(J)) |= Σ12.

Finally, notice that for every element condition α in J we can check in polynomial
time whether α is equivalent to ⊤ by just replacing equalities of the form n = n by
true, equalities of the form n = m by false, and then checking if the evaluation of the
resulting formula is true (see Lemma A.2 in the appendix). Thus, in order to check
whether J is an Rpos-solution of I, we first construct ν(J) in polynomial time, and
then test if (I, ν(J)) |= Σ12 which can be done in polynomial time since Σ12 is fixed.

Our next result shows that the problem considered in Proposition 5.9 becomes coNP-
complete if J is a conditional instance (instead of a positive conditional instance)

PROPOSITION 5.10. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds. Then the
problem of verifying, given a naive instance I of S1 without null values and a condi-
tional instance J of S2, whether J is an Rpos-solution for I under M is coNP-complete.

PROOF. We first show that the problem is in coNP. Thus assume that J is not an
Rcond-solution of I. Then there exists an instance K and a substitution µ such that
µ(J) ⊆ K and (I,K) 6|= Σ12. Notice that this implies that (I, µ(J)) 6|= Σ12 since, oth-
erwise, we would have that (I,K) |= Σ12 given that mappings specified by st-tgds are
closed-up on the right. Thus, in order to check that J is not an Rcond-solution of I, it is
enough to check that there exists a substitution µ such that (I, µ(J)) 6|= Σ12. Then we

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:28 M. Arenas et al.

use the substitution µ as a witness and we check (I, µ(J)) 6|= Σ12 in polynomial time
since Σ12 is fixed. We have shown that the problem of checking whether J is not an
Rcond-solution of I is in NP, which completes this part of the proof.

Now to prove that the problem is coNP-hard we use a reduction from the DNF-
TAUTOLOGY problem. This problem has as input a propositional formula ϕ of the form
D1 ∨D2 ∨ · · · ∨Dk, each Di a conjunction of literals, and the question is whether every
truth assignment satisfies ϕ. DNF-TAUTOLOGY is coNP-hard. To see this, notice that
given a formula ϕ in DNF, we can construct in polynomial time a formula ψ in CNF
which is equivalent to ¬ϕ. front of literals, and then replace formulas of the form ¬¬x
by x with x a propositional variable). Thus we have that ϕ ∈ DNF-TAUTOLOGY if and
only if ψ /∈ CNF-SAT, and CNF-SAT is a well-known NP-complete problem.

Now, consider the fixed schema mapping M = ({R(·)}, {S(·)}, {R(x) → S(x)}). Let ϕ
be a propositional formula in DNF with variables x1, x2, . . . xn. When constructing the
instances, we consider x1, . . . , xn as null values. Now, consider a complete instance I
with a single fact R(1) and the conditional instance J with a fact S(1) and an element
condition α associated to S(1) such that α is constructed from ϕ by replacing every
propositional variable x in ϕ by x = 1, and every negation of a propositional variable
¬x by x 6= 1. For example, if ϕ is the formula (x ∧ y ∧ ¬z) ∨ (¬x ∧ y ∧ z) then α is the
element condition

(x = 1 ∧ y = 1 ∧ z 6= 1) ∨ (x 6= 1 ∧ y = 1 ∧ z = 1).

We now prove that ϕ ∈ DNF-TAUTOLOGY if and only if J is an Rcond-solution of I. We
prove the contrapositive. Thus assume first that ϕ /∈ DNF-TAUTOLOGY, then there
exists a truth assignment σ such that σ 6|= ϕ. Notice that σ can be seen as a value
assignment for the nulls in J . Moreover, it holds that σ(x) = 1 if and only if σ |= x = 1,
and σ(x) = 0 is and only if σ |= x 6= 1. Therefor, σ as an assignment for J is such
that σ 6|= α. Thus, the instance σ(J) is the empty instance and then (I, σ(J)) 6|= Σ12.
Since σ(J) ∈ rep(J) we have that J is not an Rcond-solution of I. Assume now that
J is not an Rcond-solution of I. Then there exists an instance K ∈ rep(J) such that
(I,K) 6|= Σ12. Given that (I,K) 6|= Σ12 we have that the fact S(1) does not belong to
K. Moreover, from K ∈ rep(J) we know that there exists an assignment µ such that
µ(J) ⊆ K. From these two facts plus the construction of J , we obtain that there exists
an assignment µ such that µ 6|= α. Now construct a truth assignment for ϕ as follows.
For every variable x in ϕ, if µ(x) = 1 then σ(x) = 1, and if µ(x) 6= 1 then σ(x) = 0. Then
we have that σ(x) = 1 if and only if µ |= x = 1, and σ(x) = 0 if and only if µ |= x 6= 1.
Thus, since µ 6|= α we have that σ 6|= ϕ, which implies that ϕ 6∈ DNF-TAUTOLOGY.

We now consider the general problem in which both source and target instances may
be general elements in a representation system (W, rep). In Section 7.1, we also use
this formulation when considering the representation system of knowledge bases. The
general formulation is as follows. Let M be a mapping from S1 to S2, and R = (W, rep)
a representation system. We want to study the complexity of verifying, given a pair
(U ,W) of representatives, whether W is an R-solution of U under a mapping M. That
is, we consider the following decision problem:

Problem: CHECKSOLUTION(M,R)
Input: A pair of representatives U ,W ∈ W of types S1 and S2, respectively.

Question: Is W an R-solution for U under M?

The next result implies that for the representation systems Rpos and Rcond, the com-
plexity of both general problems coincides and is ΠP

2 -complete.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :29

THEOREM 5.11. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds. Then
CHECKSOLUTION(M,Rcond) and CHECKSOLUTION(M,Rpos) are both ΠP

2 -complete.†

PROOF. We first prove that CHECKSOLUTION(M,Rcond) is in ΠP
2 . Given a pair

(I,J) such that both I and J are conditional instances, we have that J is an Rcond-
solution of I if and only if for every J ∈ rep(J) there exists an instance I ∈ rep(I) such
that (I, J) |= Σ12. We show next that the above test can be done in ΠP

2 . We first prove
that the following property is in NP:

Given an instance L of schema S2, check whether

there exists an instance K ∈ rep(I) such that (K,L) |= Σ12. (3)

Notice that K ∈ rep(I) if and only if there exists a valuation ν such that ν(I) ⊆ K.
Moreover, if (K,L) |= Σ12 then (ν(I), L) |= Σ12 given that ν(I) ⊆ K and Σ12 is a
set of st-tgds (which implies that M is closed-down on the left). Thus, in order to
check property (3) we can guess the valuation ν and then in polynomial time test
whether (ν(I), L) |= Σ12. This proves that (3) is in NP. We now use (3) to show that
CHECKSOLUTION(M,Rcond) is in ΠP

2 . Thus, assume that J is not an Rcond-solution of
I. Then there exists an instance of S2, say J∗, such that J∗ ∈ rep(J) and for every I ∈
rep(I) it holds that (I, J∗) 6|= Σ12. Given that J∗ ∈ rep(J) we know that there exists a
valuation µ such that µ(J) ⊆ J∗. Moreover, if for some I∗ we have that (I∗, µ(J)) |= Σ12

then we would have that (I∗, J∗) |= Σ12, since Σ12 is a set of st-tgds and, consequently,
defines a mapping which is closed-up on the right. Thus, we conclude that for very
I ∈ rep(I) it holds that (I, µ(J)) 6|= Σ12. Thus to check that J is not an Rcond-solution
of I it is enough to guess a valuation ν and then check that for every I ∈ rep(I) it holds
that (I, ν(J)) 6|= Σ12. We know that this last check can be done with an NP oracle (by
property (3)), and then checking that J is not an Rcond-solution of I can be done in ΣP

2 .
This completes the proof that CHECKSOLUTION(M,Rcond) is in ΠP

2 .
We now show that CHECKSOLUTION(M,Rpos) is ΠP

2 -hard. To do this we use a reduc-
tion from the validity problem of quantified propositional formulas of the form ∀x̄∃ȳϕ,
where ϕ is a propositional formula in 3CNF that mentions variables from x̄ and ȳ.

Consider a schema S1 with a binary predicate T and four ternary predicate C1, C2,
C3, and C4, and a schema S2 which is a copy of S1, that is, S2 is composed of T̂ , Ĉ1,
Ĉ2, Ĉ3, and Ĉ4. Consider also the copying setting Σ12 composed of formulas T (x, y) →

T̂ (x, y) and Ci(x, y, z) → Ĉi(x, y, z) for i = 1, 2, 3, 4. Now let Φ be a formula of the form

∀x1 · · · ∀xk∃y1 · · · ∃yℓ ϕ

where ϕ a propositional formula in 3CNF. We construct an instance (I,J) of
CHECKSOLUTION(M,Rpos) by using variables x1, . . . , xk and y1, . . . , yℓ as null values
in I and J , and values 0, 1, 2, . . . , k as constants.

To encode the satisfaction of a propositional formula in 3CNF we use predicates Ci’s.
The idea is that C1 is used to encode clauses of the form (u∨v∨w), C2 to encode clauses
of the form (u∨v∨¬w), C3 to encode clauses of the form (u∨¬v∨¬w), and C4 to encode
clauses of the form (¬u ∨ ¬v ∨ ¬w), with u, v, and w propositional variables.

To construct instance J , we consider all the possible tuples composed of values 0

and 1 for all predicates Ĉ1, Ĉ2, Ĉ3, and Ĉ4, except for Ĉ1(0, 0, 0), Ĉ2(0, 0, 1), Ĉ3(0, 1, 1)

and Ĉ4(1, 1, 1). Moreover, all the tuples added to predicates Ĉi have element-condition

⊤. Notice that the only tuples that do not appear in the Ĉi predicates are those that

†In the conference version of this paper [Arenas et al. 2011], we incorrectly claimed that
CHECKSOLUTION(M,Rpos) was in NP. We thank Pablo Barceló for pointing out to us that there was an
error in the proof of that claim.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:30 M. Arenas et al.

represent assignments that falsify the clauses. Regarding predicate T̂ , for every i ∈
{1, . . . , k} we add the tuple T̂ (i, xi) to J with element-condition ⊤.

Now, to construct I we consider the element-condition α given by the expression

α : (x1 = 0 ∨ x1 = 1) ∧ (x2 = 0 ∨ x2 = 1) ∧ · · · ∧ (xk = 0 ∨ xk = 1)

Then for every clause C in ϕ we add a tuple with the propositional variables of C to the
corresponding Ci predicate in I, every tuple with element-condition α. For example, if
(x1 ∨ y3 ∨ ¬x4) and (¬y2 ∨ ¬x1 ∨ ¬x2) are clauses in ϕ, we add tuples C2(x1, y3, x4)
and C4(y2, x1, x2) to I, with element condition α. Finally, similarly as for J , for every
i ∈ {1, . . . , k} we add the tuple T (i, xi) to I with element-condition ⊤. We show next
that J is an Rpos-solution of I if and only if Φ is valid.

Assume first that J is an Rpos-solution of I. Thus we have that for everyK ∈ rep(J)
there must exists a substitution µ such that (µ(I),K) |= Σ12. Let ν be a substitution
such that ν assigns value 0 or 1 to the variables x1, . . . , xk. Then, since ν(J) ∈ rep(J)
we know that there exists a substitution µ such that (µ(I), ν(J)) |= Σ12. First no-
tice that since for every i ∈ {1, . . . , k} the tuple T (i, xi) has element-condition ⊤, then
T (i, µ(xi)) belongs to µ(I). Moreover, since the only tuple in ν(J) that has the con-

stant value i in the first component of T̂ is T̂ (i, ν(xi)) and (µ(I), ν(J)) satisfies the

dependency T (x, y) → T̂ (x, y), we obtain that µ(xi) = ν(xi) for every i ∈ {1, . . . , k}.
Then, we have that µ |= α and thus, for every tuple Ci(u, v, w) ∈ I with i = 1, 2, 3, 4,
we have that Ci(µ(u), µ(v), µ(w)) is in µ(I). Notice that in ν(J) we have all the com-

binations of values 0 and 1 for all predicates Ĉ1, Ĉ2, Ĉ3, and Ĉ4, except for Ĉ1(0, 0, 0),

Ĉ2(0, 0, 1), Ĉ3(0, 1, 1) and Ĉ4(1, 1, 1). Thus, since (µ(I), ν(J)) satisfies the dependency

Ci(x, y, z) → Ĉi(x, y, z) for i = 1, 2, 3, 4, it is easy to see that the valuation σµ of vari-
ables x1, . . . , xk and y1, . . . , yℓ induced by the substitutions µ is such that σµ |= ϕ. Thus
we have shown that for every possible assignment ν of variables x1, . . . , xk there exists
an extension µ of ν to variables y1, . . . , yℓ such that µ |= ϕ. This implies that Φ is valid.

Now assume that Φ is valid. We show next that for every possible substitution ν
there exists a substitution µ such that (µ(I), ν(J)) |= Σ12. Assume first that substi-
tution ν assigns to some null xi a value different from 0 and 1. Now consider the
substitution µ such that µ(xi) = ν(xi) for every i ∈ {1, . . . , k} and such that µ(yi) is
an arbitrary value for i ∈ {1, . . . , ℓ}. Notice that µ 6|= α and then relations C1, C2, C3

and C4 are empty in µ(I). Moreover, relation T in µ(I) is a copy of relation T̂ in ν(J),
from which we conclude that (µ(I), ν(J)) |= Σ12. Finally, assume that ν is a substitu-
tion that assigns to every null x1, . . . , xk a value in {0, 1}. Since Φ is valid, we know
that we can find a valuation µ of the variables y1, . . . , yℓ such that (ν, µ) |= ϕ. Then
consider µ′ obtained by extending µ such that µ′(xi) = ν(xi) for every i ∈ {1, . . . , k}. It
is not difficult to see that (µ′(I), ν(J)) |= Σ12. We have shown that for every possible
substitution ν there exists a substitution µ such that (µ(I), ν(J)) |= Σ12. Finally, since
st-tgds are closed-up on the right we obtain that for every possible substitution ν and
instance K such that ν(J) ⊆ K there exists a substitution µ such that (µ(I),K) |= Σ12.
This implies that J is an Rpos-solution of I, completing the proof.

It should be noticed that the lower bounds in Theorem 5.11 cannot be directly ob-
tained from the results in [Abiteboul et al. 1991], since in that paper conditional in-
stances allow global conditions that we do not consider in this proof.

6. METADATA MANAGEMENT WITH POSITIVE CONDITIONAL INSTANCES

In the previous sections, we have presented a number of results that give evidence that
positive conditional instances are appropriate for data exchange purposes. In this sec-

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :31

tion, we give a step forward in this direction, and show that they are also appropriate
for metadata management purposes.

In the data exchange setting proposed by Fagin et al in [Fagin et al. 2005a] two types
of schemas are considered: source and target schemas. In the former, only the usual
instances with complete information are allowed, while in the latter naive instances
are also considered. This setting has played a key role in the study and development of
schema mapping operators, which are of fundamental importance in metadata man-
agement [Bernstein 2003; Bernstein and Melnik 2007]. Two of the most fundamental
operations in this area are the composition and inversion of schema mappings. The
problem of composing schema mappings was solved in [Fagin et al. 2005b] for the class
of mappings specified by st-tgds. More precisely, Fagin et al. proposed in [Fagin et al.
2005b] the language of SO tgds (see Section 6.1 for a formal definition of this lan-
guage), and showed that it is the minimal class of mappings capable of expressing the
composition of mappings specified by st-tgds [Fagin et al. 2005b]. On the other hand,
the definition of an inverse operator has turned out to be a very difficult problem, and
even the definition of a good semantics for this operator has been the main topic of sev-
eral papers in the area [Fagin 2007; Fagin et al. 2007; Arenas et al. 2009a; Fagin et al.
2009; Arenas et al. 2009b]. Furthermore, people have also realized that the composi-
tion and inverse operators have to be used together in many metadata management
tasks, such as schema evolution [Bernstein and Melnik 2007]. This has brought more
complexity into the picture, as the combined use of the composition and inverse op-
erators requires that the target data generated by a mapping could be used by other
mappings as the source data. This was recognized by Fagin et al. in [Fagin et al. 2009],
where the notion of inversion proposed in [Arenas et al. 2009a] was extended to deal
with source naive instances. Nevertheless, even though the language of SO tgds has
proved to be the right language for composing mappings specified by st-tgds, none of
the proposed inverse operators has been considered together with the composition of
schema mappings, that is, for the case of SO-tgds. Indeed, SO tgds do not always ad-
mit an inverse under the notions of inversion defined in [Fagin 2007; Fagin et al. 2007;
Arenas et al. 2009a; Arenas et al. 2009b], and it is not clear whether the notion of
inversion introduced in [Fagin et al. 2009] is appropriate for the language of SO tgds.

Why does the problem of combining the composition and inverse operators seem to
be so difficult? We give strong evidence here that the reason is that naive instances
are not expressive enough to deal with the spaces of solutions of SO tgds. But, most
significantly, we show here that positive conditional instances can be used to overcome
this limitation, as we prove that they form a strong representation system for the
class of mappings given by SO tgds, and that SO tgds admit an inverse under the
notion proposed in [Arenas et al. 2009a], if positive conditional instances are allowed
in source and target schemas. It remains as an open problem to show whether this
inverse can always be specified with an SO tgd, or with an extension of this language.

6.1. Positive conditional instances form a strong representation system for SO-tgds

A fundamental tool in the study of the composition of schema mappings is the lan-
guage of second-order st-tgds (SO tgds [Fagin et al. 2005b]), that we define next. Given
schemas S1 and S2, an SO tgd from S1 to S2 is a second-order formula of the form:

∃f1 · · · ∃fℓ
(
∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)

)
,

where (1) each fi is a function symbol, (2) each ϕi is a conjunction of relational atomic
formulas of S1 and equality atoms of the form t = t′, where t and t′ are terms built
from x̄i and f1, . . ., fℓ, (3) each ψi is a conjunction of relational atomic formulas of S2

mentioning terms built from x̄i and f1, . . ., fℓ, and (4) each variable in x̄i appears in

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:32 M. Arenas et al.

some relational atomic formula of ϕi. For example, the following is an SO tgd:

∃f
(
∀x (E(x) → R(x, f(x))) ∧ ∀x (E(x) ∧ x = f(x) → T (x))

)
. (4)

A mapping M from a schema S1 to a schema S2 is said to be specified by an SO tgd σ12
from S1 to S2

‡, denoted by M = (S1,S2, σ12), if for every pair of instances I1, I2 of S1

and S2, respectively, it holds that (I1, I2) ∈ M if and only if (I1, I2) satisfies σ12 in the
usual second-order logic sense (see [Fagin et al. 2005b] for a precise definition of the
semantics of SO tgds). As our first result, we show that one can efficiently materialize
positive conditional instances for a mapping given by an SO tgd.

THEOREM 6.1. Let M = (S1,S2, σ12), where σ12 is an SO tgd. Then there exists a
polynomial-time algorithm, that given a positive conditional instance I of S1, computes
a universal Rpos-solution for I under M.

PROOF. Given a mapping M = (S1,S2, σ12), we know from [Fagin et al. 2005b] that
there exists a finite sequence of mappings M1,M2, . . . ,Mk specified by st-tgds, such
that M = M1 ◦ · · · ◦ Mk. Since M is fixed, M1, . . . ,Mk are also fixed. Now given
a positive conditional instance I, from Theorem 5.1 we know that we can construct
in polynomial time a sequence I1, . . . , Ik such that I1 is a universal Rpos-solution of
I under M1 and Ii is a universal Rpos-solution of Ii−1 under Mi for i ∈ {2, . . . , k}.
Therefore, given that M = M1 ◦ · · · ◦ Mk, we have that Ik is a positive conditional
instance that is a universal Rpos-solution for I under M.

As a corollary, we obtain that positive conditional instances are appropriate for repre-
senting the spaces of solutions of SO tgds.

COROLLARY 6.2. Positive conditional instances form a strong representation sys-
tem for the class of mappings specified by SO tgds.

An important remark about the previous results is that they follow directly from the
fact that positive conditional instances form a strong representation system for the
class of mappings specified by st-tgds. In fact, the approach used to prove Theorem 6.1
cannot be used to prove similar results within the data exchange setting proposed by
Fagin et al. [Fagin et al. 2005a], as naive instances do not form a strong representation
system for the class of mappings specified by st-tgds.

6.2. Positive conditional instances as first class citizens

In the next sections, we study the composition and inversion of schema mappings in
the presence of positive conditional instances. But before doing this, we extend the
notion of schema mapping in this section to include positive conditional instances, a
necessary step in the study of these operators.

We have defined mappings as sets of pairs of instances with complete information.
Here we do not deviate from this definition and, thus, we introduce a new terminology
to refer to mappings that also contain positive conditional instances. In general, a
positive conditional mapping, or just PC-mapping, from a schema S1 to a schema S2

is a set of pairs (I1, I2), where I1 is a positive conditional instance of S1 and I2 is a
positive conditional instance of S2. In this section, we will be mostly dealing with PC-
mappings that are generated from a usual mapping by using the notion of solution
for positive conditional instances. More precisely, given a (usual) mapping M from
a schema S1 to a schema S2, define the PC-mapping generated from M, denoted by

‡We consider a single SO tgd in this definition as this class of dependencies is closed under
conjunction (thus, a finite set of SO tgds is equivalent to a single SO tgd).

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :33

PC(M), as:

{(I1, I2) | I1, I2 are positive conditional instances of S1 and S2, respectively,

and I2 is an Rpos-solution for I1 under M}.

That is, PC(M) is obtained from M by including the pairs (I1, I2) of positive condi-
tional instances such that I2 is a solution for I1 under M, according to the notion of
solution for instances with incomplete information introduced in this paper.

Given a mapping M, PC(M) only includes positive conditional instances in the
source and target schemas. We have decided to exclude the usual instances with com-
plete information from PC(M), as if M is specified by a set of st-tgds (and, more gener-
ally, by an SO tgd), then the relationship between the usual instances according to M
is captured by PC(M). More precisely, an instance I of a schema S can be considered
as a positive conditional instance without null values and with the element-condition
⊤ associated to every fact. Then it is possible to prove the following.

PROPOSITION 6.3. Let M be a mapping from a schema S1 to a schema S2 that is
closed-down on the left and closed-up on the right. Then for every pair of instances I1,
I2 of S1 and S2, respectively, it holds that (I1, I2) ∈ M iff (I1, I2) ∈ PC(M).

Recall that the notions of closed-down on the left mapping and closed-up on the right
mapping were defined in Section 5.3. It is important to notice that every mapping spec-
ified by a set of st-tgds satisfies these conditions, as well as every mapping specified by
an SO tgd.

PROOF OF PROPOSITION 6.3: Assume that M is a closed-down on the left and closed-
up on the right mapping from a schema S1 to a schema S2, and let I1, I2 be a pair
of instances of S1 and S2, respectively. Next we show that (I1, I2) ∈ M if and only if
(I1, I2) ∈ PC(M).

(⇒) Assume that (I1, I2) ∈ M. Given that M is closed-up on the right, we have
that for every instance I ′2 of S2 such that I2 ⊆ I ′2, it holds that (I1, I

′
2) ∈ M. Thus,

we conclude by definition of I2 that reppos(I2) ⊆ SOLM(I1) and, therefore, reppos(I2) ⊆
SOLM(reppos(I1)) since I1 ∈ reppos(I1). Hence, we have that I2 is an Rpos-solution of I1
under M and, thus, (I1, I2) ∈ PC(M).

(⇐) Assume that (I1, I2) ∈ PC(M). Then we have that I2 is an Rpos-solution of I1
under M and, thus, reppos(I2) ⊆ SOLM(reppos(I1)). Given that I2 ∈ reppos(I2), we con-
clude that I2 ∈ SOLM(reppos(I1)). Hence, there exists an instance I ′1 of S1 such that
I ′1 ∈ reppos(I1) and (I ′1, I2) ∈ M. But then by definition of I1, we have that I1 ⊆ I ′1, from
which we conclude that (I1, I2) ∈ M since M is closed-down on the left.

6.3. Composition in the presence of positive conditional instances

In [Fagin et al. 2005b], SO tgds were introduced to deal with the problem of composing
schema mappings. In fact, it was proved in [Fagin et al. 2005b] that (1) the composition
of a finite number of mappings specified by st-tgds can always be specified by an SO
tgd, (2) that SO tgds are closed under composition, and (3) that every SO tgd speci-
fies the composition of a finite number of mappings specified by st-tgds. Thus, SO tgds
are a natural candidate to study the composition of schema mappings including posi-
tive conditional instances. We confirm this intuition by showing that SO tgds satisfy
the conditions (1), (2) and (3) for the case of PC-mappings. Notice that for mappings
M12 and M23, PC(M12) and PC(M23) are binary relations and, thus, the composition
PC(M12) ◦ PC(M23) is defined as the usual composition of binary relations. More pre-
cisely, PC(M12)◦PC(M23) is the set of all pairs of positive conditional instances (I1, I3)

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:34 M. Arenas et al.

for which there exists a positive conditional instance I2 such that (I1, I2) ∈ PC(M12)
and (I2, I3) ∈ PC(M23). In this study, the following lemma is the key ingredient.

LEMMA 6.4. Let M12 = (S1,S2, σ12) and M23 = (S2,S3, σ23), where σ12 and σ23 are
SO tgds. Then PC(M12 ◦M23) = PC(M12) ◦ PC(M23).

PROOF. Assume that M12 = (S1,S2, σ12) and M23 = (S2,S3, σ23), where σ12 y σ23
are SO tgds. Next we show that PC(M12 ◦M23) = PC(M12) ◦ PC(M23).

(⇐) Assume that (I1, I3) ∈ PC(M12) ◦ PC(M23). Then there exists a positive condi-
tional instance I2 of S2 such that (I1, I2) ∈ PC(M12) and (I2, I3) ∈ PC(M23). Thus, we
have that:

reppos(I2) ⊆ SOLM12
(reppos(I1)), (5)

reppos(I3) ⊆ SOLM13
(reppos(I2)). (6)

Next we show that this implies that reppos(I3) ⊆ SOLM12◦M23
(reppos(I1)), from which

we conclude that (I1, I3) ∈ PC(M12 ◦M23).
Assume that I3 ∈ reppos(I3). Then we have by (6) that there exists I2 ∈ reppos(I2)

such that (I2, I3) ∈ M23. Moreover, given that I2 ∈ reppos(I2), we conclude by
(5) that there exists I1 ∈ reppos(I1) such that (I1, I2) ∈ M12. Therefore, we have
that I1 ∈ reppos(I1) and (I1, I3) ∈ M12 ◦ M23, from which we deduce that I3 ∈
SOLM12◦M23

(reppos(I1)). This conclude the proof of the first part of the lemma.
(⇒) Assume that (I1, I3) ∈ PC(M12 ◦M23). Then we have that:

reppos(I3) ⊆ SOLM12◦M23
(reppos(I1)). (7)

Given that positive conditional instances form a strong representation system for the
class of mappings specified by SO tgds (see Corollary 6.2), we know that there exists a
positive conditional instance I2 of S2 such that:

reppos(I2) = SOLM12
(reppos(I1)). (8)

Next we show that (7) and (8) imply that reppos(I3) ⊆ SOLM23
(reppos(I2)), from which

we conclude that (I2, I3) ∈ PC(M23) and, hence, that (I1, I3) ∈ PC(M12) ◦ PC(M23)
since (I1, I2) ∈ PC(M12).

Let I3 ∈ reppos(I3). Then we have by (7) that there exists I1 ∈ reppos(I1) such that
(I1, I3) ∈ M12 ◦ M23. Thus, we know that there exists an instance I2 of S2 such
that (I1, I2) ∈ M12 and (I2, I3) ∈ M23. But not only that, we also know that I2 ∈
SOLM12

(reppos(I1)) since I1 ∈ reppos(I1). Hence, we have by (8) that I2 ∈ reppos(I2).
We have proved that (I2, I3) ∈ M23 and I2 ∈ reppos(I2), from which we conclude
that I3 ∈ SOLM23

(reppos(I2)), which was to be shown. This concludes the proof of the
lemma.

From the results in [Fagin et al. 2005b] and Lemma 6.4, it is straightforward to
prove the following desired results.

COROLLARY 6.5.

(1) For every i ∈ {1, . . . , k − 1}, let Mi i+1 = (Si,Si+1, Σi i+1) with Σi i+1 a set of st-tgds.
Then there exists a mapping M1k = (S1,Sk, σ1k), where σ1k is an SO tgd, such that
PC(M12) ◦ · · · ◦ PC(Mk−1 k) = PC(M1k).

(2) Let M12 = (S1,S2, σ12) and M23 = (S2,S3, σ23), where σ12 and σ23 are SO tgds.
Then there exists a mapping M13 = (S1,S3, σ13), where σ13 is an SO tgd, such that
PC(M12) ◦ PC(M23) = PC(M13).

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :35

(3) Let M = (S1,S2, σ12), where σ12 is an SO tgd. Then there exists a sequence M1,
M2, . . ., Mk of mappings, each specified by a set of st-tgds, such that PC(M) =
PC(M1) ◦ PC(M2) ◦ · · · ◦ PC(Mk).

We have shown that SO tgds are the right language to deal with the composition of
schema mappings including positive conditional instances. Interestingly, we show in
the following section that the inclusion of this type of instances also allow mappings
specified with SO tgds to become invertible.

6.4. Inversion in the presence of positive conditional instances

We consider in this section the notion of mapping inversion introduced in [Arenas
et al. 2009a]. In that paper, the authors give a formal definition for what it means
for a mapping M′ to recover sound information with respect to a mapping M. Such a
mapping M′ is called a recovery of M in [Arenas et al. 2009a]. Given that, in general,
there may exist many possible recoveries for a given mapping, an order relation on
recoveries is introduced in [Arenas et al. 2009a] that naturally gives rise to the notion
of maximum recovery, which is a mapping that brings back the maximum amount of
sound information.

Let S1, S2 be relational schemas, P12 a PC-mapping from S1 to S2 and P21 a PC-
mapping from S2 to S1. Then P21 is said to be a recovery of P12 if for every positive
conditional instance I1 of S1, it holds that (I1, I1) ∈ P12 ◦ P21. Moreover, P21 is said to
be a maximum recovery of P12 if P21 is a recovery of P12 and for every PC-mapping P ′

21
that is a recovery of P12, it holds that P12 ◦ P21 ⊆ P12 ◦ P ′

21. Note that the smaller the
space of solutions generated by P12 ◦ P21, the more informative P21 is about the initial
source instances.

It is proved in [Arenas et al. 2009a] that every mapping specified by a finite set of
st-tgds admits a maximum recovery, in the scenario where only usual instances with
complete information are allowed in the source, and only naive instances, not posi-
tive conditional instances, are allowed in the target. Universal solutions are essential
to prove this result [Arenas et al. 2009a], as they can be used to distinguish between
source instances having different spaces of solutions under a mapping given by st-tgds.
That is, if M = (S1,S2,Σ12), where Σ12 is a finite set of st-tgds, and I1, I2 are instances
of S1, then it holds that SOLM(I1) = SOLM(I2) if and only if I1, I2 have the same uni-
versal solutions under M. In the case of SO tgds, it has been shown that there exist
mappings specified by these dependencies that do not admit maximum recoveries [Are-
nas et al. 2009b; 2013], in the same scenario as for the case of st-tgds. In the following
example, we present the main difficulty encountered when trying to construct a max-
imum recovery for a mapping specified by a SO tgd, which is the fact that universal
solutions cannot be used to distinguish between instances having different spaces of
solutions in this case.

Example 6.6. Let S1 be a schema consisting of unary relations A, B, and S2 be a
schema consisting of a binary relation R and a unary relation S. Moreover, assume
that M is a mapping from S1 to S2 specified by the following SO tgd:

σ12 = ∃f

(
∀x(A(x) → R(x, f(x))) ∧

∀x(A(x) ∧ x = f(x) → S(x)) ∧ ∀x(B(x) → R(x, f(x)))

)
.

Consider instances I1 = {A(a)} and I2 = {B(a)} of schema S1, where a is an arbitrary
constant from D, and instance J = {R(a, a)} of S2. Under the semantics for SO tgds
proposed in [Fagin et al. 2005b], we have that J is not a solution for I1 under M,

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:36 M. Arenas et al.

while J is a solution for I2 under M. To see why the former holds, assume for the
sake of contradiction that (I1, J) satisfies σ12. Then there exists an interpretation f0

of function symbol f such that (I1, J) satisfies the three conjunct of σ12 under this
interpretation. Given that A(a) holds in I1, J = {R(a, a)} and (I1, J) satisfies conjunct
∀x(A(x) → R(x, f(x))), we conclude that f0(a) = a. Thus, given that (I1, J) satisfies
conjunct ∀x(A(x)∧x = f(x) → S(x)), we conclude that S(a) holds in J , which leads to a
contradiction. On the other hand, under the semantics for SO tgds proposed in [Fagin
et al. 2005b], instances I1, I2 have the same universal solutions. To see why this is the
case, notice that instance J⋆ = {R(a, n)} of S2, where n is an arbitrary null value from
N, is not only a solution but also a universal solution for both I1 and I2 under M.

Given that I1, I2 have different spaces of solutions under M, one would like to some-
how distinguish between them when computing an inverse for M. As pointed out be-
fore, for the case of the maximum recovery, universal solutions have been used as the
main tool for distinguishing between instances such as I1 and I2. However, I1, I2 have
the same universal solutions in this case, so universal solutions are of no utility and
M does not admit a maximum recovery.

Formalizations of the argument presented in Example 6.6 can be found in [Are-
nas et al. 2009a; Arenas et al. 2009b; 2013]. In fact, it has been proved in [Arenas
et al. 2009b; 2013] that there exist mappings specified by SO tgds that admit neither
a Fagin-inverse [Fagin 2007] nor a quasi-inverse [Fagin et al. 2007] nor a maximum
recovery [Arenas et al. 2009a]. Moreover, it has also been shown that SO tgds do not
admit an inverse under the notion of CQ-maximum recovery studied in [Arenas et al.
2009b; 2013]. Thus, given that it is not clear whether the notion of inversion introduced
in [Fagin et al. 2009] is appropriate for the language of SO tgds, one can conclude that,
up to this point, no inverse notion has shown to be appropriate for the fundamental
language of SO tgds. As our most important result regarding metadata management,
we show that the situation is completely different if positive conditional instances are
allowed in source and target schemas.

THEOREM 6.7. Let M = (S1,S2, σ12), where σ12 is an SO tgd. Then PC(M) admits
a maximum recovery.

Before proving the theorem, we show in the following example how the use of positive
conditional instances help in solving the difficulty presented in Example 6.6.

Example 6.8. Let M, I1 and I2 be defined as in Example 6.6. As pointed out in
Section 6.2, instances I1 and I2 can be represented as the following positive conditional
instances:

I1 : A(a) ⊤
I2 : B(a) ⊤

Then by using exactly the same argument as in Example 6.6, one can prove that I1, I2
have different spaces of Rpos-solutions under PC(M). However, as opposed to Example
6.6, the spaces of universal Rpos-solutions for I1 and I2 under PC(M) are different. On
the one side, positive conditional instance:

J ⋆ : R(a, n) ⊤,

which represents instance J⋆ mentioned in Example 6.6, is a universal Rpos-solution
for I2 under PC(M), but it is not even an Rpos-solution for I1 under PC(M). To
see why this is the case, notice that if J = {R(a, a)}, then J ∈ reppos(J

⋆) and
J 6∈ SOLM(reppos(I1)). On the other side, the following positive conditional instance

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :37

is a universal Rpos-solution for I1 under PC(M), which is not a universal Rpos-solution
for I2 under PC(M):

R(a, n) ⊤
S(a) n = a

Thus, in this case universal Rpos-solutions can be used to distinguish between in-
stances I1 and I2. And, more generally, in this case universal Rpos-solutions can be
used to construct a maximum recovery for M, as shown next.

To prove Theorem 6.7, we need to extend some of the results in [Arenas et al. 2009a]
to the case of PC-mappings. Let P be a PC-mapping from a schema S1 to a schema
S2 and I a positive conditional instance of S1. Then SOLP(I) is defined as the set
{J | (I,J) ∈ P}. A positive conditional instance J of S2 is said to be a witness for
I under P if for every positive conditional instance I ′ of S1, if J ∈ SOLP(I

′), then
SOLP(I) ⊆ SOLP(I ′). Moreover, a positive conditional instance J is said to a witness
solution for a positive conditional instance I under a PC-mapping P if J is witness for
I under P and J ∈ SOLP(I). Next we use the notion of witness solution to provide
a necessary and sufficient condition for the existence of a maximum recovery for a
PC-mapping.

LEMMA 6.9. Let P be a PC-mapping from a schema S1 to a schema S2. Then P has
a maximum recovery iff for every positive conditional instance I of S1, there exists a
witness solution for I under P .

The proof of Lemma 6.9 is in the appendix. We now prove Theorem 6.7.

PROOF OF THEOREM 6.7: Let M = (S1,S2, σ12), where σ12 is an SO tgd. Next we
use Lemma 6.9 to prove that PC(M) admits a maximum recovery. Let I be a positive
conditional instance of S1. We know from Corollary 6.2 that there exists a positive
conditional instance J of S2 such that J is a universal Rpos-solution for J under M,
that is,

reppos(J) = SOLM(reppos(I)). (9)

Next we show that J is a witness for I under PC(M). Assume that J ∈ SOLPC(M)(I
′),

where I ′ is a positive conditional instance of S1. Then we have that J is an Rpos-
solution for I ′ under M, that is,

reppos(J) ⊆ SOLM(reppos(I
′)). (10)

From (9) and (10), we conclude that:

SOLM(reppos(I)) ⊆ SOLM(reppos(I
′)). (11)

If J ′ ∈ SOLPC(M)(I), then J ′ is an Rpos-solution for I under M, that is, reppos(J
′) ⊆

SOLM(reppos(I)). Thus, we have from (11) that reppos(J
′) ⊆ SOLM(reppos(I

′)) and,
hence, J ′ is an Rpos-solution for I ′ under M. Hence, we conclude that SOLPC(M)(I) ⊆
SOLPC(M)(I

′).
We conclude from the above paragraphs that for every positive conditional instance

I ′ of S1 such that J ∈ SOLPC(M)(I
′), it holds that SOLPC(M)(I) ⊆ SOLPC(M)(I

′). Thus,
we have that J is a witness for I under PC(M).

We have shown that every positive conditional instance I of S1 has a witness so-
lution under PC(M), which implies by Lemma 6.9 that PC(M) admits a maximum
recovery.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:38 M. Arenas et al.

7. KNOWLEDGE BASES

In this section we apply our framework for representation systems to the case of knowl-
edge bases. In particular, we introduce the novel notion of exchanging implicit knowl-
edge via a schema mapping. A knowledge base is composed of explicit data, in our
context given by a database instance, and implicit data usually given by a set of rules
specified in some logical formalism. Examples of knowledge bases are Datalog pro-
grams (where the explicit data is called extensional database and the implicit data
intentional database), and Description Logics specifications (where the explicit data is
called ABox and the implicit data TBox).

Next we formalize the notion of knowledge base used in this paper, and introduce
the notion of knowledge-base solution for a mapping. A knowledge base over a schema
S is a pair (I,Σ), where I ∈ INST(S) and Σ is a set of logical sentences over S. Given a
knowledge base (I,Σ), we denote by MOD(I,Σ) the set of possible models of this base,
which are all the instances that contain the explicit data in I and satisfy Σ:

MOD(I,Σ) = {K ∈ INST(S) | I ⊆ K and K |= Σ}.

Let K be the class of all knowledge bases (over all possible relational schemas). Then
the pair K = (K,MOD) is a representation system, and thus, we can apply Defini-
tion 3.1 to obtain a notion of solution for knowledge bases. More precisely, given a map-
ping M from S1 to S2 and knowledge bases (I,Σ1), (J,Σ2) over S1 and S2, respectively,
we have that (J,Σ2) is a K-solution for (I,Σ1) under M if for every L ∈ MOD(J,Σ2)
there exists an instance K ∈ MOD(I,Σ1) such that (K,L) ∈ M, or equivalently
MOD(J,Σ2) ⊆ SOLM(MOD(I,Σ1)). In this case, we also call (J,Σ2) a knowledge-base
solution of (I,Σ1) under M.

Example 7.1. Consider a schema S1 consisting of relations F (·, ·), M(·, ·), P (·, ·) and
GP(·, ·), which are used to store genealogical data (F stands for father,M for mother, P
for parent, and GP for grandparent). Consider the following set Σ1 of rules that states
some natural implicit knowledge over S1:

F (x, y) → P (x, y)

M(x, y) → P (x, y)

P (x, y) ∧ P (y, z) → GP(x, z)

Thus, if I = {F (a, b), M(c, b), F (b, d)}, then from I and Σ1 one can infer that a and c are
parents of b, and that a and c are grandparents of d. That is, one can infer the atoms
P (a, b), P (c, b), GP(a, d), and GP(c, d).

Now assume that one needs to exchange data from S1 to a new schema S2 =
{F ′(·, ·),GP

′(·, ·)} by using the following set Σ12 of st-tgds that copies F into F ′ and
GP into GP

′

F (x, y) → F ′(x, y),

GP(x, y) → GP
′(x, y)

and let M be the mapping specified by Σ12. According to our definition for exchanging
knowledge-bases, it can be proved that for (I,Σ1) described above, the knowledge base
(J,Σ2) with J = {F ′(a, b), F ′(b, d), GP

′(c, d)} and Σ2 given by

F ′(x, y) ∧ F ′(y, z) → GP
′(x, z),

is a knowledge-base solution of (I,Σ1), as MOD(J,Σ2) ⊆ SOLM(MOD(I,Σ1)). Notice
that, even though mapping M states that all data from GP needs to be copied to GP

′,
the knowledge-base solution is not storing all this information explicitly. For example
the fact GP

′(a, d) is not in J . Instead, the knowledge-base is taking advantage of the

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :39

explicit data stored in F ′ and the implicit knowledge in Σ2. In particular, the facts
F ′(a, b) and F ′(b, d) in J , together with the rule F ′(x, y) ∧ F ′(y, z) → GP

′(x, z) in Σ2,
ensure that every model in MOD(J,Σ2) will contain the fact GP

′(a, d). On the other
hand, GP

′(c, d) has to be explicitly included in J , since it comes from the atom GP(c, d)
that is inferred from predicate M in S1, for which we don’t have any information in S2.

Another possible knowledge-base solution for (I,Σ1) under M is (J ′, ∅) with J ′ =
{F ′(a, b), F ′(b, d), GP

′(a, d), GP
′(c, d)}. In this case no implicit knowledge is needed as

all data is explicitly included in J ′.

This example shows that for the case of knowledge bases, one might be interested
in exchanging not only explicit data but also the implicit information in the source
knowledge base. The example also shows that in general one would have many possi-
bilities when deciding what to make explicit and what to keep implicit when exchang-
ing knowledge bases. Thus, one of the main questions that need to be answered in
the knowledge-base context is what is a good knowledge-base solution. We study this
fundamental question, as well as the problem of actually materializing a solution, in
Section 8.

Besides this question, many algorithmic problems arise in the context of knowl-
edge bases and schema mappings. Here we study the fundamental problem of check-
ing, given a schema mapping M and knowledge bases K1 and K2, whether K2 is a
knowledge-base solution for K1 under M. But first we introduce some notation that
will be extensively used in the rest of the paper.

Chasing complete instances with full tgds. Recall that in Section 4.2 we intro-
duced a special chase procedure for conditional instances. Instead of defining the chase
for complete instances as a particular case of the chase introduced in Section 4.2, we
define here the procedure for the specific case of complete instances and full tgds [Beeri
and Vardi 1984], as it is considerably simpler.

Let S1 and S2 be disjoint schemas, and I be an instance of S1. For a set of full tgds Σ1

over a schema S1, we denote by chaseΣ1
(I) the instance of S1 obtained by the following

process. Begin with instance I. Then for every full tgd of the form

ϕ(x̄) → R(x̄)

in Σ1 and every tuple ā of values in dom(I), if I |= ϕ(ā) and R(ā) is not a fact in I, then
add R(ā) to I, and repeat this process until no new fact can be added to I. This proce-
dure always terminates, and runs in polynomial time if the set Σ1 is fixed [Beeri and
Vardi 1984]. Moreover, let Σ12 be a set of full st-tgds from S1 to S2, and J∅ the empty
instance of S2. Notice that the result of chasing (I, J∅) with Σ12 is an instance (I, J⋆)
of S1 ∪ S2. Whenever Σ12 is a set of full st-tgds, we denote by chaseΣ12

(I) the resulting
instance J⋆ (which is the standard notation in the data exchange context [Fagin et al.
2005a]). Thus, chaseΣ1

(I) is an instance of S1, while chaseΣ12
(I) is an instance of S2.

7.1. Complexity of recognizing solutions

Given a mapping M from S1 to S2, and a representation system R = (W, rep), the
decision problem CHECKSOLUTION(M,R) was defined in Section 5.3 as the problem
of verifying, given U ∈ W of type S1 and V ∈ W of type S2, whether V is an R-solution
of U under M. In this section, we study the complexity of this problem for the class of
mappings specified by st-tgds and for the representation system K of knowledge bases.

Two representation systems that are of particular interest in our study are the
systems of tgd knowledge bases and full-tgd knowledge bases, denoted by Ktgd =
(Ktgd,MOD), and Kfull-tgd = (Kfull-tgd,MOD), respectively. More specifically, Ktgd is the
system obtained by restricting K to the class of all knowledge bases (I,Σ) with Σ a

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:40 M. Arenas et al.

set of tgds, and Kfull-tgd the representation system obtained by restricting K to the
class of knowledge bases (I,Σ) with Σ a set of full tgds. Our first theorem is an un-
decidability result for knowledge bases that are specified by general tgds. The un-
decidability result holds for knowledge bases using (non-full) tgds, and for a fixed
schema mapping M specified by a single copy st-tgd, that is, a full st-tgd of the form
S(x1, . . . , xk) → T (x1, . . . , xk), where x1, . . ., xk are pairwise distinct variables.

THEOREM 7.2. There exists a mapping M = (S1,S2,Σ12), with Σ12 consisting of a
single copy st-tgd, for which the problem CHECKSOLUTION(M,Ktgd) is undecidable.

PROOF. We use a reduction from the embedding problem for finite semigroups [Ko-
laitis et al. 2006]. Consider a pair A = (A, g) where A is a finite set and g : A×A→ A
is a partial associative function. Then, A is embeddable in a finite semigroup if there
exists B = (B, f) such that A ⊆ B and f : B × B → B is a total associative function
that extends g. The following problem is known to be undecidable [Kolaitis et al. 2006]:
given an arbitrary A = (A, g), checking whether it is embeddable in a finite semigroup.

We first define a fixed mapping M = (S1,S2,Σ12) such that S1 =
{C(·, ·), E(·, ·), N(·, ·), G(·, ·, ·), F (·)}, S2 = {R(·)}, and Σ12 = {∀x (F (x) → R(x))}.
Now let A = (A, g) with A = {a1, . . . , an} a finite set and g : A × A → A a par-
tial associative function over A. We explain now how we construct an instance of
CHECKSOLUTION(M,Ktgd) from A.

We start by considering an instance I such that CI = {(i, ai) | i ∈ {1, . . . , n}},
EI = {(ai, ai) | i ∈ {1, . . . , n}}, N I = {(i, j) | i 6= j, i, j ∈ {1, . . . , n}}, GI = {(ai, aj, ak) |
g(ai, aj) = ak} and F I = ∅. We construct now a set Σ1 of tgds such that there exists an
instance K ∈ MOD(I,Σ) with FK = ∅ if and only if A is embeddable in a finite semi-
group. In Σ1 we use formulas ensuring that E is interpreted as an equivalence relation
over the elements mentioned in G. That is, we include the following dependencies:

domG(x) → E(x, x) (12)

E(x, y) → E(y, x) (13)

E(x, y) ∧ E(y, z) → E(x, z) (14)

Where domG(x) is defined as ∃u∃v(G(x, u, v) ∨ G(u, x, v) ∨ G(u, v, x)). Notice that al-
though (12) is not syntactically a tgd (it has disjunctions in its premise), it is equiva-
lent to a set of tgds. We also ensure that this equivalence relation is consistent with
the initial elements in the set A. We do this by using predicate C and predicate N with
the following tgd:

E(x, y) ∧ C(u, x) ∧ C(v, y) ∧N(u, v) → ∃w F (w) (15)

This tgd essentially states that if x and y are different values of A and the equivalence
relation assigns both values to the same equivalence class, then relation F cannot be
empty. Before continuing with the construction of Σ1, we note that for every instance K
that contains I, satisfies the tgds (12)-(15), and interprets F as the emptyset (FK = ∅),
it holds that EK contains an equivalence relation over the elements mentioned in GK

such that every element in A belongs to a different equivalence class.
Now we include a tgd in Σ1 that ensures that G represents a function that is consis-

tent with the equivalence classes:

G(x, y, z) ∧ E(x, x′) ∧ E(y, y′) ∧ E(z, z′) → G(x′, y′, z′) (16)

G(x, y, z) ∧G(x′, y′, z′) ∧E(x, x′) ∧E(y, y′) → E(z, z′) (17)

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :41

Finally, we need to include a tgd that ensures that G is total and associative:

domG(x) ∧ domG(y) → ∃z G(x, y, z) (18)

G(x, y, u) ∧G(u, z, v) ∧G(y, z, w) → G(x,w, v) (19)

Set Σ1 consists of tgds (12)-(19).

CLAIM 7.3. A is embeddable in a finite semigroup if and only if there exists an
instance K ∈ MOD(I,Σ1) such that FK = ∅.

PROOF. (⇒) Assume that A is embeddable in a finite semigroup, and let B = (B, f)
be a finite semigroup such that A ⊆ B and f : B × B → B is a total and associative
function that extends g. Then let K be an instance of S1 such that EK is the identity
over B, GK is exactly the set of triples (a, b, f(a, b)), and all the other relations are
interpreted as in I. It is easy to see that I ⊆ K, K |= Σ1 and FK = ∅ (given that
F I = ∅).

(⇐) Assume that I ⊆ K, K |= Σ1 and FK = ∅. Then we can construct a finite semi-
group B = (B, f) embedding A as follows. SetB is defined by choosing a representative
of every equivalence class induced by EK , with the additional restriction that for every
a ∈ A, element a is chosen as the representative of its class. Moreover, function f over
B × B is defined as: f(a, b) = c if and only if (a, b, c) ∈ GK . Then, by the properties
discussed above, we have that A ⊆ B and function f is total and associative, which
was to be shown.

To complete the reduction, consider an instance J of S2 such that RJ = ∅, and
let Σ2 = ∅. Next we prove that A is embeddable in a finite semigroup if and only
if (J,Σ2) is a knowledge base solution of (I,Σ1) under M. We first notice that if A

is embeddable in a finite semigroup, then by Claim 7.3 we have that there exists an
instance K ∈ MOD(I,Σ1) such that FK = ∅. Then by definition of Σ12, we conclude
that J ∈ SOLM(MOD(I,Σ1)), which implies that MOD(J,Σ1) ⊆ SOLM(MOD(I,Σ1))
by definition of J and Σ2. Thus, we have that (J,Σ2) is a knowledge base solution
of (I,Σ1) under M. For the opposite direction, assume that (J,Σ2) is a knowledge
base solution of (I,Σ1) under M. Then given that J ∈ MOD(J,Σ2), we have that
J ∈ SOLM(MOD(I,Σ1)). Hence, there exists K ∈ MOD(I,Σ1) such that (K, J) satis-
fies Σ12. But then given that RJ = ∅, we have by definition of Σ12 that FK = ∅, which
implies by Claim 7.3 that A is embeddable in a finite semigroup. This concludes the
proof of the theorem.

Notice that the preceding undecidability result holds even if the dependencies of the
knowledge bases are assumed to be fixed. Thus, Theorem 7.2 tells us that to obtain
decidability results, we have to focus on some fragments of Ktgd. In what follows, we
study the complexity of the problem for the class of knowledge bases given by full

tgds. More precisely, we start by showing that this problem is complete for PNP[O(logn)],
which is the class of all problems that can be decided in polynomial time by a deter-
ministic Turing machine that is allowed to make a logarithmic number of calls to an
NP oracle [Wagner 1987].

THEOREM 7.4. For every mapping M specified by a finite set of st-tgds,

CHECKSOLUTION(M,Kfull-tgd) is in PNP[O(log n)]
. Moreover, there exists a map-

ping M = (S1,S2,Σ12), where Σ12 is a finite set of full st-tgds, such that

CHECKSOLUTION(M,Kfull-tgd) is PNP[O(logn)]
-complete.

Before proving Theorem 7.4, we prove a lemma that characterizes knowledge base
solutions in terms of the chase procedure.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:42 M. Arenas et al.

LEMMA 7.5. Let M = (S1,S2,Σ12), where Σ12 is a finite set of st-tgds, and
(I,Σ1), (J,Σ2) be knowledge bases over S1 and S2, respectively, where Σ1 and Σ2

are finite sets of full tgds. Then (J,Σ2) is a knowledge-base solution of (I,Σ1) iff
(chaseΣ1

(I), chaseΣ2
(J)) |= Σ12.

PROOF. First notice that since Σ1 is a set of full-tgds, then chaseΣ1
(I) ∈ MOD(I,Σ1).

Moreover, for every K ∈ MOD(I,Σ1) it holds that chaseΣ1
(I) ⊆ K. Similarly,

chaseΣ2
(J) ∈ MOD(J,Σ2) and for every L ∈ MOD(J,Σ2) we have that chaseΣ2

(J) ⊆ L.
Now, to prove one of the directions of the lemma, assume that

(chaseΣ1
(I), chaseΣ2

(J)) |= Σ12. We have to prove that for every L ∈ MOD(J,Σ2)
there exists a K ∈ MOD(I,Σ1) such that (K,L) |= Σ12. Now, let L ∈ MOD(J,Σ2). We
know that chaseΣ2

(J) ⊆ L and thus, since (chaseΣ1
(I), chaseΣ2

(J)) |= Σ12 and Σ12 is
a set of st-tgds, we have that (chaseΣ1

(I), L) |= Σ12. We have shown that for every
L ∈ MOD(J,Σ2) there exists a K ∈ MOD(I,Σ1) such that (K,L) |= Σ12, and thus,
(J,Σ2) is a knowledge-base solution of (I,Σ1).

Towards the opposite direction, assume that (J,Σ2) is a knowledge-base solution
of (I,Σ1) under the exchange setting (S1,S2,Σ12). Since chaseΣ2

(J) ∈ MOD(J,Σ2)
we know that there exists an instance K ∈ MOD(I,Σ1) such that (K, chaseΣ2

(J)) |=
Σ12. Thus, since chaseΣ1

(I) ⊆ K and Σ12 is a set of st-tgds, we conclude that
(chaseΣ1

(I), chaseΣ2
(J)) |= Σ12 which was to be shown.

We now proceed to the proof of Theorem 7.4.

PROOF OF THEOREM 7.4: To show the membership in PNP[O(logn)] we use a charac-
terization of this class proved by Wagner [Wagner 1990] and Buss and Hay [Buss

and Hay 1991]. Let P‖NP be the class of problems that can be accepted in polyno-
mial time by a deterministic Turing machine that can make a polynomial number of
parallel queries to an NP oracle. More specifically, for an input w the machine first
computes a polynomial number of inputs for the NP oracle and then, after receiving
all the answers, the machine decides in polynomial time whether w belongs to the
language (see [Wagner 1990]). The important feature here is that no query to the ora-
cle depend on the answer to another query. It was proved in [Wagner 1990; Buss and

Hay 1991] that PNP[O(log n)] = P‖NP. Thus, it is enough to prove the membership of

CHECKSOLUTION(M,Kfull-tgd) in P‖NP.
We begin our proof with a technical claim. Let S be a fixed schema and R an n-ary

relational symbol in S (notice that since S is fixed, then n is also fixed). We claim that
given an instance I, a set Σ of full tgds over S, and an n-ary tuple ā, testing whether
chaseΣ(I) |= R(ā) is in NP. To establish the membership in NP we can use as witness
the complete sequence of chase steps that produce the atom R(ā). Every chase step
is composed of a full tgd ∀x̄(∃ȳϕ(x̄, ȳ) → ψ(x̄)) ∈ Σ, and a homomorphism h from the
atoms in ϕ(x̄, ȳ) to the instance partially computed until that step in a chase of I. It
can be checked in polynomial time that every such step is a valid chase step. We argue
now that the witness is of polynomial size in the size of I and Σ. Let kS be the sum of
the arities of the relational symbols in S. Notice that since the schema S is fixed, kS is
also fixed. Moreover, the number of facts in chaseΣ(I) is bounded by | dom(I)|kS , every
fact of size at most kS, and since every chase step generates at least one new fact, we
conclude that the number of chase steps is polynomial in the size of I. Finally, since
the witness for every step is of size polynomial in the size of I and Σ, we conclude that
the complete witness is of size polynomial in the size of I and Σ.

Now let M = (S1,S2,Σ12) be a fixed mapping with Σ12 a set of st-tgds. We need

to prove that the problem CHECKSOLUTION(M,Kfull-tgd) is in P‖NP. Consider a Tur-
ing machine M with an NP oracle that given a knowledge base (I,Σ1) over S1 and

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :43

a knowledge base (J,Σ2) over S2, checks whether (J,Σ2) is a knowledge base solu-
tion of (I,Σ1) under M as follows. For every n-ary relational symbol R in S1 and
every n-ary tuple ā of elements in dom(I), the machine uses the NP oracle to test
whether chaseΣ1

(I) |= R(ā). After M has obtained all the answers from the oracle, it
has a complete picture of what relational atoms are satisfied by chaseΣ1

(I) and, thus,
it can effectively construct chaseΣ1

(I). Notice that since S1 is fixed, the machine needs
only a polynomial number of queries to the NP oracle to construct chaseΣ1

(I). Also
notice that all these queries can be made in parallel since none of them depend on
the answer of another query. Similarly, the machine makes a polynomial number of
parallel queries to the oracle to construct chaseΣ2

(J). The machine then tests whether
(chaseΣ1

(I), chaseΣ2
(J)) |= Σ12 which, by Lemma 7.5, is enough to test whether (J,Σ2)

is a knowledge base solution of (I,Σ1) under (S1,S2,Σ12). Notice that since Σ12 is fixed,
testing (chaseΣ1

(I), chaseΣ2
(J)) |= Σ12 can be done in polynomial time with respect to

the size of chaseΣ1
(I) and chaseΣ2

(J). Moreover, since S1 and S2 are fixed, chaseΣ1
(I)

is of size polynomial in the size of I and Σ1, and chaseΣ2
(J) is of size polynomial in

the size of J and Σ2. Thus, all the process can be done in polynomial time by using
a polynomial number of parallel queries to an NP oracle. This completes the proof of

membership to P‖NP.

We prove now that CHECKSOLUTION(M,Kfull-tgd) is PNP[O(logn)]-hard for some fixed
mapping M, by reducing MAXODDCLIQUE to our problem. An instance of MAXODD-
CLIQUE is an undirected graphG and the question is whether the size of the maximum
clique in G is an odd number. It follows from the results by Wagner [Wagner 1987] that

MAXODDCLIQUE is PNP[O(log n)]-hard.
We describe first the fixed schema mapping that we use in the reduction. The schema

S1 is composed of the relations Succ(·, ·), First(·), Clique(·), and E(·, ·). Similarly, S2 is
composed of Succ′(·, ·), First ′(·), Clique ′(·), and E′(·, ·). The set Σ12 contains a single full
tgd:

∀x∀y
(
Clique(x) ∧ Succ(x, y) → Clique ′(y)

)
(20)

Before continuing with the reduction, let us explain the intuition of the interpretation
of each relation symbol and the intended meaning of the tgd in Σ12. In both schemas
relation E is used to store a copy of a graph G, and relation Succ is used to store a
successor relation. Then we use a set of dependencies Σ1 over S1 to ensure that if G
has a clique of even size ℓ, then every interpretation of the knowledge base over S1

satisfy the atom Clique(ℓ). Similarly, we use a set Σ2 over S2 to ensure that if G has a
clique of odd size m, then every interpretation of the knowledge base over S2 satisfy
the atom Clique(m). Finally, the full st-tgd in Σ12 is used to check that if there is a
clique of even size ℓ in G, then there must exists a clique of size ℓ + 1, thus ensuring
that the maximum size of a clique in G is an odd number. In what follows we formalize
this intuition.

Given a graph G with n nodes, we construct an input to
CHECKSOLUTION(M,Kfull-tgd) as follows. First, instance I is such that (a, b) ∈ EI if

and only if (a, b) is an edge in G. Moreover, we include in SuccI a successor relation

over {1, . . . , n + 1}, that is, SuccI = {(i, i + 1) | i ∈ {1, . . . , n}}, and First I = {1}.

Finally, we set CliqueI to be the empty set. Similarly, for instance J we have that
E′J = {(a, b) | (a, b) is an edge in G}, Succ′J = {(i, i+ 1) | i ∈ {1, . . . , n}}, First ′J = {1}.

In the case of J , we have that Clique ′J = {1}. Now, to describe the sets Σ1 and Σ2 we
need to define some preliminary formulas. Let δk(x) for k ∈ {1, . . . , n} be a formula

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:44 M. Arenas et al.

over S1 defined inductively as follows:

δ1(x) := First(x)

δk(x) := ∃y
(
δk−1(y) ∧ Succ(y, x)

)

That is, δk(x) states that x is the element at position k in the successor relation. Let
κm for m ∈ {2, . . . , n} be the following sentence over S1:

∃x1 · · · ∃xm
∧

i,j∈{1,...,m}
i6=j

E(xi, xj)

That is, κm states that there is a clique of size m in the graph given by relation E.
Similarly, we construct formulas δ′k(x) and κ′m over S2 by replacing First , Succ, and E
by First ′, Succ′, and E ′, respectively. Now, by using the previous formulas we construct
Σ1 and Σ2 as follows. For every even number ℓ ∈ {2, . . . , n} we include the sentence:

∀x
((
κℓ ∧ δℓ(x)

)
→ Clique(x)

)
(21)

in Σ1. Similarly, for every odd number m ∈ {2, . . . , n} we include in Σ2 the sentence:

∀x
((
κ′m ∧ δ′m(x)

)
→ Clique ′(x)

)
. (22)

We show now that (J,Σ2) is a knowledge base solution of (I,Σ1) under (S1,S2,Σ12) if
and only if the size of the maximum clique in G is odd.

First notice that by the construction of I and Σ1 we have that for every even number
ℓ ∈ {2, . . . , n}, it holds that chaseΣ1

(I) |= Clique(ℓ) if and only if G has a clique of
size ℓ. Moreover, by the construction of J and Σ2 we have that for every odd number
m ∈ {1, 2, . . . , n}, it holds that chaseΣ2

(J) |= Clique ′(m) if and only if G has a clique of
size m. We use these properties in the rest of the proof.

Assume that the maximum size of a clique in G is an odd number m. We show
that (chaseΣ1

(I), chaseΣ2
(J)) satisfies Σ12, which by Lemma 7.5, shows that (J,Σ2) is a

knowledge-base solution of (I,Σ1). Suppose that chaseΣ1
(I) |= Clique(i) ∧ Succ(i, j) for

some i, j. Then by the discussion in the previous paragraph and since the maximum
size of a clique in G is the odd number m, we know that i is an even number such that
i < m. Moreover, by the interpretation of Succ we have that j = i+ 1. Then j is an odd
number such that j ≤ m which implies that chaseΣ2

(J) |= Clique(j). This shows that
(chaseΣ1

(I), chaseΣ2
(J)) |= Σ12.

Assume now that the size of the maximum clique in G is an even number ℓ. Then we
know that chaseΣ1

(I) |= Clique(ℓ)∧ Succ(ℓ, ℓ+1). Now, since ℓ is the maximum size of a
clique in G, we know that chaseΣ2

(J) 6|= Clique ′(ℓ+ 1). Thus, (chaseΣ1
(I), chaseΣ2

(J)) 6|=
Σ12, and by Lemma 7.5 we have that (J,Σ2) is not a knowledge base solution of (I,Σ1)
under M. This completes the reduction.

We continue our study by stating the complexity of CHECKSOLUTION(M,Kfull-tgd)
when the source implicit knowledge or the target implicit knowledge is assumed to
be fixed, shedding light on how this complexity depends on these parameters. More
precisely, we assume in the former case that we are given a fixed set Σ1 of full tgds
over the source schema and the problem is to check, given a source instance I and a
target knowledge base (J,Σ2), whether (J,Σ2) is a knowledge-base solution for (I,Σ1)
under M. The latter case is defined analogously but considering Σ2 fixed.

THEOREM 7.6. Let M = (S1,S2,Σ12), where Σ12 is a set of st-tgds. Then
CHECKSOLUTION(M,Kfull-tgd): (1) can be solved in polynomial time if both source im-
plicit knowledge and target implicit knowledge are fixed, (2) is NP-complete if source

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :45

implicit knowledge is fixed, and (3) is coNP-complete if target implicit knowledge is
fixed.

PROOF. Property (1) of the theorem is a direct consequence of the fact that the chase
for fixed sets of full tgds is polynomial.

Now we prove (2). By Lemma 7.5, we know that (J,Σ2) is a knowledge base solu-
tion of (I,Σ1) if and only if (chaseΣ1

(I), chaseΣ2
(J)) |= Σ12. Thus, to check that (J,Σ2)

is a knowledge base solution of (I,Σ1) we can proceed as follows. We pre-compute
chaseΣ1

(I) (which can be done in polynomial time since Σ1 is fixed). Then for every
formula of the form ∀x̄(∃ȳϕ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)) in Σ12, and for every pair of tuples ā
and b̄ of elements such that chaseΣ1

(I) satisfies ϕ(ā, b̄), we guess a tuple c̄ and a chase
sequence that from J and Σ2 produces the atoms in ψ(ā, c̄). Given that (S1,S2,Σ12) is
fixed, the complete witness is of size polynomial in the size of I, J and Σ2, and it can
be used to check in polynomial time that (chaseΣ1

(I), chaseΣ2
(J)) |= Σ12, thus proving

the membership in NP.
To prove that the problem is NP-hard, we use a reduction from the 3-COLORABILITY

problem. Consider the schemas S1 = {R(·)}, and S2 = {P1(·), P2(·), E(·, ·)}, the set of
formulas Σ12 = {∀x(R(x) → P2(x))}, and let M = (S1,S2,Σ12). Given a graph G,
we construct an instance of CHECKSOLUTION(M,Kfull-tgd) as follows. Consider the in-
stance I of S1 such that RI = {c}, and Σ1 = ∅. Notice that Σ1 is fixed. Now, instance J
is such that EJ = {(i, j) | i, j ∈ {1, 2, 3} and i 6= j}, P J

1 = {c}, and P J
2 = ∅. To construct

Σ2 we do the following. Assume that G has n nodes, and let f be a one-to-one function
from the nodes of G to the set of variables {x1, . . . , xn}. Then we consider the sentence
ϕG defined by:

∃x1 · · · ∃xn
∧

(a,b) edge in G

E(f(a), f(b)).

That is, ϕG is a sentence that describes the edges in G. It is straightforward to see that
J |= ϕG if and only if G is 3-colorable. Now we include in Σ2 the tgd:

∀x
((
ϕG ∧ P1(x)

)
→ P2(x)

)
.

We prove next that (J,Σ2) is a knowledge base solution of (I,Σ1) if and only if G
is 3-colorable. Notice that Σ1 = ∅, then by Lemma 7.5 it is enough to prove that
(I, chaseΣ2

(J)) |= Σ12 if and only if G is 3-colorable. Thus assume that G is 3-colorable.
Notice that in this case J |= ϕG, thus, since J |= P1(c) we have that chaseΣ2

(J) |= P2(c)
which implies that (I, chaseΣ2

(J)) |= Σ12 completing one direction. Towards the oppo-

site direction, assume that G is not 3-colorable. Thus we have that P
chaseΣ2

(J)
2 = ∅,

which implies that (I, chaseΣ2
(J)) 6|= Σ12. This completes the proof of property (2).

We conclude with the proof of property (3). To prove the membership in coNP,
assume that (J,Σ2) is not a knowledge base solution of (I,Σ1). Then we know
that there is a st-tgd σ in Σ12 of the form ∀x̄(∃ȳϕ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)), such that
(chaseΣ1

(I), chaseΣ2
(J)) 6|= σ. Thus, we can guess σ and tuples ā and b̄, and then check

that chaseΣ1
(I) |= ϕ(ā, b̄) and chaseΣ2

(J) 6|= ∃z̄ψ(ā, z̄). By the discussion in the sec-
ond paragraph of the proof of Theorem 7.4, and since S1 and Σ1 are fixed, we know
that checking that chaseΣ1

(I) |= ϕ(ā, b̄) can be done in NP. Moreover, since Σ2 is fixed,
checking that chaseΣ2

(J) 6|= ∃z̄ψ(ā, z̄) can be done in polynomial time by computing
chaseΣ2

(J) and then evaluating ∃z̄ψ(ā, z̄). We have shown that checking that (J,Σ2) is
not a knowledge base solution of (I,Σ1) is in NP, which was to be shown.

To prove that the problem is coNP-hard, we use a reduction from the complement
of the 3-COLORABILITY problem. Consider the schemas S1 = {E(·, ·), P1(·), P2(·)}, and

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:46 M. Arenas et al.

S2 = {R(·)}, the set of formulas Σ12 = {∀x(P2(x) → R(x))}, and let M = (S1,S2,Σ12).
Given a graph G, we construct from G an instance of CHECKSOLUTION(M,Kfull-tgd) as
follows. Consider the instance J of S2 such that RJ = ∅, and Σ2 = ∅. Notice that Σ2

is fixed. Now, instance I is such that EI = {(i, j) | i, j ∈ {1, 2, 3} and i 6= j}, P I
1 = {c}

and P I
2 = ∅. To construct Σ1 consider the formula ϕG defined in the proof of part (2).

Then we have that I |= ϕG if and only if G is 3-colorable. Now we include in Σ1 the tgd
∀x

((
ϕG ∧ P1(x)

)
→ P2(x)

)
.

We prove next that (J,Σ2) is a knowledge base solution of (I,Σ1) if and only if G is
not 3-colorable. Notice that, since I and J are ground, and Σ2 = ∅, then by Lemma 7.5
it is enough to prove that (chaseΣ1

(I), J) |= Σ12 if and only if G is not 3-colorable. Thus
assume that G is 3-colorable. Notice that in this case I |= ϕG, thus, since I |= P1(c)
we have that chaseΣ1

(I) |= P2(c). Also notice that J 6|= R(c), thus implying that
(chaseΣ1

(I), J) 6|= Σ12 completing one direction. Towards the opposite direction, as-

sume that G is not 3-colorable. Thus, we have that P
chaseΣ1

(I)
2 = ∅, which implies that

(chaseΣ1
(I), J) |= Σ12. This completes the proof.

A natural question at this point is whether one can obtain decidability for a repre-
sentation system that is in between Kfull-tgd and Ktgd. An obvious candidate would be
the class of knowledge bases defined by weakly acyclic sets of tgds [Deutsch and Tan-
nen 2003; Fagin et al. 2005a]. We leave for future research the study of the complexity
in this case.

8. KNOWLEDGE EXCHANGE

The most important problem in data exchange is the problem of materializing a tar-
get solution for a given source instance. In the previous section, we have extended the
notion of solution for knowledge bases and, thus, it is natural to consider the problem
of knowledge exchange, that is, the problem of materializing a target knowledge base
that correctly represents a source knowledge base according to a given mapping. The
first question to answer is what is a good knowledge base to materialize. This question
turns out to be considerably more complex that in the relational case in which no ex-
plicit knowledge is present [Fagin et al. 2005a]. We show how our general framework
for defining solutions in the presence of representation systems allows us to select sev-
eral possible good solutions in the knowledge-base case. In Section 8.1, we consider the
notion of universal K-solution that is obtained by applying Definition 3.2 to the repre-
sentation system K of knowledge bases. In Section 8.2, we show that there are other
natural K-solutions that extend universal K-solutions and that can also be considered
good alternatives to materialize. We present algorithms for computing such solutions
in Section 8.3. It is important to notice that the problem of what is the better notion of
solution in the knowledge-base case is not settled yet, and several other works have ex-
plored this subject based on our formalization [Arenas et al. 2011; Arenas et al. 2012a;
2012b].

Given the undecidability results about knowledge bases specified by (non-full)
tgds, proved in Section 7.1, we focus our investigation on full tgds. Note that this
case includes some of the motivating scenarios for our investigation, such as RDFS
graphs [Hayes 2004].

8.1. Universal K-solutions

Let K = (K,MOD) be the representation system of knowledge bases, where K denotes
all possible knowledge bases, and MOD denotes the models of a knowledge base, as
defined in section 7. We can directly apply the notion of universal K-solution to define
a class of good solutions. More precisely, we obtain from Definition 3.2 that (J,Σ2) is a

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :47

universal K-solution of (I,Σ1) under a mapping M if

MOD(J,Σ2) = SOLM(MOD(I,Σ1)). (23)

It is easy to show that for M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and
for every set Σ1 of full tgds over S1, the knowledge base (chaseΣ12

(chaseΣ1
(I)), Σ2),

with Σ2 = ∅, is always a universal K-solution of (I,Σ1). Notice that this induces a
straightforward procedure to compute a good solution: we just chase I with Σ1 and
then with Σ12. Thus we obtain the following result.

PROPOSITION 8.1. Let M = (S1,S2,Σ12), with Σ12 a set of full st-tgds. There exists
an exponential-time algorithm that, given a knowledge base (I,Σ1) over S1, with Σ1 a
set of full tgds, produces a polynomial-size universal K-solution of (I,Σ1) under M.

PROOF. The proof follows directly from the fact that (chaseΣ12
(chaseΣ1

(I)), ∅) is a
universal K-solution of (I,Σ1). Let kS1

be the sum of the arities of the relational sym-
bols in S1, and similarly, kS2

the sum of the arities of the relational symbols in S2.
Notice that the number of facts in chaseΣ1

(I) is bounded by | dom(I)|kS1 , every fact of
at most size kS1

, which is polynomial since M = (S1,S2,Σ12) is fixed. Similarly, the
number of facts in chaseΣ12

(chaseΣ1
(I)) is bounded by (| dom(I)|kS1)kS2 , every fact of at

most size kS2
, which is also polynomial.

Moreover, it immediately follows from equation (23) that universal K-solutions can
be used to compute the certain answers of an arbitrary query Q over (I,Σ1) under a
mapping M.

8.2. Minimal knowledge-base solutions

The universal K-solutions generated in the previous section use the empty set as the
implicit knowledge in the target. We argue in this section that there could be other
natural K-solutions that may not be universal but still desirable to materialize, mostly
because they make good use in the target schema of the implicit knowledge.

Example 8.2. Let (I,Σ1), (J,Σ2) and M = (S1,S2,Σ12) be as in Example 7.1. In
that example, (J,Σ2) can be considered as a good solution for (I,Σ1) under M since it
make non-trivial use of the implicit knowledge in the target. However, we have that
MOD(J,Σ2) SOLM(MOD(I,Σ1)) and, thus, (J,Σ2) is not a universal K-solution for
(I,Σ1). The reason for this is that mapping M is closed-up on the right and, hence, if
K ∈ SOLM(MOD(I,Σ1)) and K ⊆ K ′, then K ′ ∈ SOLM(MOD(I,Σ1)), while MOD(J,Σ2)
does not satisfy this property. To see why this is the case, consider the instance K =
J ∪ {GP

′(a, d)}. It is easy to see that K ∈ MOD(J,Σ2). But if we now consider the
instance K ′ = K ∪ {F ′(b, e)}, then we have that K ⊆ K ′ but K ′ /∈ MOD(J,Σ2) since
K ′ does not satisfy rule F ′(x, y) ∧ F ′(y, z) → GP

′(x, z) (given that F ′(a, b) ∈ K ′ and
F ′(b, e) ∈ K ′, but GP

′(a, e) /∈ K ′).

In what follows, we introduce a new class of good K-solutions that captures the solu-
tion in Example 7.1. But before we need to introduce some terminology. Let X be a set
of instances over a schema S. We say that X is closed-up if whenever K ∈ X and K ′ is
an instance of S such that K ⊆ K ′, we have that K ′ ∈ X . Moreover, we define the set
of minimal instances of X as:

Min(X) = {K ∈ X | there is no K ′ ∈ X such that K ′ K}.

A closed-up set of instances is characterized by its set of minimal instances, as if X
and Y are closed-up, then X = Y if and only if Min(X) = Min(Y).

For every mapping M specified by a set of st-tgds, and more generally for every
mapping that is closed-up on the right, and for every knowledge base (I,Σ1), it holds

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:48 M. Arenas et al.

that SOLM(MOD(I,Σ1)) is a closed-up set. Thus, since SOLM(MOD(I,Σ1)) is essen-
tially characterized by its minimal instances, we can naturally relax equation (23)
by not requiring that MOD(J,Σ2) is equal to SOLM(MOD(I,Σ1)), but instead that
both sets coincide in their sets of minimal instances. Notice that by doing this we
retain the same query answering properties as universal K-solutions when consider-
ing monotone queries. Thus, the above discussion suggests the following definition of
minimal knowledge-base solution. In the definition, we use X ≡Min Y to denote that
Min(X) = Min(Y).

Definition 8.3. Let M be a mapping from a schema S1 to a schema S2, and (I,Σ1),
(J,Σ2) knowledge bases over S1 and S2, respectively. Then (J,Σ2) is a minimal
knowledge-base solution for (I,Σ1) under M if:

MOD(J,Σ2) ≡Min SOLM(MOD(I,Σ1)).

The following result is a simple yet useful characterization of minimal knowledge-
base solutions for the case of full tgds. It also gives evidence of the naturalness of
our definition of good solution as it can be characterized completely in terms of the
standard chase procedure.

PROPOSITION 8.4. Let M = (S1,S2,Σ12), and (I,Σ1), (J,Σ2) be knowledge bases
over S1 and S2, respectively. If Σ12, Σ1 and Σ2 are sets of full tgds, then the following
are equivalent:

(1) (J,Σ2) is a minimal knowledge-base solution of (I,Σ1).
(2) chaseΣ12

(chaseΣ1
(I)) = chaseΣ2

(J).

PROOF. Let M = (S1,S2,Σ12). First notice that by the classical properties of
the chase with full-tgds we have that Min(MOD(I,Σ1)) = {chaseΣ1

(I)}. Similarly,
Min(MOD(J,Σ2)) = {chaseΣ2

(J)}. Next we compute Min(SOLM(MOD(I,Σ1))). Let
K ∈ SOLM(MOD(I,Σ1)). Then we know that there exists L ∈ MOD(I,Σ1) such
that (L,K) ∈ M. Since chaseΣ1

(I) ⊆ L and M is closed-down on the left, we have
that (chaseΣ1

(I),K) ∈ M. This implies that SOLM(MOD(I,Σ1)) = SOLM(chaseΣ1
(I)).

Moreover, from classical data exchange results and since Σ12 is a set of full-tgds,
we know that for every instance I ′ of S1 and every instance L ∈ SOLM(I ′) it holds
that chaseΣ12

(I ′) ⊆ L. Thus, by letting I ′ = chaseΣ1
(I), we obtain that for every

L ∈ SOLM(MOD(I,Σ1)) it holds that chaseΣ12
(I ′) = chaseΣ12

(chaseΣ1
(I)) ⊆ L. This

implies that Min(SOLM(MOD(I,Σ1))) = {chaseΣ12
(chaseΣ1

(I))}.
We have shown so far that Min(MOD(J,Σ2)) = {chaseΣ2

(J)}, and that
Min(SOLM(MOD(I,Σ1))) = {chaseΣ12

(chaseΣ1
(I))}. Thus, we obtain that

MOD(J,Σ2) ≡Min SOLM(MOD(I,Σ1)) holds if and only if chaseΣ12
(chaseΣ1

(I)) =
chaseΣ2

(J). This completes the proof of the proposition.

Notice that every universal K-solution is a minimal knowledge-base solution, but,
as the following example shows, the opposite does not hold in general.

Example 8.5. Let M = (S1,S2,Σ12), (I,Σ1), and (J,Σ2) be as in Example 7.1. We
have that chaseΣ1

(I) is the instance:

I ′ = { F (a, b),M(c, b), F (b, d), P (a, b),
P (c, b), P (b, d),GP(a, d),GP(c, d) }.

If we compute chaseΣ12
(I ′), we obtain the instance {F ′(a, b),

F ′(b, d),GP
′(a, d),GP

′(c, d)}. If we now compute chaseΣ2
(J), we obtain the instance

{F ′(a, b), F ′(b, d),GP
′(a, d),GP

′(c, d)}. Thus, since we have that chaseΣ12
(chaseΣ1

(I)) =
chaseΣ2

(J), we conclude from Proposition 8.4 that (J,Σ2) is a minimal knowledge-base
solution for (I,Σ1) .

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :49

8.3. Computing minimal knowledge-base solutions

As we pointed out in the previous section, when doing knowledge exchange, it is de-
sirable to materialize target knowledge bases with as much implicit knowledge as pos-
sible. Yet there is another requirement that one would like to impose to this process.
Consider a mapping M and a source knowledge base (I,Σ1). In the computation of
a solution (J,Σ2) for (I,Σ1), it would be desirable that the resulting set Σ2 depends
only on Σ1 and M, that is, one would like the implicit knowledge in the target to de-
pend only on the mapping and the implicit knowledge in the source. This motivates
the following definition of a safe set of dependencies.

Definition 8.6. Let M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and Σ1 be a
set of full tgds over S1. Then a set Σ2 of dependencies over S2 is safe for Σ1 and M if for
every instance I of S1, there exists an instance J of S2 such that (J,Σ2) is a minimal
knowledge-base solution of (I,Σ1) under M.

There are many safe sets. In particular, Σ2 = ∅ is safe for every Σ1 and M, but it is ob-
viously useless as implicit knowledge. In general, one would like to materialize a safe
set Σ2 that is as informative as possible. In this section, we show how to compute such
safe sets and how to use them to materialize knowledge-base solutions. More specifi-
cally, we show in Section 8.3.1 that there exists an algorithm that computes optimal
safe sets; with input Σ1 and M, the algorithm computes a set Σ2 such that Σ2 is safe
for Σ1 and M, and for every other safe set Σ′

2 for Σ1 and M, it holds that Σ2 logically
implies Σ′

2. The output of the algorithm is a set of second-order logic sentences, which
motivate us to also consider the problem of generating nontrivial safe sets that, al-
though not optimal, can be expressed in a much simpler language. Finally, we propose
in Section 8.3.2 a strategy that uses safe sets to compute minimal knowledge-base
solutions.

8.3.1. Computing safe implicit knowledge. Before presenting any result of this section,
we need to introduce some terminology. We say that a set Σ is an arbitrary set of
dependencies over a schema S when we only assume that Σ defines a set of instances
of S. Abusing notation, we use I |= Σ to denote the fact that I is an instance in the
set defined by Σ. For arbitrary sets of dependencies Σ and Σ′, we say that Σ implies
Σ′ if every instance in the set defined by Σ is also in the set defined by Σ′. Notice that
this definition is consistent with the definition of logical implication of sentences in,
for example, first-order logic. In fact, for a set of FO-sentences Σ and an arbitrary set
of dependencies Σ′, we have that Σ implies Σ′ if every instance that satisfies the FO-
sentences in Σ is an instance in the set defined by Σ′. We use the usual notation Σ |= Σ′

to indicate that Σ implies Σ′ for arbitrary sets of dependencies.
With the above notation, we can introduce one of the main notions used in this

section. Let M be a mapping from a schema S1 to a schema S2, Σ1 a set of full tgds
over S1 and Σ2 an arbitrary set of dependencies over S2. From now on, we say that Σ2

is optimal-safe for Σ1 and M if: (1) Σ2 is safe for Σ1 and M, and (2) for every arbitrary
set of dependencies Σ′

2 that is safe for Σ1 and M, it holds that Σ2 implies Σ′
2 (Σ2 |= Σ′

2).
In this section, we first present an algorithm that is able to compute in polynomial

time optimal-safe sets. Unfortunately, the output of this algorithm is a set of second-
order logic (SO) sentences. A natural question is whether one can improve this algo-
rithm to provide, for example, a set of FO-sentences. We show that this cannot be done
as FO is not expressive enough to specify optimal-safe sets. Finally, we provide an al-
gorithm that although it does not provide optimal-safe sets, it can compute non-trivial
safe sets for acyclic knowledge bases.

To present our first algorithm, we need to introduce some terminology. In what fol-
lows, we use a procedure COMPOSE that given pairwise disjoint schemas S1, S2, S3,

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:50 M. Arenas et al.

a set Σ1 of logical sentences over S1 ∪ S2 and a set Σ2 of sentences over S2 ∪ S3,
computes a set Σ of sentences over S1 ∪ S3 such that (I, J) |= Σ if and only if there
exists K such that (I,K) |= Σ1 and (K, J) |= Σ2. As pointed out in [Nash et al.
2005], there exists a straightforward implementation of COMPOSE when Σ1 and Σ2

are sets of FO sentences; if Σ1 = {σ1, . . . , σn}, Σ2 = {γ1, . . . , γm} are set of FO-
sentences, and S2 = {S1, . . . , Sk}, then a set Σ consisting of second-order formula
∃S1 · · · ∃Sk (σ1∧· · ·∧σn∧γ1∧· · ·∧γm) satisfies the above condition. It should be noticed
that second-order quantification is unavoidable to express the composition of map-
pings specified by FO sentences, even for the case of st-tgds [Fagin et al. 2005b]. In
what follows, we use COMPOSE as a black box, which could have been implemented by
considering the idea shown above and the techniques presented in [Fagin et al. 2005b;
Nash et al. 2005]. We use COMPOSE in Step 4 of the following algorithm to create an
optimal-safe set.

Algorithm: OPTIMALSAFE(M,Σ1)

Input: M = (S1,S2,Σ12) with Σ12 a set of full-tgds from S1 to S2, and a set Σ1

of full-tgds over S1.
Output: A set Σ2 of SO-formulas over S2 that is optimal-safe for Σ1 and M.

1. For every n-ary relational symbol R of S2 construct a set of FO sentences CR as
follows:
(a) Begin with CR = ∅ and let x̄ be an n-tuple of distinct variables not mentioned

in Σ1.
(b) For every dependency ϕ(z̄) → R(z̄) in Σ1 with z̄ an n-tuple of not necessarily

distinct variables, add formula ∃z̄(ϕ(z̄) ∧ z̄ = x̄) to CR.
2. Construct a set of formulas Σ−

12 over S2∪S1 as follows. Let Σ−
12 = ∅. For every n-ary

relational symbol R of S2, let x̄ be an n-tuple of distinct variables and
(a) if CR 6= ∅, then add to Σ−

12 the formula R(x̄) → α(x̄), where α(x̄) is the disjunc-
tion of the formulas in CR.

(b) if CR = ∅ then add to Σ−
12 the formula ∀x̄(¬R(x̄)).

3. Let Ŝ2 be a copy of S2 defined as {R̂ | R ∈ S2}, and Σ′
12 the set obtained from Σ12

by replacing every symbol R of S2 by its copy R̂.

4. Let Σ′ be the set of SO-formulas over S2 ∪ Ŝ2 that is obtained as the output of
COMPOSE(Σ−

12 ∪ Σ1,Σ
′
12).

5. Let Σ2 be the set of formulas over S2 obtained from Σ′ by replacing every symbol
R̂ of Ŝ2 by R. Return Σ2.

Example 8.7. Let S1 = {E(·, ·), A(·), B(·), P (·)} and S2 = {F (·, ·), R(·)}, and consider
the following sets of dependencies:

Σ1 = {E(x, y) → A(x) ∧B(y), A(x) ∧B(x) → P (x)}

Σ12 = {E(x, y) → F (x, y), P (x) → R(x)}

Next we show how algorithm OPTIMALSAFE computes the output Σ2, given M =
(S1,S2,Σ12) and Σ1 as input. Given that Σ12 consists of copying dependencies, the sets
CF and CR generated in Step 1 are very simple:

CF = {∃z1∃z2(E(z1, z2) ∧ z1 = x ∧ z2 = y)},

CR = {∃z(P (z) ∧ z = x)}.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :51

Notice that CF is equivalent to {E(x, y)} and CR equivalent to {P (x)}, thus Σ−
12 is given

by the following set of dependencies from S2 to S1

Σ−
12 = {F (x, y) → E(x, y), R(x) → P (x)}

Now, Σ′
12 is given by the set of dependencies {E(x, y) → F̂ (x, y), P (x) → R̂(x)}, and

we need to compose Σ−
12 ∪ Σ1 with Σ′

12. By using the general strategy for compos-
ing dependencies (mentioned in the paragraph before the algorithm), we obtain that

COMPOSE(Σ−
12 ∪ Σ1,Σ

′
12) can be expressed as the following SO-formula over S2 ∪ Ŝ2:

∃E∃A∃B∃P

(
∀x∀y

(
F (x, y) → E(x, y)

)
∧ ∀x

(
R(x) → P (x)

)
∧

∀x∀y
(
E(x, y) → A(x) ∧B(y)

)
∧ ∀x

(
A(x) ∧B(x) → P (x)

)
∧

∀x∀y
(
E(x, y) → F̂ (x, y)

)
∧ ∀x

(
P (x) → R̂(x)

))

Finally, the algorithm replaces F̂ (x, y) and R̂(x) by F (x, y) and R(x), respectively, in
the above formula. Notice that after this replacement we obtain the dependencies
F (x, y) → E(x, y) and E(x, y) → F (x, y) as conjuncts in the formula, which implies
that we can eliminate the second-order quantification over relation E. Similarly, we
can eliminate the second-order quantification over P and, thus, the output Σ2 of the
algorithm is (equivalent to) the following SO-formula over S2 = {F (·, ·), R(·)}:

∃A∃B

(
∀x∀y

(
F (x, y) → A(x) ∧B(y)

)
∧ ∀x

(
A(x) ∧B(x) → R(x)

))

It can be proved that Σ2 is optimal-safe for Σ1 and Σ12 (see Theorem 8.9).

Before proving that OPTIMALSAFE is correct, we provide a characterization of safe
sets that is instrumental in the proof of correctness.

PROPOSITION 8.8. Let M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and Σ1

be a set of full tgds over S1. An arbitrary set of dependencies Σ2 over S2 is safe for Σ1

and M iff chaseΣ12
(chaseΣ1

(I)) |= Σ2 for every instance I of S1.

PROOF. (⇐) Let I be a source instances, and let J∗ = chaseΣ12
(chaseΣ1

(I)) we show
now that (J∗,Σ2) is a minimal knowledge-base solution of (I,Σ1) under M. From the
proof of Proposition 8.4 we know that Min(SOLM(MOD(I,Σ1))) = {J∗}. Then, we only
need to show that Min(MOD(J∗,Σ2)) = {J∗}. Notice that MOD(J∗,Σ2) = {K | J∗ ⊆ K
and K |= Σ2}. Then since J∗ |= Σ2 we have that J∗ ∈ MOD(J∗,Σ2) and for every
K ∈ MOD(J∗,Σ2) it holds that J∗ ⊆ K, which implies that J∗ is the only minimal
instance in MOD(J∗,Σ2).

(⇒) To obtain a contradiction, assume that there exists an instance I such that J∗ =
chaseΣ12

(chaseΣ1
(I)) 6|= Σ2. We show next that for every K, (K,Σ2) is not a minimal

knowledge-base solution of (I,Σ1). From the proof of Proposition 8.4 we know that
Min(SOLM(MOD(I,Σ1))) = {J∗}. But Min(MOD(K,Σ2)) 6= {J∗} since J∗ 6|= Σ2 and
thus J∗ /∈ MOD(K,Σ2). Thus, we obtain that (K,Σ2) is not a minimal knowledge-base
solution of (I,Σ1).

We are now ready to prove the correctness of OPTIMALSAFE.

THEOREM 8.9. Let M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and Σ1 be a
set of full tgds over S1. Then with input M and Σ1, algorithm OPTIMALSAFE computes
a set Σ2 of second-order logic sentences that is optimal-safe for Σ1 and M. Moreover,
algorithm OPTIMALSAFE runs in polynomial time.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:52 M. Arenas et al.

PROOF. We first show that Σ2 is safe. From Proposition 8.8 it is enough to show
that for every I the instance J∗ = chaseΣ12

(chaseΣ1
(I)) is such that J∗ |= Σ2. Let Ĵ∗ be

the instance of Ŝ2 obtained from J∗ by replacing every symbol R ∈ S2 by its copy R̂. By
the construction of set Σ2 in the algorithm, to show that J∗ |= Σ2 it is enough to show

that (J∗, Ĵ∗) |= Σ′, where Σ′ is the set constructed in Step 4. Thus, we need to show

that there exists an instance K such that (J∗,K) |= Σ−
12 ∪ Σ1 and (K, Ĵ∗) |= Σ′

12. We
claim that K = chaseΣ1

(I) satisfies these conditions. First, notice that chaseΣ1
(I) |= Σ1.

Moreover, from the construction of Σ′
12 we know that (chaseΣ1

(I), Ĵ∗) |= Σ′
12, since

J∗ = chaseΣ12
(chaseΣ1

(I)). Thus we only need to to prove that (J∗, chaseΣ1
(I)) |= Σ−

12.
Or, since chaseΣ1

(I) = K, then we need to show that (chaseΣ12
(K),K) |= Σ−

12. Choose
an arbitrary sentence σ from Σ−

12. We have two options:

(1) The sentence σ is of form ∀x̄(¬R(x̄)). Then we know that R does not appear in
the conclusion of any dependency in Σ12, and thus clearly, chaseΣ12

(K) |= σ, and
(chaseΣ12

(K),K) |= σ.
(2) Sentence σ is a dependency of the form R(x̄) → α(x̄). To show that

(chaseΣ12
(K),K) |= σ, assume that chaseΣ12

(K) |= R(ā) for some tuple ā. We need to
show thatK |= α(ā). Since chaseΣ12

(K) |= R(ā), then the fact must have been added
in some chase step, thus we know that there exists a dependency ϕ(z̄) → R(z̄) in
Σ12 such that K |= ϕ(ā). Therefore by the construction of α(x̄) we know that it
contains a disjunct of the form ∃z̄(ϕ(z̄) ∧ z̄ = x̄). Finally since K |= ∃z̄(ϕ(z̄) ∧ z̄ = ā)
we have that K |= α(ā) which was to be shown.

We then have that (chaseΣ12
(K),K) |= Σ−

12. Thus, we have shown that for every in-
stance I it holds that chaseΣ12

(chaseΣ1
(I)) satisfies every formula in Σ2, which proves

that Σ2 is safe.
We now show that if Σ′

2 is a safe set of formulas, then Σ2 logically implies Σ′
2. We first

show the following property: if K |= Σ2, then there exists an instance L such that K =

chaseΣ12
(chaseΣ1

(L)). Assume that K |= Σ2, and let K̂ be the instance obtained from K

by replacing every relation R ∈ S2 by its copy R̂. Then we know that (K, K̂) |= Σ′ where
Σ′ is the set constructed in Step 4. Therefore, there exists an instance L of S1 such that
(K,L) |= Σ−

12 ∪ Σ1 and (L, K̂) |= Σ′
12. We show next that K = chaseΣ12

(L). First, from

(L, K̂) |= Σ′
12 we know that chaseΣ12

(L) ⊆ K. Next we show that K ⊆ chaseΣ12
(L).

Assume that there is a relation R over S2 and a tuple ā such that K |= R(ā). Notice
that if R is not in the conclusion of a dependency in Σ12 then the formula ∀x̄(¬R(x̄)) is
in Σ−

12, which contradicts the fact that (K,L) |= Σ−
12. Then, we know that R is in the

conclusion of a dependency in Σ12 and, moreover,Σ−
12 contains a dependency of the form

R(x̄) → α(x̄) (constructed in Step 2 of the algorithm). Then L |= α(ā) which implies that
there is a disjunct in α(x̄) of the form ∃z̄(ϕ(z̄) ∧ z̄ = x̄) such that L |= ∃z̄(ϕ(z̄) ∧ z̄ = ā),
and then L |= ϕ(ā). Moreover, we also know that ϕ(z̄) → R(z̄) is a dependency in Σ12.
Finally, since L |= ϕ(ā) we have that chaseΣ12

(L) |= R(ā). We have shown that if K |=
R(ā) then chaseΣ12

(L) |= R(ā). From this we conclude that K ⊆ chaseΣ12
(L) which was

to be shown. Finally, since L |= Σ1 we have that chaseΣ1
(L) = L. Thus, we have shown

that if K |= Σ2 then there exists an instance L such that K = chaseΣ12
(chaseΣ1

(L)).
Now let Σ′

2 be a safe set. By using the property shown in the previous para-
graph we can show that if K |= Σ2 then K |= Σ′

2, and then Σ2 logically implies
Σ′

2. Then assume that K |= Σ2. We know that there exists an instance L such that
K = chaseΣ12

(chaseΣ1
(L)). Thus since Σ′

2 is safe by Proposition 8.8 we obtain that
K = chaseΣ12

(chaseΣ1
(L)) |= Σ′

2.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :53

A natural question at this point is whether one could modify OPTIMALSAFE to re-
turn a set of FO-sentences. Unfortunately, the following theorem gives a negative an-
swer to this question.

THEOREM 8.10. There exist M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds,
and a set Σ1 of full tgds over S1 such that there is no set Σ2 of FO-sentences that is
optimal-safe for Σ1 and M.

PROOF. Let S1 = {E(·, ·), F (·, ·), A(·, ·), C(·),W (x, y)} and consider the set Σ1 of full-
tgds over Σ1 given by:

E(x, y) ∧ A(x, u) ∧ A(x, v) → F (x, y)

E(x, y) ∧ A(x, u) ∧ A(x, u) → W (x, y)

A(x, u) → C(u)

Let S2 = {F ′(·, ·),W ′(·, ·), C′(·)} and consider the mapping M = (S1,S2,Σ12) where Σ12

is the set of dependencies {F (x, y) → F ′(x, y),W (x, y) →W ′(x, y), C(x) → C′(x)}.
Now assume that Σ2 is safe for Σ1 and M. Further assume that if Σ′

2 is also safe,
then Σ2 logically implies Σ′

2. Then by Theorem 8.9, we know that Σ2 is logically
equivalent to the output of Algorithm 1. Thus, from the proof of Theorem 8.9, we
know that an instance J |= Σ2 if and only if there exists an instance I such that
J = chaseΣ12

(chaseΣ1
(I)).

We prove now that Σ2 is not FO-definable. To obtain a contradiction, assume that
Σ2 contains only FO sentences, and let ψ be the conjunction of the sentences in Σ2.
Now let u, v, w be variables that are not mentioned in ψ and consider the formula ψ′

obtained from ψ by:

— replacing every relational atom C′(x) by the formula x = u ∨ x = v ∨ x = w, and
— replacing every relational atom W ′(x, y) by the formula x 6= x ∧ y 6= y.

Now let α be the FO sentence:

∃u∃v∃w
(
u 6= v ∧ u 6= w ∧ v 6= w ∧ ψ′

)

Notice that α is an FO sentence over the schema S
′ = {F ′(·, ·)}. Let K be an arbitrary

instance of S′ and J an instance of S2 such that F ′J = F ′K , W ′J = ∅ and C′J = {a, b, c}
(with a, b, c arbitrary different values). Notice that K |= α if and only if J |= ψ. To
see this, just notice that restricted to the class of instances of S2 that interprets W ′

as the empty set and C′ as a set with three different elements a, b, and c, the formula
W ′(x, y) is equivalent to x 6= x ∧ y 6= y, and the formula C′(x) is equivalent to (x =
a ∨ x = b ∨ x = c). Moreover, given the definition of Σ1 and Σ12 it is straightforward
to show that an instance of S2 that interprets W ′ as the empty set and C′ as a set
with three different elements a, b, and c satisfies ψ if and only if the interpretation of
F ′ is 3-colorable. Thus, by the discussion above we have that α defines 3-colorability
which is a contradiction since 3-colorability is not expressible in FO (in fact, it is not
expressible even in the infinitary logic Lω

∞ω [Dawar 1998], which is more expressive
than FO).

Theorem 8.10 shows that FO is not enough, in general, to specify an optimal-safe set
of dependencies. Nevertheless, in practice one might be more interested in generating
nontrivial safe sets that, although not optimal, can be expressed in a simple language.
The ideal would be to have nontrivial safe sets specified by full tgds or a mild extension
of full tgds. In what follows, we present an algorithm that, given a mapping M spec-
ified by a set of full st-tgds and an acyclic set Σ1 of full tgds over the source schema,
generates a set Σ2 that is safe for Σ1 and M, and which is specified by a set of full tgds
with inequalities in their premises.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:54 M. Arenas et al.

Formally, a set Σ of full tgds is acyclic if there exists a function that assigns a natural
number to each predicate symbol in Σ in such a way that for every σ ∈ Σ, if P is a
relation symbol in the premise of σ and R is the relation symbol in the conclusion of σ,
then f(P) < f(R). A well-known property of an acyclic set Σ of full tgds is that it has
a finite unfolding; for every relational atom R(x̄) in the conclusion of a dependency of
Σ, there exists a formula α(x̄) in UCQ= such that for every instance I, it holds that
R(ā) is in chaseΣ(I) if and only if α(ā) holds in I. The unfolding of Σ, that we denote
by Σ+, is constructed by first computing α(x̄) for every R(x̄) in the conclusion of a tgd
in Σ, then adding β(x̄) → R(x̄) to Σ+ for every β(x̄) in CQ= that is a disjunct in α(x̄),
and then eliminating equalities by using variable substitutions. We use the unfolding
of an acyclic set Σ of full tgds as an intermediate step in our algorithm (as well as in
the proof of Lemma 8.13).

To present our algorithm, we need to introduce some additional terminology. Given
a mapping M = (S1,S2,Σ12) and a query Q over S1, we say that Q is target rewritable
under M if there exists a query Q′ over S2 such that for every instance I of S1, it holds
that Q(I) = certainM(Q′, I). It is implicit in [Arenas et al. 2010] that if Σ12 is a set of
full tgds and Q is a conjunctive query, then it is decidable in coNEXPTIME whether Q
is target rewritable (see Theorems 4.1 and 4.3 in [Arenas et al. 2010]). Moreover, from
the results in [Arenas et al. 2010], we know that there exists a procedure TREW(M, Q)

that computes a query in UCQ=, 6= that is a target rewriting of Q under M (if such a
rewriting exists). Besides, we also need a procedure to compose full st-tgds. In [Fagin
et al. 2005b], the authors show that there exists a procedure COMPOSEFULL that
given sets Σ12 and Σ23 of full st-tgds from a schema S1 to a schema S2 and from S2

to a schema S3, respectively, computes a set Σ13 of full st-tgds from S1 to S3 such that
(I, J) |= Σ13 if and only if there exists K such that (I,K) |= Σ12 and (K, J) |= Σ23. It
can be easily shown that if Σ12 is a set of full st-tgds with inequalities in the premises,
then COMPOSEFULL returns a set of full st-tgds with inequalities in the premises that
defines the composition of Σ12 and Σ23. With procedures TREW and COMPOSEFULL,
we have all the necessary ingredients for our algorithm.

Algorithm: FULLSAFE(M,Σ1)

Input: M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and an acyclic set
Σ1 of full tgds over S1.

Output: A set Σ2 of full tgds with inequalities over S2 that is safe for Σ1 and M.

1. Construct a set of formulas Σ+
1 by unfolding Σ1.

2. Construct a set Σ′ of full st-tgds with inequalities from S2 to S1 as follows. Begin
with Σ′ = ∅. For every tgd α(x̄) → R(x̄) in Σ+

1 do the following:

2.1. If α(x̄) is target rewritable under M, then let β(x̄) be the query in UCQ=, 6= over
S2 that is the output of TREW(M, α(x̄)). For every disjunct γ(x̄) in β(x̄), add to
Σ′ the dependency γ(x̄) → R(x̄) (and eliminate equalities by using variable
substitutions).

3. Let Ŝ2 be a copy of S2 defined as {R̂ | R ∈ S2}, and Σ′
12 the set of full st-tgds from

S1 to Ŝ2 obtained from Σ12 by replacing every R ∈ S2 by R̂.
4. Let Σ′′ be the set of full st-tgds with inequalities from S2 to Ŝ2 that is obtained as

the output of COMPOSEFULL(Σ′,Σ′
12).

5. Let Σ2 be the set of formulas over S2 obtained from Σ′′ by replacing every symbol
R̂ ∈ Ŝ2 by R. Return Σ2.

THEOREM 8.11. Given a mapping M = (S1,S2,Σ12), where Σ12 is a set of full st-
tgds, and an acyclic set Σ1 of full tgds over S1, algorithm FULLSAFE(M,Σ1) computes
a set Σ2 of full tgds with inequalities in the premises which is safe for Σ1 and M.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :55

PROOF. According to the definition, to prove that Σ2 is safe we need to show that for
every instance I of S1 the instance J∗ = chaseΣ12

(chaseΣ1
(I)) is such that J∗ |= Σ2. Let

Ĵ∗ be the instance of Ŝ2 obtained from J∗ by replacing every symbol R ∈ S2 by its copy
R̂. By the construction of set Σ2 in the algorithm, to show that J∗ |= Σ2 it is enough to

show that (J∗, Ĵ∗) |= Σ′′, where Σ′′ is the set constructed in Step 5. Thus, we need to

show that there exists an instance K of S1 such that (J∗,K) |= Σ′ and (K, Ĵ∗) |= Σ′
12,

where Σ′ is the set constructed in Step 2 and Σ′
12 is the set constructed in Step 3. We

claim that the instance K = chaseΣ1
(I) over S1 satisfies these conditions.

First, notice that (K, Ĵ∗) |= Σ′
12 since J∗ = chaseΣ12

(K). Thus we only need to to
prove that (J∗,K) |= Σ′. Let γ(x̄) → R(x̄) be a dependency in Σ′, and assume that
J∗ |= γ(ā) for some tuple ā. Then by the construction of Σ′ we know that J∗ |= β(ā)
where β(x̄) is a target rewriting of a formula α(x̄) under M = (S1,S2,Σ12) such that
α(x̄) → R(x̄) is a dependency in Σ+

1 . Now, it is well known that if M is specified by

full-tgds and Q is a target query in UCQ=, 6=, then for every instance L of S1, it holds
that certain(Q, SOLM(L)) = Q(chaseΣ12

(L)). Thus, since β(x̄) is a target rewriting of
α(x̄) and J⋆ = chaseΣ12

(K) |= β(ā), then K |= α(ā). Finally, since K = chaseΣ1
(I) we

have that K |= Σ+
1 obtaining that K |= R(ā) since α(x̄) → R(x̄) is in Σ+

1 .

Example 8.12. Let M = (S1,S2,Σ12) and Σ1 be as defined in Example 7.1. It is not
difficult to see that dependency σ given by

∃y(F (x, y) ∧ F (y, z)) → GP(x, z)

is in Σ+
1 . Now the query given by ∃y (F (x, y) ∧ F (y, z)) is target rewritable under M,

and its rewriting is ∃y (F ′(x, y) ∧ F ′(y, z)). Thus, in Step 2 of FULLSAFE, we add de-
pendency:

∃y(F ′(x, y) ∧ F ′(y, z)) → GP(x, z)

to Σ′. In the set Σ′
12 created in Step 3, we have the dependency:

GP(x, z) → ĜP
′(x, z).

Thus, the output of COMPOSEFULL(Σ′,Σ′
12) contains the dependency ∃y(F ′(x, y) ∧

F ′(y, z)) → ĜP
′(x, z), which implies that:

∃y(F ′(x, y) ∧ F ′(y, z)) → GP
′(x, z) (24)

is in the output of FULLSAFE(M,Σ1). In fact, it can be proved that the set Σ2 returned
by FULLSAFE(M,Σ1) is logically equivalent to the set consisting of dependency (24).

8.3.2. Using safe implicit knowledge to compute minimal knowledge-base solutions. For a map-
ping M and a source knowledge base (I,Σ1), a minimal knowledge-base solution of
(I,Σ1) consists of an instance J and a set Σ2 of dependencies. Up to this point, we have
described two alternative algorithms that compute the set Σ2 from Σ1 and M. In this
section, we propose a strategy to compute instance J .

Let M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and (I,Σ1) a knowledge base
over S1, where Σ1 is a set of full tgds. As we pointed out before, J = chaseΣ12

(chaseΣ1
(I))

can always be used as the explicit data in a minimal knowledge-base solution of (I,Σ1).
However, such an instance does not need to make use of any implicit knowledge and,
thus, it does not take advantage of any of the algorithms proposed in the previous
section for computing safe sets. In fact, given these algorithms, one would expect that
some parts of the instance chaseΣ1

(I) are not necessary given the target implicit knowl-
edge. In what follows, we propose an approach that given (I,Σ1), M and a safe set Σ2

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:56 M. Arenas et al.

for Σ1 and M, computes an instance J that makes use of the implicit knowledge in Σ2.
More precisely, the approach first constructs a minimal set Σ′

1 of full tgds such that for
every instance I1 of S1, it holds that:

(C1) chaseΣ′
1
(I1) is contained in chaseΣ1

(I1), and
(C2) (chaseΣ12

(chaseΣ′
1
(I1)),Σ2) is a minimal knowledge-base solution of (I1,Σ1).

Then for the input knowledge base (I,Σ1), it materializes knowledge base
(chaseΣ12

(chaseΣ′
1
(I)),Σ2). Notice that in the previous approach, the minimal set Σ′

1

can be used for any source knowledge base (I,Σ1). This is an important feature of our
proposal, as the computation of Σ′

1 only depends on Σ1, M and Σ2, which are usually
much smaller than the source explicit data. Besides, this is the most typical scenario
in practice [Hayes 2004; Patel-Schneider et al. 2004], where for a specific domain the
rules in a knowledge base remains unchanged, while the explicit data changes from
one repository to another.

In this section we present an algorithm that given M, Σ1 and Σ2 as above, returns a
set Σ′

1 of full tgds satisfying conditions (C1) and (C2). Our algorithm works specifically
for the case in which Σ1 is an acyclic set of full tgds. The key property that allows us
to develop this algorithm is stated in the following lemma. The lemma ensures that if
Σ1 is an acyclic set of full tgds, then the problem of verifying whether conditions (C1)
and (C2) hold for every instance I1 of S1 is decidable in exponential time.

LEMMA 8.13. There exists an exponential-time algorithm that, given M =
(S1,S2,Σ12) with Σ12 a set of full st-tgds, an acyclic set of full tgds Σ1 over S1, a set
of full tgds Σ′

1 over S1 such that Σ1 |= Σ′
1, and a set of full tgds with inequalities Σ2 over

S2 that is safe for Σ1 and M, verifies whether

chaseΣ2

(
chaseΣ12

(
chaseΣ′

1
(I)

))
= chaseΣ12

(chaseΣ1
(I)). (25)

holds for every instance I of S1.

PROOF. We first show that for every I it holds that

chaseΣ2

(
chaseΣ12

(
chaseΣ′

1
(I)

))
⊆ chaseΣ12

(
chaseΣ1

(I)
)

First notice that chaseΣ′
1
(I) ⊆ chaseΣ1

(I) since Σ1 and Σ′
1 are sets of full-tgds and

Σ1 |= Σ′
1. Thus, we also have that

chaseΣ12

(
chaseΣ′

1
(I)

)
⊆ chaseΣ12

(
chaseΣ1

(I)
)
.

Finally, since Σ2 is safe then chaseΣ12

(
chaseΣ1

(I)
)
|= Σ2 and we have that

chaseΣ2

(
chaseΣ12

(
chaseΣ′

1
(I)

))
⊆

chaseΣ2

(
chaseΣ12

(
chaseΣ1

(I)
))

= chaseΣ12

(
chaseΣ1

(I)
)
.

Thus, to prove the lemma we only need to show how to test that the inclusion

chaseΣ12

(
chaseΣ1

(I)
)
⊆ chaseΣ2

(
chaseΣ12

(
chaseΣ′

1
(I)

))
(26)

holds for every instance I. In what follows we describe a procedure to test (26).
Let Σ+

1 be the set that results from unfolding Σ1 (recall the notion of unfolding that

we use in Algorithm FULLSAFE). Now consider a schema Ŝ1 that is a copy of S1, and let
Σcopy be the set of copying dependencies from Ŝ1 to S1, that is, Σcopy = {R̂(x̄) → R(x̄) |
R ∈ S1}. Let Σ∗

1 be the set obtained from Σ+
1 by replacing every relational symbol R in

the left-hand side of a dependency by its copy R̂, and let ∆1 be the set of dependencies
Σ∗

1 ∪ Σcopy. Notice that ∆1 is a set of dependencies from Ŝ1 to S1. By the properties of

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :57

the unfolding, it is not difficult to see that the set ∆1 satisfies the following. Let I be an
arbitrary instance of S1, and Î the instance obtained from I by replacing every relation
symbol R of S1 by its copy R̂. Then it holds that chase∆1

(Î) = chaseΣ1
(I). Now, let Γ be a

set of dependencies that is logically equivalent to the composition of ∆1 with Σ12. That
is, (I, J) |= Γ if and only if there exists K such that (I,K) |= Σ∗

1 and (K, J) |= Σ12.
Notice that ∆1 is of size exponential in Σ1, since ∆1 contains all the dependencies in

Σ∗
1 which is constructed from the unfolding Σ+

1 of Σ1. In particular, ∆1 has an exponen-
tial number of dependencies, each dependency of polynomial size w.r.t. the size of Σ1.
Moreover, if we use the typical algorithm for composing full-tgds presented in [Fagin
et al. 2005b] to construct Γ, then the size of Γ is exponential in Σ12. More precisely, let
n∆1

be the number of dependencies in ∆1, nΣ12
the number of dependencies in Σ12, and

k∆1
be the maximum number of relational atoms in the left-hand side of a dependency

in ∆1. Then Γ has a number of dependencies that is proportional to (k∆1
)nΣ12 × n∆1

,
each dependency of polynomial size w.r.t. the size of Σ1 and Σ12. Thus, Γ has an ex-
ponential number of dependencies w.r.t. the size of Σ1 and Σ12, each dependency of
polynomial size w.r.t. the size of Σ1 and Σ12.

In what follows we assume some familiarity with Datalog programs (we refer the
reader to [Abiteboul et al. 1995; Ceri et al. 1989] for a detailed introduction to Data-
log). Let D be the Datalog program obtained by considering all the tgds in Γ as Datalog
rules. Notice that D has Ŝ1 as the extensional database schema and S2 as the inten-
tional schema. Moreover, D is a program in which every rule is of the form α(x̄) → R(x̄)
such that R does not appear in the body of any rule in D. Now, it is clear by the con-

struction of D that if we start with an instance Î of Ŝ1 as the extensional database,
then the evaluation of D over Î is exactly chaseΣ12

(chaseΣ1
(I)).

Similarly, consider the set of full-tgds given by

Γ′ = Σcopy ∪ Σ′
1 ∪ Σ12 ∪ Σ2.

Then let D′ be the Datalog program obtained from Γ′. Then D′ is a possibly re-
cursive Datalog program with inequalities (since Σ2 can be recursive and has in-
equalities) in which Ŝ1 is the extensional database schema and S1 ∪ S2 is the in-
tentional database schema. In this case we have that, if we start with an instance
Î of Ŝ1 as the extensional database, then the evaluation of D′ over Î is exactly
chaseΣ′

1
(I) ∪ chaseΣ2

(chaseΣ12
(chaseΣ′

1
(I))).

Now it is easy to argue that (26) holds for every I if and only if the program D
is contained in D′. First, assume that D is contained in D′. Thus for every Î over
Ŝ1 we have that D(Î) ⊆ D′(Î) which implies that chaseΣ12

(chaseΣ1
(I)) is contained in

chaseΣ′
1
(I) ∪ chaseΣ2

(chaseΣ12
(chaseΣ′

1
(I))), and thus

chaseΣ12
(chaseΣ1

(I)) ⊆ chaseΣ2
(chaseΣ12

(chaseΣ′
1
(I)))

since chaseΣ′
1
(I) is an instance over S1 which is not mentioned in D. On the other hand,

if (26) holds for every I, then D(Î) is contained in D′(Î) for every Î in Ŝ1 since D does
not mention schema S1.

We have reduced the problem of testing whether (26) holds to the problem of test-
ing the containment of a non-recursive Datalog program into a Datalog program with
inequalities. It is well known that deciding whether a non-recursive Datalog program
is contained in a Datalog program is decidable in EXPTIME [Sagiv 1988]. Moreover,
the non-recursive Datalog program D that we need to check for containment is such
that if a relation name R occurs in the right-hand side of a rule in D, then it does not
occur in the left-hand side of any rule in D, which ensures that one can check contain-
ment of the program by considering one rule at a time [Sagiv 1988]. More precisely,

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:58 M. Arenas et al.

it follows from the results of [Sagiv 1988] that to decide that D is contained in D′ it
suffices to test, for every rule r in D, whether the program consisting of this single rule
is contained in D′. Now, since D′ is a Datalog program with inequalities the technique
for checking containment developed in [Sagiv 1988] need to be adapted. This can be
done using the techniques presented in [Ullman 1997] as follows. To check that a rule
r is contained in D′ we first create a set R containing all the rules obtained from r
by making equal some of the variables occurring in r (and applying the corresponding
variable replacements). For instance, if r is the rule A(x1, x2, x3, x4) → B(x1, x3) then
R contains, among others, the rule A(x1, x1, x3, x4) → B(x1, x3) obtained from r by ap-
plying the equality x1 = x2, and also the rule A(x1, x2, x2, x1) → B(x1, x2) obtained
from r by applying the equalities x1 = x4 and x2 = x3. Then in order to check that r is
contained in D′ one can apply the technique described in [Sagiv 1988; Ullman 1997] to
every rule r′ in R: we evaluate the program D′ over the database instance composed
of the frozen body of r′, that is, the atoms in the body of r′ considering all variables as
if they were distinct constant values, and then check whether the resulting instance
contains the frozen head of r′ [Sagiv 1988; Ullman 1997]. Notice that the number of
rules in the set R is at most exponential in the size of r, and every rule in R is of size
linear in the size of r. Thus the complete process of checking if r is contained in D′ can
be done in exponential time with respect to the size of r and D′.

Finally, since the number of rules in D is exponential in the size of Σ1 and Σ12, each
rule of size polynomial, and D′ is of size proportional to Σ′

1, Σ12 and Σ2, the whole
process can be done in time exponential with respect to the size of Σ1, Σ12, Σ′

1 and Σ2.
This completes the proof of the lemma.

We are now ready to present an algorithm that given M, Σ1 and Σ2, returns a min-
imal set Σ′

1 of full tgds satisfying conditions (C1) and (C2). In this algorithm, we use
some of the terminology introduced in Section 8.3.1 for the definition of procedure
FULLSAFE.

Algorithm: MINIMIZE(M,Σ1,Σ2)

Input: M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, an acyclic set Σ1 of
full tgds, and a set Σ2 of full tgds with inequalities that is safe for Σ1

and M.
Output: A minimal set Σ′

1 that satisfies conditions (C1) and (C2) for every in-
stance I1 of S1.

1. Let Σ+
1 be the set obtained by unfolding Σ1, and Γ = Σ+

1 .
2. If there exists σ ∈ Γ such that the set Σ′

1 = Γ r {σ} satisfies conditions (C1) and
(C2) for every instance I1 of S1, then remove σ from Γ and repeat Step 2.

3. Let Σ′
1 = Γ, and return Σ′

1.

Notice that algorithm MINIMIZE can compute different outputs depending on the order
in which the dependencies in Γ are chosen in Step 2. Also notice that we are searching
for a minimal set in order to minimize the explicit data materialized in the target.
Putting together procedures FULLSAFE and MINIMIZE, we can give a complete strat-
egy to compute minimal knowledge-base solutions.

THEOREM 8.14. Let M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds, and Σ1 an
acyclic set of full tgds over S1. Moreover, let Σ2 be the output of FULLSAFE(M,Σ1), and
Σ′

1 the output of MINIMIZE(M,Σ1,Σ2). Then for every instance I of S1, it holds that(
chaseΣ12

(chaseΣ′
1
(I)), Σ2

)
is a minimal knowledge-base solution for (I,Σ1) under M.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :59

PROOF. This theorem is a direct consequence of Theorem 8.11, Proposition 8.4, and
Lemma 8.13, which establishes the decidability of the key property used in algorithm
MINIMIZE.

Example 8.15. Let M = (S1,S2,Σ12) and Σ1 be as in Example 7.1. From Exam-
ple 8.12, we know that the output of FULLSAFE(M,Σ1) is the set Σ2 consisting of
dependency F ′(x, y) ∧ F ′(y, z) → GP

′(x, z). It can be proved that there exists an or-
der over the dependencies in Σ+

1 such that the output of MINIMIZE(M,Σ1,Σ2) is the
following set Σ′

1 of dependencies:

M(x, y) → P (x, y)

P (x, y) ∧ P (y, z) → GP(x, z)

F (x, y) ∧ P (y, z) → GP(x, z)

P (x, y) ∧ F (y, z) → GP(x, z)

Consider now the source instance I of Example 7.1, that is, I =
{F (a, b),M(c, b), F (b, d)}. If we chase I with Σ′

1, we obtain instance I ′ =
{F (a, b),M(c, b), F (b, d), P (c, b),GP(c, d)}. If we now chase I ′ with Σ12, we obtain
the instance J = {F ′(a, b), F ′(b, d),GP

′(c, d)}. Thus, we conclude from Theorem 8.14
that (J,Σ2) is a minimal knowledge-base solution for (I,Σ1) under M. Notice that this
is exactly the solution that we considered as a good solution in Example 7.1.

9. CONCLUDING REMARKS

We have presented a framework to exchange data beyond the usual setting in which
instances are considered to have complete information. We showed the robustness of
our proposal by applying it to the problems of exchanging incomplete information and
exchanging knowledge bases. In the former case, we proved several results regarding
expressiveness, query answering and complexity of materializing solutions. In partic-
ular, we made the case that positive conditional instances are the right representation
system to deal with the inherent incompleteness that emerges when exchanging data
by using st-tgds. We also applied our framework to define the novel notion of knowl-
edge exchange. This can be considered as a starting point for formalizing and studying
the exchange of data in the Semantic Web, in particular, the exchange of RDFS graphs
and OWL specifications. Many problems remain open. In particular, we would like
to study knowledge exchange under mappings defined by non full st-tgds, which will
probably require combining the results for knowledge bases and positive conditional
instances. We would also like to continue studying the notion of chase that we provided
in this paper (to deal with conditional instances), and see whether it can be modified to
handle other models that feature relational databases with annotations of the tuples,
such as the semirings for provenance presented in [Green et al. 2007].

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. 1991. On the Representation and Querying of Sets
of Possible Worlds. TCS 78, 1 (1991), 158–187.

Foto Afrati, Chen Li, and Vassia Pavlaki. 2008. Data Exchange: Query Answering for Incomplete Data
Sources. In InfoScale.

Lyublena Antova, Christop Koch, and Dan Olteanu. 2007. 1010
6

Worlds and Beyond: Efficient Representa-
tion and Processing of Incomplete Information. In ICDE. 606–615.

Marcelo Arenas, Elena Botoeva, and Diego Calvanese. 2011. Knowledge Base Exchange. In Description
Logics.

Marcelo Arenas, Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov, and Evgeny Sherkhonov. 2012a. Ex-
changing Description Logic Knowledge Bases. In KR.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

:60 M. Arenas et al.

Marcelo Arenas, Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov, and Evgeny Sherkhonov. 2012b. Rep-
resentability in DL-LiteR Knowledge Base Exchange. In Description Logics.

Marcelo Arenas, Jorge Pérez, and Juan L. Reutter. 2011. Data exchange beyond complete data. In PODS.
83–94.

Marcelo Arenas, Jorge Pérez, Juan L. Reutter, and Cristian Riveros. 2009b. Inverting Schema Mappings:
Bridging the Gap between Theory and Practice. PVLDB 2, 1 (2009), 1018–1029.

Marcelo Arenas, Jorge Pérez, Juan L. Reutter, and Cristian Riveros. 2010. Foundations of schema mapping
management. In PODS. 227–238.

Marcelo Arenas, Jorge Pérez, Juna L. Reutter, and Cristian. Riveros. 2013. The Language of Plain SO-tgds:
Composition, Inversion and Structural Properties. J. Comput. System Sci. 79, 6 (2013), 763–784.

Marcelo Arenas, Jorge Pérez, and Cristian Riveros. 2009a. The recovery of a schema mapping: Bringing
exchanged data back. TODS 34, 4 (2009).

Catriel Beeri and Moshe Vardi. 1984. A proof procedure for data dependencies. J. ACM 31, 4 (1984), 718–741.

Philip Bernstein. 2003. Applying Model Management to Classical Meta Data Problems. In CIDR.

Philip Bernstein and Sergey Melnik. 2007. Model management 2.0: manipulating richer mappings. In SIG-
MOD. 1–12.

Samuel R. Buss and Louise Hay. 1991. On Truth-Table Reducibility to SAT. Inf. Comput. 91, 1 (1991), 86–
102.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Trans. Knowl. Data Eng. 1, 1 (1989), 146–166.

Anuj Dawar. 1998. A Restricted Second Order Logic for Finite Structures. Inf. Comput. 143, 2 (1998), 154–
174.

Alin Deutsch and Val Tannen. 2003. Reformulation of XML Queries and Constraints. In ICDT. 225–241.

Ronald Fagin. 2007. Inverting schema mappings. TODS 32, 4 (2007).

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005a. Data exchange: semantics and
query answering. TCS 336, 1 (2005), 89–124.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan. 2005b. Composing schema mappings:
Second-order dependencies to the rescue. TODS 30, 4 (2005), 994–1055.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan. 2007. Quasi-inverses of schema
mappings. In PODS. 123–132.

Ronald Fagin, Phokion G. Kolaitis, Lucin Popa, and Wang-Chiew Tan. 2009. Reverse data exchange: coping
with nulls. In PODS. 23–32.

Gösta Grahne. 1991. The Problem of Incomplete Information in Relational Databases. Springer.

Gösta Grahne and Adrian Onet. 2011. Closed world chasing. In LID. 7–14.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. 31–40.

Pat Hayes. February 2004. RDF Semantics, W3C Recommendation. http://www.w3.org/TR/rdf-mt. (February
2004).

Tomasz Imielinski and Witold Lipski. 1984. Incomplete information in relational databases. J. ACM 31, 4
(1984), 761–791.

Phokion G. Kolaitis, Jonathan Panttaja, and Wang-Chiew Tan. 2006. The complexity of data exchange. In
PODS. 30–39.

Leonid Libkin. 2006. Data exchange and incomplete information. In PODS. 60–69.

Leonid Libkin and Cristina Sirangelo. 2008. Data exchange and schema mappings in open and closed worlds.
In PODS. 139–148.

Alan Nash, Philip Bernstein, and Sergey Melnik. 2005. Composition of mappings given by embedded depen-
dencies. In PODS. 172–183.

Peter Patel-Schneider, Pat Hayes, and Ian Horrocks. February 2004. OWL Web Ontology Language, W3C
Recommendation. http://www.w3.org/TR/owl-semantics/. (February 2004).

Yehoshua Sagiv. 1988. Optimizing Datalog Programs. In Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann.

Balder ten Cate and Phokion G. Kolaitis. 2010. Structural characterizations of schema-mapping languages.
Commun. ACM 53, 1 (2010), 101–110.

Jeffrey D. Ullman. 1997. Information Integration Using Logical Views. In ICDT. 19–40.

Moshe Vardi. 1982. The complexity of relational query languages. In STOC. 137–146.

Klaus W. Wagner. 1987. More Complicated Questions About Maxima and Minima, and Some Closures of
NP. TCS 51 (1987), 53–80.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data :61

Klaus W. Wagner. 1990. Bounded Query Classes. SIAM J. Comput. 19, 5 (1990), 833–846.

Received ; revised ; accepted

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Online Appendix to:
Data Exchange beyond Complete Data

MARCELO ARENAS, Pontificia Universidad Católica de Chile

JORGE PÉREZ, Universidad de Chile

JUAN REUTTER, University of Edinburgh and Pontificia Universidad Católica de Chile

A. PROOFS AND INTERMEDIATE RESULTS

A.1. Proof of Proposition 5.7

We need to introduce some terminology for this proof. First notice that every Horn
element-condition of the form

ψ ∨ x1 = x2

where ψ is a positive Boolean combination of conditions of the form u 6= v, is logically
equivalent to an element-condition of the form

¬ϕ ∨ x1 = x2

where ϕ is a positive element condition, and thus, it is equivalent to an implication of
the form

ϕ → x1 = x2. (27)

Moreover, it is straightforward to see that ϕ can be efficiently constructed from ψ.
Thus, in this proof we assume that a global condition in a Horn conditional instance
is of the form (27), that is, it is a condition ϕ → x1 = x2 with ϕ a positive element-
condition. We need another notion. We say that an element-condition of a conditional
instance I is a tautology if it is true under every substitution ν for I. Next, we de-
fine the normalization of a conditional Horn instance I, denoted by Norm(I), as the
instance resulting from the following procedure. In the procedure we assume a linear
ordering on the elements from N.

(1) Initially let Norm(I) be equal to I.
(2) For each Horn condition of the form ϕ → x1 = x2 occurring as a conjunct in the

global condition ξNorm(I), such that ϕ is a tautology, do the following. We can assume
w.l.o.g. that it holds that either (1) x1 and x2 are constants, or (2) x1 is a constant
and x2 is a null, or (3) x1 and x2 are nulls and x1 is greater than x2 in the ordering
on N. Then we proceed by cases:
(1) If both x1 and x2 are different constants, then let ξNorm(I) be (n 6= n) and stop,

where n is a fresh null value.
(2) If x1 is a constant and x2 is a null, then replace all occurrences of x2 in Norm(I)

with x1.
(3) If x1 and x2 are nulls and x1 is greater than x2 in the ordering on N, then

replace all occurrences of x2 in Norm(I) with x1
Then delete the condition ϕ→ x1 = x2 from ξNorm(I).

(3) Repeat until there are no more Horn conditions of form ϕ → x1 = x2 in which ϕ is
a tautology.

For readability, in the above procedure we allow comparison between constants, just
as when defining the chase procedure in Section 4.2, as any comparison between con-

c© ACM 0004-5411//01-ART $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. , No. , Article , Publication date: January .

App–2 M. Arenas et al.

stants can be easily eliminated. We have already explained how to deal with them in
the proof of Proposition 4.7.

The following lemma follows from the definition of the algorithm.

LEMMA A.1. Let I be a Horn conditional instance. Then rep(I) = rep(Norm(I)).

PROOF. Let Norm(I)1, . . . ,Norm(I)n be the resulting Horn conditional instances af-
ter each step of the normalization. We prove that for each 1 ≤ i ≤ n−1, rep(Norm(I)i) =
rep(Norm(I)i+1). The proof then follows since we defined Norm(I)1 = I. Assume
that the (i + 1)-th step of the normalization is performed due to a Horn condition
of form ϕ → x1 = x2. First we prove that rep(Norm(I)i) ⊆ rep(Norm(I)i+1). Let
I ∈ rep(Norm(I)i), and ν a valid substitution for I such that ν(Norm(I)i) ⊆ I. Since
ϕ is a tautology, it must be that ν |= ϕ, and thus ν |= x1 = x2, or, in other words,
ν(x1) = ν(x2). Then, it is clear that ν(Norm(I)i) = ν(Norm(I)i+1), since these are
identical except for the elements x1 and x2. This entails that I ∈ rep(Norm(I)i+1).
Next, let I ∈ rep(Norm(I)i+1), and ν a valid substitution for Norm(I)i+1. Assume
w.l.o.g. that x2 was the element that was replaced by the normalization procedure.
Then notice that dom(Norm(I)i) = dom(Norm(I)i+1) ∪ {x2}. Thus, we can define a
substitution ν′ for Norm(I) by extending ν to substitute x2 for ν(x1). It is then clear
that ν′ will satisfy the global condition of Norm(I)i, since ν′ satisfies the global con-
dition of Norm(I)i+1 and clearly satisfies ϕ → x1 = x2. Moreover, notice again that
ν(Norm(I)i) = ν(Norm(I)i+1), and thus I ∈ rep(Norm(I)i).

It is clear that the normalization procedure uses a polynomial number of steps, since
in each step it deletes one of the Horn conditions from I. Thus, the following Lemma
suffices to show that the normalization procedure runs in polynomial time.

LEMMA A.2. Let I be a conditional instance and ϕ be a positive element-condition
over the elements of dom(I). Then it can be checked in polynomial time whether ϕ is a
tautology.

PROOF. We assume that all atomic conditions of the form a = a, for a ∈ dom(I) have
been replaced with the symbol ⊤. Then consider a substitution ν in which each null
is assigned a different fresh constant value. Notice that each atomic equality of ν(ϕ)
will then be either ⊤ or an equality of the form a = b, for a and b different constants.
It is then easy to see that ϕ is a tautology if and only if ν(ϕ) is equivalent to true
(as this valuation falsifies all equalities that are not equivalent to ⊤, and ϕ contains
no negation). The fact that ν(ϕ) is true can be easily checked in polynomial time by
looking at the parse tree of ν(ϕ).

Before proving Proposition 5.7 we need a final result shown in [Grahne 1991]. Let
J be a positive conditional instance with Horn global condition ξJ , such that (1) every
element-condition in J is either ⊤ or a condition which is not a tautology, and (2)
every conjunct ϕ → x1 = x2 in ξJ is such that ϕ is not a tautology. Let J naive be the
naive instance composed of all the tuples in J that has element-condition ⊤. For a J
satisfying (1) and (2) and a UCQ Q, define Qnaive(J) as the set of tuples that result
when evaluating Q over J naive as if the instance were a complete instance, and then
deleting all the tuples that contain null elements. It was shown in [Grahne 1991] that
Qnaive(J) =

⋂
J∈rep(J)Q(J) = Q(J).

We now have all the ingredients to prove Proposition 5.7. Given a conditional
instance I, let Norm(I) be the result of the normalization of I. If ξNorm(I) is an
element-condition a = b, for a and b different constants, then the proof is triv-

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data App–3

ial. Else, let taut(Norm(I)) be the instance obtained from Norm(I) by replacing
with ⊤ every element-condition that is a tautology. Then, by the discussion in the
above paragraph we know that Qnaive(taut(Norm(I))) =

⋂
I∈rep(I)Q(I) = Q(I).

Notice that taut(Norm(I)) can be constructed from I in polynomial time, and
Qnaive(taut(Norm(I))) can be computed in polynomial time for a fixed Q in UCQ. This
finishes the proof of the proposition.

A.2. Proof of Proposition 5.8

As in the proof of Proposition 5.7, we assume that every global element-condition in a
Horn conditional instance is an element-condition of the form ϕ → x1 = x2 with ϕ a
positive element-condition.

We begin with the definition of the chase for equality-generating dependencies (egds)
over conditional instances. Just as for the case of tgds, we define this procedure for
egds that may use equalities in the left-hand side of the formula, but that satisfy the
unique appearance property. That is, we consider egds of form

ϕ(x̄) ∧ θ(x̄′) → x1 = x2,

where ϕ(x̄) is a conjunction of atoms, every variable in x̄ appears only once in ϕ, θ is a
conjunction of equalities between variables in x̄, and x1 and x2 are variables of x̄.

Moreover, for readability we allow in this proof element-conditions of form (a = b),
when both a and b are constants.

Definition A.3 (chase step). Let I be a conditional instance of schema S.

— Let λ be an egd of the form ϕ(x̄)∧θ(x̄′) → x1 = x2, where ϕ(x̄) = R1(x̄1)∧· · ·∧Rℓ(x̄ℓ),
every variable in x̄ appears only once in ϕ (that is, λ has the unique appearance
property), θ is a conjunction of equalities between variables in x̄, and x1 and x2 are
variables of x̄. Let h : x̄→ dom(I) be a mapping that satisfies the following:
— The interpretation of Rj in I contains the facts Rj(h(x̄j)), for every 1 ≤ j ≤ ℓ.
— the element-condition ξI ∧ βh does not imply h(x1) = h(x2), where ξI is the global

condition of I and βh is defined as

βh = ρIR1
(h(x̄1)) ∧ · · · ∧ ρIRℓ

(h(x̄ℓ)) ∧ θ(h(x̄
′))

We then say that λ can be applied to I with h. There are two cases.
— The global condition ξI of I implies (βh ∧ h(x1) 6= h(x2)). In this case, we say that

the result of applying λ to I with h is a failure, and write I →λ,h ⊥.
— Otherwise, let I ′ be the instance constructed from I by adding the element-

condition βh → h(x1) = h(x2) as conjunct to the global condition ξI . We then
say that I ′ is the result of applying λ to I with h, and write I →λ,h I ′.

We call both I →λ,h ⊥ and I →λ,h I ′ a chase step.

Definition A.4 (chase). Let Σ be a set of egds over S of form ϕ(x̄) ∧ θ(x̄′) → x1 = x2
such that ϕ(x̄) satisfies the unique appearance property, and I a conditional instance of
schema S. A chase sequence of I with Σ is a sequence of chase steps {Ii−1 →λi,hi Ii}mi≥1,

with I0 = I, and each λi a dependency in Σ. A chase sequence {Ii−1 →λi,hi Ii}mi≥1 of I
with Σ is:

(1) a failing chase sequence if Im = ⊥.
(2) a successful chase sequence if there is no dependency λ of Σ and mapping h such

that λ can be applied to Im with h.

In both cases we say that Im is a result of chasing I with Σ.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

App–4 M. Arenas et al.

Next we show the chase described above can be used as the procedure mentioned in
the Proposition 5.8. Let I be a conditional instance, and Σ a set of egds. We need to
prove the following.

(P1) Let J be a result of a successful chase of I with Σ. Then (1) all I ∈ rep(I) that
satisfy Σ also belong to rep(J), (2) all instances in rep(J) belong to rep(I), and (3)
ν(J) |= Σ, for every valid substitution ν of J .

(P2) If there is a failing chase of I with Σ, then there is no I ∈ rep(I) such that I |= Σ.

We begin with a technical lemma

LEMMA A.5. Let I1 →λ,h I2 be a chase step where I2 6= ⊥. Let I be an instance in
rep(I1) such that I satisfies λ. Then I belongs to rep(I2)

PROOF. Let I1 →λ,h I2 and I as specified. Assume that λ is an egd of form ϕ(x̄) ∧
θ(x̄′) → x1 = x2, in which x1 and x2 belong to x̄ and λ has the unique appearance
property. Let ν1 be a valid substitution for I1 such that ν1(I1) ⊆ I. Notice that the only
difference between I1 and I2 is the global condition, and thus to prove that ν1(I2) ⊆ I
we only need to show that ν1 is a valid substitution for I2, that is, that ν1 satisfies the
element-condition βh ∧ θ(h(x̄′)) → h(x1) = h(x2). But this follows easily from the fact
that I |= λ. Assume ν1 |= βh ∧ θ(h(x̄′)). By composing ν1 and h, and since ν(I1) ⊆ I, we
obtain that I |= ϕ(ν1(h(x̄)))∧θ(ν1(h(x̄′))). Thus, since I |= λ we obtains that ν1(h(x1)) =
ν1(h(x2)), which was to be shown.

Next we prove statement (P1). Let then I, Σ and J be such that J is the result of a
successful chase sequence of I with Σ. By a successive applications of Lemma A.5, we
obtain that for every instance I ∈ rep(I) such that I |= Σ, we have that I belongs to
rep(J). Moreover, notice that in each chase step we only introduce conjunctions in the
global condition. Thus, it is easy to see that every instance in rep(J) belongs as well
to rep(I).

We now prove that ν(J) |= Σ, for every valid substitution ν of J . Let ν : nulls(J) → D

be a valid substitution for J , but assume for the sake of contradiction that ν(J) 6|= Σ.
In particular, assume that ν(J) violates a dependency λ of Σ. As usual, assume that
λ is an egd of form ϕ(x̄) ∧ θ(x̄′) → x1 = x2, where ϕ(x̄) = R1(x̄1) ∧ · · · ∧ Rℓ(x̄ℓ), every
variable in x̄ appears only once in ϕ, θ is a conjunction of equalities between vari-
ables in x̄, and x1 and x2 are variables of x̄. Then, since ν(J) violates λ, there is a
homomorphism h from ϕ(x̄) to ν(J) such that ν(J) |= θ(h(x̄′)), but that h(x1) 6= h(x2).
Let R1(ā1), . . . , Rk(āk) be the facts in ν(J) that witness h, and t̄1, . . . , t̄k the tuples in
RJ

1 , . . . , R
J
k , respectively, so that ν(t̄j) = āj , for every 1 ≤ j ≤ k, and that ν satisfies

the element-condition
∧

1≤j≤k ρ
J
Rj

(t̄j). Since no variable in x̄ appears twice in ϕ(x̄), we

can define the following mapping g : x̄ → dom(J). It assigns to each variable x in
tuple x̄ that appears only in a relational atom of form Ri(x̄i) of ϕ the value of t̄i that
corresponds to x. Again, from the fact that λ has the unique appearance property, it is
easy to see that this mapping is well defined, and that ν(g(x)) = h(x) for every vari-
able x in x̄. Moreover, notice that the element-condition

∧
1≤j≤k ρ

J
Rj

(t̄j) is equivalent to∧
1≤j≤k ρ

J
Rj

(g(x̄j)). But since J is the result of a successful chase sequence, we know

that λ cannot be applied to I using g. Then, we have that the element-condition ξJ ∧βg
must imply the condition g(x1) = g(x2) (otherwise λ can be applied to I using g). We
obtain a contradiction, since ν |= ξJ ∧ βg, but ν(g(x1)) 6= ν(g(x2)).

Next we prove the statement (P2). Assume that J →λ,h ⊥ is the last step of a failing
chase, where λ is of form ϕ(x̄) ∧ θ(x̄′) → x1 = x2, where x1 and x2 belong to x̄. Assume
also for the sake of contradiction that there is a solution J ∈ rep(I) that satisfies
Σ. Then again, by successive applications of Lemma A.5, we obtain that J belongs to

Journal of the ACM, Vol. , No. , Article , Publication date: January .

Data Exchange beyond Complete Data App–5

rep(J). Since J →λ,h ⊥ is a failing step, it must be the case that the global condition
ξJ of J implies βh∧h(x1) 6= h(x2). Since J ∈ rep(J), there is a valid substitution ν such
that ν(J) ⊆ J . But then ν satisfies βh, and ν(h(x1)) 6= ν(h(x2)). On the other hand, by
composing h and ν, it follows that J |= ϕ(ν(h(x̄))) ∧ θ(ν(h(x̄′))). Since we assumed that
J satisfies Σ, it must be the case that ν(h(x1)) = ν(h(x2)). This is a contradiction.

Properties (P1) and (P2) ensures that the chase with egds that we have defined can
be used as the procedure mentioned in the Proposition 5.8. Thus we only need to argue
that the chase can be performed in polynomial time.

We first argue that if I is a Horn conditional instance and Σ a fixed set of egds, then
every chase sequence of I with Σ has polynomial length (number of steps). Let k be the
number of elements in dom(I) and m the maximum size of a dependency in Σ. Notice
that the total amount of homomorphisms that can be used in chase steps is bounded
by km, which is a polynomial since we consider Σ to be fixed. Moreover, notice that
for each homomorphism h and dependency λ, every chase sequence of I with Σ has as
most one chase step that uses λ and h. To see this, recall that as a result of a chase step
we add to ξI as a conjunct a Horn condition of form βh → h(x1) = h(x2). Then clearly
if we try to apply a chase step with λ and h again we will have that ξI ∧ βh implies
h(x1) = h(x2). This implies that every chase sequence has polynomial length.

Given a conditional instance I with global Horn condition and a set Σ of egds, it
is straightforward to see that for λ ∈ Σ and a homomorphism h one can check in
polynomial time if λ is applicable to I with h, and applying the chase step can also
be done in polynomial time. All that is left to prove is that we can check whether
the chase step is a failure in polynomial time. This can be done by first constructing
Norm(I) (in polynomial time), then checking if Norm(I)(βh) and Norm(I)(h(x1) 6=
h(x2)) are tautologies. By Norm(I)(ϕ) we refer to the element-condition ϕ in which
we have performed all the replacements dictated by the normalization procedure that
produced Norm(I). The first can be checked efficiently using Lemma A.2, the latter is
a tautology if and only if ξNorm(I) ∧ h(x1) = h(x2) is not satisfiable (i.e., normalizing
Norm(I) with the element-condition ξNorm(I) ∧ h(x1) = h(x2) as the global condition
results in an early stop).

Finally, since (1) every chase sequence is bounded by a polynomial in the size of I, (2)
we can apply every chase step in polynomial time, and (3) we can check in polynomial
time whether a new chase step is applicable or the last chase step was failure, we
obtain a polynomial-time procedure that satisfies the statement in Proposition 5.8.
This completes the proof.

A.3. Proof of Lemma 6.9

First we use the notion of witness to characterize when a PC-mapping P ′ is a maximum
recovery of a PC-mapping P .

LEMMA A.6. Let P and P ′ be PC-mappings. Then the following conditions are
equivalent:

(1) P ′ is a maximum recovery of P ,
(2) P ′ is a recovery of P , and for every (I1,J) ∈ P and (J , I2) ∈ P ′, J is a witness for

I2 under P .

PROOF. (1) ⇒ (2) For the sake of contradiction, assume that P ′ is a maximum
recovery of P and there exist (I1,J ′) ∈ P and (J ′, I2) ∈ P ′ such that J ′ is not a
witness for I2 under P . Then there exists a positive conditional instance I⋆ of S1 such
that J ′ ∈ SOLP(I⋆) and SOLP(I2) 6⊆ SOLP(I⋆). We know then that there exists a
positive conditional instance J ⋆ of S2 such that J ⋆ ∈ SOLP(I2) and J ⋆ /∈ SOLP(I⋆).

Journal of the ACM, Vol. , No. , Article , Publication date: January .

App–6 M. Arenas et al.

Let P⋆ be a PC-mapping defined as follows:

P⋆ = {(J , I) ∈ P ′ | I 6= I2} ∪ {(J ⋆, I2)},

that is, P⋆ is generated from P ′ by deleting all the pairs of the form (J , I2) and adding
the pair (J ⋆, I2). Given that (I2,J ⋆) ∈ P and P ′ is a recovery of P , we have that P⋆ is
a recovery of P . Next we show that P ◦ P ′ 6⊆ P ◦ P⋆.

Consider the pair (I⋆, I2). Since (I⋆,J ′) ∈ P and (J ′, I2) ∈ P ′ we obtain that
(I⋆, I2) ∈ P ◦ P ′. Now, since the only pair in P⋆ that has I2 as the second compo-
nent is (J ⋆, I2) and (I⋆,J ⋆) 6∈ P , we have that (I⋆, I2) 6∈ P ◦ P⋆. Thus, we conclude
that P ◦ P ′ 6⊆ P ◦ P⋆. But this leads to a contradiction since P⋆ is a recovery of P and
P ′ is a maximum recovery of P .
(2) ⇒ (1) Assume that P ′ is a recovery of P such that, for every (I1,J) ∈ P and

(J , I2) ∈ P ′, J is a witness for I2 under P . Next we show that P ′ is a maximum
recovery of P .

For the sake of contradiction, assume that P ′ is not a maximum recovery of P . Then
there exists a recovery P⋆ of P such that P ◦ P ′ 6⊆ P ◦ P⋆. Thus, we have that there is
a tuple (I1, I2) ∈ P ◦ P ′ such that (I1, I2) 6∈ P ◦ P⋆.

Given that (I1, I2) ∈ P ◦ P ′, we have by hypothesis that there exists a positive
conditional instance J ′ of S2 such that (I1,J ′) ∈ P , (J ′, I2) ∈ P ′ and J ′ is a wit-
ness for I2 under P . Since we are assuming that P⋆ is a recovery of P , we have
that (I2, I2) ∈ P ◦ P⋆. Then there exists a positive conditional instance J ⋆ such
that (I2,J ⋆) ∈ P and (J ⋆, I2) ∈ P⋆. We know that (I1, I2) /∈ P ◦ P⋆, and then,
since (J ⋆, I2) ∈ P⋆ we have that (I1,J ⋆) /∈ P . Then we have that J ⋆ ∈ SOLP(I2)
and J ⋆ /∈ SOLP(I1), which implies that SOLP(I2) 6⊆ SOLP(I1). Thus, we have that
J ′ ∈ SOLP(I1) but SOLP(I2) 6⊆ SOLP(I1), which contradicts the fact that J ′ is a wit-
ness for I2 under P .

Recall that a positive conditional instance J is said to a witness solution for a pos-
itive conditional instance I under a PC-mapping P if J is witness for I under P and
J ∈ SOLP(I). We now prove Lemma 6.9.

(⇒) Assume that P ′ is a maximum recovery of P and let I be a positive conditional
instance of S1. Given that P ′ is a recovery of P , we have that (I, I) ∈ P◦P ′. Thus, there
exists a positive conditional instance J of S2 such that (I,J) ∈ P and (J , I) ∈ P ′. But
then J is a witness for I under P by Lemma A.6, from which we conclude that there
exists J ∈ SOLP(I) such that J is a witness for I under P .

(⇐) Assume that for every positive conditional instance I of S1, there exists JI ∈
SOLP (I) such that JI is a witness for I under P , and let P⋆ be a PC-mapping defined
as {(JI , I) | I is a positive conditional instance of S1}. It is easy to see that P⋆ is
a recovery of P . Furthermore, given that for every (J , I) ∈ P⋆, J is a witness for
I under P , we conclude from Lemma A.6 that P⋆ is a maximum recovery of P . This
concludes the proof of the Lemma.

Journal of the ACM, Vol. , No. , Article , Publication date: January .

