Design Decisions in AspectMaps

Johan Fabry, Alexandre Bergel
PLEIAD Laboratory, Computer Science Department (DCC)
University of Chile, Santiago, Chile
http://pleiad.cl

Abstract—AspectMaps is a visualization that shows the struc-
ture of aspectual source code. In its design and implementation
we made a number of design decisions that we present and discuss
in this text. This in the light of more than two years of using,
extending and maintaining the AspectMaps visualization and tool.
The purpose of this paper is to share our experience with other
visualization designers and implementers, as an aid in the making
of their design decisions.

Keywords—Aspect-Oriented Programming, Visualization De-
sign Decisions

I. INTRODUCTION

To tackle the modularity issues of cross-cutting concerns,
Aspect-Oriented Programming [1] proposes a new kind of
module: an aspect. Aspects are structural entities, like classes,
with the difference that they also specify the invocation con-
ditions for their behavior. Software developed using aspects
automatically calls the aspect behavior whenever the invoca-
tion conditions are satisfied. Unfortunately, traditional text-
based code editors are suboptimal with regard to programs
with aspects, as a simple inspection of the source code only
reveals a small portion of the program behavior and intent.
This is because the invocations to the behavior of the aspect
are not explicit and straightforwardly visible.

A number of aspect-aware software visualizations have
been developed previously (which we discussed in [2]). How-
ever, these suffer from multiple drawbacks, most importantly
is a lack of scalability and a limited way to navigate within
a possibly large amount of source code. To address the issues
with these visualizations, we have developed AspectMaps [2],
[3]: a source-code visualization and tool for aspectual source
code. AspectMaps scales up to relatively large pieces of
software as well as down to fine-grained detail in the source
code, revealing the detailed interactions that take place at that
level.

In this text we reflect on design decisions of salient points
of the visualization and its implementation. This based on the
experience we gained of its use, extension and maintenance
since its inception over two years ago. This is in contrast
to previous work on AspectMaps, which focused first on the
presentation of the visualization itself [2], and then showing
the use of the tool and outlining its construction [3]. The
contribution of this text lies in the documentation of five design
decisions and their discussion in the light of our experience.

This paper is structured as follows: We now first give
a brief overview of the AspectMaps visualization, before

Johan Fabry is partially funded by FONDECYT project number 1130253

treating design decisions of the visualization in Section III
and concluding in Section IV.

II. AN OVERVIEW OF ASPECTMAPS

This section briefly describes the AspectMaps visualiza-
tion, a full treatment is outside of the scope of this paper, for
this we refer to the first publication on AspectMaps [2].

AspectMaps is a visualization that reveals and offers op-
tions to navigate the implicit invocations to behavior of aspects
that are present in aspectual source code, as well as showing
the structure of the aspects. Aspects are like classes, having
state and behavior, but in addition the invocation conditions
of the behavior are also present. Pieces of behavior in aspects
are called advice, and their invocation conditions are called
pointcuts. Places in the source code where a pointcut can
cause an advice! to execute are called join point shadows. The
join point shadows are hence the locations in the code where
aspectual behavior can be called and these possible calls should
be visualized.

AspectMaps shows the structure of aspectual source code
from package level all the way down to the level of methods.
Yet it is a scalable visualization of join point shadows [2],
thanks to the use of a selective structural zoom, also known
as a semantic zoom. This zoom allows for each element of
the visualization (packages, classes, aspects and methods), to
be shown in a compact or extended view. The closed/compact
view does not reveal any internal structures. The open/extended
view does show nested structures, each of these again being
shown in closed or open view. Initially all packages of the
software under study are shown in the closed view. The user
selectively opens (and closes) packages, classes, aspects and
methods as the software is being explored, in effect selectively
increasing (and decreasing) the zoom level, showing more (or
less) detail. Figure 1 shows part of an example exploration
of AJHotDraw, a well-known case study of aspectual soft-
ware [4]. Four packages are shown, of which one is closed:
org.jhotdraw.samples, and the remaining three are open.
The first two open packages show open and closed aspects,
e.g., DeleteCommandUndo is an open aspect, revealing
two advice and one pointcut. In the org.jhotdraw.standard
package we see a number of closed classes, the open class Ab-
stractCommand, and inheritance relations between classes. In
AbstractCommand, the constructor has been opened, as well
as an execute method.

In AspectMaps, a color, changeable by the user, is assigned
to each aspect. That color serves to visualize join point

IThe community on aspect-oriented software development uses “advice”
instead of “pieces of advice”, and the plural of “advice” is “advice”.

org.jhotdraw.ccconcerns.commands undo]

org.jhotdraw.ccconcerns.figures flgureselectlonobseru'-:r|

oooo OO0 0[psisteCommandUndo
Advice ———————p01 O m)|
Pointcut — 0 0o

SelectionChangedNotification | |FigureSelectionObserverRole o

Q Aspect (closed)
—Aspect (open)

org.jhotdraw samp[esl org.jhotdraw standardl

| |[oooooooooooo

AbstractCommand

Class (closed) —//'—V
Attribute —

Class (open) —

a
a

Method:
"Before" area |

"Around" area/
m]

"After" area

Package (closed)

Package (open) ———p

<

s

oo

o o0

"

oo a ac
AbstractCommand

oooooooo ¢)
=

Class Hierarchy

fexecute] O O Expression:
T N~——— "After" area
"Around" area

— "Before" area

RN

Affected Method -Jj EoooE O
Affected Class -

Method (open)

Method (closed)
HMNOMNN

Fig. 1.

shadows where the aspect is called, as well as the aspect
itself. Considering the latter, the color allows classes to be
distinguished from aspects when they are shown in the closed
visualization. This is because rectangles for classes have black
borders, while rectangles for aspects have colored borders: the
color of the aspect. Considering the former, to visualize the
presence of join point shadows in an entity that is shown as
closed, the inside of the figure is colored in the color of the
aspect. The color black is used when multiple aspects have
join point shadows there. In the figure, this is shown, e.g., in
the bottommost row of classes, as well as in two methods in
the AbstractCommand class.

Methods that are shown open reveal the most fine-
grained amount of detail where aspects apply. In them, As-
pectMaps shows two types of join point shadows: those
applying to the entire execution of a method, and those
applying to a method call that is being performed inside
the method. The figure illustrates how the former join point
shadows are visualized in the execute method?, and how the
latter join point shadows are visualized in the AbstractCom-
mand constructor (which also contains an execution join point
shadow). For both types of shadows the advice of the aspect
can be invoked before, after or instead of (a.k.a. “around”)
the original code. AspectMaps indicates this by drawing a
rectangle in the color of the aspect in the “before”, “after”,
or “around” area of the visualization of the join point shadow.
For example, in the execute() method, the execution of its
method body is preceded and followed by an invocation of
some behavior of the cyan aspect. In the AbstractCommand
constructor, a specific method call is being replaced by a
call to some behavior of the violet aspect. Not shown in the
figure is that hovering the mouse pointer over the different
visualizations of the invocations reveals the name of the aspect
as well as the identification of the advice that is executed. In
general, AspectMaps provides more detailed information of
each element being shown, as a tool tip window, when the

2The correspondance of the name ‘execute’ is a coincidence.

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15

17
18
19

AspectMaps visualization of part of AJHotdraw, with descriptive annotations. Packages, classes, aspects and methods shown at different zoom levels.

mouse pointer hovers over this element. Furthermore, each
entity has a context-sensitive menu that allows for relevant
navigation actions, e.g., for a pointcut to reveal all the advices
that use it, and for these advices what their join point shadows
are, or vice-versa [2].

As an illustration of how AspectMaps eases program
understanding, we consider the pointcut and advice of this
last join point shadow: a self call to getDrawingEditor() in
the AbstractCommand constructor. The violet aspect is Un-
doableCommand, which handles undo functionalities. Below
we excerpt the relevant pointcut and advice, i.e., the code
responsible for inserting the implicit call to the behavior of
the aspect, and then briefly discuss it.

pointcut undoableCommands ()

(

(target (AlignCommand) &&
'within (AlignCommand) &&
'within (AlignCommandUndo))

I

(target (BringToFrontCommand) &&
!within (BringToFrontCommand) &&
'within (BringToFrontCommandUndo))
I

[... 12 more omitted ...]

)

&& 'within (UndoableCommand) ;

pointcut callCommandGetDrawingEditor () :
call (DrawingEditor Command+.getDrawingEditor ())
&& undoableCommands () ;

DrawingEditor around()
callCommandGetDrawingEditor () {
[... actual aspect behavior ...] }

In the code above, lines 1 through 13 declares a pointcut
undoableCommands that basically declares which code calls
an undoable command yet does not belong to this command.
For example, lines 3 to 5 identify calls to AlignCommand
that are not performed from within an AlignCommand or
AlignCommandUndo instance. Then, lines 14 through 16

defines a pointcut that identifies calls to the method get-
DrawingEditor(), made within undoable commands. This is
then used in the advice in lines 17 to 20 that replaces the
call to these commands with its own implementation. This
implementation will call the original behavior at some point,
but we removed this code as it is not key to this example.

From the code above it is clearly nontrivial to determine
what the join point shadows in the code are that will lead to
lines 17 through 19 to be executed. In the end, there are only
two such shadows in the entire code base, the one shown in
Figure 1, and one more in the view() method of the same
class. In AspectMaps it takes less than a second to reveal all
these shadows, e.g., using the context-sensitive menu on the
join point shadow shown in the figure.

III. DESIGN DECISIONS OF THE VISUALIZATION
A. The Use of Colors for Identifying Aspects

The design decision that has generated the most dis-
cussions, in presentations of the visualization and reviewer
comments, is the choice of associating one color to one aspect.
The human eye is only able to distinguish unambiguously
between a limited amount of colors, especially if the colored
areas are small [5]. This limits the ability to discern at a glance
which aspect applies where. For example, in Figure 1, the color
of the light blue aspect: SelectionChangedNotification, is
slightly different from the cyan aspect that applies within the
AbstractCommand class and some of its subclasses.

While this decision follows the use of colors to identify
aspects in other visualizations, e.g., the AJDT visualization [6],
it was not made lightly. Typical scenarios for the use of
AspectMaps are to determine where in the source code an
aspect applies and, given a set of join point shadows, assess
which aspects apply there and in what way. Hence the aim
was for the user to be able to identify where aspects apply
quickly, in a scalable way. In other words, we need to allow
precognitive identification of a wide spectrum of values, spread
throughout the visualization. The only visualization option we
found that allows this is the aforementioned use of colors,
which we combined with the ability to choose a color for
the aspect and to turn off visualization of join point shadows
of selected aspects. In our experience, this use of colors in
AspectMaps does reach the goal: It allows immediate identi-
fication of where in the software the aspects apply, and very
fast detailed inspection when focussing on a subset of aspects
(by turning off the visualization of unimportant aspects).

Outside of the obvious colorblindness issues, we have
identified two downsides to the use of colors for wich we have
not yet found a suitable solution: multiple aspects applying in
one entity and the limits to the use of colors.

When multiple aspects apply in one package, class or
method, and this entity is shown in the closed representation,
the figure for the entity is colored black to indicate this. It
would however be better if the entity could indicate which
aspects apply as well, increasing the amount of information
shown to the user. We have not yet found an acceptable way in
which to visualize this information. Experiments with showing
patterns and textures of multiple colors did not convince. This
is because the different colors tend to blend and the textures
also cause confusing optical effects (also noted by Bertin [5]).

AspectMaps allows the user to pick a color for aspects
by selecting from a list of sixteen colors, picked for their
discernability. Furthermore, visualization of aspects can be
‘switched off’: the join point shadows of switched off aspects
are not visualized. This allows for unambiguous visualization
of up to sixteen aspects. However we have encountered various
case studies with a larger number of aspects. For example,
AJHotDraw has 31 aspects and another well-known case
study: HealthWatcher [7], has 21. For these case studies it
is impossible to visualize all aspects without any confusion
between different aspects, as some colors will identify two
aspects. In practice this has shown to be a minor problem, yet
any improvement would of course be welcome.

B. Following Conventions and Resulting Complexity

In order to lower the barrier of entry to the visualization,
the choice of how to show the structure of the code was to
respect conventional representations of entities as much as
possible. We chose UML class diagrams as the convention,
as this arguably is the best-known graphical representation
of code structure. This directly led to the visualization of
packages as UML packages, and inheritance hierarchies as
trees with lines that have an empty arrowhead pointing to the
parent. The extended visualization of classes and aspects is a
variant of the visualization of classes: a rectangle where we
removed the separation between attributes and methods to save
space. The visualization of attributes and methods is new, UML
does not provide for a shape that can be adapted to our needs.

Following these conventions however leads to a diagram
that can be quite complex when zoomed in maximally, e.g., the
AbstractCommand constructor in Figure 1. This was ex-
pected from the onset and confirmed by the user study [2]:
some users were confused about whether the rectangle they
were seeing is a method or a class. The visualization attempts
to mitigate this by showing the borders of opened methods as
gray (instead of black), yet the user studies revealed that this
does not eliminate confusion totally.

Apart from issues of distinction between methods and
classes, some users also reported having difficulties with
understanding the visualization of methods themselves. This
visualization shows a wealth of information and can become
quite complex. Users have asked for some kind of legend
for the representation of methods to be present. This such
that, at least in the beginning, this part of the visualization is
clarified. In the version of AspectMaps that is currently under
development, we include such a legend that appears whenever
the mouse hovers over a method. It however still remains to
be shown whether this will successfully address the issue of
comprehension of the visualization of methods.

C. Absence of Source Code view and IDE Integration

AspectMaps was designed and implemented as a stan-
dalone visualization and tool, with integration to an IDE being
limited to the extraction of data required for the visualization.
The idea was to have AspectMaps as a separate window, to
be used next to the IDE. As such, the tool almost shows none
of the source code of the program being visualized. The only
exception is on mouse hover over the join point shadow of
a call expression: there the source code of the expression is

shown. In all other points of interest, sufficient information is
shown such that the user can navigate to the corresponding
source code relatively easily, if required.

User studies have shown that this was not the correct
decision to make. One consistent request from users was
to have a source code view integrated in the visualization
tool [2]. This view should reveal the source code for entities
that are currently being studied by the user. As a result of
this request, in the version of AspectMaps that is currently
under development, such a source code view is included. When
clicking on an entity, it shows the source code for the entity, in
read-only mode. An immediate downside of this is that the tool
now has less space for the visualization. A derived effect is
that users may wish to start editing the code they are seeing, to
make changes when the visualization reveals to them that such
changes are required. It is clear that allowing the tool to also
edit code entails extra complexity for the tool and this might be
better avoided. Instead, we are considering providing a better
integration with existing IDEs. Ideally, the AspectMaps tool
should instruct the IDE to automatically navigate to source
code entities, e.g., when these are clicked in the tool. The
implementation and validation of this feature is future work.

D. Restrictions Driven by the Implementation

As previously reported [3], AspectMaps is built on top
of the Moose reverse engineering platform [8], utilizing the
Mondrian visualization framework [9]. Using Mondrian entails
declaratively specifying a graph of nodes, what shapes to use
for those nodes, selecting a layout algorithm and stating what
edges need to be drawn between nodes (if any). For each shape,
Mondrian also allows, e.g., mouse-over actions to be specified.

The use of Mondrian greatly helped in the implementation
of the visualization, as we solely needed to focus on what
needs to be shown, and not how to show it. Our experience
showed that AspectMaps pushes the boundaries of what is
possible in Mondrian in various ways. Firstly, there originally
was no support for replacing nodes in the graph and selectively
updating part of the visualization. This is however what is
required for the zoom feature: a closed entity that is opened
entails replacing the corresponding node in the graph with the
specification for the opened visualization (and vice-versa). To
allow this, a new feature had to be added to Mondrian [3].
Mondrian has to be extended to offer interactive option to
modify the visualization while being rendered, implying all
the caches to enable scalability have to be adjusted accord-
ingly. Secondly, the size and complexity of the diagrams
when zoomed in are almost beyond the performance limits
of Mondrian. Updates on such diagrams, i.e., scrolling and
zooming, are unacceptably slow (as reported by some subjects
in the case studies).

There are also less immediate downsides of using Mon-
drian, which is that the features of the visualization are
inherently limited to what Mondrian allows. While we en-
countered no restrictions that impeded fundamental parts of
the visualizations, it is clear that a greater feature set of the
visualization framework will allow for a more fully-featured
AspectMaps. For example, on mouse hover Mondrian allows
for a drawing to be displayed as a tooltip. Consider that instead
we would be able to draw multiple drawings and place these

as a second layer over the existing visualization, positioned
respective to the element being hovered over. This would allow
for more context-specific information to be shown on mouse
hover, for example a legend explaining the various parts of the
diagram being hovered over. This could address some of the
complexity issues we discussed in Section III-B.

To address the current scalability issues of AspectMaps,
and to allow enriching the visualization with new usability
features, we are currently porting AspectMaps in Roassal [10],
the successor to Mondrian. Roassal is an agile visualization
engine that natively offers a large range of interaction options,
e.g., semantic zooming, smooth scrolling, animation.

IV. CONCLUSION

In the design and implementation of AspectMaps we were
confronted with a number of design decisions that had notable
impact in the resulting visualization and tool. These decisions
and their motivation have not yet been completely and explic-
itly documented. In this text we provide such documentation,
also in the light of its use, extension and maintenance in the
last two years. It is our hope that this documentation serves
to other visualization designers and implementers to aid in the
making of their design decisions.

The AspectMaps tool is open source and available on the
AspectMaps web site http://pleiad.cl/aspectmaps

ACKNOWLEDGMENTS

This work was partially sponsored by the European
Smalltalk Users Group: http://esug.org.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings
of the 11th European Conference on Object-Oriented Programming
(ECOOP 97), ser. Lecture Notes in Computer Science, M. Aksit and
S. Matsuoka, Eds., vol. 1241. Jyviskyld, Finland: Springer-Verlag,
Jun. 1997, pp. 220-242.

[2] J. Fabry, A. Kellens, and S. Ducasse, “Aspectmaps: A scalable visualiza-
tion of join point shadows,” in Proceedings of 19th IEEE International
Conference on Program Comprehension (ICPC2011). 1EEE Computer
Society Press, Jul 2011, pp. 121-130.

[3] J. Fabry, A. Kellens, S. Denier, and S. Ducasse, “AspectMaps: Ex-
tending Moose to visualize AOP software,” Science of Computer
Programming, 2013, to Appear.

[4] A. V. Deursen, “AJHotDraw: A showcase for refactoring to aspects,”
in In: Workshop on Linking Aspect Technology and Evolution, Interna-
tional Conference on Aspect-Oriented Software Development., 2005.

[5] . Bertin, Graphische Semiologie. Diagramme, Netze, Karten. Gruyter,
1974.

[6] A. Colyer, A. Clement, G. Harley, and M. Webster, Eclipse AspectJ:
aspect-oriented programming with Aspect] and the Eclipse Aspect]
development tools. Addison-Wesley Professional, 2004.

[7]1 S. Soares, P. Borba, and E. Laureano, “Distribution and persistence as
aspects,” Software: Practice and Experience, vol. 36, no. 7, 2006.

[8] S. Ducasse, T. Girba, A. Kuhn, and L. Renggli, “Meta-environment
and executable meta-language using Smalltalk: an experience report,”
Journal of Software and Systems Modeling, vol. 8, no. 1, Feb. 2009.

[9] M. Meyer, T. Girba, and M. Lungu, “Mondrian: An agile visualization
framework,” in ACM Symposium on Software Visualization (SoftVis’06).
New York, NY, USA: ACM Press, 2006, pp. 135-144.

[10] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep into
Pharo. Square Bracket Associates, 2013. [Online]. Available:
http://rmod.lille.inria.fr/deepIntoPharo/

