
Tracking Performance Failures with Rizel

Juan Pablo Sandoval Alcocer, Alexandre Bergel

Department of Computer Science (DCC), University of Chile
http://users.dcc.uchile.cl/~jsandova http://bergel.eu

ABSTRACT
Understanding and minimizing the impact of software changes
on performance are both challenging and essential when de-
veloping software. Unfortunately, current code execution
profilers do not offer efficient abstractions and adequate rep-
resentations to keep track of performance across multiple
versions. Consequently, understanding the cause of a slow ex-
ecution stemming from a software evolution is often realized
in an ad hoc fashion.

We have designed Rizel, a code profiler that identifies the
root of performance variations thanks to an expressive and
intuitive visual representation. Rizel highlights variation
of executions and time distribution between multiple soft-
ware versions. Rizel is available for the Pharo programming
language under the MIT License.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Version control ; D.2.7 [Software Engi-
neering]: Testing and Debugging—Debugging aids

General Terms
Performance

Keywords
performance, profiling, software visualization, software evo-
lution

1. INTRODUCTION
Software programs inevitably change to meet new require-

ments [8]. Unfortunately, changes made to source code may
cause unexpected behavior at run-time. It is not uncommon
to experience a drop in performance when a new software
version is released.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE ’13, August 19-20, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2311-6/13/08 ...$15.00.

Consider the following situation that has been faced during
the development of Roassal, an agile visualization engine1.
Roassal displays an arbitrary set of data as a graph in which
each node and edge has a graphical representation shaped
with metrics and properties. Roassal has 218 different ver-
sions for which most of them were implemented to either
satisfy new user requirements or fix malfunctions. Whereas
the range of offered features has grown and Roassal is now
stable, the performance of Roassal has slowly decreased. This
loss of performance is globally experienced by end users and
measured by the benchmarks of Roassal.

Unfortunately, identifying which of the changes contained
in these versions are responsible for this performance drop is
difficult. The reason stems from the fact that state-of-the-art
code execution profilers (e.g., JProfiler2 and YourKit3) are
simply inappropriate to address our performance drop in
Roassal due to4:

• Variations have to be manually tracked – Exploration of
the space (Benchmarks, Versions) is realized manually.
A set of benchmarks is manually constructed to measure
the application performance in each software version.
Manually iterating over a large number of benchmarks
and/or software versions is highly tedious.

• Relevant metrics are missing – The few profilers that
are able to compare execution do not consider source
code variation metrics. As a consequence, slowdown
that occurs in unmodified code may distract the pro-
grammer from identifying code changes that introduced
the slowdown.

• Poor visual representation – Visual support used by
profilers cannot adequately represent variation of a
dynamic structure and multiple metrics. Concluding
what is the cause of the loss of performance requires a
significant effort from the programmer.

2. RIZEL
Rizel is a code execution profiler that uses advanced pro-

filing techniques and visual representations to easily identify
the cause of a performance drop.

1http://objectprofile.com/roassal-home.html
2http://www.ej-technologies.com/products/jprofiler/
overview.html
3http://www.yourkit.com
4Our work has been carried out in Pharo. It is however easy
to figure out how JProfiler and YourKit would be used if
they were written in Pharo.

http://users.dcc.uchile.cl/~jsandova
http://bergel.eu
http://objectprofile.com/roassal-home.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.yourkit.com

Versions1.79 1.89 1.99 1.109 1.119

Execution
time

*

Figure 1: Illustration of a performance degradation:
each line describes the execution time of a bench-
mark across the versions of Roassal.

In particular, Rizel innovates by supporting the following
two features:

• run a set of benchmarks over software versions auto-
matically – By exploring the two dimensional space
of software versions and benchmarks, Rizel identifies
which versions introduce a performance drop and which
benchmarks capture performance variations.

• compare the execution of a benchmark over two soft-
ware versions – Rizel offers a navigation browser using
a polymetric view [7] to highlight differences in the
number of method executions and time distribution
along the call context tree.

The following subsections elaborate on these two features.

2.1 Tracking performance failure across soft-
ware versions

Rizel offers an API to script the run of some particular
benchmarks over software versions. Consider the following
script example:

1 data := Rizel new
2 setTestsAsBenchmarks;
3 trackLast: 50 versionsOf: 'Roassal';
4 run.
5 data exportAsCSVFile.

Rizel analyzes the last fifty versions of Roassal. For each
of these versions, Rizel profiles the execution of the unit
tests. Only the tests that are not modified during these 50
versions are compared. In this particular case, unit tests are
appealing since they represent common execution scenarios
for Roassal.

Figure 1 shows the evolution of the execution time of
Roassal benchmarks. The X-axis indicates the incrementing
software versions and the Y-axis indicates the amount of
time for a benchmark to execute. Each graph indicates the
execution times of a particular test. The graph gives the
execution time evolution of a dozen benchmarks. The graph
marked with a * indicates two jumps of the execution time,
which occurred at Version 1.97 and Version 1.108. This graph
corresponds to test method testFixedSize. Each of these
jumps is a drop in performance.

This evolution of benchmarks over multiple software ver-
sions gives a global overview of the performance variation of
Roassal. From that graph, an analysis of the two software
versions may be carried out.

2.2 Comparing two executions
To analyze the two performance drops, we need to compare

four executions of the test method testFixedSize, versions
1.97 - 1.98 for the first performance drop and versions 1.107-
1.108 for the second drop. Comparing two software executions
implies monitoring the evolution of several metrics. We use
a polymetric view [6, 7] for that purpose.

Rizel offers a second API to compare the profiles of multiple
executions. To understand where the first performance drop
stems from, the following script compares the execution of
textFixedSize method in version 1.97 and 1.98:

1 Rizel new
2 compareVersions: '1.97' and: '1.98' of: 'Roassal';
3 usingBenchmark:
4 [ROMondrianViewBuilderTest run:#testFixedSize.];
5 visualize.

Performance Evolution Blueprint.
Figure 2 shows the difference between version 1.97 and 1.98

of Roassal, which corresponds to the first drop of performance
mentioned earlier. Each box represents a node of the call
context tree (CCT). A node in a CCT represents a method
and the context the method was invoked in [2]. Note that
two nodes may represent the same method if it was executed
in two different contexts.

The color and the shape of a box tells about whether
the method in that particular context is slower or faster, or
whether it has been executed more often or not.

The color of a node indicates whether the node is slower
or whether it had been added/deleted in the new version.
Red means the node is slower and its method source code
has changed in the new version. Light red means the node
is slower but its method has not been modified. A yellow
node is new. Green means the node is faster and its method
source code has changed. Light green means the node is
faster but its method has not been modified. Gray indicates
the node has been removed in the new version.

Each node is associated to the following metrics:

• The height of a box represents redistribution of exe-
cution time from the first software version with the
second version. This redistribution is the difference of
the percentage of execution time between versions. A
red tall node corresponds to a method that consume
more the CPU than in the first version. A green tall
node less percentage in the new version.

• The width of a node indicates the difference in the num-
ber of times it has been executed. Knowing whether a
method is executed more or less often is key to under-
stand the root of a performance variation. The width is
proportional to the absolute value of difference between
number of executions. A logarithmic scale is used to
cope with large variations.

Edges between nodes indicate method invocations. Since
we show the difference of two context calling trees, we always
have a tree for which the root call is the the top of the tree.

Color

Δ # executions

Δ execution
 time

Border

A

B

A invokes B

Red: it sent more messages than before & it was redefined
Light Red: it sent more messages than before
Light Green: it sent less messages than before
Green: it sent less messages than before & it was redefined
Yellow: it was not invoked in previous version
Gray: it was not invoked in new version

ROMondrianViewBuilder>>nodes:

ROElement>>add:

ROElement>>elementsNotEdge

ROElement>>translateWithoutUpdatingContainedElementsBy:

ROElement>>encompassingRectangle

Figure 2: Comparing the execution of testFixedSize test method in version 1.97 and 1.98

ROShape>>extentFor:

ROAbstractEndingShape>>extentFor:

ROElement>>translateWithoutUpdatingContainedElementsBy:

Figure 3: Comparing the execution of testFixedSize test method in version 1.107 and 1.108

Consider the blueprint example in Figure 2 which compares
two executions of the benchmark B during the first drop in per-
formance. The node ROAdjustSizeOfNesting class>>on:

is the tallest red box. This means that this method spends
more time than the previous version in that context-call and
it has been modified in the new version. Figure 2 also shows
the difference between the source code of the old version and
the new version of method ROAdjustSizeOfNesting class

>>on:.
One of the reasons for the slow down in ROAdjustSize-

OfNesting class>>on: is because it executes the method
ROElement>>elementsNotEdge twice in new version (yellow
boxes). One invocation is made directly for it and the
other one is through ROElement>>encompassingRectangle

method, that was also modified.
Calling the method elementsNotEdge twice is the root of

the first performance drop.
Note that the ROElement >>translateWithoutUpdating

ContainedElementsBy: method in previous version (gray
one) was invoked in different context that in new version
(yellow one).

Figure 3 compares the execution of textFixedSize test
methods for Versions 1.107 and 1.108.

In Figure 3 the tallest and red node corresponds to the
method ROElement>>bounds, which means bounds takes longer
to execute in Version 1.108 and its definition is modified. The
lower pane of the Rizel browser shows the changes made in
this particular method.

The new version of bounds is the root of the second per-
formance drop of Roassal.

Note that part of this performance loss is compensated
with an optimization made in the method translateWithout

UpdatingContainedElementsBy: (the only one green box).
This method is faster in Version 1.108.

Interactions.
A common problem in visualising call context trees is the

scalability. Rizel uses an expandable tree layout in which
only relevant nodes are expanded. Rizel provides a number of
interactions actionable by the end-user to reduce the amount
of information in the visualization, in particular: (i) show
delta hot path (ii) show subnodes (iii) show all subnodes
(iv) hide all subnodes. This interactions are displayed as
a popup-list by right-clicking on a node. The thick black
border of a box indicates that the node has undisplayed
children.

The lower part of the Rizel interface compares the source
code of both version of the selected method.

Rizel indicates via a contextual popup some data about
the variation of the performance for that particular node.

3. IMPLEMENTATION
Rizel uses Spy [5], a flexible and open instrumentation-

based profiler framework. Rizel retrieves from a code execu-
tion a complete call context tree [9]. Instead of estimating
the amount of time in each method (as most code profilers
do), Rizel counts for each method the number of messages
the method has sent. It has been shown that the number of
messages a method directly and indirectly sends is linear with
the amount of execution time of the method in average [3].
Counting messages accurately estimates the execution time
without the inconveniences usually associated with time mea-
surement and execution sampling. For example, counting

messages is significantly more stable than directly measuring
the time: profiling the same execution twice results in two
very close profiles.

4. RELATED WORK
There are a number of techniques for dynamically compar-

ing two program executions using call context trees.
Zhuang et al. [12] propose PerfDiff a framework for analyz-

ing performance across multiple runs of a program, possibly in
a dramatically different execution environment (i.e., different
platforms). Their framework is based on a lightweight instru-
mentation technique for building a calling context tree (CCT)
of methods at runtime. Adamoli et al. present Trevis, an
extensible framework for visualizing, comparing, clustering,
and intersecting CCTs [1]. To scale their tree visualization,
they use calling context tree ring charts (CCRC) and just
reduce the thickness of a ring segment, which leads to a
reduction of the diameter of the visualization [10]. Neither
approach considers source code changes metrics to comparing
the executions.

Mostafa and Krints [11] present PARCS, an offline analysis
tool that automatically identifies differences between the ex-
ecution behavior of two revisions of an application. PARCS
collects program behavior and performance characteristics
via profiling and generation of calling context trees. It com-
pares CCTs by identifying performance-attribute differences
(e.g execution time, invocation count) and topological dif-
ferences (e.g. added, deleted, modified, and renamed meth-
ods). However, the visual support used by PARCS cannot
adequately represent variation of a dynamic structure and
multiple metrics. In our case, we use a polymetric view to
visually represent multiple difference metrics between call
context trees.

Performance Evolution Blueprint is based on a behavioral
evolution blueprint presented by Bergel [4]. They use a call
graph to compare executions. The main difference with our
blueprint is that we use a call context tree with different
metrics, in particular, we use the number of sent messages to
estimate the execution time in order to get replicable results.
Another difference with this approach is that they only use
colors to indicate which method is slower or faster. In our
case, we visualize the difference between execution time and
number of execution as height and width respectively. This
is key to knowing whether or not a method spends more time
and if it is executed more times than before.

5. CONCLUSION
This short paper presents Rizel, a code execution profiler

that offers an effective visual and interactive support to track
performance variation across software versions. It visually
presents a number of run-time metrics in order to understand
the reason for slow execution at a fine grained level. Rizel
has been successfully used to understand and remove the
cause of negative performance variations.

Acknowledgement. Juan Pablo Sandoval Alcocer is sup-
ported by a Ph.D. scholarship from CONICYT (Comisión
Nacional de Investigación Cient́ıfica y Tecnológica de Chile).
CONICYT-PCHA/Doctorado Nacional/2013-63130199. This
work has been partially funded by Program U-INICIA 11/06

VID 2011, grant U -INICIA 11/06, University of Chile, and
FONDECYT project 1120094.

6. REFERENCES
[1] Andrea Adamoli and Matthias Hauswirth. Trevis: a

context tree visualization analysis framework and its
use for classifying performance failure reports. In
Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 73–82, New
York, NY, USA, 2010. ACM.

[2] Glenn Ammons, Thomas Ball, and James R. Larus.
Exploiting hardware performance counters with flow
and context sensitive profiling. In Proceedings of the
ACM SIGPLAN 1997 conference on Programming
language design and implementation, PLDI ’97, pages
85–96, New York, NY, USA, 1997. ACM.

[3] Alexandre Bergel. Counting messages as a proxy for
average execution time in Pharo. In Proceedings of the
25th European Conference on Object-Oriented
Programming (ECOOP’11), LNCS, pages 533–557.
Springer-Verlag, July 2011.

[4] Alexandre Bergel, Felipe Bañados, Romain Robbes,
and Walter Binder. Execution profiling blueprints.
Software: Practice and Experience, August 2011.

[5] Alexandre Bergel, Felipe Bañados, Romain Robbes,
and David Röthlisberger. Spy: A flexible code profiling
framework. In Smalltalks 2010, 2010.

[6] Stéphane Ducasse, Michele Lanza, and Roland Bertuli.
High-level polymetric views of condensed run-time
information. In Proceedings of 8th European Conference
on Software Maintenance and Reengineering

(CSMR’04), pages 309–318, Los Alamitos CA, 2004.
IEEE Computer Society Press.

[7] Michele Lanza and Stéphane Ducasse. Polymetric
views—a lightweight visual approach to reverse
engineering. Transactions on Software Engineering
(TSE), 29(9):782–795, September 2003.

[8] Manny Lehman and Les Belady. Program Evolution:
Processes of Software Change. London Academic Press,
London, 1985.

[9] Philippe Moret, Walter Binder, and Alex Villazón.
CCCP: Complete calling context profiling in virtual
execution environments. In Germán Puebla and
Germán Vidal, editors, PEPM, pages 151–160. ACM,
2009.

[10] Philippe Moret, Walter Binder, Alex Villazón, and
Danilo Ansaloni. Exploring large profiles with calling
context ring charts. In Proceedings of the first joint
WOSP/SIPEW international conference on
Performance engineering, WOSP/SIPEW ’10, pages
63–68, New York, NY, USA, 2010. ACM.

[11] Nagy Mostafa and Chandra Krintz. Tracking
performance across software revisions. In PPPJ ’09:
Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, pages
162–171, New York, NY, USA, 2009. ACM.

[12] Xiaotong Zhuang, Suhyun Kim, Mauricio Serrano, and
Jong-Deok Choi. PerfDiff: a framework for performance
difference analysis in a virtual machine environment. In
CGO ’08: Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and

optimization, pages 4–13, New York, NY, USA, 2008.
ACM.

	Introduction
	Rizel
	Tracking performance failure across software versions
	Comparing two executions

	Implementation
	Related Work
	Conclusion
	References

