
Science of Computer Programming 102 (2015) 108–141
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

An expressive stateful aspect language

Paul Leger a,∗, Éric Tanter b, Hiroaki Fukuda c

a Universidad Católica del Norte, Escuela de Ciencias Empresariales, Chile
b PLEIAD Lab, Computer Science Department, University of Chile, Chile
c Shibaura Institute of Technology, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 September 2013
Received in revised form 18 January 2015
Accepted 2 February 2015
Available online 7 February 2015

Keywords:
Aspect-oriented programming
Stateful aspects
ESA
Typed racket
JavaScript

Stateful aspects can react to the trace of a program execution; they can support
modular implementations of several crosscutting concerns like error detection, security,
event handling, and debugging. However, most proposed stateful aspect languages have
specifically been tailored to address a particular concern. Indeed, most of these languages
differ in their pattern languages and semantics. As a consequence, developers need to
tweak aspect definitions in contortive ways or create new specialized stateful aspect
languages altogether if their specific needs are not supported. In this paper, we describe
ESA, an expressive stateful aspect language, in which the pattern language is Turing-
complete and patterns themselves are reusable, composable first-class values. In addition,
the core semantic elements of every aspect in ESA are open to customization. We describe
ESA in a typed functional language. We use this description to develop a concrete and
practical implementation of ESA for JavaScript. With this implementation, we illustrate
the expressiveness of ESA in action with examples of diverse scenarios and expressing
semantics of existing stateful aspect languages.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modularity favors system evolution and maintenance by allowing separate concerns to be localized [1]. Modules are
crucial for raising the understandability, maintainability, reusability, and evolvability of software. However, concerns like log-
ging and event handling cannot be implemented in one module; these are known as crosscutting concerns. Aspect-Oriented
Programming (AOP) [2] allows developers to use aspects, as embodied in e.g., AspectJ [3], to modularize crosscutting con-
cerns. In the pointcut-advice model of AOP [4], an aspect specifies program execution points of interest, named join points,
through predicates called pointcuts. When an aspect matches a join point, it takes an action, called advice. Typically, an
aspect matches a program execution point in isolation, or in the context of the current call stack. However, the modulariza-
tion of some crosscutting concerns requires aspects to match a trace of join points, e.g., debugging [5], security [6], runtime
verification [7], and event correlation [8]. Aspects that can react to a join point trace are called stateful aspects [9].

Several stateful aspect languages have been proposed [6,8,10–15], specifically tailored to address particular domains.
Because of these domains, these languages do not share the same semantics [15]. Some of them like Tracematches [11]
support multiple matches, even simultaneously, of a join point trace pattern (just pattern from now). Each language provides
its own domain-specific language to define patterns of interest. In addition, each language has its own matching semantics

* Corresponding author.
E-mail address: pleger@ucn.cl (P. Leger).
http://dx.doi.org/10.1016/j.scico.2015.02.001
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:pleger@ucn.cl
http://dx.doi.org/10.1016/j.scico.2015.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.02.001&domain=pdf

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 109
to define how a pattern is matched, and advising semantics to define how an advice is executed. To date, stateful aspect
language design has focused mostly on performance, leaving aside the exploration of more expressiveness in the following:

Pattern language The lack of expressiveness in pattern languages limits developers from a) reusing and composing patterns
and b) to accurately define program execution trace patterns that must be matched.

Semantics In stateful aspect languages, limited expressiveness generates two problems in terms of semantics: fixed and
common semantics for all stateful aspects. By fixed we mean developers cannot customize the matching and advising se-
mantics of the aspect language. Additionally, if developers are able to customize the language semantics, all aspects must
share these customizations because semantics is common for all aspects.

1.1. Contributions

The problems related to the lack of expressiveness of current stateful aspect languages serve as motivation for this work,
which proposes a precise description of an expressive stateful aspect language.1 Concretely, the contributions of this paper
are:

• Four problems identified. Through this paper we expose four problems associated with stateful aspect languages. Two
problems belong to the lack of reuse, composition, and expressiveness of current pattern languages. The two remaining
problems are related to the common and fixed semantics of these aspects.

• An Expressive Stateful Aspect language (ESA) description. We describe a stateful aspect language, named ESA, which
addresses the previous problems. Using ESA, developers can:
– use first-class patterns, meaning that a pattern is a value of the language (e.g., function, object) that can be composed

to other language values to create more complex patterns. First-class patterns offer the benefits of the reuse and
composition of patterns. Apart from reuse and composition, these first-class patterns allow developers to cleanly use
the factory design pattern [16] to build their own pattern libraries. In addition, developers can use a Turing complete
language to define patterns.

– customize the matching and advising semantics of every stateful aspect. With this, every stateful aspect can have
different semantics and developers can customize any aspect. To achieve this goal, we follow open implementation
design guidelines [17], allowing developers to customize strategies of a program implementation, while hiding details
of its implementation.

• A concrete and practical implementation of ESA. We use the proposed description to implement a concrete and prac-
tical version of ESA for JavaScript, named ESA-JS. This version supports modern browsers such as Firefox and Chrome
without the need of an add-on. In addition, we implement ESA-AS3, a proof of concept of ESA for ActionScript.

• A reference frame of comparison. To contrast our proposal with existing stateful languages, we develop a reference
frame that compares the existing proposals in terms of expressiveness. As a result, we clarify and discuss some differ-
ences between these proposals.

Paper roadmap Section 2 introduces and goes into detail on stateful aspect languages. Section 3 discusses the state of the
art of these languages. Evaluations and limitations of existing proposals are shown through various examples in Section 4.
Section 5 presents the description of an expressive stateful aspect language; we describe ESA using a functional typed lan-
guage, Typed Racket [18]. To illustrate how our proposal addresses the aforementioned limitations, we use a concrete and
practical implementation of ESA for JavaScript in Section 6. Section 7 assesses the expressiveness of ESA through the emu-
lation of some existing stateful aspect languages. Section 8 discusses design considerations of our proposal, and Section 9
concludes.

Availability ESA-JS and ESA-AS3 along with the examples presented in this paper, is available online at http :/ /pleiad .cl /esa.
ESA-JS currently supports the Firefox, Safari, Chrome, and Opera browsers without the need of an extension.

2. Architecture of a stateful aspect language

Stateful aspects [9] support the modular definition of crosscutting concerns for which matching join point traces, as
opposed to single join points, is necessary. In Aspect-Oriented Programming (AOP) [2], join points are the events that can
be gathered by an aspect, and the variety of their types (e.g., method calls, object creations) depends on the join point model
supported by the aspect language [4]. As Fig. 1 shows, a stateful aspect is composed of a (join point trace) pattern and an
advice. The advice is executed before, around, or after the last join point that must match with the pattern. Depending on
the deployment strategy used, a stateful aspect may react from a part to all history of a program execution.2

1 This work extends and refines our previous work on open trace-based mechanisms, discussed in Section 3.
2 Although the concrete implementation of our proposal uses different deployment strategies (Section 5) [19], the discussion of these strategies is beyond

this paper.

http://pleiad.cl/esa

110 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 1. The anatomy of a stateful aspect and main processes of its language.

Fig. 2. A program execution that triggers an exception if Enumeration supports fail-fast.

Over the next three sections, we describe and illustrate the core elements of these languages: pattern language, matching
process, and advising process. To illustrate, we use a runtime verification example implemented in JavaMop [15], a generic
stateful aspect framework for Java. Patterns in JavaMop can be expressed in different domain-specific languages: regular
expressions, context-free grammars, linear temporal logic, etc. An aspect in this framework is composed of a set of event
declarations, a pattern, and a piece of code. An event declaration represents a set of join points. The pattern is defined over
these events, and the piece of code represents the advice.

failFast (Vector v, Enumeration e) {
/ / events
event create after(Vector v) returning(Enumeration e):

call (Enumeration Vector .elements()) && target(v) {}
event addVector after(Vector v): call(∗ Vector .add∗ (. .)) && target(v) {}
event nextEl before(Enumeration e): call(∗ Enumeration.nextElement()) && target(e) {}

/ / pattern , ’ ere ’ means that the pattern is defined by a regular expression
ere: create nextEl∗ addVector+ nextEl

/ / advice
@match {

throw new ConcurrentModificationException();
} }

The JavaMop stateful aspect above provides the fail-fast feature for the Enumeration interface, which triggers an exception
if the underlying enumeration is modified while an iteration is in progress. In JavaMop, the aspect declaration starts with
its name, e.g., failFast. Next, events are declared. To define the pattern, a developer first selects a pattern language with a
keyboard (e.g., ere), then a pattern is defined. Fig. 2 illustrates this situation through the execution of two threads, where e
is an enumeration over a vector v. In Line 3 of thread 2, v adds a new object, triggering an exception before the next call of
nextElement in thread 1.

2.1. Pattern language

A stateful aspect language uses a domain-specific language to define patterns. Some pattern languages allow developers
to specify bindings that are gathered while a pattern is being matched. For example, patterns of Tracematches [11] are

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 111
Fig. 3. Two matches of the pattern used for fail-fast. In the figure, the match of up side gathers the bindings v1 and e1, and the match of down side gathers
the bindings v2 and e2.

defined as regular expressions and can gather bindings. Instead, PTQL [12] uses a SQL-like language to express patterns,
where bindings are specified in the SELECT statement. Gathered bindings can be used to filter unwanted matches of the
pattern and give context information to the execution of advice. This section defines a pattern language and explains its
main features.

Definition (Pattern language). A language that allows developers to specify the join point trace pattern that should be
matched by a stateful aspect.

As the failFast aspect code shows, in JavaMop, bindings gathered are specified in the header. In this piece of code, two
bindings: a vector v and its enumeration e. When an event of the pattern is matched, a binding can be gathered; for
example, v is gathered when create is matched. As we need to catch unsafe uses of enumerations, the pattern first sees
the creation of an enumeration then zero or more nextElement calls, one or more addElement calls, and finally an erroneous
attempt to continue the enumeration.

2.2. Matching process

In most existing proposals, the matching process implementation is inside of the stateful aspect language. The definition
of its process and of the impact of its chosen semantics are explained in this section.

Definition (Matching process). A process that tries matching a given pattern against the current join point trace according
to its semantics.

Fig. 1 shows that when a stateful aspect is deployed, the aspect language uses its matching process to match the aspect
pattern. Depending on the semantics of this process, a pattern may match multiple times. We use the implementation of
the fail-fast feature to illustrate this process.

The matching process of JavaMop, like most existing stateful aspect languages, supports multiple matches. Particularly,
JavaMop can support multiple matches of a pattern, if the environment of bindings gathered by potential matches of the
pattern differs between them. For example, Fig. 3 exemplifies this semantics because the pattern matches twice (represented
by dotted continuation lines) due to the fact that the environments of both matches, v=v1 , e=e1 and v=v2 , e=e2 ,

differ.

2.3. Advising process

The implementation of the advising process is also inside the stateful aspect language in most existing proposals. We
start defining its process and then explain its main features.

Definition (Advising process). Given one or more simultaneous matches of a pattern, the advising process is a process that
executes, according to its semantics, the advice of a stateful aspect for every one of these matches.

As Fig. 1 shows, the advising process is triggered when it receives one or more matches of a pattern. Each match
abstraction contains the environment of bindings gathered during the matching stage. Then, the advising process executes
the (same) advice for every match with its environment of bindings. We illustrate this process using a restrict variant of
fail-fast: if a vector removes an element between hasMoreElements and nextElement invocations, an exception is thrown.
In this variant, we have added two stateful aspect instance variables, vec and enum, that are bound to the vector v and
enumeration e respectively when the create event is matched. In JavaMop, instance variables allow developers to link
bindings from the matching to the advising process.

restrictedFailFast (Vector v, Enumeration e) {
Vector vec;
Enumeration enum;

112 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 4. Two simultaneous matches of the pattern of the restricted fail-fast. In the figure, the match of up side gathers the bindings v1 and e1, and the match
of down side gathers the bindings v1 and e2.

event create after(Vector v) returning(Enumeration e):
call (Enumeration Vector .elements()) && target(v) {vec = v; enum = e;}

event nextEl before(Enumeration e): call(∗ Enumeration.nextElement()) && target(e) {}
event hasMore after(Enumeration e) : call(∗ Enumeration.hasMoreElements()) && target (e) {}
event removeVector before(Vector v): call(∗ Vector .removeElement(. .)) && target(v) {}

ere: create hasMore removeElement

@match {
throw new ConcurrentModificationException(this .enum+":"+this . vec+" has removed an element");

} }

Fig. 4 shows that the removeElement invocation triggers two simultaneous matches of the pattern of restrictedFail-
Fast. Due to these matches, the advice is executed twice, each execution uses a different environment of bindings,

vec=v1 , enum=e1 , vec=v1 , enum=e2 . In this example, the advising process must compose the two executions of

the same piece of code given as advice.

3. Existing stateful aspect languages

Douence et al. [9,20] initiated the body of work on stateful aspects. In addition, there is a large body of work on stateful
aspects, which we review in this section. For each proposal, we focus on three components described in the previous section.

Tracematches The Tracematches proposal, implemented as an AspectJ [3] extension, is an efficient stateful aspect language
for Java. The proposal only allows developers to use a regular expression language to define patterns. Its patterns cannot
be reused or composed. The matching process is implemented through a nondeterministic finite-state automaton, whose
active states correspond to potential matches of a pattern. The advising process supports before, around, and after advice.
For the around advice, Tracematches follow the AspectJ guidelines: when there are two or more matches of a pattern with
the same join point, the advice executions are chained and nested.

Tracecuts The Tracecuts stateful aspect [21] is a language that works for Java as an AspectJ extension. This mechanism is
used to check the use of protocols (e.g., FTP [22], a communication protocol). In Tracecuts, if the join point trace does not
follow a pattern, which represents a certain protocol, an action can be triggered. According to the authors of Tracecuts, the
checking of some protocols needs to properly identify the nested entries and exits of the executions of different methods of
a class. This feature is reducible to recognition of properly nested parentheses, meaning that a finite state machine cannot
correctly check the use of these protocols. Therefore, Tracecuts allow developers to express patterns using a context-free
language. The matching process uses a pushdown automaton, and the advising process follows the same guidelines of
Tracematches.

Alpha Alpha [14] is an aspect-oriented extension of L2, a simple object-oriented language in the style of Java. Alpha uses
Prolog queries to express patterns. The matching process is implemented through queries to a database that contains infor-
mation about the static representation (e.g., abstract syntax tree) and the dynamic representation (i.e., execution trace) of a
program. The matching process corresponds to the internal process of Prolog (i.e., a backward chaining algorithm [23]) to
answer a query. Every solution to a Prolog query corresponds to a match of a pattern. These solutions are passed to the
advising process, which only supports before and after advice kinds. Advices are executed in a consecutive manner for each
solution, which contains a set of gathered bindings.

Halo Herzeel et al. [13] propose Halo, a Common Lisp extension. The Halo proposal allows developers to use almost all the
base language to express patterns because loops and recursions are not allowed. Despite these limitations, Halo patterns are
first-class values. The matching process is implemented with the Rete algorithm [24], an efficient pattern matching algorithm
used for expert systems [25]. In Rete, patterns are represented as rules that must be satisfied by a set of (matched) join

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 113
points. The advising process only executes the advice with each set of bindings that satisfy the rules. The advice can be
executed before or after the last matched join point.

EventJava EventJava [8] allows developers to execute a piece of code (i.e., advice) when a set of distributed events (i.e., join
points) has a correlation specified by developers. To specify the correlation, every distributed event contains a set of prop-
erties available to developers (e.g., the time at which the event is observed). The EventJava pattern language only supports
an ad hoc for and if constructs to compare these events. No user-defined constructs to compare events are supported. For
the matching and advising processes, EventJava follows the same guidelines of Halo, but the advice can only be executed
after the last join point is matched.

AWED It is a language for Aspects With Explicit Distribution (AWED) [5,26]. This stateful aspect language supports the
monitoring of distributed computations in Java. In addition, this aspect language takes into consideration distributed causal
relations in tasks of debugging and testing of middleware. AWED patterns are expressed using a domain-specific language
for regular expressions. Similar to Tracematches, the matching process uses a finite state machine to carry out the matching
of patterns. For the advising process, AWED follows the same process of EventJava.

PQL Program Query Language (PQL) [6] is a tool to detect errors and check/force protocols of programming (e.g., file han-
dling). This tool uses a static analyzer to reduce the possible matches and then uses a dynamic matcher that really matches
a given pattern. A developer expresses a pattern using an AST description (using a Java-like syntax). The matching process
(i.e., dynamic matcher) uses a specialized state machine. The advice can only use the execute, which is used to execute a
method before the last join point matched, or replace, used to replace the original computation of the last matched join
point.

PTQL Program Trace Query Language (PTQL) [12] is another tool to detect errors. Developers use the SQL language to
express a pattern, which is actually a SQL query. Join points are stored in databases, which are used by its matching process,
named PARTIQLE, to match a query. PTQL does not allow developers to take actions if a pattern is matched, i.e., there is no
advising process in PTQL.

JavaMop JavaMop [15,27,28] is a generic and efficient runtime-verification framework for Java. Patterns in JavaMop can
be expressed in different (previously defined) domain-specific languages: regular expressions, context-free grammars, lin-
ear temporal logic, string rewriting system [29], etc. This last pattern language is Turing complete. However, the JavaMop
patterns are not first-class values, reusable, and composable. A fixed set of matching process semantics is available for the
developers. As JavaMop compiles their code to AspectJ code, the JavaMop advising process follows the same guidelines of
AspectJ for this process.

EventReactor Event composition model [30] is a computational model that is based on the definitions of software concerns
as event modules. An event module groups a set of events, i.e., join points, that are related to a concern and can react
to this set of events. The software construction is achieved through the composition of these event modules, where an
event module can be composed using input (events received) and output (events published) interfaces. EventReactor [10,
31,32] provides a set of language constructs to implement the event composition model. The proposal can be implemented
for multi languages like Java and C. Similarly to JavaMop, patterns in EventReactor are expressed in a user-defined and
potentially Turing complete language, but these patterns are not first-class values, reusable, and composable. The matching
process supports multiple matches, which can be specialized per thread. In EventReactor, as an event can be “before calling
to a function” and the advising process can react to any event described by an event module, the advice kind of EventReactor
supports before and after.

OTM This paper is not our first attempt at implementing an expressive stateful aspect. In [33,34], we implement a stateful
aspect language for JavaScript, named OTM. The OTM pattern language is Turing complete and allows developers to reuse
and compose patterns. Although the matching process of any OTM stateful aspect can be customized, developers have to
update the definitions of their patterns to support a particular customization of the matching process. For example, the
definition of a pattern for the single matching semantics differs from the definition of the same pattern for the multiple
matching semantics. In other words, the matching process does not really customize the semantics, rather the power of
the pattern language allows developers to “code around” patterns to achieve the required semantics. The advising process
cannot be customized in OTM. In [35], OTM is extended to control causal relations among Ajax messages in JavaScript
applications.

Fig. 5 sums up the reviews of stateful aspect languages analyzed in this paper. Most stateful aspect languages provide
different pattern languages, where the language expressiveness varies. For instance, Alpha uses Prolog, PTQL uses SQL, and
Tracecuts uses context-free grammars. Regarding the matching process, all these aspect languages support multiple matches
of a pattern. Similar to pattern languages, semantics of matching processes of existing stateful aspect languages vary as well.
For example, JavaMop [15] allows developers to choose one of three fixed specifications for the matching process for every
stateful aspect. Finally, most advising processes of stateful aspect languages only support before and after advice.

114 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 5. Summary of stateful aspect languages discussed in this section.

4. Shortcomings of existing stateful aspects

This section illustrates current shortcomings of existing stateful aspect languages. For this illustration we focus on the
three components described in this paper: pattern languages, matching process, and advising process. Each component is
evaluated with regard to four problems mentioned in the introduction of this paper. To clearly identify every problem, we
assign a identifier:

• Pattern Languages:
– p1 is the inability to reuse and compose patterns.
– p2 is the limited expressiveness to define patterns.

• Matching and Advising Processes:
– s1 is the fixed semantics of stateful aspects.
– s2 is the common semantics for all stateful aspects. An aspect language with customizable semantics (i.e., s1 solved)

does not address the problem s2 if these customizations are at language level because all aspects would share these
semantic variations.

Considering the same components and problems mentioned above, this section also evaluates and compares stateful
aspect languages described in Section 3. This section concludes describing requirements to achieve an expressive stateful
aspect language.

4.1. Illustrating shortcomings of stateful aspect languages

To illustrate the four problems mentioned above, we use variants of two different applications of a stateful aspect ap-
proach:

Toggle airplane mode In touch devices, a toggle airplane mode feature allows users to enable (or disable, if it was enabled) the
airplane mode. Suppose a user can use this feature with the sequence up, down, and up in the touch device. The following
aspect implements this feature:

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 115
toggleAirplaneMode() {
event s−up after (): call (∗ Screen .up()) {}
event s−down after (): call (∗ Screen .down()) {}

ere: s−up s−down s−up

@match {
Device . toogleAirplaneMode();

} }

Discount policy A Web application of an online store is used to order computers. A client chooses computers from the
catalogue and adds them to a virtual shopping cart, which may contain more computers. The Web application contains a
checkout form asking for a desired payment method. Consider that the store now wants to add a discount policy, where
every computer has a potential discount that is applied when it is added to the cart. Each discount that is associated with
a computer is only valid for a period of time. However, this discount must be applied (even if it is not valid anymore) when
the client checks out. Implementing this discount policy is a crosscutting concern that can be modularized using a stateful
aspect as follows:

discountPolicy(Computer c , User u) {
Computer comp;
User user;

event add after(User u,Computer c): call(∗ Cart .add(User,Computer))
&& args(u, c) {user = u; comp = c;}

event checkout before(User u): call(∗ Form.checkout(User)) && args(u) {}

ere: add checkout

@match {
Cart cart = this . user . getCart();
cart .applyDiscount(this .comp, DiscountPolicy . getDiscount(this .comp));

} }

4.1.1. Pattern languages
This section first illustrates the problem p1 through of an extension of the toggle airplane mode feature. This section then

uses an additional restriction to the discount policy of the online store example to illustrate the problem p2.

Problem p1 Consider an addition of the toggle airplane mode feature, which enables/disables the airplane mode during a
period of time (e.g., 10 hours). This new feature is executed when a user moves the sequence of the toggle airplane mode
with a left slide as prefix. To implement this feature, named toggle airplane mode with time, an adequate solution would be
to reuse the pattern of the previous feature. However, most stateful aspect languages like JavaMop do not allow developers
to reuse and compose patterns, i.e., problem p1. It is therefore necessary to write all of the pattern again:

toggleAirplaneModeWithTime () {
/ / events as in toggleAirplaneMode

event s−left after (): call (∗ Screen . left ()) {}

ere: s−left s−up s−down s−up / / al l pattern was defined again

@match{
Device . toogleAirplaneMode(10∗60∗60); / /10 hours

} }

The piece of code above is not easily maintainable, because if the pattern of toggleAirplaneMode changes, it is necessary
to rewrite all the of pattern of toggleAirplaneModeWithTime.

Problem p2 Apart from the lack of reusing and composing a pattern, the limited expressiveness does not allow developers
to directly define patterns that gather a variable list of bindings: problem p2 is an example of this. Consider a variation
of the current discount policy, named limited discount policy. This variation only applies the discounts to three computers
that have the best associated discounts. This small variation cannot be implemented as an update of the solution presented

116 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 6. Four simultaneous matches of the pattern used to implement the discount policy feature, where a user u1 buys four products: c1, c2, c3, c4.

previously. This is so because the current solution does not use only one match that contains a list with all computers (see
Fig. 6), which is necessary for choosing the best discounts. A stateful aspect that matches a list of computers would be
adequate, however, most of these languages do not allow developers to define a pattern that gathers a variable-size list of
bindings. A reader might wonder if the following piece of code can work:

limitedDiscountPolicy(User u, List l) {
/ / discountPolicy code .

}

This piece of code above gathers a list instead of computers. This solution does not work because the list of computers
is not available in the piece of code of the base language. Although this list would be available, this list would be useless
because we cannot know which computers were added to the cart before the period of time of an associated discount
finishes. Therefore, we need to code around the current advice to implement the update of this feature:

limitedDiscountPolicy(User u, Computer c) {
int computerCounter = 0;
ArrayList computers = new ArrayList ();

/ / instance variables , events , and pattern as in limitedDiscount

@match {
if (this .computerCounter++ < this .u. getCart () . size ())

this .computers.add(this .comp); / /adding to the l i s t of computers
else {

ArrayList computersWithBestDiscounts = getBestDiscounts(this .computers);
/ / executing the original advice with every computer of the previous l i s t

}
} }

The original advice is only executed when the final match is triggered. In addition, the new advice is now stateful
because of its mutable bindings, computers and computerCounter. The behavior of stateful advices depends on bindings that
are outside of it. Therefore, developers keep in mind the state of outer bindings to know the real behavior of a stateful
advice. Although, in JavaMop, we use a Turing complete pattern language like string rewriting system [29], this advice has to
be modified in contortive ways as well. This is because available pattern languages in JavaMop are sufficiently expressive to
specify a join point trace, but not expressive enough to specify what and how bindings are gathered, e.g., a variable list of
bindings.

4.1.2. Matching and advising processes
In this section, we first illustrate the problem s1 through an example related to the advising process. We then use an

example related to the matching process to exemplify s2.

Problem s1 In an advising process, if there are simultaneous matches of a pattern, the advice is executed several times: each
one with an environment of bindings. Existing stateful aspect languages do not allow developers to customize the advising
process, i.e., problem s1. A customizable advising process semantics is necessary in scenarios like adding a new variation
to the discount policy. Suppose the store Web application now allows clients to customize the pieces (i.e., hardware) of
their computers. Thereby, the store established a new discount policy, named personalized discount policy. This new policy
establishes that the discount policy only applies the discount to the computer with the greatest number of customized
pieces. In this scenario, it is not possible to overburden the pattern definition to implement this restriction because the
total number of pieces of every computer is only known when a client goes to checkout. The implementation of this new
discount policy extension requires the stateful aspect to execute the advice only once, with the match whose bindings
gathered contain the computer with more customized pieces:

personalizedDiscountPolicy(User u, Computer c) {
int maxCustomizedPieceNumber = 0;
int computerCounter = 0;
int computerSelected;

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 117
Fig. 7. Two matches of airPlaneMode due to semantics of multiple matches.

Fig. 8. A correct implementation of toggle airplane mode with JavaMop needs a special keyboard.

/ / events and pattern as in discountPolicy

@match{
Cart cart = this . user . getCart();

/ / select the computer with the more customized pieces
if (this .maxCustomizedPieceNumber < getCustomizedPiecesNumber(this .comp)) {

this .maxCustomizedPieceNumber = getCustomizedPiecesNumber(this .comp);
this . computerSelected = this .comp;

}

if (++this .computerCounter == cart . size ())
/ / executing the original advice for "computerSelected"

} }

As we have seen before, coding around the advice is the most used option for the current spectrum of stateful as-
pect languages. In this piece of code, the original advice is only executed once, which uses computerSelected to apply the
discounts.

Problem s2 Although the pattern of toggle airplane mode implementation looks correct, this pattern does not work because
most stateful aspect languages perform multiple matches of a pattern. As a result, once the pattern is matched, each sub-
sequent up and down toggles the airplane mode. Fig. 7 shows the previous point where observe that before the first match
of the pattern finishes with the call to the up function, new potential matches of the pattern start. Although semantics of
multiple matches is useful in many cases (e.g., fail-fast and discount policy), this semantics is not adequate in all cases: prob-
lem s2. Particularly, JavaMop suppresses multiple matches of a pattern if this does not gather different bindings; therefore,
the toggleAirplaneMode pattern only matches once in the whole program execution. To use a semantics like single match at
a time, a programmer has to tweak the aspect definition. In the toggleAirplaneMode implementation in JavaMop, an ad-hoc
keyboard, __RESET, has to be used inside of the advice. This keyboard reinitializes the stateful aspect pattern to match
again (see Fig. 8):

rightToggleAirplaneMode() {
/ / events and pattern as in toggleAirplaneMode

@match {
Device . toggleAirplaneMode();
__RESET; / /ad−hoc solution

} }

In Section 6, we will revisit all these examples to present adequate solutions using an implementation of our proposal.

4.2. Evaluation

Fig. 9 evaluates the stateful aspect languages described in Section 3. The figure evaluates the pattern language, matching
process, and advising process. Each evaluation measures which of the four problems are addressed.

The results of pattern language evaluations are heterogeneous because three proposals use a Turing complete pattern
language with support of reusable and composable patterns (problems p1 and p2). Halo, JavaMop, and EventReactor address

118 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 9. Evaluations of some stateful aspect proposals regarding their pattern language, matching and advising processes.

one of the previous two problems. Halo uses composable and reusable patterns, but its pattern language is limited by a fixed
and small set of patterns. JavaMop and EventReactor allow developers to create domain-specific languages, which may be
Turing complete, however, their patterns are not first-class values and reusable.

Regarding the matching process, JavaMop, EventReactor, and OTM support semantic variations for their aspects (prob-
lem s1). Finally, we observe there is no support to customize the stateful aspect language semantics. At the bottom of the
list, we see that ESA, the proposal of this paper, completely addresses the four problems.

4.3. Requirements for an expressive stateful aspect language

We have presented many examples that illustrate different kinds of limitations of existing proposals. In our opinion, to
overcome the aforementioned limitations, it is crucial to consider an expressive pattern language and customizable seman-
tics per aspect (see Fig. 10):

Expressive pattern language A Turing complete language allows developers to express advanced patterns, e.g., patterns that
gather a variable-sized list of bindings. In addition, first-class patterns are useful for cleanly reusing and composing pat-
terns.

Customizable semantics Unlike Fig. 1, Fig. 10 shows that each stateful aspect contains its matching and advising processes.
Using this new approach, each aspect can have its own semantics, which should be according to its target concern (prob-
lem s1). In addition, the figure shows that developers can customize the aspect semantics (problem s2), and not choose a
particular semantics from a pre-defined set of semantics available in a stateful aspect language.

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 119
Fig. 10. Requirements for Expressive stateful aspect language: a) an expressive pattern language and b) customizable semantics per stateful aspect.

5. ESA

This section presents the description of our expressive stateful aspect language, named ESA. We use a typed functional
language, Typed Racket [18], to precisely describe ESA. For reading comprehension reasons, some implementation details of
Typed Racket have been omitted (Appendix A shows these details).

ESA overview To satisfy the requirements of Section 4.3, this description allows developers to implement a stateful aspect
language, whose pattern language is Turing complete and the semantics of each stateful aspect is customizable. The cus-
tomization of semantics per aspect may be an extra complexity for developers because it requires a detailed knowledge
of aspect language implementations. To address this complexity, we use open implementations [17] – useful programming
guidelines that suggest intuitive default semantics for a program. For customizations, these guidelines suggest that ab-
stractions used must not depend on a specific implementation of the program, meaning that customizations should be
self-contained: they can be understood and implemented in an isolated manner.

In the following two sections, we first introduce the ESA pattern language, and then explain how ESA allows developers
to customize stateful aspect semantics. Although stateful aspect languages commonly use a rich join point model (e.g., call
join points, execution join points, field write join points, etc.), we will only focus on function-call join points as they are
sufficient for describing ESA.

5.1. Pattern language

In the standard formulation vision of the pointcut/advice model, a pointcut is a function that matches a single join
point. The description behind the ESA pattern language is a natural extension of the pointcut-advice model. We explain this
affirmation in two parts. In the first part, patterns could not be used to gather bindings. In the second part, the ESA pattern
language is extended to support definitions of patterns that gather bindings.

5.1.1. Without bindings
Where a pointcut is a function Pc: JoinPoint → Boolean, a pattern is a function with the type Pattern: JoinPoint → Boolean ⋃
Pattern. A pointcut and a pattern take a join point and return a boolean value to determine whether there is a match or

not with this join point. In addition, a pattern can return a (sub)pattern, which specifies the next join points that should be
matched by the pattern.

Unlike most existing approaches where a pattern is a specification (e.g., regular expression), the ESA pattern language
approach uses a function that can take actions (e.g., match). This approach is inspired by continuation-passing style [36]. As
an example of our approach, the implementation of a pattern to match a call to the up function in a touch device is:

120 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 11. How a pattern is consumed during its matching.

(: s−up Pattern) ; ;Pattern is the type name for "JoinPoint −> Boolean U Pattern"
(define (s−up jp)

(eq? jp up))

The function above returns true if it matches the call to the up function; it returns false otherwise. The first line is
used to define the type of a function in Typed Racket; in this code, the type of s-up is Pattern. The last line compares the
references between up and jp, where jp is the function reference that is calling at that moment. In the piece of code above,
the pattern can never return a pattern, meaning that the pattern behavior is equivalent to a pointcut.

(: call (Procedure −> Pattern))
(define (call fun)

(λ (jp)
(eq? jp fun)))

(define s−up (call up))
(define s−down (call down))

We can use higher-order functions to define patterns designators (i.e., functions that return patterns), which allow de-
velopers to reuse code and simplify the definitions of patterns. For example, the piece of code above shows the definition
of the pattern designator call and its use to define the patterns s-up and s-down.

1 (: seq (Pattern Pattern −> Pattern))
2 (define (seq left right)
3 (λ (jp)
4 (let ([result (left jp)])
5 (cond
6 [(Pattern? result) (seq result right)]
7 [(eq? result #t) right]
8 [else #f]))))

In ESA pattern language, we can compose patterns. For example, the piece of code above is the implementation of
the seq pattern designator, which is used to match a sequence of two patterns. The returned pattern by seq is used to
match a sequence of a left pattern followed by a right pattern. The piece of code above shows that depending on the left
evaluation, different values are returned. If left evaluation returns another pattern, a sequence pattern that is composed of
the continuation of left and right is returned (Line 6). If left evaluation returns #t (i.e., true), right is only returned due to left
matched completely (Line 7). Finally, if left does not match the current join point, false is returned (Line 8). Notice values
returned on the lines 6 and 7 are patterns, which specify the next join points that must be matched.

(: toggle−airplane−mode Pattern)
(define toggle−airplane−mode (seq s−up (seq s−down s−up)))

We illustrate the use of seq to define the pattern of the toggle airplane mode feature. Fig. 11 shows how the toggle-
airplane-mode pattern (Section 1), defined by the piece of code above, varies throughout the matching of a program
execution trace. This pattern changes every time it matches a join point, notice a pattern is drawn with non-filled tri-
angle. In the beginning, the pattern begins with the pattern expressed by a programmer. For the first call to up, the pattern
changes to the pattern s-down � s-up. With the down call, the pattern changes to only s-up. Finally, once the user touches
the screen, the whole pattern matches.

Using our pattern language, we can easily reuse patterns to create advanced ones. For example, the piece of code below
shows the pattern timed-toggle-airplane-mode, which reuses toggle-airplane-mode. In addition, the piece of code shows the
seqn pattern designator, which reuses seq to create a pattern that matches a variable-size sequence of patterns. The foldl
function, also known as reduce and accumulate, processes a list of patterns in the left order to return a new pattern.

(: timed−toggle−airplane−mode Pattern)
(define toggle−airplane−mode−with−time (seq (call left) toggle−airplane−mode))

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 121
Fig. 12. Evaluation of a pattern and its potential kinds of results.

(: seqn ((Listof Pattern) −> Pattern))
(define (seqn patterns)

(foldl (λ (pattern acc−pattern) (seq acc−pattern pattern))
(f irst patterns) (rest patterns)))

5.1.2. Gathering bindings in a environment
The previous description of our pattern language is incomplete because a pattern cannot gather bindings while it is

matching. Pointcuts and patterns should be able to gather bindings. The standard and complete vision of the pointcut-advice
model establishes a pointcut as a function Pc: JoinPoint → Env

⋃
False. This definition means that a pointcut returns an

environment of bindings (instead of true) if the pointcut matches the current join point. The ESA pattern language is an
extension of the standard pointcut-advice model because a pattern is a function:

Pattern : JoinPoint × Env → Env
⋃

False
⋃

Pattern × Env

A pattern now also takes an environment as a parameter. As Fig. 12 shows, this environment contains the bindings
previously gathered by a pattern. Like pointcuts, a pattern returns an environment when it matches. In addition, a pattern
can return a pair (instead of a pattern only) composed of another pattern and an environment if the evaluated pattern
progresses in its matching. To exemplify the extension of the pattern language, we redefine the pattern designators call and
seq:

(: call (Procedure −> Pattern))
(define (call fun)

(λ (jp env)
(if (eq? jp env) env #f)))

1 (: seq (Pattern Pattern −> Pattern))
2 (define (seq left right)
3 (λ (jp env)
4 (let ([result (left jp env)])
5 (cond
6 [(Env? result) (cons right result)]
7 [(pair? result) (cons (seq (get−pat result) right) (get−env result))]
8 [else #f]))))

Patterns now take a join point and an environment, and returns an environment when the pattern matches. The environ-
ment is an object with functional behavior. Line 6 shows that the returned pattern by seq returns a pair that is composed
of right and the environment gathered by the left evaluation. Line 7 returns the same previous pair with the difference that
right is exchanged for the continuation of left with right. The functions with a name like get-xxx are getter functions that
return xxx from an entity.

We illustrate the power of our pattern language through an enhancement of the feature toggle airplane mode. This feature
is now triggered only if the trace up � down � up is performed within of a time interval of five seconds:

(define fast−toggle−airplane−mode
(seqn (l is t (bind s−up 't0 get−time)

s−down
(time−diff (bind s−up 't1 get−time) t1 t0 5))))

; ;where 'bind' is
(define (bind pattern id proc)

(λ (jp env)
(let ([result (pattern jp env)])

122 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 13. a) The left cell creates a cell that expects to match the next join point and gathers bindings. b) When a cell matches the last join point specified
by a pattern, the cell creates a match cell.

(cond
[(Env? result) (add−env result id (proc))]
[else result]))))

; ;where 'time−diff ' is
(define (time−diff pattern t1 t0 time)

(λ (jp env)
(let ([result (pattern jp env)])

(if (and (Env? result) (< (env−lookup result t1) (env−lookup result t0) time)))
env result)))

To express the fast-toggle-airplane-mode pattern, we define two reusable and composable patterns: bind and time-diff.
The first pattern binds a value when the passed pattern matches. The second one checks the time difference between two
bindings stored in the environment when the pattern passed as argument matches.

5.2. Semantics

In most stateful aspect languages, aspects of a language share the same exact semantics [6,8,11–14]. In ESA every stateful
aspect shares the same default semantics, which can be customized by developers. In order to follow the guidelines of open
implementations, we use different and independent abstractions of any particular stateful aspect language implementation.
Indeed, we use MatcherCells [37], a flexible algorithm to match program execution traces. In this section, we first explain
the previous algorithm, and we then use to open it the semantics of a stateful aspect.

5.2.1. MatcherCells
To flexibly match join point traces, MatcherCells use self-replicating algorithms [38], algorithms that emulate the reactions

of a set of biological cells to a trace of reagents. To persist in the environment, the reaction of a cell to a reagent can be the
creation of an identical copy of itself with a small variation, nothing, death, or some of these combinations. An algorithm
that follows self-replicating behavior is defined by a pair, where the first element is the set of first cells (a.k.a. seeds) and
the second one is the set of rules that governs the evolution of these cells.

MatcherCells terminology As MatcherCells is inspired by biology, this section uses biological terms to explain it. For example,
this section uses terms as reagents to refer to join points, cells for different states of a potential match of a pattern, and
match cells for matches of the pattern. After this section, we will keep AOP terminology.

In MatcherCells, a cell contains the pattern of a stateful aspect, bindings gathered during the matching, and a reference
to its creator. Cells react to join points, which correspond to reagents. Using the example of the discount feature, Fig. 13a
shows that if a cell matches a join point, this cell creates a new cell that expects to match the next join point specified
by the pattern. In addition, this new cell contains an environment of bindings gathered when the join point was matched.
Fig. 13b shows that when there is no next join point to match, a match cell is created to indicate a match of a pattern.

Using the example of the toggle airplane mode feature, we illustrate the matching of a pattern in MatcherCells. Fig. 14
shows the evolution from a seed, which creates a set of cells during a join point trace. The figure also shows that there is a
match cell when the cell with the s-up pattern matches. As the cell with s-up is never killed, each subsequent up join point
will trigger a new match of the pattern (an unwanted semantics for toggle airplane mode).

MatcherCells allow developers to add rules to control the evolution of a set of cells. Fig. 15 shows four different evolu-
tions, where each one has a different set of rules that are used to customize the matching semantics of a pattern. Although
evolutions have different rules, we appreciate that all evolutions have the apply reaction rule, which only applies the reaction
of each cell to a join point. Fig. 15a shows that the kill creators rule kills the cells that create a new cell. Adding this rule,
a pattern cannot match multiple times anymore. Fig. 15b shows that the add seed rule adds a seed if there are no cells or
only match cells. This rule allows a pattern to match again. Fig. 15c shows that the keep seed rule always keeps a seed to
permit the starting of a new potential match of a pattern at any moment. Finally, Fig. 15d shows that the life-time for a trace
rule kills all cells whose period of time of a join point trace has exceeded a determined period. This rule allows developers
to only match traces of join points that occur at a period of time.

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 123
Fig. 14. Evolution of a seed during the matching of a pattern.

Fig. 15. Different matching semantics to match a pattern (figure adapted from [37]).

Inspired by the Decorator design pattern [16], rules of MatcherCells are functions which can be composed in order
to customize the matching semantics. For instance, the single match semantics (Fig. 15a) is achieved by the composition
of kill creators with apply reaction. In the two sections, we explain how these rules are defined and used to support the
customization of the processes of matching and advising of each stateful aspect in ESA.

5.2.2. Matching process
Unlike existing proposals, every ESA stateful aspect has its own matching process that can be customized by developers

(see Fig. 10). We use MatcherCells to allow developers to define a matching process.
When an ESA stateful aspect is deployed, its matching process creates a seed, a smatch that contains the pattern of the

aspect. The matching process evaluates the seed with every new join point. If the seed matches a join point, this seed can
create other smatches. If any smatch is a match, it means that the stateful aspect matches its pattern. Depending on the
used composition of rules, a stateful aspect might match multiple times, even at the same time.

react : SMatch × JoinPoint × [Env × Pattern × SMatch → Env] → SMatch

124 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
A smatch uses the react function to evaluate a join point. If the smatch matches the join point, the function returns a
new smatch, otherwise the function returns the same smatch. If there is no next join point to match inside of the smatch,
this smatch really becomes a match. The last and optional parameter ([..]) of react is a function that allows developers to
add information to a smatch in its creation. This is explained in more detail at the end of this section.

rule : List < SMatch > ×JoinPoint → List < SMatch >

A rule is a function that takes as parameters a list of smatches and a join point, and returns the list of smatches that are
evaluated with the next join point. For example, the apply reaction rule implementation is:

1 (: apply−reaction Rule)
2 (define (apply−reaction smatches jp)
3 (remove−duplicates (append smatches
4 (map (λ (smatch) (react smatch jp)) smatches)))) ∗

The apply-reaction function returns the smatches reactions. A smatch, whose reaction is itself, is in the list of smatches
and their reactions (Line 4). This means that this smatch is duplicated when both lists are joined. To prevent this duplication,
the remove-duplicates function is used. Using rule designators (i.e., functions that return rules), developers are able to create
rules that can be composed:

(: kill−creators (Rule −> Rule))
(define (kill−creators rule)

(λ (smatches jp)
(let ([next−smatches (rule smatches jp)])

(diff next−smatches (get−creators (get−sons next−smatches smatches))))))

(: add−seed (Pattern −> (Rule −> Rule)))
(define (add−seed pattern)

(λ (rule)
(λ (smatches jp)

(let ([next−smatches (rule smatches jp)])
(if (empty? (f i l ter no−match? next−smatches))

(cons (make−seed pattern) next−smatches)
next−smatches)))))

(: keep−seed (Pattern −> (Rule −> Rule)))
(define (keep−seed pattern)

(λ (rule)
(λ (smatches jp)

(let ([next−smatches (rule smatches jp)])
(if (= (count−seeds next−smatches) 0)

(cons (make−seed pattern) next−smatches)
next−smatches)))))

These rule designators are parametrized by a rule, which corresponds to the rule that should be applied, in most cases,
before the current one. The rule returned by kill-creators first applies a previous rule (e.g., apply-reaction) to obtain a list
of smatches, where the smatches that created new ones are removed for the evaluation with the next join point. The
add-seed3 rule designator returns a rule that adds a seed if there are no smatches. Finally, keep-seed always keeps a seed.
The composition of rules allows developers to define the full semantics of a matching process. For example, the compositions
of rules to obtain the different semantics of Fig. 15 are:

(define single−match (kill−creators apply−reaction))
(define single−match−at−a−time ((add−seed pattern) single−match))
(define a−potential−match−can−always−start ((keep−seed pattern) single−match))
(define timing−to−match ((add−seed pattern) ((trace−life−time delta) single−match)))

Adding context information to smatches Some rules may need all smatches to contain specific context information. For exam-
ple, trace-life-time needs all smatches to contain the time in their environments when a potential match starts:

3 Notice that add-seed is in fact a higher-order rule designator, parameterized by the original pattern or a new one.

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 125
(: trace−life−time (Number −> (Rule −> Rule)))
(define (trace−life−time delta)

(λ (rule)
(λ (smatches jp)

(let ([next−smatches (rule smatches jp)])
(f i l ter (λ (smatch)

(< (− (get−time) (env−lookup (get−env smatch) 'time))
delta))

smatches)))))

To add context information to smatches, the third and optional parameter of the react function is used. This parameter
is a function that receives the values with which a smatch will be created, and returns the initial environment of bindings
of a smatch. For example, to annotate a smatch with the trace time, one needs to provide the following function:

(: creation−with−time (Env Pattern SMatch −> Env))
(define (creation−with−time env pattern creator)

(env−add env 'time (if (Seed? creator)
(get−time)
(env−lookup (get−env creator) 'time))))

In some scenarios like trace-life-time, intrinsic attributes (e.g., time, physical space, etc.) should be present in each smatch
(from seed to match) in order to support operations between smatches. In other words, these attributes crosscut through the
matching of a trace [39]. The feature of customized information of smatches allows developers to modularize the treatment
of these intrinsic attributes.

As a conclusion, we can say the definition of the matching process of a stateful aspect language is crucial because a small
change in the semantics of this process may strongly affect the (number of) matches of a pattern. Thereby, a wide range of
semantics is possible. Through simple compositions of rules, the MatcherCells algorithm allows developers to explore this
wide range of semantics. In ESA, MatcherCells allows developers to easily customize the matching process semantics per
stateful aspect.

5.2.3. Advising process
Like the ESA matching process, the advising process is open to customization. When one or more smatches become

matches, the advising is executed with these matches. This process executes the aspect advice with every match. ESA
entirely reifies this process through a function with the following signature:

AdvisingProcess : Advice × List < Match > ×JoinPoint → AdviceReturn
where

Advice : JoinPoint × Env → AdviceReturn

An AdvisingProcess function takes three parameters: the aspect advice, the list of matches of the pattern, and the current
join point. An ESA advice also follows the standard vision of the pointcut-advice model [4], meaning that an advice is a
function parametrized by the matched join point and an environment of bindings. The list contains the matches obtained
when the matching process used the current join point to evaluate their smatches. The type of value returned by the
AdvisingProcess and Advice functions must be the same (i.e., AdviceReturn). We illustrate the open ESA advising process
with two different matching processes:

(: single−advice−execution AdvisingProcess)
(define (single−advice−execution advice matches jp)

(advice jp (get−env (first matches))))

(: simultaneous−advice−executions AdvisingProcess)
(define (simultaneous−advice−executions advice matches jp)

(last (map (λ (match) (advice jp (get−env match))) matches)))

The single-advice-execution function corresponds to an advising process that only executes its advice once with the first
match (discarding the rest of matches if there are matches). This advising semantics is useful, for example, for implement-
ing the toggle airplane mode feature (Section 1) because simultaneous advice executions generate unexpected results in the
airplane mode of a touch device. Conversely, the multi-advice-executions function represents the consecutive advice execu-
tions, where the value of the last execution is returned. In Section 2.3, the tracematch implementation for the discount policy
feature takes advantage of the semantics of simultaneous advice executions to apply the discounts to every computer.

5.3. Stateful aspects in ESA

Finally, we describe how to define and weave a stateful aspect in our proposal.

126 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
5.3.1. Defining a stateful aspect
We have described the core elements of ESA separately so far. This section now presents how these elements are inte-

grated to make a stateful aspect.

make-aspect : Pattern × Advice × [Rule] × [AdvisingProcess] → StatefulAspect

The make-aspect function takes a pattern, an advice, and two more optional parameters to create a stateful aspect. The
first optional parameter, which is a rule, is used to define the matching process, and the second one allows developers to
define the advising process. For example, the following stateful aspect implements the toggle airplane mode feature:

(make−aspect (seqn (l is t s−up s−down s−up)) (λ (jp env) (toggle−airplane−mode))
single−match−at−a−time single−advice−execution)

As toggle airplane mode requires a touch device enables/disables the airplane mode only every trace of up � down � up,
the single-match-at-a-time rule (Section 5.2.2) corresponds to the adequate matching semantics for this aspect. As mentioned
in Section 5.2.3, simultaneous advice executions may generate unexpected results in the deployment of this feature; thereby,
the advising process represented by the single-advice-execution function is needed.

Default semantics for an ESA stateful aspect Multiple matches and simultaneous advice executions are distinguishing charac-
teristics of most stateful aspect languages. However, understanding these features is complex for developers because they
need to take into consideration multiple and simultaneous potential triggers of a stateful aspect. Therefore, we establish that
the default semantics for every ESA stateful aspect only permits a single match and advice execution. Taking into account
this default semantics, we can simplify the definition of the previous stateful aspect as follows:

(make−aspect (seqn (l is t s−up s−down s−up)) (λ (jp env) (toggle−airplane−mode))

5.3.2. Weaving a stateful aspect
The weaving of a stateful aspect consists in evolving its list of smatches and executing the advice with each match found:

weave : StatefulAspect × JoinPoint → AdviceReturn

(define (weave asp jp)
(let

([temp−smatches ((get−rule asp) (get−smatches asp) jp)]
[matches (f i l ter is−match? temp−smatches)])

(begin
(update−smatches asp (f i l ter is−not−match? temp−smatches))
(if (> (length matches) 0)

; ;execute advice with bindings of each match cell
; ;else execute the join point proceed

))))

The evolution of the list of smatches is determined by a rule, which represents the matching process of a stateful aspect.
If matches are found after the rule is applied, these matches are removed from the list and the advice is executed for every
one of them.

5.4. Summary

We have described the three components of ESA. The modular definition of these components allows developers to
reuse and compose patterns (problem p1) with a Turing complete language (problem p2). In Appendix B, we use ESA
pattern language to implement a string rewriting system, a Turing complete language used in JavaMop [29], in order to
show the completeness of our pattern language. The semantics of stateful aspects can be customized (problem s1) by each
stateful aspect (problem s2). The design of these components in ESA are modular. For example, the pattern language is only
a protocol that the matching process must follow.

6. ESA-JS: ESA for JavaScript

ESA-JS is a complete and practical implementation of ESA for JavaScript, dynamic prototype-based language with higher-
order functions. With ESA-JS, we address the four problems of existing stateful aspect languages illustrated in Section 4.1.
Apart from ESA-JS, we developed a version of ESA for ActionScript, named ESA-AS3. Although the former implementation is
not described here because of space reasons, ESA-AS3 is available on the ESA Web site.

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 127
A brief overview of AspectScript ESA-JS is currently implemented as a seamless extension of AspectScript [40], an aspect
language for JavaScript. In AspectScript, pointcuts and advices are functions; and aspects and join points are objects. In
addition, AspectScript supports dynamic deployment of aspects with expressive strategies of scoping [19].

1 var toggleAirplaneMode = {
2 pattern: seqn([s−up, s−down, s−up]) ,
3 advice: function(jp ,env) {
4 Device .toogleAirplaneMode();
5 } ,
6 kind: ESA.AFTER
7 };
8

9 ESA.deploy(toogleAirplaneMode);

The piece of code above shows the implementation of the toggle airplane mode feature in ESA-JS. An ESA-JS stateful
aspect is a JavaScript object (Line 1). In this implementation of ESA, the patterns and advices are functions (lines 2–3),
i.e., first-class values in JavaScript. As in AspectScript, ESA-JS also supports dynamic deployment of stateful aspects (Line 9).
Notice this implementation is a correct implementation of the feature because of ESA default semantics: single match at a
time semantics for the matching process and single advice execution semantics for the advising process.

6.1. Pattern language

Section 4.1.1 illustrates consequences related to the lack of reusing and composing of patterns (problem p1) and the
limited expressiveness to define them (problem p2). As ESA can address previous problems, we can reuse patterns to define
advanced ones:

var toggleAirplaneModeWithTime = {
pattern: seq(s−left , toogleAirplaneMode . pattern) , / / reuse of the toogleAirplaneMode pattern
advice: function(jp , env)

Device . toogleAirplaneMode(10∗60∗60); / /10 hours .
} ,
kind: ESA.AFTER

};

The solution presented for limited discount policy in Section 4.1.1 has the drawback that its advice is stateful. This is
because existing stateful aspect languages are insufficiently expressive at allowing developers to define patterns that gather
a variable-size list of bindings (problem p2). Using ESA-JS, we can define patterns that gather this kind of list, implying a
stateful advice is not needed anymore:

var limitedDP = {
pattern: starUntil (addComputer, call (checkout)) ,
advice: function(jp ,env) {

var computerList = env.computers;
var computersWithBestDiscounts = getBestDiscounts(computerList);
/ / apply discounts to the computers with the best discounts

} ,
kind: ESA.BEFORE

};

The pattern of limitedDiscountPolicy matches and gathers all computers added to the cart until the user checks out. The
advice of this aspect simply applies the three best discounts of the list of computers stored in the environment, computerList.
The piece of code below shows the implementation of the pattern designators starUntil and addComputer:

var starUntil = function (star , until) {
return function (jp ,env) {

var result = until (jp ,env);
if (isEnv(result)) {

return result ;
}
result = star(jp ,env);
if (isEnv(result)) {

return [starUntil (star , until) , result];
}

128 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
return false ;
} };

var addComputer = bind(call (cart .add) , function(jp ,env) {
var addedComputer = jp . args[0]; / /1st argument passed to the function "cart .add"
return env.bind("computers" , addedComputer);

});

The starUntil pattern designator returns a pattern that matches the star pattern zero or more times until the until pattern
matches. The pattern returned by addComputer matches a call to the cart.add method. In addition, the returned pattern,
using the env.bind method, binds the computers identifier to the added computer. In ESA-JS, if two values are bound to the
same identifier (e.g., computers), they are aggregated as a list, where the most recent value is added at the end of the list.

6.2. Matching and advising processes

In most stateful aspect languages, aspects share a fixed semantics (problem s1) and/or semantics can only be customized
at a language level and not per aspect (problem s2).

In existing proposals, stateful aspects have fixed semantics for their advising process. As Section 4.1.2 showed, the imple-
mentation of the personalized discount policy needs to intrusively modify the advice of the aspect presented. The openness
of the matching process is insufficient to modularly implement the new discount policy. This is because the computer with
the greater number of customized pieces is only known when the user checks out (i.e., inside of the advising process).
The personalized discount policy requires that the aspect only executes its advice with the environment that contains the
computer with more customized pieces. When using ESA-JS, it is not necessary to intrusively modify the advice:

var personalizedDP = discountPolicy; / / reusing the discountPolicy aspect

personalizedDP. advising = function(advices ,matches, jp) {
var env = matches[0].env;
var computerList = env.computers;

/ / obtaining the computer with more customized pieces
var computerWithMorePieces = computerList .max(function(computer1,computer2) {

return getCustomizedPiecesNumber(computer2) − getCustomizedPiecesNumber(computer1);
});

/ / replacing the l i s t of computer with only one computer
env.computers = [computerWithMorePieces];
advice(jp ,env);

};

As we see in the above pieces, the computer with more customized pieces, computerWithMorePieces is obtained from the
environment of the smatch. Then, env.computers is replaced with a new array that only contains the binding computerWith-
MorePieces. Finally, the advice is executed with this modified environment.

ESA developers can create a particular aspect semantics for a given concern, meaning that each stateful aspect can have
a different semantics. For example, the following ESA-JS aspect implements the toggle airplane mode feature with a single
match at a time semantics:

var toggleAirplaneMode = {
pattern: seqn([s−up, s−down, s−up]) ,
advice: function(jp ,env)

Device .toogleAirplaneMode();
} ,
kind: ESA.AFTER,
matching: singleMatchAtATime / / customized matching semantics for toggleAirplane

};

/ /where is singleMatchAtATime
var singleMatchAtATime = addSeed(pattern)killCreators(applyReaction));

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 129
Fig. 16. (Left) AspectScript aspect used for the experiment. (Right) ESA stateful aspect used for the experiment.

Fig. 17. Overhead of ESA with two different matching semantics over AspectScript.

6.3. Performance

We ran tests to evaluate performance of ESA-JS and results were compared to that of JavaMop. For this experiment, we
used an Intel Core 2 Duo, 2.66 GHz with 2 GB of RAM. Regarding software, we used Ubuntu 10.04 (kernel 2.6.32) with the
Firefox JavaScript interpreter (version 1.8.0) for ESA-JS and the abc compiler [41] (version 1.3.0) for JavaMop.

/ /PATTERN__LENGTH varies from 5 to 19
start = getCurrentTime();
for (i = 0; i < PATTERN__LENGTH; ++i) {

foo();
}
delta = getCurrentTime() − start ;

The experiment measured the average time used to execute the piece of code above with an AspectScript aspect and an
ESA-JS stateful aspect (Fig. 16). The AspectScript aspect keeps a counter of matches and the ESA-JS aspect with two different
semantics: single match and multiple matches semantics. Finally, we execute the same experiment with an aspect of AspectJ
and a stateful aspect of JavaMop. For the experiment, the base code above together with each aspect implementation is
executed 500,000 times. The experiment was repeated for patterns of different lengths from 5 to 19.

ESA-JS and JavaMop are aspect language extensions of AspectScript and AspectJ respectively. Figs. 17 and 18 show the
increment of the overhead of ESA-JS and JavaMop over their aspect languages. In these figures, the x axe represents lengths
of PATTERN_LENGTH and the y axe represents how many times slower the runtime of a stateful aspect extension is over
an aspect language (e.g., ESA-JS over AspectScript). The overhead of ESA-JS is evidently less than JavaMop, and the JavaMop
overhead quickly increases when the pattern is longer, which may be due to the index scheme used in long patterns [42].
In addition, Fig. 17 shows that the choice of the semantics of a matching process strongly affects performance of a ESA-JS
stateful aspect: performance of the default semantics is quite similar to an aspect of AspectScript. Instead, the stateful aspect
that uses the multiple match semantics differs from the aspect implementation in an exponential manner.

Although Figs. 17 and 18 show less overhead in ESA-JS, these results do not mean that ESA-JS has less overhead for
JavaScript than JavaMop for Java. Following the same axe scheme of the previous figures, Figs. 19 and 20 show that the
overhead of AspectScript is significantly greater than AspectJ over their base languages respectively. The AspectJ performance
is very similar to that of Java (average of 1.8375) instead of the AspectScript performance (average of 1,582.8375).

Discussion The current implementation of AspectScript is very slow compared to AspectJ. This is because AspectScript rei-
fies every join point of the program execution to know whether or not an aspect matches at runtime; no partial evaluation
or other optimization is performed. Instead, AspectJ optimizes aspect weaving aggressively, therefore the additional layer
introduced by JavaMop is comparatively more costly. In addition, the choice of the matching process significantly impacts

130 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 18. Overhead of JavaMop over AspectJ.

Fig. 19. The overhead of AspectJ over the Java language.

Fig. 20. AspectScript overhead over JavaScript.

Table 1
Time used to execute the ESA-JS runtime in the Tetris game.

Aspects/Tetris game tasks ESA-JS runtime Idle

Aspect deployed 8.65% 90.12%
No aspect deployed 4.69% 80.30%

on the ESA-JS overhead. Finally, raw ESA-JS overhead is high, JavaScript is more widely used for interactive applications,
that may even include remote communication. For instance, we tested ESA-JS on a JavaScript Tetris game,4 finding no no-
ticeable difference in the execution. To quantify the previous point, we use Google Chrome’s Developers Tools to measure
and compare the time used to execute the ESA-JS runtime in the Tetris. Table 1 shows that an Tetris execution uses 8.65%
of time for ESA-JS runtime while 90.12% is idle. Although the ESA-JS runtime consumes a significant amount of time, its
impact becomes almost unnoticeable due to the interactive nature of the Tetris application.

4 http :/ /www.pleiad .cl /esa /wiki /tetris.

http://www.pleiad.cl/esa/wiki/tetris

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 131
7. Assessing the expressiveness of ESA

We assess the expressiveness of ESA through the emulation of the semantics of some stateful aspect languages. For
reading comprehension reasons, we use ESA-JS to express the semantics of Alpha [14] and Halo [13]. For each stateful
aspect language, we show the necessary customizations of matching and advising processes.

7.1. Alpha

Alpha uses Prolog, thereby, a pattern is a query that is answered using a backward chaining algorithm [23]. Searching
a data base, this algorithm finds a set of different answers for a query. Each answer is represented by an environment of
bindings. In Alpha, the data base corresponds to a computation history and the set of answers corresponds to the matches
of a pattern. The previous point means that if in Alpha, a pattern matches twice or more times simultaneously, the advice
is only executed using matches whose environments of bindings gathered, at least differ in one binding. For example, if a
pattern is simultaneously matched twice and these two matches gather the environments x=1 , y=1 and x=1 , y=2

respectively, the aspect advice is executed twice because both environments have a different binding for y.

Matching process Alpha stateful aspects support the multiple matches of a pattern without any restriction, therefore, the
matching process only uses the applyReaction rule (Section 5.2.2):

var alphaMatching = applyReaction;

Advising process If there are two or more matches of a pattern simultaneously, the advice is only executed with matches
with different bindings. To achieve this goal, we customize the function of the advice process:

var alphaAdvising = function(advice ,matches, jp){
var envs = getEnvs(matches);
/ / f i l ter ing environments that contain the same contextual information
var filteredEnvs = envs. removesDuplicates(function(env1,env2) {

return equal(env1,env2); / /same bindings?
});

return last (consecutiveAdviceExecutions(jp , filteredEnvs));
};

/ /where
var consecutiveAdviceExecutions = function(jp ,envs) {

return envs .map(function(env) {
return advice(jp ,env);

});
};

The alphaAdvising function first filters environments in order to only catch the environments with different bindings.
Finally, the function executes the advice in a consecutive manner with each environment of filteredEnvs.

7.2. Halo

Halo uses the Rete algorithm [24] to match patterns. Unlike Alpha, this algorithm is based on forward chaining [23],
meaning that Halo signals that all potential matches of a pattern must at least differ in one binding. Although the Halo
semantics is subtly different from Alpha, this difference causes different matches of a pattern. Fig. 21 illustrates this differ-
ence, where we evaluate Halo and Alpha with the same pattern and two join point traces. With the first join point trace, we
see that the number of matches for both proposals is one. This is because the pattern is simultaneously matched twice, but
as both matches have the environment of bindings (v=1), a match is discarded. With the second join point trace, we can

instead observe a different number of matches. In Alpha, there are two matches of the pattern because its advising process
actually filters matches with the same environment, and in this example, two different join points trigger the matches. With
Halo, there is only one match because the filter starts inside of the matching process instead of the advising process.

Matching process As Halo filters the potential matches during the matching process, we need a rule (designator) to carry
out this filter:

1 var differentBindings = function(rule) {
2 return function(smatches, jp) {

132 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 21. For the same the join point trace, the subtle difference between the semantics of Halo and Alpha causes a different number of matches for the
same pattern.

3 var nextSmatches = rule(smatches, jp);
4 var newSmatches = difference(nextSmatches,smatches);
5

6 / / f i l ter ing new smatches with the same environment
7 var filteredNewSmatches = newSmatches. f i l ter (function(newSmatch) {
8 var oldSisters = sisters (newSmatch,smatches); / / get old sisters of newSmatch
9

10 return oldSisters .some(function(oldSister) {
11 return equalEnv(newSmatch, oldSister);
12 });
13 });
14

15 return difference(nextSmatches, filteredNewSmatches);
16 } };

The differentBindings rule designator allows developers to filter smatches with different environments of bindings. The
rule returned by differentBindings only keeps a new smatch if its bindings are different from all its sisters or its creator is a
seed (Lines 7–15). Finally, the rule composition to express the matching process of Halo is:

haloMatching = keepSeed(pattern)(differentBindings(applyReaction));

Advising process In Halo, the advice process only executes the advice with every match in a consecutive manner:

var haloAdvising = function(advice ,matches, jp){
return last (consecutiveAdviceExecutions(jp ,getEnvs(matches)));

}

7.3. Summary

Through the customization of matching and advice processes, we can instantiate different stateful aspect languages. In
addition, any instantiation of ESA can use the expressive pattern language of our proposal. For example, any instantiation
allows developers to define a pattern like (av)∗ that gathers one or more lists of bindings during its matching. The former
pattern is not currently supported in most stateful aspect languages.

8. Design considerations

The main purpose of the ESA design is to give expressiveness and software-engineering properties (e.g., reusability) to
the three components of a stateful aspect language: pattern language, matching process, and advising process. In addition,
ESA is precisely described using a typed functional language. In this section, we discuss questions and consequences that
arise from these decisions.

8.1. An ESA implementation for an object-oriented language?

Although ESA is described through a typed functional language, this proposal has been implemented for two object-
oriented paradigms: JavaScript, a prototype-based language, and ActionScript, a class-based language. In both implementa-
tions, aspects, join points, and environments are objects. However, these implementations use first-class functions to express
patterns and MatcherCells rules (i.e., matching processes). This section outlines implementations of previous two compo-
nents in a class-based language without the support of first-class functions such as in Java. Finally, we show how these
components are integrated to create an object-oriented version of ESA.

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 133
Fig. 22. An object-oriented design for the ESA pattern language.

Fig. 23. An object-oriented design for the ESA matching process.

8.1.1. Pattern language
Fig. 22 shows a class diagram for our pattern language. A pattern is only an interface, whose method match is executed

for every new join point. This method can return every possible result of a pattern: an environment, a pair, or false. Finally,
the PDL class contains a set of pattern designators. The following piece of code implements the pattern of the toggle airplane
mode feature (Section 4.1) in Java with the proposed design:

Pattern s−up = PDL. call ("up");
Pattern s−down = PDL. call ("down");

ArrayList<Pattern> patterns = new ArrayList<Pattern>();
patterns .add(s−up);
patterns .add(s−down);
patterns .add(s−up);

Pattern s−up−down−up = PDL.seqn(patterns);

8.1.2. Matching process
As mentioned in Section 5.2.1, rule composition of MatcherCells uses the Decorator pattern [16] to express a match-

ing process in ESA. Fig. 23 shows an object-oriented solution that uses this pattern to implement matching processes of
our proposal. The matching process is an interface, where the apply method must be executed for every new join point.
A rule like KillCreator is a class that implements the interface and decorates the matching process that this rule receives
in its creation. This solution allows developers to (dynamically) express all possible compositions of rules. For instance, the
following declarations show three matching processes, where singleMatch and singleMatchAtAtime use applyReaction as an
initial matching process.

134 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Fig. 24. Class diagram of an ESA stateful aspect.

MatchingProcess applyReaction = new ApplyReactionMatchingProcess();
MatchingProcess singleMatch = new KillCreator(applyReaction);
MatchingProcess singleMatchAtATime = new AddSeed(pattern , new KillCreator(applyReaction));

8.1.3. ESA integration
Fig. 24 shows the design of ESA stateful aspects. The creation of a stateful aspect requires two objects that implement

the interfaces Pattern and Advice respectively. In addition, a developer can customize the matching and advising processes
of a stateful aspect. The following piece of code exemplifies the creation of an aspect for toggle airplane mode in ESA:

/ / s−up−down−up as in Section 8.1.1
/ / singleMatchAtATime as in Section 8.1.2

StatefulAspect tam = new StatefulAspect(s−up−down−up, new ToggleAirplaneMode());
tam.setMatching(singleMatchAtATime); / / customizing matching semantics

ESA.deploy(tam);

A stateful aspect internally controls a list of smatches (i.e., potential matches). Following the weaving process described
in Section 5.3.2, we present an object-oriented solution for this process, which evolves the smatch list and executes the
advice for each match found:

void weaver(StatefulAspect sAsp, JoinPoint jp) {
List<SMatch> tempSmatches = sAsp.matching(jp);
List<SMatch> matches = sAsp.getMatches(tempSmatches);
sAsp.updateSmatches(sAsp.getNoMatches(tempSmatches));
if (matches. size () > 0)

/ / execute advice with bindings of each match
else

/ / execute the join point proceed
}

8.2. Pattern language expressiveness

In existing stateful aspect languages, two different pattern language approaches have been commonly used: Turing com-
plete languages as found in Halo [13] and domain-specific languages such as Tracematches [11]. For ESA, we take the first
approach. Next, we discuss benefits and drawbacks of this option.

Benefits

• A Turing complete language allows developers to use the full power of a base language to define patterns.
• ESA only requires that developers follow a protocol to define a pattern (see Section 4.1). Similar to JavaMop, another

specification of a pattern language can work for ESA if this specification satisfies the protocol.
• A particular benefit of ESA is the separation of the pattern language from the matching process. This separation allows

developers to use different matching semantics (e.g., single match or single match at a time) with the same pattern. This
separation is not supported in most stateful aspect languages. For instance, the rightToggleAirplaneMode implementation,
presented in Section 4.1.2, requires the use of __RESET in the advice declaration to match the pattern more than one
time.

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 135
Drawbacks

• A Turing complete language gives few options to implement optimization strategies; in ESA, it is the use of higher-order
functions to define patterns. For example, the pattern below does not allow pattern language developers to know which
subpattern, left or right, is evaluated for the next join point:

var randomLeftRight = function(left , right) {
return function(jp ,env) {

if (random() > 0.5)
return left (jp , env);

else
return right(jp , env);

} }

• Although a general-purpose language is sufficiently expressive and flexible at defining patterns, this kind of language is
not focused on the domain problem of pattern definitions [43]. As a consequence, a pattern language like ESA lacks con-
cise and self-documenting abstractions, resulting that developers may introduce erroneous semantics. ESA, for instance,
requires a developer to explicitly pass an environment of bindings between patterns.

8.3. Performance

One of the main concerns with existing stateful aspects is their performance. To address with this concern, expres-
siveness has been sacrificed. Conversely, ESA focuses on expressiveness and also on the modular separation of three main
components of a stateful aspect language. As seen in Section 6.3, with this non-positive consequences, performance issues
arise. In spite of these consequences, the modular separation between the pattern language and matching process allowed
us to discover a new optimization opportunity: an eligible matching process semantics. This is because developers can
define the minimal version of a matching process that satisfies requirements of a particular stateful aspect. For example,
stateful aspects like toggleAirPlaneMode do not need to simultaneously match a pattern, therefore, it is not necessary to
keep multiple and temporary matches of a pattern. Despite this optimization opportunity that ESA offers, we are aware that
improving performance is one of the major challenges of ESA, and thereby, future work points to this direction.

9. Conclusion and future work

Because creating specialized stateful aspect languages or overburdening their aspects is a common task to address specify
needs, we propose a precise description of an expressive stateful aspect language, named ESA. Our proposal is sufficiently
expressive to encompass existing stateful aspect languages and new possible variants. ESA, which is accurately described
in Typed Racket [18], concretely allows developers to a) use a Turing complete pattern language with full support of first-
class patterns, offering the benefits of reusability and composition of patterns, and b) customize internal processes of each
stateful aspect. Using this description, we developed ESA-JS, a concrete and practical implementation of ESA for JavaScript
(Section 6). In addition, we assessed the expressiveness of this proposal by implementing the semantics of some exist-
ing stateful aspect languages (Section 7). To contrast ESA with existing proposals, we develop a reference frame of these
proposals in terms of expressiveness (Section 3).

Whereas the common concern for existing stateful aspect languages is performance, we explore a different and unusual
concern such as expressiveness. Despite of our focus, we are aware that performance is important, thereby, the future work
of ESA is oriented towards addressing this concern:

Eligible pattern language In this proposal, developers can use a Turing complete language to define patterns. However, Turing
expressiveness is not always necessary, e.g., toggle airplane mode (Section 4.1). Similar to JavaMop [15], we plan to allow
developers to select the pattern language expressiveness, e.g., regular expressions. With this, ESA improves performance
according to specific features of the selected pattern language. As an additional benefit, the use of simplified domain-specific
languages can prevent developers from introducing errors when patterns are defined.

Eligible matching process As mentioned in Section 8.3 and shown in Fig. 17, an appropriated selection of a matching process
may prevent keeping unnecessary potential matches of a pattern, therefore, improving ESA performance. We will explore
the real impact of this potential optimization.

Matching process Although we showed that the selection of the semantics of the matching process can improve per-
formance (Section 6.3), we think some semantics (e.g., multiple matches) needs to improve its performance. Bodden et
al. in [44–47] and Meredith’s dissertation [29] studied several proposals in this line of research, e.g., dependency advices [45].
Using these proposals, we plan to improve ESA performance and validate these improvements in ESA-JS.

136 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Acknowledgements

We thank the anonymous reviewers for their valuable feedback on this paper.

Appendix A. Complete description of ESA in Typed Racket

Using Typed Racket [18], this section presents the complete description of ESA. At the ESA website (http :/ /pleiad .cl /esa),
this description and a testsuite are available to download. For space reasons, we do not include the implementations of
some helper functions in the following description.

A.1. Pattern language

The ESA pattern language only requires functions that follow the signature of a pattern. In Typed Racket, the define-type
construct allows developers to define types, and define-predicate is used to make a predicate for a (customized) type. The
piece of code below defines the Pattern type and two predicates: one for a pair of Pattern and Env, and another for a Env.
These predicates are useful for knowing what a pattern evaluation returns. Notice that the definition of a pattern uses the
Rec construct, which is necessary to define recursive types in Typed Racket.

; ;Pattern type
(define-type Pattern (Rec Pat (JoinPoint Env −> (U Env False (Pair Pat Env)))))

; ;Predicate for Pattern X Env
; ;Note: Typed Racket does not support the definition of predicate for a particular
; ;signature of a function , therefore , the 'Pattern ' type must be replaced with 'Procedure'
(define-predicate PatternEnvPair? (Pair Procedure Env))
; ;Predicate for Env
(define-predicate Env? Env)

Some pattern designators The following piece of code shows the complete implementation of the call, seq, seqn, bind, where,
and time-diff pattern designators. Only seqn and time−diff subtly vary their implementations from Section 5.1:

; ;To match the call to a function
(: call (Procedure −> Pattern))
(define (call fun)

(λ (jp env)
(if (eq? jp fun) env #f)))

; ;To match a sequence of two patterns
(: seq (Pattern Pattern −> Pattern))
(define (seq left right)

(λ (jp env)
(let ([result (left jp env)])

(cond
[(PatternEnvPair? result) (cons (seq (get−pat result) right) (get−env result))]
[(Env? result) (cons right result)]
[else #f])))))

; ;To match a sequence of 'n' patterns
(: seqn ((Listof Pattern) −> Pattern))
(define (seqn patterns)

(foldl (λ: ([pattern : Pattern] [accPattern : Pattern]) (seq accPattern pattern))
(f irst patterns) (rest patterns)))

; ;To bind a value when a pattern matches
(: bind (Pattern Symbol (Env −> Env) −> Pattern))
(define (bind pattern id gather)

(λ (jp env)
(let ([result (pattern jp env)])

(cond
[(Env? result) (env−bind result id (gather env))]
[else env]))))

http://pleiad.cl/esa

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 137
; ;To verify a condition (using bindings of the environment) when a pattern matches
(: where (Pattern (Env −> Boolean) −> Pattern))
(define (where pattern condition)

(λ (jp env)
(let ([result (pattern jp env)])

(and (Env? result) (condition result)))))

; ;To verify a period of time when a pattern matches
(: time−diff (Pattern Symbol Symbol Real −> Pattern))
(define (time−diff pattern t1 t0 time)

(λ (jp env)
(let ([result (pattern jp env)])

(if (and (Env? result) (< (cast (env−lookup result t1) Real) (cast (env−lookup result t0) Real) time))
env result))))

A.2. Adaptation of MatcherCells for ESA

We adapt the MatcherCells algorithm [37] to integrate into ESA. Seeds and matches are structures in this description,
and a smatch is only type that is the union of Seed, Match, and a list that represents an intermediate stage between a seed
and a match. The reaction of a smatch is carried out by the react function, which takes three parameters. The last parameter,
ctx-inf, is optional, where keep-previous-bindings is its default value.

; ;Seed structure
(define-struct: Seed

([pat : Pattern]
[env : Env]))

; ;Match structure
(define-struct: Match

([env : Env]
[creator : SMatch]))

; ;SMatch type
(define-type SMatch (Rec SM (U Seed Match (List Pattern Env SM))))

; ;Reaction of a smatch
(: react (SMatch JoinPoint [#:ctx−inf (Env Pattern SMatch −> Env)] −> SMatch))
(define (react smatch jp #:ctx−inf [ctx−inf keep−previous−bindings])

(let*
([pattern (get−pat smatch)]
[env (get−env smatch)]
[result (pattern jp env)]) ; ;evaluating the pattern of the smatch

(cond
; ;According to ' result ' , this function returns a new smatch,seed, or the same smatch
[(PatternEnvPair? result) (make−smatch (get−pat result)

(ctx−inf (get−env result) (get−pat result) smatch)
smatch)]

[(Env? result) (make−match result smatch]
[else smatch]))) ; ; the same smatch

; ;Default context information for a smatch
(: keep−previous−bindings (Env Pattern SMatch −> Env))
(define (keep−previous−bindings env pat creator)

env)

A.3. Matching process

The matching process is defined by a composition of rules, where a rule is a function with the following signature in
Typed Racket:

(define-type Rule ((Listof SMatch) JoinPoint −> (Listof SMatch)))

138 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
Some rules Only the trace-life-time rule varies its definition from Section 5.2.2. In Typed Racket, the < function requires two
Real parameters, therefore, it is necessary to cast the value stored in the environment.

; ;This rule just applies the reaction to each smatch
(: apply−reaction Rule)
(define (apply−reaction smatches jp)

(remove−duplicates (append smatches
(map (λ: ([smatch : SMatch])

(react smatch jp)) smatches))))

; ;This rule ki l l to every smatch that created a new one
(: kill−creators (Rule −> Rule))
(define (kill−creators rule)

(λ (smatches jp)
(let ([next−smatches (rule smatches jp)])

(diff next−smatches (get−creators (get−sons next−matches smatches)))
)))

; ;This rule adds a seed when there is no smatches or only matches
(: add−seed (Pattern −> (Rule −> Rule)))
(define (add−seed pattern)

(λ (rule)
(λ (smatches jp)

(let ([next−smatches (rule smatches jp)])
(if (empty? (f i l ter no−match? next−smatches))

(cons (make−seed pattern) next−smatches)
next−smatches)))))

; ;This rule always keeps at least a seed
(: keep−seed (Pattern −> (Rule −> Rule)))
(define (keep−seed pattern)

(λ (rule)
(λ (smatches jp)

(let ([next−smatches (rule smatches jp)])
(if (= (count−seeds next−smatches) 0)

(cons (make−seed pattern) next−smatches)
next−smatches)))))

; ;This rules kil ls a smatch when this lives more than a period of time
(: trace−life−time (Real −> (Rule −> Rule)))
(define (trace−life−time delta)

(λ (rule)
(λ (smatches jp)

(let ([next−smatches (rule smatches jp)])
(f i l ter (λ (smatch)

(< (− (get−time) (cast (env−lookup (get−env smatch) 'time) Real))
delta)) smatches)))))

Some examples of matching semantics Using the previous rules, it is possible to define some matching semantics, for example:

(: single−match−at−a−time (Pattern −> Rule))
(define (single−match−at−a−time pattern)

((add−seed pattern) single−match))

(: a−potential−match−can−always−start (Pattern −> Rule))
(define (a−potential−match−can−always−start pattern)

((keep−seed pattern) single−match))

(: timing−to−match (Real Pattern −> Rule))
(define (timing−to−match delta pattern)

((add−seed pattern) ((trace−life−time delta) single−match)))

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 139
A.4. Advising process

The return type of the advice and the advising process of a stateful aspect must be exactly the same. To satisfy this
constraint, we use parameterized types of Typed Racket. For example, the signature of an ESA advice is defined as follows:

; ;Advice type
(define-type (Advice A) (JoinPoint Env −> A))

The following piece of code illustrates the use of parameterized types to define an advice that only prints a message
(and returns Void):

(: print−call−to−foo (Advice Void))
(define (print−call−to−foo jp env)

(printf "Calling to foo"))

The signature of a function that represents an advising process uses polymorphic types of Typed Racket to enforce the
same return type for this function and the advice passed as parameter:

; ;Advising Process type
(define-type AdvisingProcess (All (A) ((Advice A) (Listof SMatch) JoinPoint −> A)))

Some examples of advising semantics The implementations of advising processes shown in Section 5.2.3 do not vary.

A.5. Stateful aspect

As the piece of code below shows, a stateful aspect is a structure with five fields: pattern, advice, matching process,
advising process, and a list of smatches. When a stateful aspect is created (make-aspect), the smatch list only contains a
seed. The make-aspect function, which makes a stateful aspect, takes two optional parameters: mp and ap. These optional
parameters represent the matching process and advising process respectively.

; ;StatefulAspect structure. This uses a parameterized type for its advice
(define-struct: (A) StatefulAspect

([pattern : Pattern]
[advice : (Advice A)]
[matching : Rule]
[advising : AdvisingProcess]
[smatches : (Listof SMatch)])
)

; ;This function creates a stateful aspect
(: make−aspect (All (A) (Pattern (Advice A) [#:mp Rule] [#:ap AdvisingProcess] −> (StatefulAspect A))))
(define (make−aspect pat adv #:mp [mp (single−match−at−a−time pat)] #:ap [ap single−advice−execution])

(StatefulAspect pat adv mp ap (l is t (make−seed pat))))

Appendix B. A SRS implementation with ESA pattern language

Meredith in [29] implements String Rewriting System (SRS) [48], a Turing complete language, as a plugin for Java-
Mop [15]. To show the Turing-complete expressiveness of our pattern language, we define two ESA pattern designators that
are able to emulate SRS:

1 ; ;A SRS pattern is created from rules: a set of key−value
2 (: (Listof (Pair String String)) −> Pattern)
3 (define (SRS rules)
4 (SRS−inner rules ""))
5

6 ; ;Apart from a rules , this function receives the string that is rewritten according to SRS rules
7 (: (Listof (Pair String String)) String −> Pattern)
8 (define (SRS−inner rules str)
9 (λ (jp env)
10 (let* ([str (string−append str (to−string jp))]
11 [str (apply−rules−in−string str rules)])
12 (if (string=? str "@match")
13 env
14 (SRS−inner rules str)))))

140 P. Leger et al. / Science of Computer Programming 102 (2015) 108–141
SRS consists of a set of rules and a string, which is repeatedly rewritten using these rules until that they cannot be
applied anymore. In ESA implementation, a SRS pattern begins with an empty string (Line 4) that increases with string
representations of join points (Line 10). For every new join point, the pattern returned by SRS-inner applies the defined
rules to rewrite the string (Line 11). After applying these rules, if the string is "@match" the pattern matches (Line 13);
otherwise the pattern returns a new SRS pattern with the string rewritten (Line 14). This returned pattern will wait for the
string representation of the next join point to apply the same rules again.

References

[1] D. Parnas, On the criteria for decomposing systems into modules, Commun. ACM 15 (1972) 1053–1058.
[2] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda, A. Mendhekar, Aspect oriented programming, in: Max Muehlhaeuser, et al. (Eds.),

Special Issues in Object-Oriented Programming, 1996.
[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An overview of AspectJ, in: J.L. Knudsen (Ed.), Proceedings of the 15th European

Conference on Object-Oriented Programming, ECOOP 2001, Budapest, Hungary, in: Lecture Notes in Computer Science, vol. 2072, Springer-Verlag, 2001,
pp. 327–353.

[4] H. Masuhara, G. Kiczales, C. Dutchyn, A compilation and optimization model for aspect-oriented programs, in: G. Hedin (Ed.), Proceedings of Compiler
Construction, CC2003, in: Lecture Notes in Computer Science, vol. 2622, Springer-Verlag, 2003, pp. 46–60.

[5] L.D. Benavides Navarro, R. Douence, M. Südholt, Debugging and testing middleware with aspect-based control-flow and causal patterns, in: Proceedings
of the 9th ACM/IFIP/USENIX International Middleware Conference, Leuven, Belgium, in: Lecture Notes in Computer Science, vol. 5346, Springer-Verlag,
2008, pp. 183–202.

[6] M. Martin, B. Livshits, M.S. Lam, Finding application errors and security flaws using PQL: a program query language, in: Proceedings of the 20th
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications, OOPSLA 2005, San Diego, California, USA, in: ACM
SIGPLAN Not., vol. 40, ACM Press, 2005, pp. 365–383.

[7] P. Avgustinov, J. Tibble, O. de Moor, Making trace monitors feasible, in: Proceedings of the 22nd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, OOPSLA 2007, Montreal, Canada, in: ACM SIGPLAN Not., vol. 42, ACM Press, 2007, pp. 589–608.

[8] P. Eugster, K. Jayaram, EventJava: an extension of Java for event correlation, in: S. Drossopoulou (Ed.), Proceedings of the 23rd European Conference on
Object-Oriented Programming, ECOOP 2009, Genova, Italy, in: Lecture Notes in Computer Science, vol. 5653, Springer-Verlag, 2009, pp. 570–594.

[9] R. Douence, P. Fradet, M. Südholt, Trace-based aspects, in: R.E. Filman, T. Elrad, S. Clarke, M. Akşit (Eds.), Aspect-Oriented Software Development,
Addison-Wesley, Boston, 2005, pp. 201–217.

[10] S. Malakuti, M. Akşit, Event modules: modularizing domain-specific crosscutting RV concerns, in: Transactions on Aspect-Oriented Software Develop-
ment XI, in: Lecture Notes in Computer Science, vol. 8400, 2014, pp. 27–69.

[11] C. Allan, P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble, Adding trace matching with
free variables to AspectJ, in: Proceedings of the 20th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA 2005, San Diego, California, USA, in: ACM SIGPLAN Not., vol. 40, ACM Press, 2005, pp. 345–364.

[12] S.F. Goldsmith, R. O’Callahan, A. Aiken, Relational queries over program traces, in: Proceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications, OOPSLA 2005, San Diego, California, USA, in: ACM SIGPLAN Not., vol. 40, ACM Press,
2005, pp. 385–402.

[13] C. Herzeel, K. Gybels, P. Costanza, T. D’Hondt, Modularizing crosscuts in an e-commerce application in Lisp using HALO, in: Proceedings of the 2007
International Lisp Conference, ILC ’07, Cambridge, United Kingdom, ACM, 2007, pp. 1–14.

[14] K. Ostermann, M. Mezini, C. Bockisch, Expressive pointcuts for increased modularity, in: A.P. Black (Ed.), Proceedings of the European Conference on
Object-Oriented Programming, ECOOP, in: LNCS, vol. 3586, Springer-Verlag, 2005, pp. 214–240.

[15] P.O. Meredith, D. Jin, D. Griffith, F. Chen, G. Roşu, An overview of the MOP runtime verification framework, Int. J. Softw. Tools Technol. Transf. 14 (2011)
249–289.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Professional Computing Series, Addison-
Wesley, 1994.

[17] G. Kiczales, J. Lamping, C.V. Lopes, C. Maeda, A. Mendhekar, G. Murphy, Open implementation design guidelines, in: Proceedings of the 19th Interna-
tional Conference on Software Engineering, ICSE 97, Boston, Massachusetts, USA, ACM Press, 1997, pp. 481–490.

[18] S. Tobin-Hochstadt, M. Felleisen, The design and implementation of Typed Scheme, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2008, San Francisco, CA, USA, ACM Press, 2008, pp. 395–406.

[19] É. Tanter, Expressive scoping of dynamically-deployed aspects, in: Proceedings of the 7th ACM International Conference on Aspect-Oriented Software
Development, AOSD 2008, Brussels, Belgium, ACM Press, 2008, pp. 168–179.

[20] R. Douence, O. Motelet, M. Südholt, A formal definition of crosscuts, in: Proceedings of the Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, REFLECTION ’01, London, UK, Springer-Verlag, 2001, pp. 170–186.

[21] R.J. Walker, K. Viggers, Implementing protocols via declarative event patterns, SIGSOFT Softw. Eng. Notes 29 (2004) 159–169.
[22] J. Postel, J. Reynolds, File transfer protocol (FTP). Request for comments 959, 1985.
[23] F. Bancilhon, D. Maier, Y. Sagiv, J.D. Ullman, Magic sets and other strange ways to implement logic programs (extended abstract), in: Proceedings of

the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Massachusetts, USA, ACM, 1986, pp. 1–15.
[24] C.L. Forgy, Rete: a fast algorithm for the many pattern/many object pattern match problem, Artif. Intell. 19 (1982) 17–37.
[25] K. Darlington, The Essence of Expert Systems, Essence of Computing Series, Prentice Hall, 2000.
[26] L.D.B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine, D. Suvée, Explicitly distributed AOP using AWED, in: Proceedings of the 5th ACM Interna-

tional Conference on Aspect-Oriented Software Development, AOSD 2006, Bonn, Germany, ACM Press, 2006, pp. 51–62.
[27] F. Chen, G. Roşu, Towards monitoring-oriented programming: a paradigm combining specification and implementation, in: Workshop on Runtime

Verification, RV’03, Colorado, USA, Electron. Notes Theor. Comput. Sci. 89 (2) (2003) 108–127.
[28] F. Chen, G. Roşu, MOP: an efficient and generic runtime verification framework, in: Object-Oriented Programming, Systems, Languages and Applications,

Montreal, Canada, in: ACM SIGPLAN Not., vol. 42, ACM Press, 2007, pp. 569–588.
[29] P.O. Meredith, Efficient, expressive, and effective runtime verification, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2012.
[30] S. Malakuti, Event composition model: achieving naturalness in runtime enforcement, Ph.D. thesis, University of Twente, Enschede, the Netherlands,

2011.
[31] S. Malakuti, M. Akşit, Evolution of composition filters to event composition, in: Proceedings of the 27th Annual ACM Symposium on Applied Computing,

SAC’ 12, Trento, Italy, ACM, 2012, pp. 1850–1857.
[32] S. Malakuti, Complex event processing with event modules, in: Reactivity, Events and Modularity Workshop, REM’ 13, Indianapolis, USA, ACM, 2013.
[33] P. Leger, É. Tanter, Towards an open trace-based mechanism, in: G.T. Leavens, S. Katz, M. Mezini (Eds.), Proceedings of the Ninth Workshop on Foun-

dations of Aspect-Oriented Languages, FOAL 2010, Rennes and Saint Malo, France, University of Central Florida, 2010, pp. 25–30.

http://refhub.elsevier.com/S0167-6423(15)00025-8/bib5061726E61733A3732s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6B69637A616C65733A616F70s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6B69637A616C65733A616F70s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib4173706563744As1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib4173706563744As1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib4173706563744As1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D617375686172613A636332303033s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D617375686172613A636332303033s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62656E6176696465733A6D6964646C657761726532303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62656E6176696465733A6D6964646C657761726532303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62656E6176696465733A6D6964646C657761726532303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D617274696E416C3A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D617274696E416C3A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D617274696E416C3A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib617667757374696E6F76416C3A6F6F70736C6132303037s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib617667757374696E6F76416C3A6F6F70736C6132303037s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6575676573746572416C3A65636F6F7032303039s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6575676573746572416C3A65636F6F7032303039s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib646673303461s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib646673303461s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B757469416B7369743A746F61736432303134s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B757469416B7369743A746F61736432303134s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6162633A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6162633A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6162633A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib676F6C64736D697468416C3A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib676F6C64736D697468416C3A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib676F6C64736D697468416C3A6F6F70736C6132303035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6865727A65656C416C3A69636C32303037s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6865727A65656C416C3A69636C32303037s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6F737465726D616E6E416C3A65636F6F703035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6F737465726D616E6E416C3A65636F6F703035s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D65726564697468416C3A6A7374747432303131s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D65726564697468416C3A6A7374747432303131s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib476F463934s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib476F463934s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6B69633A6F696467s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6B69633A6F696467s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib746F62696E46656C6C656973656E3A706F706C32303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib746F62696E46656C6C656973656E3A706F706C32303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib74616E7465723A616F736432303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib74616E7465723A616F736432303038s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib646F75656E63653A7265666C656374696F6E32303031s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib646F75656E63653A7265666C656374696F6E32303031s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib77616C6B6572416C3A736967736F667432303034s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62616E63696C686F6E416C3A50445331393835s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62616E63696C686F6E416C3A50445331393835s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib666F7267793A616931393832s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6461726C696E67746F6E3A32303030s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62656E6176696465733A61736F6432303036s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib62656E6176696465733A61736F6432303036s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6368656E3A727632303033s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6368656E3A727632303033s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6368656E3A6F6F70736C6132303037s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6368656E3A6F6F70736C6132303037s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D657265646974683A706864s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B7574693A70686432303131s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B7574693A70686432303131s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B757469416B7369743A73616332303132s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B757469416B7369743A73616332303132s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6D616C616B7574693A72656D32303133s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C6567657254616E7465723A666F616C32303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C6567657254616E7465723A666F616C32303130s1

P. Leger et al. / Science of Computer Programming 102 (2015) 108–141 141
[34] P. Leger, É. Tanter, An open trace-based mechanism, in: J. Aldrich, R. Massa (Eds.), Proceedings of the 14th Brazilian Symposium on Programming
Languages, SBLP 2010, Salvador – Bahia, Brazil, SBC, 2010, pp. 123–138.

[35] P. Leger, É. Tanter, R. Douence, Modular and flexible causality control on the web, Sci. Comput. Program. 78 (2013) 1538–1558.
[36] G.J. Sussman, G.L. Steele Jr., Scheme: an interpreter for extended lambda calculus, in: MEMO 349, MIT AI LAB, Massachusetts Institute of Technology

Artificial Intelligence Laboratory, 1976, pp. 1–43.
[37] P. Leger, É. Tanter, A self-replication algorithm to flexibly match execution traces, in: Proceedings of the 11th Workshop on Foundations of Aspect-

Oriented Languages, FOAL 2012, Potsdam, Germany, ACM Press, 2012, pp. 27–32.
[38] J.V. Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Champaign, IL, USA, 1966.
[39] A. Holzer, L. Ziarek, K. Jayaram, P. Eugster, Putting events in context: aspects for event-based distributed programming, in: Proceedings of the 10th

ACM International Conference on Aspect-Oriented Software Development, AOSD 2011, Porto de Galinhas, Brazil, ACM Press, 2011, pp. 241–252.
[40] R. Toledo, P. Leger, É. Tanter, AspectScript: expressive aspects for the Web, in: Proceedings of the 9th ACM International Conference on Aspect-Oriented

Software Development, AOSD 2010, Rennes and Saint Malo, France, ACM Press, 2010, pp. 13–24.
[41] P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble, ABC: an extensible As-

pectJ compiler, in: Transactions on Aspect-Oriented Software Development, in: Lecture Notes in Computer Science, vol. 3880, Springer-Verlag, 2006,
pp. 293–334.

[42] E. Bodden, Personal communication, July 10, 2012.
[43] A. van Deursen, P. Klint, J. Visser, Domain-specific languages: an annotated bibliography, SIGPLAN Not. 35 (6) (2000) 26–36.
[44] E. Bodden, P. Lam, L. Hendren, Clara: a framework for statically evaluating finite-state runtime monitors, in: 1st International Conference on Runtime

Verification (RV), Paris, France, Springer, 2010, pp. 74–88.
[45] E. Bodden, F. Chen, G. Rosu, Dependent advice: a general approach to optimizing history-based aspects, in: Proceedings of the 8th ACM International

Conference on Aspect-Oriented Software Development, AOSD 2009, Charlottesville, Virginia, USA, ACM Press, 2009, pp. 3–14.
[46] E. Bodden, Specifying and exploiting advice-execution ordering using dependency state machines, in: G.T. Leavens, S. Katz, M. Mezini (Eds.), Proceedings

of the Ninth Workshop on Foundations of Aspect-Oriented Languages, FOAL 2010, Rennes and Saint Malo, France, University of Central Florida, 2010,
pp. 31–42.

[47] M. Parzonka, A library-based approach to efficient parametric runtime monitoring of Java programs, Master’s thesis, Technische Universität Darmstadt,
Darmstadt, Germany, 2013.

[48] R.V. Book, F. Otto, String-Rewriting Systems, Texts and Monographs in Computer Science, Springer, 1993.

http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C6567657254616E7465723A73626C7032303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C6567657254616E7465723A73626C7032303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C65676572416C3A73637032303133s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib737573736D616E416C3A6D656D6F31393736s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib737573736D616E416C3A6D656D6F31393736s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C6567657254616E7465723A666F616C32303132s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6C6567657254616E7465723A666F616C32303132s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib6E65756D616E6E3A74736131393636s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib686F6C7A65723A616F736432303131s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib686F6C7A65723A616F736432303131s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib746F6C65646F416C3A616F736432303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib746F6C65646F416C3A616F736432303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib616263s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib616263s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib616263s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib76616E4465757273656E3A323030306468s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E416C3A727632303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E416C3A727632303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E416C3A616F736432303039s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E416C3A616F736432303039s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E3A666F616C32303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E3A666F616C32303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6464656E3A666F616C32303130s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib7061727A6F6E6B613A6D6173746572s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib7061727A6F6E6B613A6D6173746572s1
http://refhub.elsevier.com/S0167-6423(15)00025-8/bib626F6F6B3A31393933737472696E67s1

	An expressive stateful aspect language
	1 Introduction
	1.1 Contributions

	2 Architecture of a stateful aspect language
	2.1 Pattern language
	2.2 Matching process
	2.3 Advising process

	3 Existing stateful aspect languages
	4 Shortcomings of existing stateful aspects
	4.1 Illustrating shortcomings of stateful aspect languages
	4.1.1 Pattern languages
	Problem p1
	Problem p2

	4.1.2 Matching and advising processes
	Problem s1
	Problem s2

	4.2 Evaluation
	4.3 Requirements for an expressive stateful aspect language

	5 ESA
	5.1 Pattern language
	5.1.1 Without bindings
	5.1.2 Gathering bindings in a environment

	5.2 Semantics
	5.2.1 MatcherCells
	MatcherCells terminology

	5.2.2 Matching process
	Adding context information to smatches

	5.2.3 Advising process

	5.3 Stateful aspects in ESA
	5.3.1 Deﬁning a stateful aspect
	Default semantics for an ESA stateful aspect

	5.3.2 Weaving a stateful aspect

	5.4 Summary

	6 ESA-JS: ESA for JavaScript
	6.1 Pattern language
	6.2 Matching and advising processes
	6.3 Performance

	7 Assessing the expressiveness of ESA
	7.1 Alpha
	7.2 Halo
	7.3 Summary

	8 Design considerations
	8.1 An ESA implementation for an object-oriented language?
	8.1.1 Pattern language
	8.1.2 Matching process
	8.1.3 ESA integration

	8.2 Pattern language expressiveness
	8.3 Performance

	9 Conclusion and future work
	Acknowledgements
	Appendix A Complete description of ESA in Typed Racket
	A.1 Pattern language
	A.2 Adaptation of MatcherCells for ESA
	A.3 Matching process
	A.4 Advising process
	A.5 Stateful aspect

	Appendix B A SRS implementation with ESA pattern language
	References

