
40

A Taxonomy of Domain-Specific Aspect Languages

JOHAN FABRY, PLEIAD Lab, Computer Science Department (DCC), University of Chile
TOM DINKELAKER, Ericsson R&D
JACQUES NOYÉ, INRIA - Ecole des Mines de Nantes - LINA
ÉRIC TANTER, PLEIAD Lab, Computer Science Department (DCC), University of Chile

Domain-Specific Aspect Languages (DSALs) are Domain-Specific Languages (DSLs) designed to express
crosscutting concerns. Compared to DSLs, their aspectual nature greatly amplifies the language design
space. We structure this space in order to shed light on and compare the different domain-specific approaches
to deal with crosscutting concerns. We report on a corpus of 36 DSALs covering the space, discuss a set of
design considerations, and provide a taxonomy of DSAL implementation approaches. This work serves as a
frame of reference to DSAL and DSL researchers, enabling further advances in the field, and to developers
as a guide for DSAL implementations.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Languages

Additional Key Words and Phrases: Aspect-oriented programming, domain-specific languages

ACM Reference Format:
Johan Fabry, Tom Dinkelaker, Jacques Noyé, and Éric Tanter. 2015. A taxonomy of domain-specific aspect
languages. ACM Comput. Surv. 47, 3, Article 40 (February 2015), 44 pages.
DOI: http://dx.doi.org/10.1145/2685028

1. INTRODUCTION

In large software systems, some concerns cannot be properly encapsulated into their
respective modules. The implementation of these so-called crosscutting concerns cuts
across the module structure of the application. As a result, the benefits of modular
software development are largely compromised. Aspect-Oriented Programming (AOP)
is a paradigm to modularize such crosscutting concerns [Kiczales et al. 1997]. An aspect
is a new kind of module that captures a crosscutting concern. The ability of an AOP
language to support crosscutting lies in three elements, defined as follows (verbatim
from Masuhara et al. [2003]):

(1) The join points are the points of reference that programs including aspects can
affect. Lexical join points are locations in the program text (e.g., “the body of a
method”). Dynamic join points are runtime actions, such as events that take place
during execution of the program (e.g., “an invocation of a method”).

This work was partially funded by the Inria Associate Team RAPIDS/REAL.
Authors’ addresses: J. Fabry and É. Tanter, PLEIAD Lab, Computer Science Department (DCC), University
of Chile, Santiago, Chile; emails: {jfabry, etanter}@dcc.uchile.cl; T. Dinkelaker, Ericsson R&D, Frankfurt,
Germany; email: tom.dinkelaker@gmail.com; J. Noyé, ASCOLA Team, INRIA - Ecole des Mines de Nantes -
LINA, Nantes, France; email: Jacques.Noye@mines-nantes.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/02-ART40 $15.00

DOI: http://dx.doi.org/10.1145/2685028

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.1145/2685028
http://dx.doi.org/10.1145/2685028

40:2 J. Fabry et al.

(2) A means of identifying join points (e.g., “the bodies of methods in a particular class,”
or “all invocations of a particular method”).

(3) A means of effecting at join points (e.g., “run this code beforehand”).

Lexical join points are also sometimes called static join points [Rebernak et al. 2009],
contrasting the words static and dynamic. To clarify the difference between static
(lexical) and dynamic join points in the preceding examples: the static (lexical) join
point would have information of, for example, the filename and the line numbers of the
method, while the dynamic join point would have information on the actual values of
the parameters, receiver object, and so on. For uniformity, in the remainder of this text
we shall exclusively use the terminology static join point.

The preceding three elements altogether form what is known as the join point model
of an AOP language [Masuhara et al. 2003], although this term is not used consistently
in the literature (e.g., Wand et al. [2004] differ). To implement their crosscutting sup-
port, AOP languages provide an aspect weaver, which processes the program such that
join points are actually created, identified, and effected upon when needed.

The design space of aspect languages can be described in terms of join points, their
identification, and effects at join points. For instance, in AspectJ [Kiczales et al. 2001],
join points are dynamic and correspond to the different actions during program ex-
ecution, such as method executions, object creations, and so forth. Join points are
identified by means of pointcuts, which are declaratively defined predicates on join
points. Finally, the means of effecting at join points is the advice mechanism: An advice
associates a pointcut with a body construct. Whenever a join point of interest occurs,
the advice body is executed, similarly to implicit invocation mechanisms. Additionally,
an advice kind specifies whether the body is executed before, after, or instead of the join
points.

While many aspect languages closely resemble AspectJ in the use of its pointcut-
advice model to address crosscutting, some differ. For instance, the means of identifying
join points need not be expressed in a declarative sublanguage. Instead, join points can
be identified through pointcuts defined in a general-purpose programming language,
for example, as in AspectScheme [Dutchyn et al. 2006], or through annotations added
(manually) on program elements. The means of effecting at join points may also be
purely declarative, by opposition to the imperative nature of AspectJ advice bodies. For
example, in the Program Description Logic (PDL) language [Morgan et al. 2007], the
effect specification is a piece of plain text (as will be discussed in Section 2.2).

In addition, each of the three previous elements (join points, identification, effect)
may be tailored to a specific domain. Actually, historically the first aspect languages
were domain specific [Lopes 1997; Mendhekar et al. 1997]. Domain-Specific Languages
(DSLs) [van Deursen et al. 2000; Mernik et al. 2005; Fowler 2010; Ghosh 2010; Mernik
2013] offer dedicated abstractions relevant to the domain at hand, with many benefits
for comprehension [Kosar et al. 2010, 2012], maintenance [van Deursen and Klint
1998], verification, and optimization [Bruce 1997; Basu 1997]. Many Domain-Specific
Aspect Languages (DSALs) have been proposed in the literature but it is often difficult
to compare and relate them precisely. This is because their domain specificity makes it
hard to see the underlying mechanisms involved to support crosscutting. Nevertheless,
DSALs have to include the three elements common to all aspect languages: join points,
join point identification, and means of effecting at join points. As it turns out, each of
these elements may or may not be domain specific, resulting in many combinations of
DSAL designs.

The goal of this article is to structure the DSAL design space in order to shed
light on and compare the different domain-specific approaches to deal with crosscut-
ting concerns. The two extra dimensions of domain specificity—join points and their

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:3

identification—are new in the language design space. Hence, the main focus of this
text is on the three axes of join points, join point identification, and means of effecting
at join points. Other elements will be touched upon, but a comprehensive exploration
of all possible elements in the design space is out of the scope of this text.

To perform this study, we have selected and examined a corpus of 36 DSALs pub-
lished in conferences and workshops directly related to the community working on
Aspect-Oriented Software Development (AOSD). In order to stay focused and study a
well-defined corpus, we consider neither modeling languages nor languages published
outside the community that may also be considered to address crosscutting issues.
We have also surveyed the implementation approaches for DSALs as reported in the
literature, including infrastructures specifically created for the definition of DSALs.
Example languages presented in the work of implementation approaches are not in-
cluded in the 36 DSALs of our study. This is because they are typically minimalistic
and presented only as an illustration of the features of the approach.

We intend this work to be a general frame of reference for research on DSALs and
an enabler of further advances in the field. We provide the following contributions:

(1) We propose definitions for and give a synopsis of properties of DSALs. We define the
terms domain-specific aspect language, domain-specific join points, domain-specific
join point representations, and domain-specific pointcut language. We define a
three-dimensional space relating the domain-specific nature of join points, join
point identification, and means of effecting at join points. Lastly, we summarize
published motivations for the use of domain-specific languages and show how they
apply to DSALs.

(2) We give an overview of existing DSALs based on the preceding definitions. Not
all DSALs are detailed in this article. Instead, we restrict ourselves to five rep-
resentative languages summarized in the beginning of the text that set the scene
and provide key points for study. We do, however, provide an online companion in
the form of an annotated bibliography of all these languages, which is available at
http://dsal.cl/inventory.

(3) We discuss a set of considerations that should be taken into account when designing
a DSAL and which choices have been taken by existing languages.

(4) We provide an implementation taxonomy that is based on existing taxonomies for
DSLs. The taxonomy is split in five branches. For each branch, we give a general
description, provide an example, and discuss the trade-offs. Furthermore, we dis-
cuss a completely new implementation mechanism: infrastructures for DSALs and
give an overview of six such infrastructures.

This article is intended to serve as a guide to DSAL and DSL researchers and devel-
opers. It may also be of interest to a much broader community as a toolbox of languages
providing solutions to specific needs as well as a possible way to address specific cross-
cutting concerns for which no DSAL has yet been developed. DSAL researchers can
benefit from the frame of reference, which allows them to more clearly situate their
work in the design space as well as to identify areas in the space that have been
lacking in attention. DSAL developers can use the elaborated design decisions and
the implementation classification as a guide for their effort. For DSL researchers and
developers, this article also provides food for thought as well as material for practi-
cal developments. Indeed, this work provides a new perspective on DSLs that are not
standalone languages but rather extensions to a base language.

This article is organized as follows: In the following section, we illustrate the advan-
tages of using DSALs as well as the breadth of the area by summarizing five example
languages. Section 3 proposes a succinct definition of the term DSAL and discusses
key properties before giving an overview of all languages we studied. In Section 4, we

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:4 J. Fabry et al.

provide a guide to the design of DSALs by outlining the main DSAL design decisions.
Then, in Section 5, we to implementation of DSALs, classifying the different implemen-
tation techniques into a DSAL implementation taxonomy, including recommendations
of use. The article then concludes.

2. A HANDFUL OF DSALS

In this section, we briefly present five example DSALs: RG, PDL, KALA, AspectG,
and AspectMatlab. These examples first serve to illustrate how the use of DSALs
aid programmers by allowing them to succinctly express the specification of a possibly
complex crosscutting concern thanks to the use of domain-specific abstractions. Second,
the different examples illustrate the breadth of the area, as each of these languages has
distinctive features. Third, these languages provide key data points for the analysis of
the design space and serve as reference examples in the DSAL design discussion that
will follow.

2.1. DSAL Example: RG

Reverse Graphics (RG) [Kiczales et al. 1997; Mendhekar et al. 1997] is historic by
virtue of being the first aspect language discussed in the seminal “Aspect-Oriented
Programming” paper by Kiczales et al. Indeed, DSALs lie at the origin of AOP. While
the intent of the papers that talk about RG are clearly focused toward arguing for the
need of AOP, the RG language itself is described in sufficient detail to allow us to give
an overview of the language here.

2.1.1. Domain and Goals. RG was designed in the context of an image processing system.
An RG application is built by composing predefined image filters built from primitive
filters. These primitive filters rely on a small number of loop structures iterating on the
pixels of the input images and performing simple operations (e.g., logical operations
on these pixels). As a result, an application can be seen as a dataflow graph whose
nodes correspond to the primitive filters and whose edges correspond to the connec-
tions between filter outputs and filter inputs. With each node consuming and producing
images, a direct implementation of such a graph results in “excessively frequent mem-
ory references and storage allocation, which in turn leads to cache misses, page faults
and terrible performance” [Kiczales et al. 1997].

The goal of RG is to optimize memory usage and eliminate redundant computations
through the use of three aspects: First is memorization, which avoids multiple appli-
cations of the same filter to the same images. Second is fusion, which performs loop
fusion when primitive filters using identical loop structures are composed. Third is
memory management, which tries to reuse the memory allocated to temporary results
[Mendhekar et al. 1997].

2.1.2. Example. The following code illustrates what happens at the heart of the fusion
aspect:

(cond ((and (eq (loop-shape node) ’pointwise)
(eq (loop-shape input) ’pointwise))

(fuse loop input ’pointwise
:inputs (splice ...)
:loop-vars (splice ...)
:body (subst ...))))

The first two lines of the code test whether the loop shapes of the filter node and
of the input are both pointwise. If this is the case, the remainder of the code fuses the
loops, that is, a new loop is generated with the same structure where inputs (line 4),
loop variables (line 5), and bodies (line 6) are merged.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:5

2.1.3. Anatomy of the Language

Join Points. The join points used by RG are domain specific: They are the invocations
of the primitive filters. The join points are represented as the dataflow graph
mentioned previously so that the aspects have access to the necessary contextual
information, for instance, to the loop structure of the filter arguments.

Join Point Identification. Join points in RG are identified using Lisp, that is, a
general purpose language. While the code written in this language treats elements
of the domain, it has the full expressiveness of Lisp at its disposal. Hence, the
join points themselves are domain specific, while the means to denote them, that
is, the means to perform join point identification, is general purpose.

Effecting at Join Points. Effects in RG are written in a domain-specific language
defined as “a simple procedural language that provides simple operations on
nodes in the dataflow graph” [Kiczales et al. 1997].

2.1.4. Implementation. RG is implemented in Lisp. Weaving is done by a preprocessor
that combines base code and aspects to produce C code. The weaver “uses unfolding as
a technique for generating a data flow graph from the component program” [Kiczales
et al. 1997]. The aspects manipulate this graph directly and the result is passed to a
C code generator.

2.1.5. Remarkable Properties. The discussion of RG mentions the difference in code size
between a “manually tangled version” of the code and the AOP code. The former consists
of 35,213 lines of code, while the AOP version consists of 1,111 lines of code. If we also
add the implementation of the weaver, 3,520 lines, it still yields over seven and a half
times less code. This illustrates the conciseness advantage that can be gained using a
DSAL. Moreover, this conciseness does not come at a significant cost: The paper states
that the performance of both the manually tangled and AOP version are comparable.
Lastly, the AOP version is over 100 times faster than the naive implementation that
does not optimize computation.

2.2. DSAL Example: PDL

The second DSAL example we present is a further illustration of how DSALs allow
the implementation of a concern using extremely concise code. In PDL [Morgan et al.
2007], specification of effects at join points solely consists of a string, as we show next.

2.2.1. Domain and Goals. Design rules for programs are used to formalize desired pro-
gramming practices. These rules define constraints on the structure or the behavior
of the program, ranging from stylistic guidelines up to how libraries should be used.
Programs can be statically checked for violations of these rules using purpose-built
tools called design rule checkers. The stated goal of PDL is to allow programmers to
easily specify design rules as pointcut-advice pairs. Pointcuts express when a design
rule is violated; advice states the corresponding error message. These rules can then
be used to verify .Net assemblies (bytecode libraries): For each matched pointcut, the
corresponding error message is printed.

2.2.2. Example. The reference paper contains various examples, where the error mes-
sage usually suffices to establish the purpose of the example. Consequently, we simply
include four of these examples here.

sourceType && public && nested
: "Nested types should not be visible"

constructor(sourceType && abstract) && public
: "Abstract types should not have public constructors"

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:6 J. Fabry et al.

method(sourceType) && ’void *.Finalize()’ && !protected
: "Finalizers should be protected"

sourceNamespace && < 5 type
: "Avoid namespaces with few types"

2.2.3. Anatomy of the Language

Join Points. In PDL, join points are the static elements of the program under ver-
ification: classes, methods, namespaces, and so forth. As these are written in a
general-purpose language, we can consider that the join points correspond to the
static join points from general-purpose aspect languages.

Join Point Identification. PDL defines a pointcut language that reuses elements of
the AspectJ pointcut language syntax and adds elements required for the domain
of program rule checking: existence, universality, and also cardinality checking.
As a result of these extensions we can state that the pointcut language is a
domain-specific language.

Effecting at Join Points. Specifying the effects in PDL solely consists of the error
message that is printed when pointcuts match, that is, when a design rule is
violated. We, therefore, consider that effects are specified in a domain-specific
manner.

2.2.4. Implementation. The PDL rule checker is a preprocessor that transforms the code
of the rules to C# code. This is then compiled and run on the .Net assembly, performing
bytecode analysis to find violations of the design rules.

2.2.5. Remarkable Properties. PDL is an example of a DSAL where the code for effects
at join points is reduced to an absolute minimum, solely specifying the error message
that needs to be shown. This illustrates how a DSAL can allow for extremely concise
code and that code specified for effecting at join points may be purely declarative.

2.3. DSAL Example: KALA

In the previous two examples, we have shown languages that at least have general-
purpose join points or general-purpose join point identification. The next example,
KALA [Fabry et al. 2008], shows that the domain specificity of a DSAL can exhibit
itself by having join points, identification, and effects all be domain specific. It also
shows that the definition of effects can express significantly complex domain-specific
entities or computations.

2.3.1. Domain and Goals. Advanced transaction models address the shortcomings of the
classical model of database transactions, due to the original design goal to provide con-
currency management for short and unstructured data accesses. There are many such
advanced models, each specifically tailored to address one shortcoming. Chrysanthis
and Ramamritham [1991] defined a formalism, called ACTA that allows for a formal
specification of how a given model modifies or adds to these properties. KALA takes
this model and allows programmers to attach extra transactional properties to parts
of the application that are meant to run within a transaction. As a result, the program
uses the advanced transaction model that is defined in the KALA program.

2.3.2. Example. Arguably the best-known advanced transaction model is nested trans-
actions. It enables a running transaction T to have a number of child transactions Tc.
Each Tc can view the data used by T . When a Tc commits the data is delegated to
the parent; when it aborts its changes are ignored. Data is only committed to the

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:7

database if the root of the transaction tree commits. This is specified in the following
code, mapping the formal specification to a given set of Java methods.

util.strategy.Hierarchical.child*() {
alias(parent Thread.currentThread());
name(self Thread.currentThread());
groupAdd(self "ChOf"+parent);
begin { dep(self wd parent); dep(parent cd self); view(self parent);}
commit { del(self parent);

name(parent Thread.currentThread()); terminate("ChOf"+self); }
abort { name(parent Thread.currentThread()); terminate("ChOf"+self);} }

The first line of the preceding code is the signature, which identifies the transactional
methods. The remainder is the body, which we do not discuss in detail here, as it would
take us too far into transactions specificities. We just note the presence of the three
phases in the lifecycle of a transaction: begin, commit, abort, and the use of the ACTA
formal concepts of dependencies (dep), views (view), and delegation (del) in the body.

2.3.3. Anatomy of the Language

Join Points. Join points are domain specific: transaction executions, and within their
scope the reads and writes of persistent values.

Join Point Identification. KALA defines a domain-specific language to specify point-
cuts. It identifies transactions by specifying the signature of a method whose
execution corresponds to a transaction execution. This automatically includes
reads and writes of persistent values in the scope of the transaction.

Effecting at Join Points. Effects are specified in a domain-specific language: an
executable variant of the ACTA formal model for advanced transactions.

2.3.4. Implementation. Two implementations of KALA have been realized. The first
weaver was an ad hoc preprocessor that transformed Java and KALA source code to
Java source code. A second implementation, called ReLAx [Fabry et al. 2009], uses the
DSAL infrastructure capabilities of the Reflex AOP kernel [Tanter and Noyé 2005].

2.3.5. Remarkable Properties. KALA illustrates the extreme domain-specific form that
a DSAL can take. Since the effects are specified in a derivation of a formal model
for advanced transaction management, programmers need to have knowledge of this
model to use KALA. For such domain experts, it supports the succinct and modular
definition of new transactional models.

2.4. DSAL Example: AspectG

A domain for which a significant number of DSALs have been proposed is that of
(domain-specific) programming language implementation [Klint et al. 2005; Kalleberg
and Visser 2006; Rebernak et al. 2009]. It should perhaps not be surprising that lan-
guage implementation researchers implement their own DSALs. We show one such
example here, AspectG [Rebernak et al. 2009]. It shows that crosscutting concerns do
not only present themselves in general-purpose languages but also in DSLs, and hence
that a DSAL can consider a DSL as base programming language.

2.4.1. Domain and Goals. In the domain of programming languages, definition and com-
piler construction special tools and languages are used to provide the language spec-
ifications. These typically allow a compiler to be generated based on the specification
of the grammar productions of the language, which also specify semantic actions for
each grammar production. In such specifications, modularity is typically based on the

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:8 J. Fabry et al.

language syntax, that is, grammar productions. However, some language features can
crosscut these productions, for example, type checking [Rebernak et al. 2009].

AspectG is a DSAL for ANTLR [Parr and Quong 1995], a language grammar and tool
intended to facilitate the construction of development tools for a given language (e.g.,
debuggers). AspectG allows for the definition of additional tools on top of an existing
ANTLR language specification by adding the additional semantic actions required
for these tools inside the grammar productions. These tools may be written in any
programming language and it is frequent for them to add similar semantic actions
across (parts of) the grammar [Rebernak et al. 2009].

2.4.2. Example. The example given in the paper presents a toy DSL for the control
of a robot. It defines a number of grammar productions, where those grouped in the
command namespace represent the commands that can be given to the robot. Some
semantic actions of these productions contain the string fileio.print(”time=time+1;”) to
log the time taken by the robot when executing that command. We do not include the
complete definition here for space reasons (and as a result the presented excerpt is not
well formed). The following example adds a mapping from the line numbers in the DSL
to the line numbers in the code generated by the tool, which is useful, for example, for
debuggers.

pointcut count_gpllinenumber():
within(command.*) && match(fileio.print("time=time+1;"));

after(): count_gpllinenumber() {
gplendline=fileio.getLinenumber();
filemap.print("mapping.add(newMap(" + dsllinenumber + ",Robot.java,"

+ gplbeginline + "," + gplendline + "));"); }

The example shows that AspectG closely follows the pointcut-advice model. The
pointcut count_gpllinenumber matches all productions in the command namespace
whose semantic actions contain the string fileio.print(”time=time+1;”). The advice adds
two Java statements at the end of the block of semantic actions of the matched rule.
These are responsible for maintaining the mapping from the DSL source code to the
generated program code.

2.4.3. Anatomy of the Language

Join Points. The base language for AspectG is ANTLR: a DSL used to specify the
grammar productions and the semantic actions. The join points are both the
grammar productions and the semantic actions, that is, these are domain specific.

Join Point Identification. AspectG uses a domain-specific pointcut language as well:
Pointcuts are (composition of) filters on grammar productions or semantic rules.

Effecting at Join Points. Advice is written in a general-purpose language. Its con-
tents, defining the semantic actions, is written in Java or, possibly, any (typically
general-purpose) language.

2.4.4. Implementation. Appropriate to a DSAL for programming language grammars,
the implementation of the language is done through transformation of programming
language grammars. Aspects are woven into the ANTLR grammar itself, in a pre-
processor approach. The preprocessor uses an ANTLR parser together with low-level
matching and transformation operations on the abstract syntax tree of the ANTLR
source.

2.4.5. Remarkable Properties. Beyond having a DSL as the programming language of
the base code, AspectG is remarkable in that it is not inherently restricted to one

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:9

language to specify the effects. The authors state that the effect language can be any
general-purpose language as long as it is the language used to define the semantic
actions of the parse tree. This flexibility comes from the fact that effecting at join
points in AspectG solely consists of adding the semantic actions defined in the advice
to the relevant parts of the parse tree.

2.5. DSAL Example: AspectMatlab

The last example DSAL we present here, AspectMatlab [Aslam et al. 2010], shows how
the domain specificity of a DSAL can be more subtle than what was presented in the
previous examples.

2.5.1. Domain and Goals. Matlab is a programming language targeted at numerical
computing. It provides features such as high-level array operations and contains spe-
cific optimizations for matrix operations (e.g., when using sparse matrices). We consider
Matlab to be a DSL because of its target audience, the numeric features, and especially
their optimization. We, however, acknowledge that this choice may be controversial and
discuss this in more detail in Section 3. AspectMatlab aims to add aspects to Matlab,
both for the typical general-purpose language constructs as well as for the matrix and
loop operations typical of numerical computing. “One of the main goals of AspectMatlab
is to expose these language constructs to aspect-oriented programming in order to make
it appropriate for use in the scientific domain.” [Aslam et al. 2010].

2.5.2. Example. To be more aligned to Matlab syntax, AspectMatlab calls the specifi-
cation of join point identification patterns and join point effects actions. Patterns are
enclosed within a patterns end block and actions are enclosed within an actions end
block. A simple example from the paper is as follows:

patterns
pCallFoo : call(foo) & within(function, bar);

end
actions

aCountCall : before pCallFoo
%action code

end
end

The pattern shows the use of the within keyword that restricts matching lexically to
the type and name of entities given as parameter. In this case, the pattern matches
calls to a function foo from within a function called bar.

The AspectMatlab paper provides three example aspects: tracking the sparsity of
arrays, measuring floating point operations, and adding the treatment of SI units1 to
computations. We do not include such an example here because of their relatively large
size and complexity.

2.5.3. Anatomy of the Language

Join Points. The join point types are function call and execution, array read and
write operations, as well as execution of loops, loop headers, and bodies. All these
are general-purpose language constructs.

Join Point Identification. The language for patterns includes selectors for each kind
of join points (e.g., loophead denotes the execution of a loop header). Consequently,
join point identification is performed in a general-purpose way.

1Metre, kilogram, second, Ampere, Kelvin, candela, and mole.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:10 J. Fabry et al.

Effecting at Join Points. Actions in AspectMatlab are written in Matlab. As Matlab
is a DSL, effects at join points are specified in a domain-specific manner.

2.5.4. Implementation. The AspectMatlab weaver is a source to source preprocessor, the
output of which is plain Matlab code. Matlab is dynamically typed, with the syntax
for function call the same as for array access. This makes it impossible to statically
establish the semantics of such an expression without performing control flow analysis.
The weaver performs such an analysis, making it possible to resolve a significant
amount of cases. Unresolved cases are dealt with runtime tests [Aslam et al. 2010].

2.5.5. Remarkable Properties. AspectMatlab is remarkable as a DSAL that could ar-
guably be considered as a general-purpose aspect language. This is because the lan-
guage for describing effects is Matlab and Matlab could be considered a general-purpose
rather than domain-specific language. This illustrates that there is a source of ambi-
guity in the DSAL classification, which we further discuss in Section 3. Also notable
here is that the effect language is the same as the base language, showing that a DSAL
may not need to define a new language or constructs to express means of effecting at
join points.

3. A DEFINITION AND OVERVIEW OF DOMAIN-SPECIFIC ASPECT LANGUAGES

Despite a significant amount of DSALs having been developed, we are not aware of
any accepted definition of what it means for a language to be a DSAL. To lay the
groundwork for discussion and clarify basic principles for a wide audience, we elaborate
such a definition and discuss basic properties in this section.

In the survey paper of Mernik et al. on DSLs [2005], DSLs are defined as follows:

DSLs are languages tailored to a specific application domain.

The survey paper furthermore succinctly states the advantages of DSLs over
General-Purpose Languages (GPLs) as follows: “By providing notations and constructs
tailored toward a particular application domain, they offer substantial gains in ex-
pressiveness and ease of use compared with GPLs for the domain in question, with
corresponding gains in productivity and reduced maintenance costs. Also, by reduc-
ing the amount of domain and programming expertise needed, DSLs open up their
application domain to a larger group of software developers” [Mernik et al. 2005].

The survey does not give, in turn, a definition of an application domain. For the sake
of completeness, we quote the definition given by Rolling in his annotated bibliography
on domain engineering [1994]:

A domain is the term used to refer to a set of related functions and problems with
a common vocabulary, terminology and a common set of strategies for describing
requirements and for providing solutions to those problems. The set of applications
common to the different functions may be properly considered the scope of the
domain.

More recently, Heering and Mernik have defined two notions of application domain:
type A domains and type B domains. Type A domains are “a field of knowledge or
activity characterized by a set of concepts and terminology understood by practitioners
in the field” and type B domains are “a system family, that is, a set of software systems
that exhibit similar functionality.” [Heering and Mernik 2007].

DSALs differ from DSLs in that they are aspect languages, that is, that they aim to
modularize a crosscutting concern. The notion of concern and separation of concerns
refers to the idea that, when designing or implementing a system, the work should be
split in units relating to the “natural concerns” of the application domain rather than

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:11

in units imposed by technology (the solution domain). This idea can be traced back to
Parnas [1972] and Dijkstra [1982]. The concept of crosscutting concern originally sur-
faced as an implementation issue: the inability of standard decomposition techniques,
for example, in functions or objects, to properly modularize some concerns [Kiczales
et al. 1997; Tarr et al. 1999]. Crosscutting concerns have since been shown to also
surface in requirements analysis and design, which is also known as “early aspects.”
Work on early aspects is, however, out of the scope of this article; our focus is on imple-
mentation, and part of the analysis that can be properly supported by a programming
language and its environment.

Taking the preceding information into account, we state the following concise defini-
tion for DSALs:

A DSAL is a DSL that features language mechanisms for expressing crosscutting
concerns.

Concern-specific languages are related to DSALs. They are defined by Bodden as
follows: “A concern-specific language is a programming language or executable specifi-
cation language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to or in support of, a particular crosscutting
concern, comprising implicit or explicit quantification over events in the dynamic con-
trol flow” [Bodden 2005]. While this definition in essence only differs slightly from the
preceding DSAL definition, the terminology “concern-specific language” did not catch
on. We only found one use of it in the literature [Braem et al. 2007], where the concept
apparently was elaborated independently. Consequently, we find the term DSAL and
the earlier definition to be more appropriate and we consider concern-specific languages
as being DSALs.

We now consider in more detail what new elements DSALs bring to the DSL design
space before discussing the advantages of creating a new language versus building
abstractions in an existing language. We end this section with an overview of the
languages we studied.

3.1. Domain-Specific Pointcut Languages and Join-Point Representation

The definition of a DSAL highlights the distinctive element of DSALs: crosscutting
concerns. Key to a DSAL is allowing some form of quantification over the code that
is being crosscut, that is, the base code. To summarize the AOSD terminology, we
introduced in Section 1, the structure and computation of the base code is reified as
join points, and the aspects consider these to produce their effects. The DSAL allows
for the specification of join point identification that selects a subset of these where
the structure or behavior of the DSAL program, the effect at join points, is placed or
executed, respectively. As the DSAL is a DSL, the obvious assumption to make here is
that the language in which the effect is specified is a DSL. A DSAL can, however, also
be domain specific with regard to the join points being considered and how these are
identified. For example, in Section 2, we saw that KALA and AspectG define domain-
specific join points and join point identification, and PDL defines a domain-specific join
point identification.

The aforementioned is a new and distinctive element of DSALs: join points and a
means of identifying them. These create two extra dimensions in the domain specificity
of the language. First, the join points emitted by the base code can reflect domain-
specific abstractions instead of general-purpose ones, such as method invocations or
variable accesses. Second, join points can be identified using a notation tailored to an
application domain.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:12 J. Fabry et al.

Fig. 1. The three axes of a DSAL: Join Points (JP), Means of Join Point Identification (ID), and Means
of Effecting at Join Points (FX), with the origin signifying general-purpose and the domain-specific nature
increasing along the axes. The languages of the previous section and AspectJ are positioned in the space.

Note that the DSAL definition we propose does not specify which of these three di-
mensions is domain specific. As we have shown in Section 2, different combinations are
possible and previous work has intended to establish the independence of these three
dimensions [Cleenewerck et al. 2008]. In Figure 1, we illustrate the three-dimensional
space created by the axes. Furthermore, it positions the languages we discussed in
Section 2 at their approximate position in this space, together with AspectJ [Kiczales
et al. 2001], the prototypical general-purpose aspect language (GPAL). Note that we
do not claim that the three axes are continuous, thus allowing for domain specificity
of two languages to be compared using their position on the axes. At most, there are
different degrees of domain-specific nature; even establishing a partial order between
different languages is far from trivial.

The two extra dimensions of domain specificity (join points and their identification)
are new in the language design space. Hence, they require a new kind of design decision
to be made in the language creation process. To the best of our knowledge, these
decisions and their impact have not yet been studied, and this article provides a first
step in this direction by structuring the DSAL space. To do this, we require a clear
concept of what it means for join points and their identification to be domain specific,
which is explained next.

3.1.1. Domain-Specific Join Points. If a join point is the materialization of a concept of
a specific domain instead of a general-purpose concept, that is, a different join point
kind, then we consider it a domain-specific join point. Hence the definition:

A domain-specific join point is a join point whose kind is a domain-specific concept.

An example of such a domain-specific join point can be found in RG (discussed in
Section 2.1). Join points in RG correspond to a manipulation of an image, which are
implemented by filter operations on the pixels of the image.

It is informative to consider how domain-specific join points can be introduced. For
this, let us consider the join point generation process which occurs when aspects are
woven. Recall that join points can be static or dynamic. In both cases, one can consider
a join point stream to refer to the sequence of join points that is created during weaving.
For static join points, this is when processing the program text, and for dynamic join

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:13

Fig. 2. Three types of domain-specific join point generation: abstraction of existing join points, creation of
new join points, and aggregation of join points.

points this is when executing the program. When these join points are general purpose
(either because they are produced by a GPL or because they correspond to nonspecific
join points produced by a DSL), we identify three ways to generate domain-specific join
points: specialization, creation, and aggregation (Figure 2):

—Specialization consists in specializing a general-purpose join point to the join point
stream of the DSAL. For example, in KALA [Fabry et al. 2008], the general-purpose
join point of a method execution is represented as a domain-specific abstraction:
a transaction boundary. In the specialization process context information may be
added or removed (e.g., removing the list of arguments of a method called join point).

—Creation consists in generating a join point for an event that is otherwise not present
as a join point in the stream of the base language and adding it to the stream of
the DSAL. An example of this is the “internal join points” in AO4BPEL [Charfi and
Mezini 2007]: The base language only describes the combination of activities, without
considering the actions of the activities themselves. Internal join points expose some
of these actions as join points to the AO4BPEL language, that is, create new join
points at the DSAL level.

—Aggregation consists in aggregating a number of general-purpose join points, possibly
taking into account events that are not reified as join points in the GPAL. The
aggregate is then added to the stream of join points of the DSAL. Note that this
is similar to aspect language proposals that take the history of join points into
account, such as stateful aspects [Douence et al. 2002]. The difference here lies
in the materialization of a domain-specific concept, absent in these languages. An
example of aggregation is present in KALA where a transactional read or write join
point is a combination of a transactional method execution join point (identifying a
transaction) and a getter or setter method execution in its control flow (identifying
the data read or written).

3.1.2. Defining Domain-Specific Join Point Representations. For clarity of the discussion, we
wish to emphasize the distinction between a given (set of) join point(s) and all the join
points that are considered by a DSAL. To achieve this, we rely on the terminology join
point representation, which we define as follows:

The join point representation of an aspect language determines the kind of points
in the lexical structure or in the execution of the program where the aspects may
have an impact.

The term join point representation was initially used in the original “Aspect-Oriented
Programming” paper [Kiczales et al. 1997]: “Aspect weavers work by generating a join
point representation of the component program and then executing (or compiling) the
aspect programs with respect to it.”

Importantly, we do not use the term join point model here to refer to the join point
representation, as is sometimes the case (e.g., in Wand et al. [2004]). This is because

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:14 J. Fabry et al.

the term join point model is not used consistently in the literature. It is also used to
refer to the trio join point representation, join point identification, and effecting at join
points (e.g., in Masuhara et al. [2003]. We wish to avoid any confusion.

Based on our specification of the domain specificity of join points we can succinctly
define domain-specific join point representation as follows:

A domain-specific join point representation is a join point representation that in-
cludes at least one kind of domain-specific join point.

A corollary of the previous definition that is worth noting is the following: If a DSAL
uses a representation that denotes a subset of the join points denoted by an existing
general-purpose representation, we consider its representation as being general pur-
pose. For example, in the RemoteJ language [Soule et al. 2007], the representation
solely consists of method invocations and exception throwing and we consider it as
general purpose.

3.1.3. Defining Domain-Specific Pointcut Languages. The large majority of the DSALs we
studied perform join point identification and the specification of effects at join points
in a similar fashion as in AspectJ. Put differently, the large majority of DSALs identify
join points by means of pointcuts and use advice to specify the effect at join points.
For languages in this framework of pointcut-advice model, we say that pointcut iden-
tification is performed by a pointcut language and the effects are defined through an
advice language. Hence, it is useful to define what it means for a pointcut language to
be domain specific.

A pointcut language can be considered as already being a domain-specific language
tailored to the domain of “selecting join points.’ Actually, pointcut languages of GPALs
typically provide domain-specific abstractions (e.g., constructs for identifying specific
kinds of join points). However, it is desirable to distinguish between pointcut languages
for all types of base applications versus pointcut languages that focus on a specific
domain of applications. Hence, we propose the following definition:

A domain-specific pointcut language is a pointcut language that is tailored to a
specific domain.

A wide variety of designs can be imagined for such a language. This ranges from
adding domain-specific predicates to an existing pointcut language to building a com-
plete domain-specific pointcut language. For example, in Section 2.2, we saw that PDL
adds cardinality checks to (a restricted version of) a general-purpose pointcut lan-
guage, while the KALA pointcut language solely consists of the possibility to specify
transaction boundaries.

3.2. Building Abstractions versus a DSAL

An alternative to building a DSL is defining a library of domain-specific abstractions in
a GPL. The latter requires less effort but lacks several advantages of DSLs. We repeat
the most salient advantages listed in the survey paper of Mernik et al. on DSLs [2005]
here:

(1) The DSL can provide domain-specific notations such that the intent of the code is
clear. This may not be feasible in the GPL (e.g., due to syntax restrictions). This is
a key feature, as it is directly related to the productivity improvement that DSLs
yield [Mernik et al. 2005]. In addition to Mernik et al., Fowler provides a similar
observation, stating that “The heart of the appeal of a DSL is that it provides a
means to more clearly communicate the intent of a part of a system.” [2010]

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:15

(2) The domain-specific constructs may not be abstractable into one GPL construct or
into a single piece of GPL code. Typical examples are error handling and graph
traversals. While a GPL cannot succinctly express the domain-specific constructs,
the DSL can.

(3) As the domain-specific concepts are available as such, the language implementation
may perform domain-specific analysis, verification, and optimization. In a GPL this
may be harder or even unfeasible, depending on the construction of the concepts
and the optimization possibilities of the language.

Fowler [2010] has a slightly different point of view, giving a number of additional
advantages, and we highlight two of them here:

(4) DSLs ease communication with domain experts by providing a clear and precise
language to deal with the domain. The biggest gain lies in letting domain experts
read the code to confirm if it specifies the expected behavior.

(5) DSLs can use an alternative computational model, deviating from the typical imper-
ative paradigm to whatever is more appropriate for the domain. A classic example
of this is a DSL for defining state machines.

A number of the aforementioned advantages of DSLs naturally carry over to DSALs,
especially when considering the specification of join point effects. The novelty of DSALs,
however, lies foremost in the two other axes of domain specificity: join points and a
means of identifying them, which is the focus of this article. DSL advantages in regard
to these axes are as follows:

Join Point Representation. This is not a specification performed by the DSAL pro-
grammer, it is a specification at the level of the language definition. Hence for the
programmer it does not contain limits on its notation, nor does it need to be exe-
cutable or even have an execution context. Considering (2), mapping to constructs
in the GPL, this is exactly what is addressed by the creation of domain-specific
join points: The GPAL does not produce any suitable event, hence the DSAL cre-
ates one. Furthermore, the generation of domain-specific join points may allow
for irrelevant context items to be removed, optimizing the generation process (3),
which is discussed in more detail in Section 4.6. Using domain-specific concepts
to define the join points will help communication between programmers using the
DSAL and the domain experts (4). Lastly a domain-specific model for join points
and their generation can be used (5) (e.g., join points for transitions in a state
machine).

Means of Identifying Join Points. The advantages of the domain specificity of the
representation carry through to the identification means. It is possible to use
domain-specific notations (1) to also select join points not present in the GPAL
(2). Identification can be verified and optimized using domain information (3), is
more readable for domain experts (4), and can follow a domain-specific paradigm
(5) (e.g., matching on transitions of a state machine).

3.3. Overview of DSALs

Table I lists all the DSALs we studied for this survey together with their reference
paper. In Table II, we detail the domains they address, the domain-specific nature of
their join point representation, identification, and effects, and we identify the base
language. As a brief analysis of Table II, we consider the domain-specific nature of the
axes of join point representation, identification, and effects. There are 13 languages
where all three are domain specific, 19 where two of them are domain specific, and four
where one is domain specific. Restricting to the languages where the base language is

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:16 J. Fabry et al.

Table I. The List of DSALs Studied (in Alphabetical Order) and the Reference to the Most Relevant
Corresponding Article

Languages are identified by the last part of the URL of their summary description, which almost always corresponds
to the name of the language. Prefix it with http://dsal.cl/dsal/ to obtain the full URL.

Name Reference Name Reference
Alert Bagge et al. [2006] DiSL Marek et al. [2012]
ALPH Munnelly and Clarke [2008] DSAL_for_Matlab Cardoso et al. [2010]
AML Irwin et al. [1997] ERTSAL Sousan et al. [2007]

AO4BPEL Charfi and Mezini [2007] KALA Fabry et al. [2008]
AO4FSM Dinkelaker et al. [2012] LARA Cardoso et al. [2012]
AO4SQL Dinkelaker [2011a] Leasing_in_MANets Gonzalez Boix et al. [2008]

AOWP-PHP Hokamura et al. [2008] Padus Braem et al. [2006]
AspectASF Klint et al. [2005] PCSL Bruntink et al. [2005]

AspectG Rebernak et al. [2009] PDL Morgan et al. [2007]
AspectGrid Sobral and Monteiro [2008] POM Caromel et al. [2008]
AspectLisa Rebernak et al. [2009] Quo-ASL Duzan et al. [2004]

AspectMatlab Aslam et al. [2010] Racer Bodden and Havelund [2008]
AspectStratego Kalleberg and Visser [2006] RemoteJ Soule et al. [2007]

CommentWeaver Horie and Chiba [2010] RG Kiczales et al. [1997]
Conspects Holzer et al. [2011] RIDL Lopes [1997]

COOL Lopes [1997] Robust Fradet and Südholt [1999]
D4OL Timbermont et al. [2008] ScatterML White and Schmidt [2009]
DAJ Sung and Lieberherr [2002] VMADL Haupt et al. [2009]

domain specific, in eight of them the nature of all three axes is domain specific, while
in five languages two axes have the domain-specific nature, and one language has only
one axis whose nature is domain specific.

An overview of the different implementation approaches for DSAL construction is
given in Section 5, and in Section 5.6, Table III classifies the different languages
according to their implementation. Note that we did not include example languages
presented as part of the implementation papers in our study. These languages are
typically not developed in depth and are rather meant as illustrations of the features
of the implementation approach. We consider that, as a consequence, they do not
contribute significant data on the design space of DSALs, and we omit them from our
study.

4. DSAL DESIGN DECISIONS

How and when to design a DSL is a topic that has already been discussed in the
literature (e.g., in the work of Mernik et al. [2005]). Because they are dedicated to
handle crosscutting, DSALs add new dimensions to this design space. As such, not only
the specification of effects at join points but also the means of identifying join points
as well as the join point representation need to be defined.

In this section, we explore the language space that is distinctive for DSALs. We focus
on the three axes of Figure 1: join points, their identification, and means of effecting at
join points. We outline the main DSAL design decisions related to the three axes and
analyze the different choices that have been explicitly discussed or implicitly presented
in the literature.

We start with a note on symmetry or asymmetry for DSALs, as it is a core language
decision where we made a remarkable observation. This is followed by a discussion of
previously presented design decisions. We then consider more in detail the three axes
and discuss their independence followed by the degree of domain specificness. This
is succeeded by an observation of the possible absence of pointcuts. An exploration
of optimizations of domain-specific join points follows, and we end this section with
considerations on composing programs written in various DSALs.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:17

Table II. Overview of DSALs Studied, Providing the URL of Their Summary Description and the Domain
Addressed

Includes General-Purpose (GP) or Domain-Specific (DS) nature of REP, join point representation; ID, join point
identification; FX, effects at join point; Base, the base language. The references for the languages marked with ∗ are
AmbientTalk [Dedecker et al. 2006], EventJava [Eugster and Jayaram 2009], Lisa [Mernik et al. 2002], ANTLR [Parr
and Quong 1995], Stratego [Visser 2004], ASF + SDF [van den Brand et al. 2001], and BPEL [Andrews et al.
2003].

http://dsal.cl/dsal/ Domain REP ID FX Base
COOL GP DS DS GP: Java
RIDL GP DS DS GP: Java

Quo-ASL Distributed DS DS GP GP: Any
RemoteJ systems GP DS DS GP: Java

Leasing in MANets DS GP DS DS: AmbientTalk∗

Conspects DS DS GP GP: EventJava∗

PCSL GP DS DS GP: C
Alert The software GP DS DS GP: C
PDL development GP DS DS GP: .Net

CommentWeaver process itself GP DS DS GP: Java
Robust GP DS DS GP: C-like languages

AspectLisa Program DS DS DS DS: Lisa∗

AspectG transformation, DS DS GP DS: ANTLR∗

AspectStratego compiler DS DS DS DS: Stratego∗

AspectASF construction DS DS DS DS: ASF + SDF∗

AML Numerical DS DS DS DS: Matlab subset
AspectMatlab and scientific GP GP DS DS: Matlab

DSAL for Matlab computation GP DS DS DS: Matlab

POM Concurrent DS DS DS GP: Java
AspectGrid and parallel GP DS DS GP: Java

KALA computing DS DS DS GP: Java

Racer Analysis of DS DS GP GP: Java
DiSL software DS DS DS GP: Java

LARA Embedded DS GP DS GP: C and others
ERTSAL systems GP GP DS GP: C++

AO4BPEL Workflows in the DS GP DS DS: BPEL∗

Padus BPEL language DS GP DS DS: BPEL∗

D4OL Virtual DS DS DS GP: C (unspecified)
VMADL machines DS GP GP GP: C and others

RG Image transformation DS GP DS GP: Lisp-like

ScatterML Software deployment DS DS DS DS: nodes

ALPH Healthcare DS DS DS GP: Java

AOWP-PHP Web applications DS DS DS DS: PHP

DAJ Adaptive programming GP DS GP GP: Java

AO4SQL The SQL language DS DS DS DS: SQL

AO4FSM Finite state machines DS DS DS DS: FSM

4.1. Asymmetric or Symmetric DSALs

Most aspect-oriented programming languages follow an asymmetric model, in which
“aspects” are woven into “components” of the base [Harrison et al. 2002]. Aspects differ
from components in their structure (e.g., the former identify and effect at join points,
the latter do not). Components are composed differently than aspects, and sometimes

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:18 J. Fabry et al.

aspects cannot be composed with aspects, that is, the execution of aspect code cannot
be intercepted by other aspects. In contrast, in a symmetric paradigm, “all components
are treated as first-class, coequal building-blocks of identical structure, and in which
no component’s object model is more basic than any others” [Harrison et al. 2002].
Remarkably, we found that existing DSALs are universally asymmetric. All of them
treat aspects as a different kind of entity than base code. This universal adherence to
asymmetry, a core language decision, is, however, nowhere argued for in the literature.
We, therefore, elaborate on it here.

We presume this universal asymmetry is because of three reasons: (1) symmetrical
languages require the base and aspect language to be codesigned, (2) the language to
define effects is usually domain specific, and (3) asymmetric GPALs are predominant.

(1) DSALs are typically designed taking into account an existing base language (ar-
guably a similar situation to the design of GPALs). In symmetrical AOP languages,
the base and aspect language features are codesigned. Hence, the base language
may need to be changed, which can be problematic.

(2) In the large majority of DSALs, the language to define effects is a DSL (as shown
in Table II). Hence, the aspects are fundamentally different entities from the base
entities, implying asymmetry.

(3) In cases where the language to define effects is the same language as the base
language—for example, AspectMatlab (see Section 2.5)—a symmetric approach
may be possible. However, we found that in such cases the aspects are still treated
differently, that is, following an asymmetric paradigm. In the AspectMatlab ex-
ample, aspect code does not produce any join points [Doherty 2010], making it
impossible for aspects to match on computation of (possibly other) aspects. Thus
there is a difference between base and aspect code, and they are not “co-equal
building-blocks” per the definition of Harrison et al. [2002]. The predominance of
the asymmetric paradigm in GPALs may cause this design decision to be implicitly
made. Again, AspectMatlab is an example of this: A more symmetric approach was
never even considered in the design [Doherty 2010].

In conclusion, we do not see any impediment to building DSALs that are symmetric
(e.g., when the language to define effects is the same language as the base language).
However, in practice, we find that all DSALs are asymmetric and there is no argumen-
tation given for this. A DSAL designer should at least be aware of this design choice
and explicitly make or document it.

4.2. Seven DSAL Design Decisions

In early work on DSALs, Rebernak et al. [2009] introduce AspectLisa and AspectG
(for AspectG, see also Section 2.4). As part of this article, the authors present the first
analysis of the design space of DSALs by proposing seven design decisions that need to
be made when elaborating a DSAL. The focus of the work is not to explore the design
space, yet it is a good initial overview of design decisions. Hence, we review it here
and place the design decisions in the context of this survey article. Note that Rebernak
et al. seemingly use the join point model definition of Masuhara [2003] of join points,
identification, and effect.

(1) What are the join points that will be captured in the DSAL?
(2) Are the DSAL join points static or dynamic?
(3) What granularity is required for these join points?
(4) What is an appropriate pointcut language to describe these join points?
(5) What are advice in this domain?
(6) Is extension/refinement only about behavior, or also structure?

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:19

(7) How is information exchanged between join points and associated advice (context
exchange)? Is parametrization of advice needed?

Rebernak et al. do not elaborate further on these choices, as it is not within the scope
of their article. Our interpretation, based on their article as well as the literature we
studied, is as follows:

(1) The kind of points in the lexical structure or in the execution of the program
where the crosscutting concern has an impact need to be established. Additionally, join
point aggregation may be required (see Section 3.1.1). Aggregated join points contain
some information of different parts of (the execution of) the program. This may be
either for selecting the correct join points, or providing extra information to the effects.
Examples of languages that perform join point aggregation are AO4BPEL [Charfi and
Mezini 2007], KALA [Fabry et al. 2008], and Racer [Bodden and Havelund 2008].

(2) DSLs may contain a significant structural part, that is, where a large part of the
DSL program represents structures. A DSAL for such languages may, therefore, wish
to capture parts of these definitions as join points. As noted before, Rebernak et al. call
these static join points, and they are also known as lexical join points [Masuhara et al.
2003]. In contrast, dynamic join points represent events in the execution of the base
program. An example of the use of static join points in DSALs is as follows: In ANTLR,
languages are specified by their grammar, the grammar productions are the static join
points. AspectG allows additional semantic actions to be specified for selected grammar
productions (see Section 2.4).

(3) We consider the granularity as a consequence of the choice of join points as regions
in time versus points in time, as discussed by Masuhara et al. [2006]. The former are
AspectJ-like join points that represent the duration of an event (e.g., the extent of an
execution of a method), while the latter represent one instant in time (e.g., the moment
a method is about to be executed). If the join points are considered as a region in time,
this implicitly determines their granularity to be the execution time of the join point.
Similarly, if join points are considered as being a point in time, these implicitly have
the lowest possible granularity, as they have no duration.

(4) As a means for identification, the pointcut language is the element that typically
receives the most attention in the literature we studied. Usually the first three design
decisions are only briefly mentioned, or even absent. For example, 15 of the 36 DSALs
we studied lack a specification of the join point representation. An example of a brief
mention is present in the languages discussed in the AspectG paper, for example,
“join points in ANTLR are static points in the language specification where additional
semantic rules can be attached.’ This is followed by explaining the elements of the
representation, that is, the join points, by means of example pointcuts that match them.
Note that the choice of including such a discussion is independent of the domain of the
language: In AspectMatlab [Aslam et al. 2010] (see also Section 2.5), the discussion is
absent, but in DSAL for Matlab [Cardoso et al. 2010] it is present.

(5) To adhere to the terminology defined in Section 3.1.3, we rephrase this item as
“What are the effects in this domain?”. The article does not elaborate much on the
meaning of this design decision, not going deeper than a generic consideration of the
behavior that needs to be specified in the aspect. The effects that can be performed,
together with the choice of an effect language should be made here. What needs to be
taken into account is when these effects need to be executed for region-in-time models,
typically before, after, or around a region (see (1) and (3), and how join point information
is passed (see (7)).

(6) GPALs not only have the possibility to change the behavior of the application but
also its structure (e.g., in AspectJ intertype declarations allow fields and methods to
be added to given classes). This functionality allows for modular extension of existing

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:20 J. Fabry et al.

classes, such that state and behavior of the crosscutting concern is added to the different
modules where it conceptually belongs. Alternatively, they may also be used to address
typing issues (e.g., by declaring that a given class implements a specific interface).
DSALs may need to be able to perform such structural extensions as well. Examples
of such languages are Alert [Bagge et al. 2006] and DAJ [Sung and Lieberherr 2002].

(7) For the specified effects to be able to correctly take place, this may require context
information of the join point (e.g., the arguments of a method call). This, therefore,
needs to be taken into account, typically by use of parametrization of the effects.

It is notable that in the previous list of design decisions none of them are tied to the
domain that the DSAL is addressing. It is indeed possible that two different DSALs
for the same domain differ in some of these choices. One example of this is AspectLisa
and AspectG [Rebernak et al. 2009]. These languages both use the pointcut-advice
model and differ in 5 of the 7 points: The join points (1) and their granularity differ (3),
while being static in both cases (2). The pointcut languages are different (4). The advice
are considered to be of the same kind (5), yet AspectLisa only extends behavior, while
AspectG creates new tools that extend both structure and behavior of the application
(6). Lastly, AspectLisa advice is parametrized, and in AspectG it is not (7). Another
remarkable example of languages in a narrow domain but with different decisions is
AO4BPEL [Charfi and Mezini 2007] and Padus [Braem et al. 2006]. Both languages
target modularization of BPEL processes, yet join points (1) and their granularity
(3) differ and the pointcut languages (4) are fundamentally different as well.

Rebernak et al. also present a rationale for the differences and similarities in design
decisions between AspectLisa and AspectG [2009]. In summary, there are two main
motivations behind the design choices taken. First, “DSAL design depends on the
component language.” This is because join points arise due to events in, or structures
of, the base language. Second, “Different problems might be solved in similar domains.”
In other words, the authors posit that it is the effect that is to be performed by the
DSAL that drives the design decisions. The example of AO4BPEL and Padus shows an
even stronger result: Even with the same component language and the same problem
to be solved design decisions may vary.

In conclusion, various of these decisions remain relevant in the light of more recent
work. None of the seven design decisions are, however, tied to the domain that the
DSAL is addressing. Furthermore, neither does the goal of the DSAL force a specific
choice for all seven.

4.3. Relating the Domain Specificity of the Three Axes

The question that naturally arises is whether there is any relationship between the
domain specificity of representation, identification, and effects. Or, does making one of
the three axes domain specific necessarily imply making one of the other axes domain
specific?

The examples discussed in Section 2 suggest that this is not the case. Indeed,
Figure 1 indicates that these three axes may be loosely coupled, as there are examples
living at different places in the design space. We now confirm this more systematically
by listing four DSALs in Figure 3 that serve as examples for the loose coupling be-
tween representation, identification, and effects. This shows that the choice of domain
specificity in one of these dimensions does not necessarily determine the specificity of
the other dimensions.

Note that a previous attempt at clarifying the relationships between representation,
identification, and effects was performed in the summary of the DSAL’08 workshop
[Cleenewerck et al. 2008]. That summary, however, is not as complete as what we
present here because it does not discuss the relationship between representation and

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:21

Fig. 3. Examples for loose coupling between the domain specificity of join point representation (REP), join
point identification (ID), and effect specification (FX).

Fig. 4. Examples for the different degrees of domain specificity in join point representation (REP), means
of identifying join points (ID), and effect language (FX).

effects. Moreover, the domain specificity of all three dimensions is not well defined and
consequently some of the examples used do not hold with the definitions we propose
here.

In conclusion, a DSAL only needs to provide domain specificity in one of the three
dimensions of representation, identification, and effects.

4.4. Degrees of Domain Specificity on the Three Axes

In the previous section, we demonstrated that the three axes of representation, iden-
tification, and effects are orthogonal, that is, the choice of domain specificity in one
axis does not influence the choice of another. We now show that the three axes are not
binary yes/no choices, but that they allow for different degrees of domain specificity. We
do this by giving three examples for each of the three axes: one that is purely general
purpose, one that is a mix of general-purpose and domain-specific elements, and one
that is fully domain specific. Note that we do not wish to imply that the degree of
domain specificity of one language is comparable to the degree of another language.
Figure 4 enumerates the examples, and we discuss them next.

AspectJ. As the typical GPAL, all three axes are general purpose.
Racer. Racer [Bodden and Havelund 2008] extends the AspectJ representation and

pointcut language with three domain-specific join points for concurrent programming:
lock, unlock, and maybeShared. The former two represent the acquiring (releasing,
respectively) of a lock by entering a synchronized block. maybeShared represents field
accesses that may be shared between multiple threads. By adding these join points to
the AspectJ join point representation and its pointcut language, Racer increases its
domain specificity; however, without removing the general-purpose elements.

POM. Parallel Object Monitors (POM) is a lightweight DSAL for specifying the
scheduling of parallel activities in objects [Caromel et al. 2008]. A scheduler is the
means to effect at a join point, by suspending and resuming activities. It is written in a
general-purpose language (Java), but following a domain-specific framework: Two spe-
cific methods have to be implemented and deal with domain abstractions like request
queues and priorities. In other words, the domain of effects is restricted to scheduling
(although this restriction is not enforced by the implementation).

KALA. Lastly, in KALA (Section 2.3) all three axes have been designed purely to
treat elements of the domain. The representation consists of transaction executions and
data accesses within them. Identification solely allows for the identification of methods

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:22 J. Fabry et al.

that correspond to transactions. The effect language only allows for the declarative
specification of transactional properties.

In conclusion, we can state that the three axes of a DSAL are more than just orthog-
onal. Each of these also represents a range of possible choices from general purpose to
completely domain specific. As a result, the designer of a DSAL is free to choose the
extent of the domain specificity of the language for each of the three axes.

4.5. Means of Identifying and Effecting at Join Points

As we have seen, most GPALs follow the pointcut-advice model first introduced by
AspectJ. Some, like HyperJ [Ossher and Tarr 2002], however, do not. Hence, the struc-
ture of identification and effects is a decision that should be considered when designing
DSALs.

Given that DSLs and hence DSALs are tailored to fit a specific domain, such a tailor-
ing may not necessarily be compatible with the pointcut-advice model. Consequently, a
DSAL designer may choose to follow a different approach in which identification is per-
formed and combined with effects. In extreme cases, identification may even be absent
in the language. We have, however, only encountered 10 DSALs where the pointcut-
advice model is not followed. In chronological order, these are RG [Kiczales et al. 1997],
COOL and RIDL [Lopes 1997], AML [Irwin et al. 1997], Robust [Fradet and Südholt
1999], DAJ [Sung and Lieberherr 2002], RemoteJ [Soule et al. 2007], AspectGrid
[Sobral and Monteiro 2008], D4OL [Timbermont et al. 2008], and Commentweaver
[Horie and Chiba 2010].

We briefly discuss the relevant parts of one example, the COOL language, here. The
COOL and RIDL languages form part of the D framework [Lopes 1997], one of the sem-
inal publications on AOP and a precursor to the pointcut-advice model. D was created
to deal modularly with selected concerns in the domain of distributed systems through
the use of specific DSALs. COOL is a coordination language that provides mutual ex-
clusion of threads, synchronization state, guarded suspension, and notification. RIDL
deals with remote method invocation and transferring data between different hosts on
the network. In these languages, aspects are called coordinators (portals, respectively).
In COOL, the join points are method executions, but the identification is very differ-
ent from pointcuts. Instead of specifying a predicate, the coordinator definition first
explicitly mentions the name of the class that is subject to synchronization. Second, it
denotes the synchronized methods with their name in selfex and mutex declarations,
which are the means of effecting at these join points. The actual effect is abstracted
by these domain-specific operators; the language runtime enforces self- and mutual
exclusion of method executions accordingly. RIDL follows a similar design scheme, but
we do not detail it here.

In conclusion, DSALs do not necessarily need to follow the pointcut-advice model of
identification and effects, yet only one fourth of the languages deviate from this model.

4.6. Domain-Specific Join Points and Optimization

One of the six advantages of DSLs, discussed in Section 3.2, is the ability to perform
domain-specific optimization. DSALs add a new kind of possible optimization to the
language: along the join point representation axis of the design space, as we discuss
here.

In a GPAL, conceptually, all operations of the base program emit a join point, and
each of these join points contains a wealth of context information. For example, in
a message send join point the context contains both the sender and the receiver as
well as the arguments of the message. Aspect languages such as AspectJ perform
optimizations as part of their implementation. For example, partial evaluation of the
pointcuts can be performed to determine a subset of the program where join points

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:23

need to be emitted, and the context information that needs to be reified [Masuhara
et al. 2003; Hilsdale and Hugunin 2004].

In a DSAL, optimizations may be domain specific and hence straightforwardly fol-
low from the language specification instead of requiring program analysis. As the
representation can correspond to a subset of a general-purpose representation, the im-
plementation of the DSAL may need less join points to be emitted. Similarly, for these
join points, the DSAL may require less context information to be present, hence again
optimizing join point generation. For example, in KALA (see Section 2.3), there are
two types of join points: the execution of a transaction, corresponding to some method
executions, and the reading and writing of a transactional value, corresponding to
calls to getters and setters within a method that is a transaction. Furthermore, for
the transaction execution join point, no context information is present. As a result, the
implementation of KALA can (and does) limit join point generation from the outset,
without requiring static analysis of the program [Fabry et al. 2009].

Domain-specific optimizations may be more intricate by performing some static anal-
ysis combined with domain knowledge. An example of this is Racer [Bodden and
Havelund 2008]. Recall that Racer defines a domain-specific maybeShared pointcut
(and its corresponding join point) that matches all field accesses that may be shared by
multiple threads. A naive implementation of this is to match on all field accesses. In-
stead of this, a domain-specific optimization is performed using a complex thread-local
objects analysis algorithm. In general, this permits one to greatly reduce the number
of maybe-shared join points.

Apart from Racer and KALA, the only other mention of domain-specific optimizations
in the join point model we are aware of is in the work on Sequential Object Monitors
(SOM) [Caromel et al. 2004]. SOM is implemented in the Reflex AOP Kernel [Tanter
and Noyé 2005], discussed in Section 5.5.3. The customization of the join point repre-
sentation to avoid embedding all available context information is one of the keys to the
good performance of SOM [Tanter 2004].

In conclusion, a number of domain-specific optimizations may be performed by a
DSAL, but only few of the studied languages perform them. A possible explanation
for the lack of domain-specific optimizations is that the proposed languages do not yet
have performance requirements.

4.7. Composition of DSALs

Our study revealed various instances of a setting where more than one DSAL is ex-
pected to be used when programming an application. This does not come as a surprise,
since in a large application multiple aspects may be present. Hence, when each of these
is written in a different DSAL, multiple DSALs must cooperate. The examples of com-
position of different DSALs we encountered are the combination of COOL and RIDL, in
the setting of Lopes’s PhD thesis [1997], and the family of DSALs that has been built on
top of KALA [Fabry et al. 2008]. Also, when considering DSAL implementation toolkits,
we find that 7 of the 36 we surveyed provide support for composition (we discuss this
in Section 5.5).

Hence, a decision that needs to be made when designing a DSAL is whether to
consider the composition of multiple DSALs, that is, how the language enables the
composition of programs written in different DSALs, together with the base application,
to form a correct application. In the of supporting some form of composition, there are
two distinct options that can be chosen: first, different DSALs can be codesigned; and
second, a DSAL might be designed explicitly taking composition with other, unspecified,
DSALs into account. Moreover, for the latter case a number of DSAL infrastructures
have been created with support for composition built in.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:24 J. Fabry et al.

4.7.1. Codesigned DSALs. The example languages we encountered all fit in the first
category: They are cases where different DSALs have been codesigned, and this be-
cause the different concerns they each address fit within a larger domain. For example,
both COOL and RIDL have been developed as part of the work on D, a framework for
distributed programming [Lopes 1997]. As the domain of distributed programming is
quite extensive, various parts of it can be addressed by multiple languages, and each of
these languages still addresses a more or less self-contained domain. In this case, RIDL
addresses data transfers between different execution spaces and COOL addresses con-
currency, both of which arise due to remote invocations. Consequently, we have two
DSALs that have been codesigned, such that each of them addresses a part of the
domain of distributed programming. Considering the composition of COOL and RIDL
code, this composition is easy because there is a simple relationship in the function-
ality of the two languages. Both act on method invocations: RIDL concerns itself with
passing the parameters on remote invocations, while COOL treats the execution of the
methods themselves. As these are two different phases in the invocation process of the
method, there is no overlap in functionality and the composition is straightforward.

From the examples, we established that when codesigning different DSALs, the
language designer may consider at least three points. First is the organization of the
different concerns: which structure or behavior is part of which concern and how do
the different concerns compose, as shown for COOL and RIDL earlier. Second is the
definition of a common vocabulary for shared concepts, such that they are referred to in
the same way across the different languages. In the aforementioned case, the common
vocabulary is simply methods and classes. Third is the definition of a standard syntax
for the shared vocabulary, to ease the learning curve of the different languages. In the
previous example, classes and methods are identified in the same way, by giving their
name and signature, respectively.

4.7.2. DSALs with Support for Composition. We have not found any examples of the second
category of DSALs designed for composition: those that explicitly take composition with
other DSALs into account. Nonetheless, a language designer should be aware of the
issues of composition and interactions of DSALs. Such issues have been raised by
the community in the research on implementation toolkits. In particular, Lorenz and
Kojarski [2007] introduced the notions of coadvising and foreign advising. Coadvising
refers to the composition of effects from multiple aspect languages at a shared join point.
Foreign advising refers to the fact that one aspect may react to a join point related to
the execution of the effect of another aspect written in another aspect language.

In the case of coadvising, the order in which the effects of the different aspects will
take place may influence relevant behavior of the application. A DSAL designer may
want to explicitly state what the requirements are in the execution of its effects to
respect the intended semantics of the language. For example, a hypothetical DSAL
for real-time systems may implement a log of the execution times of methods, which
should include the behavior of aspects that apply at method executions. In this case,
the designer could state that, when coadvising, the start timer effect should always
take place first, and the stop effect last.

In the case of foreign advising, on the one hand, the DSAL being written may emit join
points that are of interest to other DSALs. On the other hand, it may act at a join point
emitted by effects of another DSAL. For the former case, the DSAL designer should
therefore consider the repercussions of the behavior of (parts of) the programs in the
language being interrupted by other aspects, and may want to document restrictions, if
there are any. For example, considering the hypothetical DSAL for real-time systems,
it may contain sections of behavior that need to respect constraints in their execution
time and, therefore, may not be interrupted by other aspects. For the latter case, the

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:25

designer should consider if the effects of other (known) aspects should be observed by
DSAL programs and document this.

4.7.3. Composition Support in Toolkits. As already mentioned, a significant amount of
work on the composition of DSALs has actually taken place in the context of the work
on DSAL implementation toolkits. The most effort with regard to providing support
for composition as part of the DSAL toolkit is the ongoing work of Lorenz et al., in the
context of the Awesome implementation toolkit [Kojarski and Lorenz 2007]. The goal
of this work is to obtain what they term language-oriented modularity: “the process
of constructing and composing DSALs to better support aspect-oriented modularity”
[Lorenz 2012]. This work originated with Pluggable AOP [Kojarski and Lorenz 2005],
where the aspect extension composition question is defined and studied. Briefly put,
this question is about what the semantics are of a base program in the presence
of multiple aspect programs, written in different aspect extensions, that is, multiple
DSALs. Pluggable AOP proposes a method in which the base and different DSALs
may be implemented such that they collaborate to yield a semantics of the composition
that can be derived from the semantics of the constituent parts. Awesome can be seen
as a follow-up of Pluggable AOP: a composition framework “for constructing a multi-
extension weaver by plugging together independently developed aspect mechanisms”
[Kojarski and Lorenz 2007]. The framework also provides for a means to customize
composition behavior. This has been used in more recent work [Lorenz and Mishali
2012] to provide support for declarative specifications of the composition, as well as
for each of the different DSALs. Finally, integration of multiple DSALs using one
toolkit also provides for debugging support that takes the different languages into
account. This is performed through a specific multi-DSAL debug interface [Apter et al.
2012] that reveals the different effects that apply at a given point, as specified by the
different DSALs. Additionally, as an explicit composition specification is available, this
is revealed by the interface such that it can be studied by the programmer as part of
the debugging process.

In conclusion, all cases of DSALs with support for composition have been codesigned
and there are specific points to be taken into account when doing this. For a language
that is not codesigned with another DSAL, the work on toolkits has also provided
concepts and tools that are relevant for its design. This as a significant amount of work
on DSAL composition has been performed in that area.

5. DSAL IMPLEMENTATION TAXONOMY

When DSALs are implemented, a DSAL developer needs to select the most appropri-
ate language approach for this implementation. However, the selection of the right
approach may not be easy for the developer because the literature gives developers
only little orientation and recommendation on how to develop a DSAL. Therefore, this
section proposes a taxonomy of implementation patterns for DSALs. DSAL developers
can use this taxonomy as a catalogue to select the most appropriate way to implement
their languages.

Since DSALs are DSLs, the implementation of a DSAL has fundamental similarities
with the task of implementing a DSL and it would be natural for DSAL developers to
consult taxonomies for DSL implementation. Mernik et al. [2005] propose a taxonomy
of implementation patterns for DSLs, but do not consider DSALs.

At first glance, it may seem that DSAL developers may simply follow the recom-
mendations of Mernik et al. However, it turns out that those recommendations are
not completely transferable to DSAL implementation because there are additional im-
plications and issues when implementing a DSAL. The most notable of these are the
concerns about the complexity of DSAL implementation, reuse, and performance:

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:26 J. Fabry et al.

—In addition to DSLs, DSAL implementations are faced with the complexity of having
to support aspect-oriented composition mechanisms.

—DSALs have important opportunities for reuse, since often a DSAL developer only
needs to slightly adapt part of an existing aspect-oriented composition mechanism
for the particular domain.

—DSALs have additional performance issues compared to a typical DSL because join
point reification is potentially costly.

We, therefore, elaborate in this section a taxonomy of DSAL implementation pat-
terns that prescribe the architecture of a DSAL implementation. Our DSAL taxonomy
is inspired by the classification of DSL implementation patterns from Mernik et al.
and uses similar classes of patterns: (1) interpreters, (2) compilers, (3) embedding, and
(4) hybrids. In our classification, we unify the compiler and preprocessor classes in a
single compiler class, as we consider preprocessors simply as one way among others
to provide a DSAL compiler. Moreover, we do not consider a commercial-off-the-shelf
(COTS) class, defined by Mernik et al. as an approach that “builds a DSL around
existing tools and notations,” since reuse of existing infrastructure arguably already
happens in all the other classes. Last, we also include one extra class: (5) DSAL infras-
tructures, which provide specific support for implementing DSALs.

In the following subsections, one for each class, we define the DSAL implementation
pattern, mention existing DSAL implementations that use the corresponding pattern,
and summarize one representative DSAL implementation of the corresponding class.
The issues of complexity, reuse, and performance differ strongly in each implementation
pattern, and therefore we also elaborate on the peculiarities of each pattern with
respect to these issues. To end this section, we also provide a classification of the
languages we studied, according to their implementation pattern.

5.1. DSAL Interpreters

A DSAL interpreter executes DSAL constructs directly after syntax analysis. Only two
out of the 36 DSALs use the interpreter pattern in their implementation. A DSAL
interpreter implementation can be divided into the following parts:

(1) Base Part. The base part is responsible for evaluating base language constructs in
a given environment.

(2) Instrumentation. The instrumentation reifies join points, which exposes part of the
base environment to the aspects.

(3) Aspect Part. The aspect part is responsible for evaluating DSAL constructs.
(4) Integration. By composing all parts, a DSAL developer creates a common inter-

preter environment such that this common intepreter reifies join points, matches
pointcuts, evaluates the corresponding advice, and then reflects changes back into
the base environment.

There are three main approaches to build a DSAL interpreter: first, implementing a
DSAL interpreter from scratch; second, performing an adaptation of an existing base
interpreter that was not designed for extension; and third, extending an extensible
base interpreter. Of the two DSAL interpreters for the languages we studied, none
have been implemented from scratch. One interpreter has been implemented as an
adaptation, and the other as an extension. We provide remarkable properties of the
following three approaches.

First, when implementing a DSAL interpreter from scratch, the developer can encode
the aforementioned four parts in one homogeneous system. The advantage is that the
resulting system can easily integrate domain-specific aspect-oriented constructs with

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:27

the interpretation logic of the base constructs, since the developers have great flexibility
for structuring the implementation.

Second, when a base interpeter is available without special support for extensions,
the DSAL developer can still adapt the source code of such a base interpreter for
supporting domain-specific aspects. Implementing a DSAL interpreter by adapting
an existing DSL or GPL base interpreter is arguably one of the simplest techniques
to DSAL implementation. However, there is the implementation level issue that the
resulting implementation of the aforementioned four parts may be tangled in the source
code of the interpreter.

Third, using an extensible base interpreter addresses the tangling problem if it al-
lows one to reify join points and perform the join points effects by a (modular) extension.
The developer can then define the three remaining parts of the DSAL as modular exten-
sions to the base interpreter. The advantage is that large parts of the base interpreter
implementation may be reused in the DSAL extension. Furthermore, the base and
aspect parts can be independently updated. Because they are decoupled, only when a
base language construct relevant to DSAL semantics is added do the aspect-oriented
parts need to be updated as well.

5.1.1. The Pluggable AOP Interpreter. The first published work on using an interpreter-
based DSAL approach is by Kojarski and Lorenz [2004], called Pluggable AOP and
used to implement a simple GPAL and the COOL DSAL in Scheme. Being the first
work, it set a reference point for the interpreter-based approach, and hence we discuss
it here. A key property of the approach is that it enables DSAL developers to reuse the
same base interpreter implementation with different DSAL extensions and also allows
their composition. All interpreters are structured in a pipes-and-filters architecture.
Each of them implements an eval function that interprets all language constructs of
interest and delegates the evaluation of the other constructs to the interpreters that
come later in the pipeline. While the base interpreter evaluates only base language con-
structs with default execution semantics, aspect interpreters evaluate aspect-oriented
language constructs as well as (possibly) base constructs. The latter happens when
these fall under aspect-oriented semantics that match pointcut and execute advice.
Because aspect language interpreters are positioned earlier in the pipeline than the
base interpreter, which is the last in the pipeline, an aspect interpreter can intercept
and change the evaluation of base constructs.

5.1.2. Tradeoffs with Interpreters. There are a number of advantages, but there are also
important limitations to using the interpreter pattern.

Since interpreters allow for a rather easy and rapid implementation compared to
compiler approaches, DSAL developers may want to use this pattern for prototyping
DSALs. Because most interpreters allow direct access to the dynamic context of the DSL
constructs, interpreters are an easy way to implement DSALs with a rather dynamic
nature. Another advantage of accessing the dynamic context in the interpreter pattern
is that it enables a more flexible control over the execution of base and DSAL constructs
than in other patterns.

However, DSAL interpreters are limited by their low performance in comparison to
the other patterns. This is because of two main reasons: First, interpreters have the
usual interpretative overhead. Second, since interpreters dynamically compose aspects,
one can expect a rather large overhead due to this runtime weaving process.

Usually, a DSAL interpreter dynamically reifies every join point during the eval-
uation of base constructs and passes them as objects to the aspect part, which then
performs pointcut evaluation and advice execution. It is likely that the execution per-
formance of a DSAL interpreter will only be acceptable when the DSAL interpreter

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:28 J. Fabry et al.

reifies a relatively small portion of join points, or when the interpreter performs par-
tial evaluation of pointcuts.

Because of the mentioned tradeoffs, we recommend the DSAL interpreter pattern
only if there are no hard performance requirements, as well as for prototyping DSALs.

5.2. Compilers

DSAL compilers compile both a base program and a DSAL program in order to produce
a woven program in a certain target language. Such a compiler can be structured into
a part that takes care of the semantics of base language constructs and a part for the
DSAL constructs, but in contrast to interpreters, a DSAL compiler may also perform
semantic analysis without executing the source code.

It may seem obvious that DSALs can be implemented like ordinary GPL compilers
or DSL compilers. However, the design of a DSAL compiler strongly depends on the ex-
isting design and implementation of the compiler of the base language. This is because
the DSAL part of the compiler needs to be fully integrated with the base part to work.
25 of the 36 DSALs we studied are implemented using a compiler approach. Only one
of them implemented the compiler from scratch (and two are unspecified). The large
majority of DSALs hence are implemented by extending the existing base compiler.

When there is a special extension mechanism available in the base compiler, that is,
it is an extensible compiler [Nystrom et al. 2003; Ekman and Hedin 2007], the DSAL
compiler can be realized as such an (preplanned) extension. Alternatively, developers
implement DSAL compilers as ad hoc extensions to their base language compiler. We
briefly discuss these two categories—ad hoc compiler adaptation and planned exten-
sions—next.

Ad hoc Compiler Adaptation (20 out of 22 compiler adaptations). A DSAL extension
can build on an existing base compiler even if no special extension mechanism is
available in the base compiler implementation. Conceptually, the simplest adaptation
consists of adding a preprocessing phase to the base compiler (17 out of the above
20). According to Mernik et al. [2005], a preprocessor is characterized by the fact
that “DSL constructs are translated to constructs in an existing language” and “Static
analysis is limited to that done by [the compiler].” We have found three distinct classes
of use of a preprocessor: first, to produce woven code in the base language (9 out of
17); second, to translate to a GPAL for the base language (6 out of 17); and third, to
generate woven code in a language different from the base (2 out of 17). An example
of the third case is PDL [Morgan et al. 2007] (see also Section 2.2), where C# code is
generated, and the base is .Net assemblies. Remarkably, the PDL preprocessor does
perform type checking and optimization. In our survey, we, therefore, need to broaden
the preprocessor definition of Mernik et al. to remove the restriction placed on where
static analysis occurs.

Alternatively to preprocessors, when the technology of the base compiler lacks ex-
tension mechanisms, the DSAL developers may choose to invasively adapt the code of
the base compiler (if available). The quality of such an adaptation completely depends
on the design of the compiler being adapted: how well its internal structure allows
extensions and so on.

Planned Extension (2 out of 22 compiler adaptations). A particularly attractive
approach for implementing DSALs is to use an extensible base language compiler
[Nystrom et al. 2003; Ekman and Hedin 2007]. Using an extensible compiler as a base
compiler is attractive, as it provides specific extension points for adapting the com-
piler implementation. In particular, the parser can be extended for recognizing DSAL
constructs, and the semantic analysis and transformation phases can be extended for
weaving aspects. Thanks to reusing large parts of the standard compilation logic for

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:29

the base language, significant savings can be expected when implementing a DSAL
extension on top of it.

To the best of our knowledge, there are two aspect compilers based on an extensible
base compiler: the compiler for Conspects [Holzer et al. 2011] and the compiler for
AspectMatlab [Aslam et al. 2010]. The latter is particularly interesting as it is an
aspect compiler for a domain-specific base language; therefore, we discuss it in the
following text.

5.2.1. The AspectMatlab Compiler. AspectMatlab is an aspect extension for Natlab (Neat
Matlab), a reduced version of the Matlab language. AspectMatlab is implemented by
performing a modular extension to the McLab extensible Matlab compiler [Casey et al.
2010].

The AspectMatlab extensions are built using the language-independent extensible
compiler framework JastAdd [Ekman and Hedin 2007], best known for JastAddJ—its
Java port. To enable the aspect-oriented syntax for Matlab, these extensions extend
the grammar of Natlab to incorporate the additional AspectMatlab productions. For
enabling the aspect-oriented semantics, AspectMatlab uses JastAdd to implement sev-
eral transformations that traverse the Abstract Syntax Tree (AST), associate attributes
with AST nodes, and modify the AST by rewriting nodes.

Compilation consists of several transformation steps that are performed after pars-
ing. The first step simplifies expressions to transform the join point shadows of com-
posite Matlab expressions to a normal form. This simplifies the transformations for the
weaving later on. The second step enables weaving on loops, by rewriting them such
that increment steps in for-loops and conditional expressions of while-loops become
visible and modifiable for aspects. The third step performs a name-resolution analysis
to resolve the types of used identifiers to enable optimized weaving. The fourth step
is the matcher and weaver transformation. It evaluates pointcuts, using static infor-
mation from the AST and the types from the previous step. When insufficient static
information is present, or the pointcut uses dynamic information, a dynamic condition
is woven in. In the fifth and last step, the AspectMatlab compiler produces woven
Matlab source files.

5.2.2. Tradeoffs with Compilers. Compared to interpreters, compilers perform syntactic
and semantic analysis before program execution. This has two main benefits: robust-
ness and performance. This can be particularly effective in the case of a DSL as program
analysis can be tuned to take into account the specificity of the language. However, most
compiler approaches in the literature have not been designed with aspect language de-
velopment in mind. As a result, developers have little support for implementing the
weaving process, which may be complex and hence make up a significant proportion of
the cost of implementing a DSAL. Nonetheless, 25 out of the 36 DSALs we studied are
implemented as compilers, most of them by using a preprocessor.

The concrete set of requirements for a DSAL determine what compiler implementa-
tion approach is best. We elaborate on this in the following paragraphs.

DSAL Compiler from Scratch. When implementing a compiler from scratch, DSAL
developers have great flexibility for implementing special logic for the DSAL semantics.
However, in contrast to other implementation patterns, there are significantly large
initial costs for implementing a complete compiler infrastructure, which is well known
for GPL and DSL compilers in general [Kosar et al. 2008]. Another problem is that
developers have little guidance when starting from scratch. Therefore, we recommend
this approach only for developers that have experience with implementing compilers,
that is, for compiler experts. If there are no specific requirements, a DSAL would be
better implemented with a compiler framework or extensible compiler, as the developer
can expect lower initial costs.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:30 J. Fabry et al.

Ad hoc through Preprocessors. There are limitations of the preprocessor approach
due to the fact that join point reification and weaving are implemented only as a syn-
tactic analysis. In case the target language is a GPL, code produced by the preprocessor
must be compilable with the GPL compiler. Therefore, only implementing source code
weaving is supported, in contrast to weaving through semantic analysis. In case the
target language is a GPAL, DSAL aspects can be considered to be only syntactic sugar
for GPAL aspects. Therefore, the preprocessing approach may still yield a powerful
DSAL with efficient code. Because of the known limitations, we recommend prepro-
cessors only if the developer knows that the syntax can be rewritten without complex
transformations or semantic analysis.

Alternative ad hoc Adaptation. Because of the diversity in compiler implementations,
there are few recommendations that can be given to the code adaptation approach in
general. We advise against such ad hoc compiler adaptation, unless the compiler has a
very clear structure and implementation, or the adaptations are trivial. This is because
of the high complexity that such an adaptation may entail. However, this approach may
be the only available option in case there is no extensible base compiler.

Planned Extensions. The extensible compiler approach is best suited for DSALs
that are extensions to a base language for which an extensible compiler is available.
However, for most base languages, regardless of whether they are general purpose or
domain specific, there is no extensible compiler available. Therefore, implementing a
new extensible compiler approach for DSALs is only recommended after calculating
the tradeoff between the investment for the infrastructure and the payoff in savings of
implementing the DSAL extensions.

5.3. Embedding

In embedding approaches [Hudak 1996], a developer embeds a DSAL by implementing
DSAL abstractions as a library in an existing host language, typically a GPL. Different
models of embedding exist: homogenous embedding [Hudak 1996], where the system
of the host language also takes care of the embedded language; heterogeneous embed-
dings [Tratt 2008], where the embedded language is handled by a separate system; and
polymorphic embedding [Hofer et al. 2008], which focuses on providing different pos-
sible implementations of the DSL. Renggli et al. [2010] further classify the embedded
languages in Pidgins, Creoles, and Argots, depending on how syntax and semantics
is adapted. However, none of the DSALs we studied have been implemented as an
embedding. The work on DSAL embeddings has so far been contained to developing
the approach using smaller example languages and, as mentioned in Section 3.3, these
smaller languages are not part of our study.

For the embedding approach in general, the host language is required to provide
certain special host language features that allow for directly implementing DSAL ab-
stractions and the corresponding weaving logic for DSAL aspects within a library of
that language. We consider three classes of host languages: (1) aspect-oriented lan-
guages, where the DSAL inherits the base language of the host language; (2) reflective
languages, where the base language of the DSAL is, often implicitly, the host language
without reflection (otherwise mixing aspects and reflection may be hard to control); and
(3) GPLs, which may also act as the base language. We discuss these three options next.

The first possibility is to use an aspect-oriented host language for implementing
domain-specific aspects. The host language typically is a GPAL, such as AspectJ. The
developer uses the GPAL abstractions of this language to define a DSAL library with
domain-specific join point identification and domain-specific effects. Examples of this
are existing embedded aspect libraries for certain domains (e.g., for design patterns
[Hannemann and Kiczales 2002; Noble et al. 2007]). Such libraries define more or less
abstract DSAL aspects using GPAL aspects. These DSAL aspects come with predefined

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:31

pointcuts and advice. The (abstract) pointcuts define the vocabulary, while the advice
implements concern logic for the domain.

The second possibility is to use a powerful host language with reflective language fea-
tures for enabling the implementation of weaving. There are two important flavors of
using reflection for implementing GPALs. On the one hand, there are metaobject proto-
cols (MOPs) [Kiczales et al. 1991] in which aspect semantics are mapped to metaobjects
that adapt the default execution of base objects [Bergmans and Aksit 2001; Hirschfeld
2003; Dinkelaker et al. 2010; Achenbach and Ostermann 2010a]. On the other hand,
there is the use of metaprogramming, where aspects are mapped to metaprograms
that insert advice logic at relevant join points [De Volder and D’Hondt 1999; Baker and
Hsieh 2002; Wampler 2008]. MOPs can be used for implementing DSALs; for instance,
in Dinkelaker et al. [2010] and Achenbach and Ostermann [2010a, 2010b]. Alterna-
tively, when special aspect semantics are required in a certain domain, one can use the
metalevel for aspects—called a metaaspect protocol [Dinkelaker et al. 2009; Achenbach
and Ostermann 2010a]. Similar to metaobjects, in a metaaspect protocol, metaaspects
can adapt the default execution of aspects for implementing application-specific aspec-
tual semantics, such as debugging semantics for pointcuts and context-specific compo-
sition of advice.

The third possibility is to use an available indirection mechanism. This, however, usu-
ally supports only a limited set of aspect-oriented constructs; typically only permitting
before and after advice, not around advice. For instance, dynamic proxies in Java are
used by general-purpose frameworks like Spring AOP [Walls and Breidenbach 2005]
and JBoss AOP [Fleury and Reverbel 2003]. There are at least two proposals for DSALs
that make use of dynamic proxies. Sobral et al. [2006] use proxies for implementing
parallelization aspects, involving object partitioning, concurrency management, and
distribution. More recently, Soule [2010] used JBoss AOP for implementing autonomic
computing concerns.

5.3.1. The Reflective Embedding Approach. As an example, developing the embedding
approach, consider the work of Dinkelaker et al. [2010]. This work proposes an archi-
tecture for the realization of such an implementation that addresses composability of
different DSALs as well as providing ease of implementation, which is why we discuss
it here.

To implement new DSALs with reduced development costs and without requiring
complicated compiler techniques, Dinkelaker et al.embed aspect-oriented concepts to-
gether with domain-specific ones into Groovy. They demonstrate the approach by im-
plementing a security DSAL for a small workflow language embedded in Groovy. The
DSAL implementation process starts by embedding the domain-specific workflow lan-
guage, that is, the base language. Next, to enable a base embedding for aspects, the
reflective features of the host language are used to implement the reification logic. This
logic extracts domain-specific join points and their execution context from the base em-
bedding. To enable join point identification and using domain-specific effects at these
join points, the developer implements a domain-specific join point identification lan-
guage and effect language. Finally, these embeddings are passed to an aspect-oriented
kernel that is a generic aspect-oriented weaver also embedded into the host, which
then assembles these parts to form a DSAL weaver. This way, the approach allows for
implementing a rich set of aspect-oriented language features (e.g., dynamic join points
and aspects, without requiring that the DSAL developer knows the details of how to
implement an aspect-oriented weaver).

5.3.2. Tradeoffs with Embedding. An advantage of embedding DSLs is low implemen-
tation costs [Kosar et al. 2008]. In the case of a DSAL, the implementation of the
aspect weaver is simplified. Sticking to the syntax and semantics of the host language,

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:32 J. Fabry et al.

however, imposes the constraint of using the same granularity of join points as that of
the host language. Finally, embedded DSLs tend to rely on the general-purpose program
analyses provided by the host language, which cannot eliminate the complete overhead
of all the library calls resulting from the embedding. This gives an interpretive flavor
to the approach.

To summarize, we only recommend the embedding approach if there is no require-
ment for a concrete DSAL syntax and there are no high-performance requirements.

5.4. Hybrids

Hybrid approaches combine some of the previous approaches in order to alleviate their
individual drawbacks. Of the 36 languages we studied, one is implemented as a hybrid.
When also considering the implementation approaches, we found two kinds of hybrid
approaches.

The first kind combines preprocessing with interpretation or with some form of
embedding. The one example language we found, AOWP-PHP [Hokamura et al. 2008],
uses preprocessing to insert a join point creation process (see Section 3.1.1) in the
base code, combined with an interpreter for the aspects. When considering embedding,
preprocessing may apply to the base program as in TwisteR [Achenbach and Ostermann
2010a, 2010b]), advice as in Dinkelaker and Mezini [2008], or both, as, for instance,
in Reflex [Toledo and Tanter 2008] or JAMI [Havinga et al. 2008]. This is to alleviate
the drawbacks of the embedding approach discussed in Section 5.3. In the case of
TwisteR, the approach allows the implementation of join point creation at different
levels of granularity. TwisteR is discussed in more detail in Section 5.4.1. In the other
cases, the approach bridges the gap between the API provided by the embedding and
a user-friendly concrete syntax.

The second approach combines embedding using a GPAL, typically AspectJ, with
some form of interpretation as in Dinkelaker and Mezini [2008], CALI [Assaf and Noyé
2008], or JAMI [Havinga et al. 2008]. The aim is to reuse an efficient compiler-based
weaver and complement it with an interpretation layer providing extensibility. This
interpretation layer can be at the advice level [Dinkelaker and Mezini 2008] or between
the join points generated by the GPAL and domain-specific advice (CALI and JAMI).
In the second case, this realizes a form of two-step weaving [David et al. 2001]: The
GPAL provides a first step of compiled weaving, which, at runtime, generates join
points triggering, as their advice, an interpretation layer that performs a second step
of runtime weaving, interpreting the initial join point as domain-specific join points
and scheduling the appropriate effects. This second step of runtime weaving goes much
beyond the mere evaluation of residues performed by AspectJ [Hilsdale and Hugunin
2004]. This is further discussed in Section 5.5.1.

Both approaches can also be used together as in Dinkelaker and Mezini [2008] and
JAMI.

5.4.1. TwisteR. TwisteR is a meta-aspect protocol, embedded in Ruby, which was specif-
ically designed to cover the requirements of dynamic analyses in dynamically typed
languages [Achenbach and Ostermann 2010a, 2010b]). In this setting, various kinds
of join points are useful. Whereas standard join points, as provided by AspectJ, are
enough for analyzing performance and memory consumption, fine-grained join points
at the levels of basic blocks or even primitive statements such as assignments are nec-
essary for advanced monitoring and debugging tools. The join point creation support
of TwisteR is quite exceptional, which is why we discuss it here.

In order to provide, depending on the analysis, the appropriate join points a pre-
processor rewrites the program AST, injecting code responsible for join-point reifica-
tion. Join-point reification is then available for any AST node, including basic blocks,

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:33

control-flow constructs, and assignments. The embedded part of the DSAL implemen-
tation is responsible for analysis, performed by domain-specific aspects. On the one
hand, a pointcut defines which join points in a program are relevant for the analysis;
on the other hand, the corresponding advice updates the analysis result.

Achenbach and Ostermann demonstrate TwisteR by implementing two DSALs for
analysis in Ruby, which is used as both the base and the host language. The first DSAL
is used for exploratory testing with trivalent logic and the other DSAL is used for
debugging.

5.4.2. Tradeoffs with Hybrids. The tradeoffs of the hybrid approach are mostly deter-
mined by what DSAL approaches developers combine, what the tradeoffs between
these approaches are, and how developers combine the approaches. There can be both
positive and negative effects with such a combination.

First, when combining embedding with preprocessing, the preprocessing step can
leverage more flexibility as seen with TwisteR preprocessors can solve the general
problem of the lack of concrete syntax of an embedded DSL [Bravenboer and Visser
2004; Dinkelaker et al. 2013]. However, introducing a preprocessing step can destroy
a possible homogeneous nature of the embedding, which may pose problems when
composing several DSALs. This has, for instance, been experienced with Reflex (see
Section 5.5.3).

Second, combining a DSAL interpreter with a compiler enables faster execution than
with a pure DSAL interpreter. In such a setting, the compiler provides the semantics
for the nonextensible features of the language, which run fast, and the interpreter
provides the semantics of the extensible ones. However, the overall interpretation of
aspects can be expected to be still slower than with a compiler completely implementing
the semantics for all language features of the DSAL.

Third, when using preprocessors to make additional information visible to a DSAL,
additional indirections may be created for new join points, resulting in an additional
performance overhead. When composing preprocessing phases, care must also be taken
not to erroneously advise this synthetic code.

All in all, using a hybrid approach requires one to master the various individual
approaches that are combined as well as their combination. It is inherently more com-
plex, although it also makes it possible to reuse existing building blocks. In conclusion,
we recommend one carefully consider the advantages and drawbacks of such an ap-
proach before using it in the case of a single DSAL. However, in the case of a family
of DSALs, this may be a very interesting approach, providing a good mix of efficiency
and flexibility.

5.5. DSAL Infrastructures

DSAL infrastructures help developers implement new DSALs by providing processes,
frameworks, libraries, and tools (like generators) to facilitate this work. We here give
an overview of the different infrastructures we encountered in the literature.2 Only
five of the 36 DSALs we studied were implemented using these DSAL infrastructures.

5.5.1. Java Aspect Metamodel Interpreter. The Java Aspect Metamodel Interpreter (JAMI)
[Havinga et al. 2008] is an aspect interpreter framework that focuses on imple-
menting and composing DSALs. JAMI implements a high-level structure for common
aspect-oriented concepts as a set of classes in a metamodel framework. These classes

2We do not include the Aspect SandBox (ASB) [Masuhara et al. 2003] and Extended-Aspect SandBox (X-ASB)
[Ubayashi et al. 2004] as they are not designed as a DSAL infrastructure. Instead, their goal is to provide a
prototype environment for experimenting with AOP semantics and implementation techniques.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:34 J. Fabry et al.

implement the composition semantics that matches pointcuts and then orders and
executes advice.

Implementing a DSAL in JAMI entails instantiating the framework. If necessary, the
standard framework semantics can be adapted by subclassing the metamodel classes.
After DSALs have been implemented, developers can compose them such that as-
pects written in different DSALs can advise the base code. To compose DSALs, the
developer implements a combined parser of the DSALs and integrates the different
framework extensions into one extension. JAMI has been illustrated by implementing
COOL and composing it with a DSAL for caching method return values [Havinga et al.
2008].

To resolve DSAL composition conflicts, DSAL developers can extend the standard
composition semantics so that the aspects of different DSALs are woven in a special
way. The developer can control coadvising conflicts (see Section 4.7.2) at shared join
points between aspects of different DSALs (e.g., they can prevent that COOL aspects
conflict with caching aspects). To ensure a correct ordering of such DSAL aspects, the
developer needs to provide code that adapts the framework extension points to resolve
all coadvising conflicts.

JAMI is good for incremental DSAL development, since developers use OO inher-
itance for extensions, and it can help controlling complicated aspect interactions be-
tween DSALs at shared join points.

5.5.2. Aspect-Bench Compiler. The Aspect-Bench Compiler (abc) [Avgustinov et al. 2006]
is an extensible aspect-oriented compiler framework that specifically targets imple-
menting aspect-oriented languages for Java. There are two versions of abc, the older
version using the Polyglot [Nystrom et al. 2003] extensible Java compiler, and the
newer version using the JastAddJ [Ekman and Hedin 2007] extensible Java compiler.
In essence, abc is an extensible AspectJ aspect weaver. Hence, DSALs that are ex-
tensions to AspectJ can be implemented using abc with a lower amount of work than
implementing a new weaver. This is because, for these languages, developers only need
to provide an extension module that defines the new join point identification and ef-
fects. The abc compiler has successfully been used to implement various extensions to
Java and AspectJ [Bodden 2005; Bodden and Havelund 2008; Avgustinov et al. 2008;
Nusayr and Cook 2009; Marot and Wuyts 2008]. As another example, Racer [Bodden
and Havelund 2008] (discussed in Sections 4.4 and 4.6), is also implemented using
abc.

The abc compiler is designed to support easy extensibility. Its support for attribute
grammars enables mixins and the automatic scheduling of calculating attributes, which
helps developers implementing complicated extensions and resolving dependencies
between parts of them. Moreover, using abc results in DSALs with a performance suited
for production environments. Unfortunately, abc is not designed to handle composition
conflicts between multiple DSALs [Havinga et al. 2008].

5.5.3. Reflex. Reflex is a versatile kernel for defining aspect-oriented programming
mechanisms on top of Java [Tanter and Noyé 2005]. At its core lies a model of partial
reflection [Tanter et al. 2003], which makes it possible to reify both behavioral and
structural elements of Java programs. Reflex provides an intermediate abstraction
between high-level, possibly domain-specific, aspect language elements, and low-level
bytecode transformation. A composition layer makes it possible to handle interactions
at this intermediate level [Tanter 2006; Tanter and Fabry 2009]. To facilitate the
implementation of aspect languages, Reflex integrates the MetaBorg [Bravenboer and
Visser 2004] approach for unrestricted embedding and assimilation of domain-specific
languages. Concretely, MetaBorg provides the extensible concrete syntax layer that
Reflex language plugins use to generate Reflex configurations.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:35

The ReLAx case study: A reimplementation of KALA (see Section 2.3) on top of
ReflexBorg was the first experiment of a full-fledged domain-specific aspect language
with this architecture [Fabry et al. 2009].

The ReflexBorg approach has been shown to be practical in the different experiments
taken in isolation. But the fact that several transformation layers are involved makes
composition issues, especially between languages, hard to deal with. As there is only
basic support for backward traceability in the core (in order to be able to trace back
conflicting intermediate abstractions to their original source elements), the use of
ReflexBorg in complex scenarios is more difficult.

5.5.4. Awesome. Awesome [Kojarski and Lorenz 2007] is a multiweaver approach for
controlling interactions of DSALs, already mentioned in Section 4.7. Internally, Awe-
some extends the ajc compiler [Hilsdale and Hugunin 2004] and, as a result, uses
the AspectJ join point representation. The Awesome compiler implements a four-step
weaving process. The first step, called reify, defines how join points are created and
how their context is extracted from Java. The second step, called match, implements se-
mantics for join point matching. The third step, called order, implements the semantics
for advice ordering. The fourth step, called mix, weaves the advice logic into the base
system. While the first and fourth steps are common and provided by the platform, the
second and third steps are extension points at which the developer can provide DSAL
extensions.

To implement a DSAL, a developer needs to implement a front end and a back end.
The front end implements the parser for the DSAL extension. The back end extends the
weaver process by providing the match and order steps. On the one hand, the match
step matches pointcuts of this DSAL extension in isolation. On the other hand, the
order step orders advice from that extension with respect to other advice of the same
extension. To compose DSALs, the developer can again extend the match and the order
steps to resolve coadvising and foreign advising interactions. Recently, an additional
tool called Spectackle [Lorenz and Mishali 2012] proposed that helps with detecting
and resolving conflicts by means of declarative specifications of the compositions.

Awesome has been used to implement a COOL variant called CoolAJ [Kojarski
and Lorenz 2007]. CoolAJ has been composed with AspectJ, resolving coadvising and
foreign advising interactions by correctly ordering the advice from the two extensions.

The Awesome compiler is good for DSALs with performance requirements, since
compiled DSAL programs yield a performance comparable to statically woven GPAL
programs.

5.5.5. The Aspect Markup Language. Lopes and Ngo [2004] propose a language-agnostic
preprocessor approach called the Aspect Markup Language (AML). Lopes et al. criticize
the dependence on the Java platform as well as the general-purpose nature of AspectJ.
The latter is criticized because it implies that programmers must use its generic and
relatively low-level model of crosscutting. Instead, aspect languages should empower
the domain experts to have direct control over the software by providing more declar-
ative language features for their domain.

To address the two problems just mentioned, AML builds on the extensibility of
an XML-based language infrastructure. AML specifies aspects as pointcut and advice
pairs in XML syntax and these then become executable by mapping them to a particular
platform. The mappings are implemented as generic transformations from XML to
platform-specific GPAL aspects. For example, a mapping to AspectJ is provided.

To define a declarative aspect language in AML, a DSAL developer creates a plug-
in module that augments the core of AML for the respective domain-specific concern.
More specifically, each plug-in extends the core XML syntax and implements a code

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:36 J. Fabry et al.

generator for the domain-specific details. As examples the implementation of a DSAL
for tracing and another for design patterns are shown.

AML implements aspect weaving using a two-phase weaving process. First, when
parsing an AML aspect, XML elements that represent syntax extensions are recognized
by the XML parser. The parser then delegates the extraction of the information relevant
for a domain to the corresponding plug-in. Second, when generating the platform-
specific aspects, the plug-in hooks into the generation process to map the domain-
specific details to adequate elements of GPAL aspects. These are then compiled with
the GPAL compiler.

5.5.6. POPART. POPART [Dinkelaker et al. 2009] is a framework for embedding
DSALs into Groovy [König et al. 2007]. It embeds common aspect-oriented syntax
and semantics into Groovy as a library. Developers can build new domain-specific
aspect-oriented concepts by using the existing concepts from this library.

To implement a DSAL, a developer needs to implement three components. First,
the developer reuses a predefined GPAL join point representation or defines a custom
domain-specific join point representation. Second, the developer embeds into Groovy a
pointcut language that encodes a set of pointcut designators for that join point repre-
sentation. Third, the developer embeds into Groovy an advice language that encodes a
set of domain-specific actions. Because of the use of the embedding approach no special
parser implementation is required for the pointcut and advice languages. The devel-
oper only needs to define the operational semantics of the DSAL. To compose DSALs,
the developer can use the default aspect-oriented composition semantics or extend, if
needed, a framework class to provide logic for resolving composition conflicts. This way,
developers can configure resolution for controlling coadvising interactions [Dinkelaker
2011b].

POPART has been used to implement an AspectJ-like join point representation and
aspect-oriented language for Groovy. This GPAL has been extended with an embedded
version of COOL, the DSAL for caching from Havinga et al. [2008], and a DSAL for
data compression [Dinkelaker 2011b], including the resolution of coadvising conflicts
between the three languages. In addition, aspect support for domain-specific base lan-
guages has been demonstrated for several embedded DSLs [Dinkelaker et al. 2010;
Dinkelaker 2011a].

POPART supports implementing DSALs that have a DSL as the base language.
Because no DSAL parser has to be implemented from scratch, there are reduced im-
plementation costs. Unfortunately, because the DSAL syntax and semantics is em-
bedded as library calls in Groovy, performance is slow compared to compiler-based
implementations.

5.6. Implementation of the Different DSALs

As mentioned before, we have classified the different DSALs according to how they
have been implemented. This is shown in Table III. The most notable observation is
that almost half of the languages we studied (17 out of 36) use a preprocessor to perform
an ad hoc extension to an existing compiler. The absence of entries in the categories
“embedding” and “Hybrids using AspectJ” is because we did not find any publications
presenting a DSAL that has been implemented using these implementation patterns.
Instead, work in these categories has been limited to developing the approach, illus-
trating it with example languages that we did not include in our survey. Also, despite
of a significant body of work on infrastructures being present, we find that only a few
languages make use of these infrastructures. Last, we have not been able to classify all
studied languages. Two publications state using a compiler, while three more do not
provide information on the implementation.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

A Taxonomy of Domain-Specific Aspect Languages 40:37

Table III. Classification of the Different DSALs Studied According to Their Implementation Pattern
The names of the languages are as in Tables I and II; the classifications have been detailed in the preceding
subsections.

Interpreters From scratch (none)
Ad hoc extension A04BPEL

Extensible base Leasing in manets

Compilers From scratch ScatterML
Ad hoc extension AspectLISA, AspectStratego, DiSL

Ad hoc w. preproc. Alert, ALPH, AML, AspectG, AspectGrid, COOL, DAJ,
DSAL for Matlab, ERTSAL, LARA, Padus, PCSL, PDL,
RG, RIDL, Robust, VMADL

Extensible base AspectMatlab, Conspects
Unspecified QuO-ASL, RemoteJ

Embedding (none)

Hybrids w. Preproc. AOWP-PHP
Using AspectJ (none)

Infrastructure AO4FSM, AO4SQL, KALA, POM, Racer
Unknown AspectASF, Commentweaver, D4OL

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this article, we surveyed the field of DSALs. Based on a corpus of 36 DSALs, we
provided a definition of DSALs and discussed their relevant properties. Furthermore,
we structured the DSAL design space in the light of the three axes of join point rep-
resentation, means of identifying at join points, and means of effecting at join points.
Last, we also provided a detailed taxonomy of DSAL implementation approaches.

This article is useful for the general software development community first because it
discusses a well-defined set of domain-specific languages that may directly be useful to
the general practitioner. Second, it guides software developers that wish to implement
a new DSAL. Moreover, for DSAL and DSL researchers this work provides a frame
of reference for the efforts performed in the research community. This allows existing
work to be clearly described in terms of the definitions proposed here, as well as allowing
it to be accurately located in the design space.

This survey also highlights areas that have been lacking attention so far and merit
further research. More specifically, the following possible research directions warrant
attention:

—The text focuses on the three dimensions of join point representation, means of
identification, and means of effecting (see Section 3.1). We can, however, also consider
a fourth dimension: the domain-specific nature of the base language. The effect of
this dimension on the other three has not been studied in detail. We found no case
of a DSAL that is DS in the fourth dimension, and GP in the first three. It is not
immediately clear whether such a case is possible; further research would be required
to establish this (e.g., by constructing such a language).

—In Section 4.1 we have seen that all DSALs are asymmetric: aspect code differs from
base code (e.g., one typical difference is that execution of the latter does not emit
join points). The reason for this choice is not given by the language designers and
it is not clear if a fully symmetric DSAL is possible and whether it would yield any
advantages.

—Only few DSALs perform domain-specific optimizations. When we consider the op-
timization of join point generation, as discussed in Section 4.6, there are, however,
clear opportunities. This is illustrated by the three DSALs that perform optimization.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

40:38 J. Fabry et al.

It is not clear why the majority of DSAL implementers have chosen to ignore opti-
mization issues. More research is needed to determine the motivations for this design
choice.

—Composition of DSALs is a relevant issue, as there are multiple cases listed of where
more than one DSAL is expected to be used in the same codebase. However, as seen
in Section 4.7, the only DSALs that provide support for composition are the ones that
have been explicitly designed to be composed together. Outside of this space there
is no work showing the composition of different DSALs. A possible exception could
be the small example languages shown in the work on infrastructures. However,
these examples are arguably too small to be representative for full-fledged DSALs
and the composition issues that may arise there. A case study on the construction
of multiple DSALs using a given infrastructure and an in-depth evaluation of their
composability would be valuable.

—Continuing with infrastructures, in Section 5.5, we have seen that only 5 of the
36 DSALs we studied use a DSAL infrastructure for their implementation. The
reasons for this low adoption of infrastructures are unknown. This may vary from
the worst case: that these do not address the real issues that DSAL developers face, to
the case that simply (and sadly) DSAL developers are not aware of their existence. An
investigation into the motivation for the nonuse of infrastructure is warranted. This
might also reveal why the use of a preprocessor is such a popular implementation
technique.

In closing, we hope that our structuring of the design space is useful to programmers
and researchers alike, and may serve as a catalyst to spur the further growth of DSALs.

REFERENCES

Michael Achenbach and Klaus Ostermann. 2010a. A meta-aspect protocol for developing dynamic analyses.
In Runtime Verification, Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee,
Gordon Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in Computer Sci-
ence, Vol. 6418. Springer-Verlag, Berlin, 153–167. DOI:http://dx.doi.org/10.1007/978-3-642-16612-9_13

Michael Achenbach and Klaus Ostermann. 2010b. Growing a dynamic aspect language in ruby. In Proceed-
ings of the 5th Domain-Specific Aspect Languages Workshop at AOSD 2010 (DSAL’10).

Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann, Kevin
Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. 2003. Busi-
ness Process Execution Language for Web Services Specification. Technical Report. BEA Systems, Inter-
national Business Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems.

Yoav Apter, David H. Lorenz, and Oren Mishali. 2012. A debug interface for debugging multiple do-
main specific aspect languages. In Proceedings of the 11th Annual International Conference on
Aspect-Oriented Software Development (AOSD’12). ACM, New York, NY, 47–58. DOI:http://dx.doi.org/
10.1145/2162049.2162056

Toheed Aslam, Jesse Doherty, Anton Dubrau, and Laurie Hendren. 2010. AspectMatlab: An aspect-oriented
scientific programming language. In Proceedings of the 9th International Conference on Aspect-Oriented
Software Development (AOSD’10). ACM, New York, NY, 181–192.

Ali Assaf and Jacques Noyé. 2008. Dynamic AspectJ. In Proceedings of the 2008 Symposium on Dy-
namic Languages (DLS’08). ACM, New York, NY, Article 8 (2008), 12 pages. DOI:http://dx.doi.org/
10.1145/1408681.1408689

Pavel Avgustinov, Aske Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták, Ondřej Lhoták,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. 2006. abc: An extensible
AspectJ compiler. In Transactions on Aspect-Oriented Software Development I, Awais Rashid and
Mehmet Aksit (Eds.). Lecture Notes in Computer Science, Vol. 3880. Springer-Verlag, Berlin, 293–334.
DOI:http://dx.doi.org/10.1007/11687061_9

Pavel Avgustinov, Torbjörn Ekman, and Julian Tibble. 2008. Modularity first: A case for mixing AOP and
attribute grammars. In Proceedings of the 7th International Conference on Aspect-Oriented Software
Development (AOSD’08). ACM, New York, NY, 25–35. DOI:http://dx.doi.org/10.1145/1353482.1353486

Anya Helene Bagge, Valentin David, Magne Haveraaen, and Karl Trygve Kalleberg. 2006. Stayin’ alert::
Moulding failure and exceptions to your needs. In Proceedings of the 5th International Conference

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.1007/978-3-642-16612-9_13
http://dx.doi.org/10.1145/2162049.2162056
http://dx.doi.org/10.1145/2162049.2162056
http://dx.doi.org/10.1145/1408681.1408689
http://dx.doi.org/10.1145/1408681.1408689
http://dx.doi.org/10.1007/11687061_9
http://dx.doi.org/10.1145/1353482.1353486

A Taxonomy of Domain-Specific Aspect Languages 40:39

on Generative Programming and Component Engineering (GPCE’06). ACM, New York, NY, 265–274.
DOI:http://dx.doi.org/10.1145/1173706.1173747

Jason Baker and Wilson Hsieh. 2002. Runtime aspect weaving through metaprogramming. In Proceedings of
the 1st International Conference on Aspect-Oriented Software Development (AOSD’02). ACM, New York,
NY, 86–95.

Anindya Basu. 1997. A Language-Based Approach to Protocol Construction. Ph.D. dissertation. Cornell
University, Ithaca, NY.

Lodewijk Bergmans and Mehmet Aksit. 2001. Composing crosscutting concerns using composition filters.
Commun. ACM 44, 10 (Oct. 2001), 51–57.

Eric Bodden. 2005. Concern Specific Languages and their implementation with abc. In Proceedings of the
Software-Engineering Properties of Languages and Aspect Technologies workshop (SPLAT!) at the 4th
International Conference on Aspect-Oriented Software Development. (March 2005).

Eric Bodden and Klaus Havelund. 2008. Racer: Effective race detection using AspectJ. In Proceedings of
the 2008 International Symposium on Software Testing and Analysis (ISSTA’08). ACM, New York, NY,
155–166. DOI:http://dx.doi.org/10.1145/1390630.1390650

Mathieu Braem, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten, and Viviane Jonckers.
2007. Concern-specific languages in a visual web service creation environment. Electron. Notes Theor.
Comput. Sci. 163, 2 (April 2007), 3–17. DOI:http://dx.doi.org/DOI: 10.1016/j.entcs.2006.10.012

Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Vanderperren, Ragnhild Straeten, Eddy Truyen,
Wouter Joosen, and Viviane Jonckers. 2006. Isolating process-level concerns using padus. In Busi-
ness Process Management, Schahram Dustdar, JosLuiz Fiadeiro, and AmitP. Sheth (Eds.). Lec-
ture Notes in Computer Science, Vol. 4102. Springer-Verlag, Berlin, 113–128. DOI:http://dx.doi.org/
10.1007/11841760_9

M. Bravenboer and E. Visser. 2004. Concrete syntax for objects: Domain-specific language embedding and
assimilation without restrictions. In Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’04). ACM , New York,
NY, 365–383.

David Bruce. 1997. What makes a good domain-specific language? APOSTLE, and its approach to parallel
discrete event simulation. In DSL’97—First ACM SIGPLAN Workshop on Domain-Specific Languages,
in Association with POPL’97. 17–35. University of Illinois Computer Science Report.

M. Bruntink, A. van Deursen, and T. Tourwe. 2005. Isolating idiomatic crosscutting concerns. In Proceedings
of the 21st IEEE International Conference on Software Maintenance (ICSM’05). IEEE Computer Society,
Los Alamitos, CA, 37–46. DOI:http://dx.doi.org/10.1109/ICSM.2005.57

Joao Cardoso, Pedro Diniz, Miguel P. Monteiro, João M. Fernandes, and João Saraiva. 2010. A domain-specific
aspect language for transforming MATLAB programs. In Proceedings of the 5th Domain-Specific Aspect
Languages Workshop at AOSD 2010 (DSAL’10).

João M. P. Cardoso, Tiago Carvalho, José G. F. Coutinho, Wayne Luk, Ricardo Nobre, Pedro Diniz, and Zlatko
Petrov. 2012. LARA: An aspect-oriented programming language for embedded systems. In Proceedings
of the 11th Annual International Conference on Aspect-Oriented Software Development (AOSD’12). ACM,
New York, NY, 179–190. DOI:http://dx.doi.org/10.1145/2162049.2162071

Denis Caromel, Luis Mateu, Guillaume Pothier, and Éric Tanter. 2008. Parallel object monitors. Concurrency
Comput.: Pract. Exper. 20, 12 (Aug. 2008), 1387–1417.

Denis Caromel, Luis Mateu, and Éric Tanter. 2004. Sequential object monitors. In ECOOP 2004—Object-
Oriented Programming, Martin Odersky (Ed.). Lecture Notes in Computer Science, Vol. 3086. Springer-
Verlag, Berlin, 316–340.

Andrew Casey, Jun Li, Jesse Doherty, Maxime Chevalier-Boisvert, Toheed Aslam, Anton Dubrau, Nurudeen
Lameed, Amina Aslam, Rahul Garg, Soroush Radpour, Olivier Savary Belanger, Laurie Hendren, and
Clark Verbrugge. 2010. McLab: An extensible compiler toolkit for MATLAB and related languages. In
Proceedings of the Third C* Conference on Computer Science and Software Engineering (C3S2E’10).
ACM, New York, NY, 114–117. DOI:http://dx.doi.org/10.1145/1822327.1822343

Anis Charfi and Mira Mezini. 2007. AO4BPEL: An aspect-oriented extension to BPEL. World Wide Web 10,
3 (Sept. 2007), 309–344. DOI:http://dx.doi.org/10.1007/s11280-006-0016-3

Panos K. Chrysanthis and Krithi Ramamritham. 1991. A formalism for extended transaction models. In Pro-
ceedings of the 17th International Conference on Very Large Data Bases (VLDB’91). Morgan Kaufmann,
Burlington, MA, 103–112.

Thomas Cleenewerck, Jacques Noyé, Johan Fabry, Anne-Françoise Le Meur, and Éric Tanter. 2008. Summary
of the third workshop on domain-specific aspect languages. In Proceedings of the 2008 AOSD Workshop
on Domain-Specific Aspect Languages (DSAL’08). ACM, New York, NY, 1–5.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.1145/1173706.1173747
http://dx.doi.org/10.1145/1390630.1390650
http://dx.doi.org/DOI: ignorespaces 10.1016/j.entcs.2006.10.012
http://dx.doi.org/10.1007/118417609
http://dx.doi.org/10.1007/118417609
http://dx.doi.org/10.1109/ICSM.2005.57
http://dx.doi.org/10.1145/2162049.2162071
http://dx.doi.org/10.1145/1822327.1822343
http://dx.doi.org/10.1007/s11280-006-0016-3

40:40 J. Fabry et al.

Pierre-Charles David, Thomas Ledoux, and Noury M. Bouraqadi-Sadani. 2001. Two-step weaving with
reflection using AspectJ. In Proceedings of the OOPSLA 2001 Workshop on Advanced Separation
of Concerns in Object-Oriented Systems. Retrieved from http://www.cs.ubc.ca/∼kdvolder/Workshops/
OOPSLA2001/submissions/02-david.pdf.

Kris De Volder and Theo D’Hondt. 1999. Aspect-oriented logic meta programming. In Meta-Level Architec-
tures and Reflection, Pierre Cointe (Ed.). Lecture Notes in Computer Science, Vol. 1616. Springer-Verlag,
Berlin, 250–272. DOI:http://dx.doi.org/10.1007/3-540-48443-4_22

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo DHondt, and Wolfgang De Meuter. 2006.
Ambient-oriented programming in AmbientTalk. In ECOOP 2006—Object-Oriented Programming,
Dave Thomas (Ed.). Lecture Notes in Computer Science, Vol. 4067. Springer-Verlag, Berlin, 230–254.
DOI:http://dx.doi.org/10.1007/11785477_16

Edsger W. Dijkstra. 1982. Selected writings on Computing: A Personal Perspective. Springer-Verlag, New
York, NY, 60–66.

Tom Dinkelaker. 2011a. AO4SQL: Towards an aspect-oriented extension for SQL. In Proceedings of the 8th
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’11).

Tom Dinkelaker. 2011b. Reflective Embedding of Domain-Specific Languages. Ph.D. dissertation. Technische
Universität Darmstadt, Darmstadt, Germany.

Tom Dinkelaker, Michael Eichberg, and Mira Mezini. 2010. An architecture for composing embedded domain-
specific languages. In Proceedings of the 9th International Conference on Aspect-Oriented Software De-
velopment (AOSD’10). ACM, New York, NY, 49–60. DOI:http://dx.doi.org/10.1145/1739230.1739237

Tom Dinkelaker, Michael Eichberg, and Mira Mezini. 2013. Incremental concrete syntax for embedded
languages with support for separate compilation. Science of Computer Programming 78, 6 (June 2013),
615–632. DOI:http://dx.doi.org/10.1016/j.scico.2012.12.002

Tom Dinkelaker, Mohammed Erradi, and Meryeme Ayache. 2012. Using aspect-oriented state machines for
detecting and resolving feature interactions. Comput. Sci. Inf. Syst. 9, 3 (2012), 1045–1074.

Tom Dinkelaker and Mira Mezini. 2008. Dynamically linked domain-specific extensions for advice languages.
In Proceedings of the 2008 AOSD Workshop on Domain-Specific Aspect Languages (DSAL’08). ACM, New
York, NY, Article 3, (2008) 7 pages. DOI:http://dx.doi.org/10.1145/1404927.1404930

Tom Dinkelaker, Mira Mezini, and Christoph Bockisch. 2009. The art of the meta-aspect protocol. In Pro-
ceedings of the 8th ACM International Conference on Aspect-Oriented Software Development (AOSD’09).
ACM, New York, NY, 51–62.

Jesse Doherty. 2010. (Oct. 2010). Personal communication.
Rémi Douence, Pascal Fradet, and Mario Südholt. 2002. A framework for the detection and resolution

of aspect interactions. In Proceedings of the 1st ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE’02). Springer-Verlag, Berlin, 173–188.

Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi. 2006. Semantics and scoping of aspects
in higher-order languages. Sci. Comput. Prog. 63, 3 (Dec. 2006), 207–239.

Gary Duzan, Joseph Loyall, Richard Schantz, Richard Shapiro, and John Zinky. 2004. Building adap-
tive distributed applications with middleware and aspects. In Proceedings of the 3rd Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’04). ACM, New York, NY, 66–73.
DOI:http://dx.doi.org/10.1145/976270.976280

Torbjörn Ekman and Görel Hedin. 2007. The JastAdd extensible Java compiler. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications (OOP-
SLA’07). ACM, New York, NY, 1–18. DOI:http://dx.doi.org/10.1145/1297027.1297029

Patrick Eugster and K.R. Jayaram. 2009. EventJava: An extension of java for event correlation. In ECOOP
2009—Object-Oriented Programming, Sophia Drossopoulou (Ed.). Lecture Notes in Computer Science,
Vol. 5653. Springer-Verlag, Berlin, 570–594. DOI:http://dx.doi.org/10.1007/978-3-642-03013-0_26

Johan Fabry, Éric Tanter, and Theo D’Hondt. 2008. KALA: Kernel aspect language for advanced transactions.
Sci. Comput. Prog. 71, 3 (May 2008), 165–180.

J. Fabry, E. Tanter, and T. D’Hondt. 2009. Infrastructure for domain-specific aspect languages: The ReLAx
case study. IET Software 3, 3 (June 2009), 238–254. DOI:http://dx.doi.org/10.1049/iet-sen.2007.0120

Marc Fleury and Francisco Reverbel. 2003. The JBoss extensible server. In Middleware 2003, Markus
Endler and Douglas Schmidt (Eds.). Lecture Notes in Computer Science, Vol. 2672. Springer-Verlag,
Berlin, 344–373. DOI:http://dx.doi.org/10.1007/3-540-44892-6_18

Martin Fowler. 2010. Domain-Specific Languages. Addison-Wesley Professional, Boston, MA.
Pascal Fradet and Mario Südholt. 1999. An aspect language for robust programming. In Proceedings of the

International Workshop on Aspect-Oriented Programming at ECOOP’99.
Debasish Ghosh. 2010. DSLs in Action. Manning, Shelter Island, NY.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://www.cs.ubc.ca/sim;kdvolder/Workshops/OOPSLA2001/submissions/02-david.pdf
http://www.cs.ubc.ca/sim;kdvolder/Workshops/OOPSLA2001/submissions/02-david.pdf
http://dx.doi.org/10.1007/3-540-48443-4_22
http://dx.doi.org/10.1007/11785477_16
http://dx.doi.org/10.1145/1739230.1739237
http://dx.doi.org/10.1016/j.scico.2012.12.002
http://dx.doi.org/10.1145/1404927.1404930
http://dx.doi.org/10.1145/976270.976280
http://dx.doi.org/10.1145/1297027.1297029
http://dx.doi.org/10.1007/978-3-642-03013-0_26
http://dx.doi.org/10.1049/iet-sen.2007.0120
http://dx.doi.org/10.1007/3-540-44892-6_18

A Taxonomy of Domain-Specific Aspect Languages 40:41

Elisa Gonzalez Boix, Thomas Cleenewerk, Jessie Dedecker, and Wolfgang De Meuter. 2008. Towards a
domain-specific aspect language for leasing in mobile ad hoc networks. In Proceedings of the 2008 AOSD
Workshop on Domain-Specific Aspect Languages (DSAL’08). ACM, New York, NY, Article 6, 5 pages.
DOI:http://dx.doi.org/10.1145/1404927.1404933

Jan Hannemann and Gregor Kiczales. 2002. Design pattern implementation in Java and AspectJ. SIGPLAN
Not. 37, 11 (Nov. 2002), 161–173. DOI:http://dx.doi.org/10.1145/583854.582436

William Harrison, Harold Ossher, and Peri Tarr. 2002. Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition. Technical Report RC22685. IBM Research Division.

M. Haupt, C. Gibbs, B. Adams, S. Timbermont, Y. Coady, and R. Hirschfeld. 2009. Disentangling
virtual machine architecture. IET Software, 3, 3 (June 2009), 201–218. DOI:http://dx.doi.org/
10.1049/iet-sen.2007.0121

Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit. 2008. Prototyping and composing aspect languages.
In ECOOP 2008—Object-Oriented Programming, Jan Vitek (Ed.), Lecture Notes in Computer Science,
Vol. 5142. Springer-Verlag, Berlin, 180–206. DOI:http://dx.doi.org/10.1007/978-3-540-70592-5_9

Jan Heering and Marjan Mernik. 2007. Domain-Specific Languages in Perspective. Technical Report
SEN-E0702. CWI, Amsterdam, The Netherlands. Retrieved from from http://oai.cwi.nl/oai/asset/12319/
12319D.pdf.

Erik Hilsdale and Jim Hugunin. 2004. Advice weaving in AspectJ. In Proceedings of the 3rd Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’04). ACM, New York, NY, 26–35.
DOI:http://dx.doi.org/10.1145/976270.976276

Robert Hirschfeld. 2003. AspectS—Aspect-oriented programming with squeak. In Objects, Components,
Architectures, Services, and Applications for a Networked World, Mehmet Aksit, Mira Mezini, and
Rainer Unland (Eds.). Lecture Notes in Computer Science, Vol. 2591. Springer-Verlag, Berlin, 216–232.
DOI:http://dx.doi.org/10.1007/3-540-36557-5_17

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. 2008. Polymorphic embedding of
DSLs. In Proceedings of the 7th International Conference on Generative Programming and Component
Engineering (GPCE’08). ACM Press, New York, NY, 137–148.

Keiji Hokamura, Naoyasu Ubayashi, Shin Nakajima, and Akihito Iwai. 2008. Aspect-oriented program-
ming for web controller layer. Asia-Pacific Software Engineering Conference 0 (2008), 529–536.
DOI:http://dx.doi.org/10.1109/APSEC.2008.69

Adrian Holzer, Lukasz Ziarek, K.R. Jayaram, and Patrick Eugster. 2011. Putting events in context:
Aspects for event-based distributed programming. In Proceedings of the 10th International Con-
ference on Aspect-Oriented Software Development (AOSD’11). ACM Press, New York, NY, 241–252.
DOI:http://dx.doi.org/10.1145/1960275.1960304

Michihiro Horie and Shigeru Chiba. 2010. Tool support for crosscutting concerns of API documentation. In
Proceedings of the 9th International Conference on Aspect-Oriented Software Development (AOSD’10).
ACM Press, New York, NY, 97–108. DOI:http://dx.doi.org/10.1145/1739230.1739242

Paul Hudak. 1996. Building domain-specific embedded languages. Comput. Surveys 28, 4es (Dec. 1996).
John Irwin, Jean-Marc Loingtier, JohnR. Gilbert, Gregor Kiczales, John Lamping, Anurag Mendhekar, and

Tatiana Shpeisman. 1997. Aspect-oriented programming of sparse matrix code. In Scientific Computing
in Object-Oriented Parallel Environments, Yutaka Ishikawa, Rodney R. Oldehoeft, John V. W. Reynders,
and Marydell Tholburn (Eds.). Lecture Notes in Computer Science, Vol. 1343. Springer-Verlag, Berlin,
Heidelberg, 249–256. DOI:http://dx.doi.org/10.1007/3-540-63827-X_68

Karl Trygve Kalleberg and Eelco Visser. 2006. Combining aspect-oriented and strategic programming.
Electronic Notes Theor. Comput. Sci. 147, 1 (January 2006), 5–30. DOI:http://dx.doi.org/10.1016/j.entcs.
2005.06.035

G. Kiczales, J. Des Rivieres, and D.G. Bobrow. 1991. The Art of the Metaobject Protocol. The MIT Press,
Cambridge, USA.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and WilliamG. Griswold.
2001. An overview of AspectJ. In ECOOP 2001—Object-Oriented Programming, Jørgen Lindskov
Knudsen (Ed.). Lecture Notes in Computer Science, Vol. 2072. Springer-Verlag, Berlin, 327–354.
DOI:http://dx.doi.org/10.1007/3-540-45337-7_18

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. 1997. Aspect-oriented programming. In ECOOP’97—Object-Oriented Programming,
Mehmet Aksit and Satoshi Matsuoka (Eds.). Lecture Notes in Computer Science, Vol. 1241. Springer-
Verlag, Berlin, 220–242. DOI:http://dx.doi.org/10.1007/BFb0053381

Paul Klint, Tijs Storm, and Jurgen Vinju. 2005. Term rewriting meets aspect-oriented programming. In
Processes, Terms and Cycles: Steps on the Road to Infinity, Aart Middeldorp, Vincent Oostrom, Femke

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.1145/1404927.1404933
http://dx.doi.org/10.1145/583854.582436
http://dx.doi.org/10.1049/iet-sen.2007.0121
http://dx.doi.org/10.1049/iet-sen.2007.0121
http://dx.doi.org/10.1007/978-3-540-70592-5_9
http://dx.doi.org/10.1145/976270.976276
http://dx.doi.org/10.1007/3-540-36557-5_17
http://dx.doi.org/10.1109/APSEC.2008.69
http://dx.doi.org/10.1145/1960275.1960304
http://dx.doi.org/10.1145/1739230.1739242
http://dx.doi.org/10.1007/3-540-63827-X_68
http://dx.doi.org/10.1016/j.entcs.2005.06.035
http://dx.doi.org/10.1016/j.entcs.2005.06.035
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/BFb0053381

40:42 J. Fabry et al.

Raamsdonk, and Roel Vrijer (Eds.). Lecture Notes in Computer Science, Vol. 3838. Springer-Verlag,
Berlin, 88–105. DOI:http://dx.doi.org/10.1007/11601548_8

Sergei Kojarski and David H. Lorenz. 2004. AOP as a first class reflective mechanism. In OOPSLA Com-
panion (OOPSLA’04), John M. Vlissides and Douglas C. Schmidt (Eds.). ACM, New York, NY, 216–217.
DOI:http://dx.doi.org/10.1145/1028664.1028757

Sergei Kojarski and David H. Lorenz. 2005. Pluggable AOP: Designing aspect mechanisms for third-
party composition. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’05). ACM, New York, NY, 247–263.
DOI:http://dx.doi.org/10.1145/1094811.1094831

Sergei Kojarski and David H. Lorenz. 2007. Awesome: An aspect co-weaving system for composing mul-
tiple aspect-oriented extensions. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications (OOPSLA’07). ACM, New York, NY, 515–534.
DOI:http://dx.doi.org/10.1145/1297027.1297065

Dierk König, Aandrew Glover, Paul King, Guillaume Laforge, and Jon Skeet. 2007. Groovy in Action. Man-
ning, Shelter Island, NY.

T. Kosar, M. López, E. Pablo, P.A. Barrientos, and M. Mernik. 2008. A preliminary study on various imple-
mentation approaches of domain-specific language. Inf. Softw. Technol. 50, 5 (April 2008), 390–405.

Toma Kosar, Marjan Mernik, and Jeffrey C. Carver. 2012. Program comprehension of domain-specific and
general-purpose languages: Comparison using a family of experiments. Empirical Softw. Eng. 17, 3
(2012), 276–304. DOI:http://dx.doi.org/10.1007/s10664-011-9172-x

Tomaž Kosar, Marjan Mernik, João Maria Pereira, Varanda, Matej Črepinšek, Daniela Da Cruz, and Rangel
Pedro Henriques. 2010. Comparing general-purpose and domain-specific languages: An empirical study.
Comput. Sci. Inf. Syst. 7, 2 (2010), 247–264.

Cristina Videira Lopes and Trung Chi Ngo. 2004. The Aspect Markup Language and Its Support of Aspect
Plugins. ISR Technical Report UCI-ISR-04-8. University of California, Irvine.

Cristina Videira Lopes. 1997. D: A Language Framework for Distributed Programming. Ph.D. dissertation.
College of Computer Science of Northeastern University, Boston, MA.

David Lorenz and Sergei Kojarski. 2007. Understanding aspect interactions, co-advising and foreign advis-
ing. In Proceedings of the Second International Workshop on Aspects, Dependencies and Interactions at
ECOOP07, Frans Sanen, Ruzanna Chitchyan, Lodewijk Bergmans, Johan Fabry, and Mario Südholt
(Eds.). Technical Report CW 497. Katholieke Universiteit Leuven, Leuven, 23–28.

David H. Lorenz. 2012. Language-oriented modularity through awesome DSALs: Summary of invited talk.
In Proceedings of the Seventh Workshop on Domain-Specific Aspect Languages (DSAL’12). ACM, New
York, NY, 1–2. DOI:http://dx.doi.org/10.1145/2162037.2162039

David H. Lorenz and Oren Mishali. 2012. SPECTACKLE: Toward a specification-based DSAL composition
process. In Proceedings of the Seventh Workshop on Domain-Specific Aspect Languages (DSAL’12). ACM,
New York, NY, 9–14. DOI:http://dx.doi.org/10.1145/2162037.2162042

Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and Zhengwei Qi. 2012. DiSL:
A domain-specific language for bytecode instrumentation. In Proceedings of the 11th Annual Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’12). ACM, New York, NY, 239–250.
DOI:http://dx.doi.org/10.1145/2162049.2162077

Antoine Marot and Roel Wuyts. 2008. A DSL to declare aspect execution order. In Proceedings of the 2008
AOSD Workshop on Domain-Specific Aspect Languages (DSAL’08). ACM, New York, NY, Article 7, 5
pages. DOI:http://dx.doi.org/10.1145/1404927.1404934

Hidehiko Masuhara, Yusuke Endoh, and Akinori Yonezawa. 2006. A fine-grained join point model for
more reusable aspects. In Programming Languages and Systems, Naoki Kobayashi (Ed.). Lecture
Notes in Computer Science, Vol. 4279. Springer-Verlag, Berlin, 131–147. DOI:http://dx.doi.org/10.1007/
11924661_8

Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. 2003. A compilation and optimization model
for aspect-oriented programs. In Compiler Construction. CC’03, Grel Hedin (Ed.). Lecture Notes in
Computer Science, Vol. 2622. Springer-Verlag, Berlin, Heidelberg, 46–60. DOI:http://dx.doi.org/10.1007/
3-540-36579-6_4

Anurag Mendhekar, Gregor Kiczales, and John Lamping. 1997. RG: A Case-Study for Aspect-Oriented Pro-
gramming. Technical Report SPL97-009. XEROX PARC.

Marjan Mernik (Ed.). 2013. Formal and Practical Aspects of Domain-Specific Languages: Recent Develop-
ments. IGI Global, Hershey, PA.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to develop domain-specific
languages. Comput. Surveys 37, 4 (Dec. 2005), 316–344. DOI:http://dx.doi.org/10.1145/1118890.1118892

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.1007/11601548_8
http://dx.doi.org/10.1145/1028664.1028757
http://dx.doi.org/10.1145/1094811.1094831
http://dx.doi.org/10.1145/1297027.1297065
http://dx.doi.org/10.1007/s10664-011-9172-x
http://dx.doi.org/10.1145/2162037.2162039
http://dx.doi.org/10.1145/2162037.2162042
http://dx.doi.org/10.1145/2162049.2162077
http://dx.doi.org/10.1145/1404927.1404934
http://dx.doi.org/10.1007/119246618
http://dx.doi.org/10.1007/119246618
http://dx.doi.org/10.1007/3-540-36579-64
http://dx.doi.org/10.1007/3-540-36579-64
http://dx.doi.org/10.1145/1118890.1118892

A Taxonomy of Domain-Specific Aspect Languages 40:43

Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer. 2002. LISA: An interactive en-
vironment for programming language development. In Compiler Construction (CC’02), R. Nigel
Horspool (Ed.). Lecture Notes in Computer Science, Vol. 2304. Springer-Verlag, Berlin, 1–4.
DOI:http://dx.doi.org/10.1007/3-540-45937-5_1

Clint Morgan, Kris De Volder, and Eric Wohlstadter. 2007. A static aspect language for checking design rules.
In Proceedings of the 6th International Conference on Aspect-Oriented Software Development (AOSD’07).
ACM, New York, NY, 63–72. DOI:http://dx.doi.org/10.1145/1218563.1218571

J. Munnelly and S. Clarke. 2008. A domain-specific language for ubiquitous healthcare. In Third In-
ternational Conference on Pervasive Computing and Applications, 2008 (ICPCA’08), Vol. 2, 757–762.
DOI:http://dx.doi.org/10.1109/ICPCA.2008.4783710

J. Noble, A. Schmidmeier, D. J. Pearce, and A. P. Black. 2007. Patterns of aspect-oriented design. In Proceed-
ings of European Conference on Pattern Languages of Program (EuroPLoP’07), Lise B. Hvatum and Till
Schümmer (Eds.). UVK–Universitaetsverlag Konstanz, Irsee, Germany.

Amjad Nusayr and Jonathan Cook. 2009. AOP for the domain of runtime monitoring: Breaking out of the
code-based model. In Proceedings of the 4th Workshop on Domain-Specific Aspect Languages (DSAL’09).
ACM, New York, NY, 7–10. DOI:http://dx.doi.org/10.1145/1509307.1509310

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. 2003. Polyglot: An extensible compiler
framework for java. In Compiler Construction (CC’03), Görel Hedin (Ed.). Lecture Notes in Computer
Science, Vol. 2622. Springer-Verlag, Berlin, 138–152. DOI:http://dx.doi.org/10.1007/3-540-36579-6_11

Harold Ossher and Peri Tarr. 2002. Multi-dimensional separation of concerns and the hyperspace ap-
proach. In Software Architectures and Component Technology, Mehmet Aksit (Ed.). The Springer In-
ternational Series in Engineering and Computer Science, Vol. 648. Springer, New York, NY, 293–323.
DOI:http://dx.doi.org/10.1007/978-1-4615-0883-0_10

David L. Parnas. 1972. On the criteria for decomposing systems into modules. Commun. ACM 15, 12 (Dec.
1972), 1053–1058.

T. J. Parr and R. W. Quong. 1995. ANTLR: A predicated-LL(k) parser generator. Software: Practice and
Experience 25, 7 (July 1995), 789–810. DOI:http://dx.doi.org/10.1002/spe.4380250705

D. Rebernak, M. Mernik, H. Wu, and J. Gray. 2009. Domain-specific aspect languages for modularising
crosscutting concerns in grammars. IET Software 3, 3 (June 2009), 184–200. DOI:http://dx.doi.org/
10.1049/iet-sen.2007.0114

Lukas Renggli, Tudor Gı̂rba, and Oscar Nierstrasz. 2010. Embedding languages without breaking tools. In
ECOOP 2010 Object-Oriented Programming, Theo D’Hondt (Ed.). Lecture Notes in Computer Science,
Vol. 6183. Springer-Verlag, Berlin, 380–404. DOI:http://dx.doi.org/10.1007/978-3-642-14107-2_19

Walter A. Rolling. 1994. A preliminary annotated bibliography on domain engineering. SIGSOFT Softw.
Eng. Notes 19, 3 (July 1994), 82–84. DOI:http://dx.doi.org/10.1145/182824.182844

J. L. Sobral, M. P. Monteiro, and C. A. Cunha. 2006. Aspect-oriented support for modular parallel computing.
In Proceedings of the 5th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software. 37–41.

João L. Sobral and Miguel P. Monteiro. 2008. A domain-specific language for parallel and grid computing. In
Proceedings of the 2008 AOSD Workshop on Domain-Specific Aspect Languages (DSAL’08). ACM Press,
New York, NY, Article 2, 4 pages. DOI:http://dx.doi.org/10.1145/1404927.1404929

Paul Soule. 2010. Autonomics Development: A Domain-Specific Aspect Language Approach. Springer Basel,
Basel. DOI:http://dx.doi.org/10.1007/978-3-0346-0540-3_3

Paul Soule, Tom Carnduff, and Stuart Lewis. 2007. A distribution definition language for the automated
distribution of Java objects. In Proceedings of the 2nd Workshop on Domain Specific Aspect Languages
(DSAL’07). ACM Press, New York, NY. DOI:http://dx.doi.org/10.1145/1255400.1255402

William Sousan, Victor Winter, Mansour Zand, and Harvey Siy. 2007. ERTSAL: A prototype of a
domain-specific aspect language for analysis of embedded real-time systems. In Proceedings of the
2nd Workshop on Domain Specific Aspect Languages (DSAL’07). ACM, New York, NY, Article 1.
DOI:http://dx.doi.org/10.1145/1255400.1255401

Johan J Sung and Karl Lieberherr. 2002. DAJ: A Case Study of Extending AspectJ. Technical Report NU-
CCS-02-16. Northeastern University.

Éric Tanter. 2004. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented Programming. Ph.D.
dissertation. University of Nantes and University of Chile, Nantes, France and Santiago, Chile.

Éric Tanter. 2006. Aspects of composition in the Reflex AOP kernel. In Proceedings of the 5th International
Symposium on Software Composition (SC 2006), Welf Löwe and Mario Südholt (Eds.). Lecture Notes in
Computer Science, Vol. 4089. Springer-Verlag, Berlin, 98–113.

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.1007/3-540-45937-5_1
http://dx.doi.org/10.1145/1218563.1218571
http://dx.doi.org/10.1109/ICPCA.2008.4783710
http://dx.doi.org/10.1145/1509307.1509310
http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1007/978-1-4615-0883-0_10
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1049/iet-sen.2007.0114
http://dx.doi.org/10.1049/iet-sen.2007.0114
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1145/182824.182844
http://dx.doi.org/10.1145/1404927.1404929
http://dx.doi.org/10.1007/978-3-0346-0540-3_3
http://dx.doi.org/10.1145/1255400.1255402
http://dx.doi.org/10.1145/1255400.1255401

40:44 J. Fabry et al.

Éric Tanter and Johan Fabry. 2009. Supporting composition of structural aspects in an AOP kernel. J. Univ.
Comput. Sci. 15, 3 (2009), 620–647. DOI:http://dx.doi.org/10.3217/jucs-015-03-0620

Éric Tanter and Jacques Noyé. 2005. A versatile kernel for multi-language AOP. In Proceedings of the
4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering
(GPCE’05), Robert Glück and Mike Lowry (Eds.). Lecture Notes in Computer Science, Vol. 3676.
Springer-Verlag, Berlin, 173–188.

Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. 2003. Partial behavioral reflection: Spatial
and temporal selection of reification. In Proceedings of the 18th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA’03), Ron Crocker and Guy L.
Steele, Jr. (Eds.). ACM, New York, NY, 27–46.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. 1999. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference on Software
Engineering (ICSE’99). ACM, New York, NY, 107–119.

Stijn Timbermont, Bram Adams, and Michael Haupt. 2008. Towards a DSAL for object layout in virtual
machines. In Proceedings of the 2008 AOSD Workshop on Domain-Specific Aspect Languages (DSAL’08).
ACM, New York, NY, Article 5, 4 pages. DOI:http://dx.doi.org/10.1145/1404927.1404932

Rodolfo Toledo and Éric Tanter. 2008. A lightweight and extensible AspectJ implementation. J. Univ. Comput.
Sci. 14, 21 (2008), 3517–3533.

Laurence Tratt. 2008. Domain specific language implementation via compile-time meta-programming.
ACM Trans. Program. Lang. Syst. 30, 6 (Oct. 2008), 31:1–31:40. DOI:http://dx.doi.org/10.1145/
1391956.1391958

Naoyasu Ubayashi, Hidehiko Masuhara, and Tetsuo Tamai. 2004. An AOP implementation framework for
extending join point models. In Proceedings of the ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE04), Walter Cazzola, Shigeru Chiba, and Gunter Saake (Eds.). Oslo,
Norway.

M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. 2001. The ASF+SDF
meta-environment: A component-based language development environment. In Compiler Construction
(CC’01), Reinhard Wilhelm (Ed.). Lecture Notes in Computer Science, Vol. 2027. Springer-Verlag, Berlin,
365–370. DOI:http://dx.doi.org/10.1007/3-540-45306-7_26

Arie van Deursen and Paul Klint. 1998. Little languages: Little maintenance? J. Softw. Maint.: Res. Pract.
10, 2 (1998), 75–92.

Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages: An annotated bibliography.
SIGPLAN Not. 35, 6 (June 2000), 26–36. DOI:http://dx.doi.org/10.1145/352029.352035

Eelco Visser. 2004. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In Domain-Specific Program Generation, Lecture Notes in Computer Science, Vol. 3016.
Springer-Verlag, Berlin, 216–238.

C. Walls and R. Breidenbach. 2005. Spring in Action. Manning, Shelter Island, NY.
D. Wampler. 2008. Aquarium: AOP in Ruby. In Proceedings of the 7th International Conference on Aspect-

Oriented Software Development—Industry Track (AOSD’07). 60–67.
Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. 2004. A semantics for advice and dynamic join

points in aspect-oriented programming. ACM Trans. Prog. Lang. Syst. 26, 5 (Sept. 2004), 890–910.
J. White and D. C. Schmidt. 2009. Automating deployment planning with an aspect weaver. IET Software,

3, 3 (June 2009), 167–183. DOI:http://dx.doi.org/10.1049/iet-sen.2007.0123

Received March 2013; revised July 2014; accepted October 2014

ACM Computing Surveys, Vol. 47, No. 3, Article 40, Publication date: February 2015.

http://dx.doi.org/10.3217/jucs-015-03-0620
http://dx.doi.org/10.1145/1404927.1404932
http://dx.doi.org/10.1145/1391956.1391958
http://dx.doi.org/10.1145/1391956.1391958
http://dx.doi.org/10.1007/3-540-45306-7_26
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1049/iet-sen.2007.0123

