
Science of Computer Programming 197 (2020) 102496
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Abstracting gradual references ✩

Matías Toro ∗, Éric Tanter ∗

PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 June 2019
Received in revised form 20 May 2020
Accepted 22 May 2020
Available online 8 June 2020

Keywords:
Gradual typing
Mutable references
Abstract interpretation

Gradual typing is an effective approach to integrate static and dynamic typing, which
supports the smooth transition between both extremes via the imprecision of type
annotations. Gradual typing has been applied in many scenarios such as objects, subtyping,
effects, ownership, typestates, information-flow typing, parametric polymorphism, etc. In
particular, the combination of gradual typing and mutable references has been explored
by different authors, giving rise to four different semantics—invariant, guarded, monotonic
and permissive references. These semantics were specially crafted to reflect different design
decisions with respect to precision and efficiency tradeoffs. Since then, progress has been
made in the formulation of methodologies to systematically derive gradual counterparts of
statically-typed languages, but these have not been applied to study mutable references.
In this article, we explore how the Abstracting Gradual Typing (AGT) methodology, which
has been shown to be effective in a variety of settings, applies to mutable references.
Starting from a standard statically-typed language with references, we systematically derive
with AGT a novel gradual language, called λR̃EF . We establish the properties of λR̃EF; in
particular, it is the first gradual language with mutable references that is proven to satisfy
the gradual guarantee. We then compare λR̃EF with the main four existing approaches to
gradual references, and show that the application of AGT does justify one of the proposed
semantics: we formally prove that the treatment of references in λR̃EF corresponds to the
guarded semantics, by presenting a bisimilation with the coercion semantics of Herman
et al. In the process, we uncover that any direct application of AGT yields a gradual
language that is not space-efficient. We consequently adjust the dynamic semantics of λR̃EF

to recover space efficiency. We then show how to extend λR̃EF to support both monotonic
and permissive references as well. Finally, we provide the first proof of the dynamic gradual
guarantee for monotonic references. As a result, this paper sheds further light on the
design space of gradual languages with mutable references and contributes to deepening
the understanding of the AGT methodology.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Gradual typing supports the smooth transition between static and dynamic checking based on the (programmer-
controlled) precision of type annotations [35,38]. Gradual typing relates types of different precision using consistent type
relations, such as type consistency (resp. consistent subtyping), the gradual counterpart of type equality (resp. subtyping). This

✩ This work is partially funded by FONDECYT Projects 1190058 and 3200583.

* Corresponding authors.
E-mail addresses: mtoro@dcc.uchile.cl (M. Toro), etanter@dcc.uchile.cl (É. Tanter).
https://doi.org/10.1016/j.scico.2020.102496
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102496
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102496&domain=pdf
mailto:mtoro@dcc.uchile.cl
mailto:etanter@dcc.uchile.cl
https://doi.org/10.1016/j.scico.2020.102496

2 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
approach has been applied in a number of settings, such as objects [36], subtyping [36,20], effects [4,5], ownership [34],
typestates [47,21], information-flow typing [14,18,41], session types [26], refinements [30], set-theoretic types [8], Hoare
logic [3], parametric polymorphism [1,2,28,27,48,42], and references [35,24,39].

In particular, gradual typing for mutable references has seen the elaboration of various possible semantics: invariant ref-
erences [35], guarded references [24], monotonic references [39], and permissive references [39]. Invariant references are a
form of references where reference types are invariant with respect to type consistency. Guarded references admit variance
thanks to systematic runtime checks on reference reads and writes; the runtime type of an allocated cell never changes
during execution. Guarded references have been formulated in a space-efficient coercion calculus, which ensures that grad-
ual programs do not accumulate unbounded pending checks during execution. Monotonic references favor efficiency over
flexibility by only allowing reference cells to vary towards more precise types. This allows reference operations in statically-
typed regions to safely proceed without any runtime checks. Permissive references are the most flexible approach, in which
reference cells can be initialized and updated to any value of any type at any time.

These four developments reflect different design decisions with respect to gradual references: is the reference type
constructor variant under consistency? Can the programmer specify a precise bound on the static type of a reference, and
hence on the corresponding heap cell type? Can the heap cell type evolve its precision at runtime, and if yes, how? There
is obviously no absolute answer to these questions, as they reflect different tradeoffs. This work explores the semantics
that results from the application of a systematic methodology to gradualize static type systems. Currently we can find in
the literature two methodologies to gradualize statically-typed languages: Abstracting Gradual Typing (AGT) [20], and the
Gradualizer [10]. In this work, we consider the AGT methodology as it naturally scales to auxiliary structures such as a
mutable heap.

The AGT methodology helps to systematically construct gradually-typed languages by using abstract interpretation [12]
at the type level. In brief, AGT interprets gradual types as an abstraction of sets of possible static types, formally cap-
tured through a Galois connection. The static semantics of a gradual language are then derived by lifting the semantics of
a statically-typed language through this connection, and the dynamic semantics follow by Curry-Howard from proof nor-
malization of the type safety argument. The AGT methodology has been shown to be effective in many contexts: records
and subtyping [20], type-and-effects [4,5], refinement types [30,45], set-theoretic and union types [8,44], information-flow
typing [41], and parametric polymorphism [42]. However, this methodology has never been applied to mutable references
in isolation. Although Toro et al. [41] apply AGT to a language with references, they only gradualize security levels of types
(e.g. Ref Int?), not whole types (e.g. Ref ? is not supported). In this article we answer the following open questions: Which
semantics for gradually-type references follows by systematically applying AGT? Does AGT justify one of the existing ap-
proaches, or does it suggest yet another design? Can we recover other semantics for gradual references, if yes, how?

Contributions. This article first reviews the different existing gradual approaches to mutable references (§2). It then presents
the semantics for gradual references that is obtained by applying AGT, and how to accommodate the other semantics. More
specifically, this work makes the following contributions:

• We present λR̃EF, a gradual language with support for mutable references (§4). We derive λR̃EF by applying the AGT
methodology to a simple language with references called λREF (§3). This is the first application of AGT that focuses on
gradually-typed mutable references.

• We prove that λR̃EF satisfies the gradual guarantee of Siek et al. [38]. We also present the first formal statement and
proof of the conservative extension of the dynamic semantics of the static language [38], for a gradual language derived
using AGT (§4.6).

• We prove that the derived language, λR̃EF , corresponds to the semantics of guarded references from HCC (§5). Formally,
given a λR̃EF term and its compilation to HCC+ (an adapted version of HCC) we prove that both terms are bisimilar, and
that consequently they either both terminate, both fail, or both diverge (§5).

• We observe that λR̃EF and HCC+ differ in the order of combination of runtime checks. As a result, HCC is space efficient
whereas λR̃EF is not: we can write programs in λR̃EF that may accumulate an unbounded number of checks. We formalize
the changes needed in the dynamic semantics of λR̃EF to achieve space efficiency (§5.3). This technique to recover space
efficiency is in fact independent from mutable references, and is therefore applicable to other gradual languages derived
with AGT.

• We formally describe how to support other gradual reference semantics in λR̃EF by presenting λpm
R̃EF

, an extension that
additionally supports both permissive and monotonic references (§6). Finally, we prove for the first time that monotonic
references satisfy the dynamic gradual guarantee, a non-trivial result that requires careful consideration of updates to
the store.

This article is structured as follows: §2 informally introduces the different main approaches to gradual references
through examples. Then, §3 presents the fully-static simple language with references called λREF from which λR̃EF is de-
rived. §4 presents λR̃EF: we start by showing how to derive λR̃EF using AGT (§4 and §4.2), then the static and dynamic
semantics (§4.3, §4.4 and §4.5), its properties (§4.6), and finally we show λR̃EF in action through examples (§4.7). λR̃EF is
formally compared with HCC in §5: we first present the static and dynamic semantics of HCC+ (§5.1), formally relate both
languages using a bisimulation (§5.2), and then present the changes needed in the dynamic semantics of λR̃EF to achieve

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 3
space efficiency (§5.3). §6 describes an extension to λR̃EF to encode both permissive and monotonic references, and explains
how we prove the dynamic gradual guarantee for monotonic references. Finally, §7 discusses related work, and §8 concludes.
Complete definitions and proofs of the main results can be found in the Appendix. Additionally, we implemented λR̃EF as an
interactive prototype that displays both typing derivations and reduction traces. All the examples mentioned in this paper
are readily available in the online prototype available at https://pleiad .cl /grefs.

2. Gradual typing with references

Introducing gradual typing in a language with mutable references raises a number of design and implementation chal-
lenges, which have led to different semantics. After a brief review of what mutable references are, we informally present
the four approaches to gradual references from the literature. We then formulate the research question that this paper
addresses.

2.1. Background: mutable references

Mutable references are memory cells whose content can vary during execution. A language with mutable references
typically introduces three basic operations: allocation ref t creates a new reference (i.e. heap location) initialized with the
value of t , dereferencing !t returns the value stored in the reference t , and assignment t1:=t2 destructively updates the
reference t1 with the value of t2. For instance:

1 let x = ref 4
2 !x
3 x := 10
4 !x

Line 1 creates a new reference and returns a new location o pointing to a mutable cell in the store whose content is 4. Line
2 reads 4 from the current stored value of o. Line 3 updates the stored value of o to 10. And finally, line 4 reads again the
current stored value of o, which is now 10.

An allocation term ref t has type Ref T where T is the type of the subterm t . Locations o are not part of the source
language; they are introduced during reduction. To type locations we use a store typing �, a finite map from locations to
types, such that o has type T if �(o) = T . One interesting particularity of reference types is that they are invariant with
respect to subtyping, i.e. Ref T1 <: Ref T2 if and only if T1 = T2 [33]. This observation is key in a gradual language when
considering the type consistency relation, as illustrated below.

2.2. Background: gradual typing

The most important component of a gradual language is the type (im)precision relation. Type precision � is a partial
order between gradual types, where we say that the gradual type G1 is less imprecise (or, more precise) than G2, notation
G1 � G2, if G1 represents less static types than G2. In most gradual languages, imprecision is introduced by adding the notion
of an unknown type ?, which represents any static type whatsoever, i.e. G � ? for any G . Type precision helps us to define
the type consistency relation ∼, the gradual counterpart of the equality relation between static types. For instance, any type
is consistent with itself, and the ? type is consistent with any gradual type and, vice versa, any gradual type is consistent
with the ? type. The static flexibility given by the type consistency relation is backed up dynamically by inserting casts
or coercions at the boundaries between types of different precision, ensuring at runtime that no static assumptions are
violated. If a static assumption is violated, then a runtime error is raised. Inserting casts may be involved in a setting with
higher-order functions. It is in general impossible to immediately check if a function satisfies a particular type. Therefore, in
general functions are wrapped in proxies that defer the necessary runtime checks on arguments and return values.

2.3. Existing approaches

We now briefly review the four major elaborations of gradual typing with references that have been proposed in the
literature.

Invariant references. Siek and Taha [35] include a treatment of references in their original gradual typing work. However,
based on the observation that “allowing variance under reference types compromises type safety”, they impose reference
types to be invariant with respect to consistency. In other words, T1 ∼ T2 does not imply that Ref T1 ∼ Ref T2. Consider
Example 1 below, where :: is a type ascription operator:

1 let x = ref (4 :: ?)
2 let y: Ref Int = x ←− type error
3 y := 10

Example 1
In this example, 4 :: ? represents an assertion that 4 has type ?. This is accepted by the type system because Int (the type

of 4) is consistent with the ascribed type ?. The type of the new reference created at line 1 is inferred from the subterm,

https://pleiad.cl/grefs

4 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
so x has type Ref ?. The program is rejected at line 2 because Ref ? (the type of x) is not consistent with Ref Int (the type
of y) under the invariant semantics.

Guarded references. Herman et al. [24] develop a space-efficient approach to gradual typing based on coercions [23]. Here-
after, we refer to this language as HCC. HCC includes references, albeit with a different semantics from the one proposed
by Siek and Taha [35]. In particular, the type system allows consistency variance for reference types, i.e. T1 ∼ T2 implies
Ref T1 ∼ Ref T2. The dynamic semantics of the language is given by translation to a language with coercions. Coercions
can be normalized in order to avoid accumulation of wrappers that compromise space efficiency. This normalization eagerly
combine coercions, detecting some errors immediately—e.g. during the reduction of a function—in contrast to lazier ap-
proaches that accumulate wrappers and errors are not detected until the casted function is applied. The resulting semantics
is called “guarded” because each reference cell assignment (resp. dereference) is guarded with a coercion from the type of
the assigned values (resp. expected type of the read value) to/from the actual type of the reference cell. In other words the
runtime type of an allocated cell never changes during execution. The approach is intuitively justified by analogy with how
first-class functions can be used at different (consistent) types, provided that the appropriate guards check arguments and
return values.

Examples 2, 3 and 4 illustrate the use of guarded references:

1 let x = ref (4 :: ?)
2 let y: Ref Bool = x
3 !y ← runtime error

Example 2

1 let x = ref (4 :: ?)
2 let y: Ref Bool = x
3 y := true
4 !y

Example 3

1 let x = ref 4
2 let y: ? = true
3 x := y ← runtime error

Example 4

Example 2 raises a runtime error at line 3 because it is trying to read a Bool where an Int is stored. Example 3 fixes
example 2 by updating the location with an actual boolean before the dereference operation. This is possible because the
location is created at type Ref ?, meaning that it can store any value of any type (any type is consistent with ?). In Example
4, because the content of the reference is the (unascribed) number 4, the created reference has type Ref Int. A runtime error
is raised at line 3 because the coercion injecting true from Bool to ? cannot be combined with the coercion projecting y
from ? to Int.

Monotonic references. Siek et al. [39] propose a design for gradually-typed references called monotonic references. The design
is driven by efficiency considerations, namely allowing statically-typed code to be compiled with direct memory access
instructions—without coercions or wrappers. Like guarded references, monotonic references are variant under consistency.
In order to avoid using reference wrappers in statically-typed code, the runtime type of reference cells is allowed to vary but
only towards more precise types. This monotonicity restriction ensures that direct reference accesses from statically-typed
code are safe. Importantly, casts on references are performed directly on the heap.

Examples 3 and 5 illustrate the use of monotonic references:

1 let x = ref (4 :: ?)
2 let y: Ref Bool = x ← runtime error
3 y := true
4 !y

Example 3

1 let x = ref (4 :: ?)
2 let y: Ref Int = x
3 x := true ← runtime error

Example 5

In example 3, when variable x is cast to Ref Bool at line 2, the cast is performed directly on the heap: the cast fails as
the stored value has type Int instead of Bool. In example 5, when variable x is cast to Ref Int, the runtime type of the heap
cell is updated to the more precise type Int. Therefore, the subsequent assignment of true to x triggers a runtime error at
line 3 because Bool is not consistent with Int. Note that under the guarded semantics this program runs without errors. The
difference is that accesses to y in the monotonic semantics ensures that the value on the heap is of type Int, while under
the guarded semantics a coercion is necessary. For instance, consider changing example 5 at line 3, with a dereference
(!y). While both semantics yield the same result, operationally there is an important difference: in the guarded semantics,
because the content type of the reference is ? but y has type Ref Int, an additional coercion of the underlying value to Int
occurs. With monotonic references this coercion is not needed, because the semantics enforce that the stored value is of
type Int as soon as the alias y is created.

Permissive references. The monotonicity discipline favors efficiency over flexibility. Siek et al. [39] also develop a flexible
notion of permissive references on top of the language with monotonic references. In essence, permissive references consist
in treating the type of all heap cells as ?. A source-level translation then adds the necessary ascriptions on dereferences and
assignments. Note that the transformation would work equivalently using the guarded semantics as target (but not with the
invariant semantics).

The following examples present a variation of example 3 using permissive references (left),1 and the program once
transformed to the monotonic language (right):

1 As in [39], we use ref∗ t to denote the permissive reference constructor, and Ref∗ T to denote a permissive reference type.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 5
1 let x = ref* 4
2 let y: Ref* Bool = x
3 x := true
4 !y

Example 6

�

1 let x = ref (4 :: ?)
2 let y = x
3 x := (true :: ?)
4 (!y) :: Bool

Example 7

With the permissive semantics, the program does not produce any runtime error. The first line of the transformed
program creates a new reference of type Ref ?. The third line shows that every assigned value is first ascribed to the ?
type. Therefore the runtime type of the heap cell does not change: it stays ?. Finally, in the last line, since the variable y
originally had type Ref∗ Bool, the dereference value is ascribed to Bool.

Note that the permissive semantics is even more flexible than the guarded semantics: guarded semantics allows pro-
grammers to fix the type of heap cells at more precise types than ?.

2.4. Gradual references, systematically

These four developments reflect different design decisions with respect to gradual references: is the reference type
constructor variant under consistency? Can the programmer specify a precise bound on the static type of a reference, and
hence on the corresponding heap cell type? Can the heap cell type evolve its precision at runtime, and if yes, how? Although
there is no correct answer to any of these questions, in this article we try to answer them for any gradual language derived
systematically with AGT. In particular, we answer the following questions: Which semantics for gradually-type references
follows by systematically applying AGT? Does AGT justify one of the existing approaches, or does it suggest yet another
design? Can we recover other semantics for gradual references, if yes, how?

In the next sections we proceed as follows. First we present λREF, a standard statically-typed language with references
(§3). Second, we systematically apply AGT to λREF (§4) and observe the resulting semantics, which we called λR̃EF (§2). We
observe that λR̃EF manifests the guarded references semantics of HCC. Third, we formalize this observation by relating λR̃EF

with HCC (§5). We present an extension of HCC, called HCC+ , and a type-driven translation from λR̃EF to HCC+ . We prove
that a λR̃EF term and its translation to HCC+ are bisimilar. Fourth, we show that, contrary to HCC+ , λR̃EF is not space-efficient.
We then present the changes needed in the dynamic semantics to recover space efficiency (§5). Finally, we present λpm

R̃EF
, an

extension of λR̃EF to support other semantics both permissive and monotonic references (§6).

3. Preliminary: the static language λREF

We now apply AGT to a simple language with references, called λREF , whose static and dynamic semantics are defined in
Figs. 1 and 2, respectively.

Static semantics. The definition of λREF is standard. We use the metavariable l to range over a countably infinite set Loc of
locations. A store typing � is a partial function from locations to types. A term t can be a lambda abstraction, a constant
b, a variable, an application, a binary operation on constants ⊕, a conditional expression, a type ascription, a reference, a
dereference, an assignment, or a location. Types may be base types (we use B to abstract over all base types), functions,
and references. Ref T represents a reference to a value of type T .

To prepare for the application of AGT, the presentation of the type system follows the convention of Garcia et al. [20], in
which the type of each sub-expression is kept opaque, the type relations are made explicit as side conditions, and (partial)
type functions are used explicitly instead of relying on matching metavariables. In particular, the dom (resp. cod) partial
function is used to obtain the domain (resp. codomain) of a function type; it is undefined otherwise. We similarly introduce
the tref partial function to extract the underlying type of a reference type. Save for the use of tref , rules (Tref), (Tderef),
(Tasgn) and (Tl) are all standard [33]. Type ascriptions are also standard [33], though one could argue they are not essential
to a static type system; their essential role will become clearer when turning to the gradual language, as ascriptions allow
programmers to control (im)precision and play a key role in the dynamic semantics [20]. We use the θ metafunction to
determine the type of constants (e.g. θ(true) = Bool, θ(1) = Int).

Dynamic semantics. The dynamic semantics of λREF is presented in Fig. 2, and is standard as well. The semantics is straight-
forward using evaluation contexts to reduce terms. A store μ maps locations o to values v . Here μ[o �→ v] stands for a new
store in which the location o is mapped to the value v . The domain of a store μ, written dom(μ), is the set of locations
for which the finite map is defined. The expression ref t is evaluated by reducing the term t to a value v , obtaining a fresh
location in memory and storing the value at that location. The result of ref v is the newly created location. A dereference
expression !t first evaluates the term t to a location o, then returns the value stored in memory at location o. An assign-
ment t1:=t2 evaluates term t1 to a location o and evaluates term t2 to a value v . The expression o:=v updates the store at
location o with the new value v , and returns unit.

Properties. Type safety of λREF is established as usual: a well-typed closed term is either a value or it can take a step (along
a well typed store) to a term of the same type (and a well-typed store that extends the original one).

6 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
T ∈ Type, B ∈ BaseType, x ∈ Var, o ∈ Loc, b,∈ Const,

t ∈ Term, ⊕ ∈ Operator, � ∈ Var

fin
⇀ Type, � ∈ Loc

fin
⇀ Type

T ::= B | T → T | Ref T (types)
t ::= v | x | t t | t ⊕ t | if t then t else t | t :: T | ref t | !t | t:=t (terms)

(Tx) x : T ∈ �

�;�
s x : T
(Tc)

θ(b) = B
�;�
s b : B

(Tapp)
�;�
s t1 : T1 �;�
s t2 : T2 T2 = dom(T1)

�;�
s t1 t2 : cod(T1)

(Top)

�;�
s t1 : T1 �;�
s t2 : T2
ty(⊕) = B1 × B2 → B3 T1 = B1 T2 = B2

�;�
s t1 ⊕ t2 : B3
(Tif)

�;�
s t1 : T1 �;�
s t2 : T2
�;�
s t3 : T3 T1 = Bool

�;�
s if t1 then t2 else t1 : equate(T2, T3)

(Tλ)
�, x : T1;�
s t : T2

�;�
s (λx : T1.t) : T1 → T2
(T::) �;�
s t : T ′ T ′ = T

�;�
s (t :: T) : T
(Tref)

�;�
s t : T
�;�
s ref t : Ref T

(Tderef)
�;�
s t : T

�;�
s !t : tref (T)
(Tasgn)

�;�
s t1 : T1 �;�
s t2 : T2 T2 = tref (T1)

�;�
s t1 := t2 : Unit

(To) o : T ∈ �

�;�
s o : Ref T

T = T

B = B

T ′
1 = T1 T2 = T ′

2

T1 → T2 = T ′
1 → T ′

2

T1 = T2

Ref T1 = Ref T2

dom : Type ⇀ Type

dom(T1 → T2) = T1
dom(T) undef. otherwise

cod : Type ⇀ Type

cod(T1 → T2) = T2
cod(T) undef. otherwise

tref : Type ⇀ Type

tref (Ref T) = T
tref (T) undef. otherwise

equate : Type ⇀ Type

equate(T , T) = T
equate(T1, T2) undef. otherwise

Fig. 1. λREF: Syntax and type system.

Proposition 1 (Type safety). Let ø; �
 t : T . Then one of the following is true:

1. t is a value v;
2. if �
 μ then t | μ �−→ t′ | μ′ , where ø; �′
 t′ : T and �′
 μ′ some �′ ⊇ �.

Proof. The proof is standard and follows from progress and preservation [33]. �
4. Gradualizing λREF

Once we have defined the static language λREF, the AGT methodology drives the derivation of its gradual counterpart,
λR̃EF, following three steps:

1. Define the syntax of gradual types and give them meaning by concretization to sets of static types; consequently obtain
the most precise abstraction, establishing a Galois connection.

2. Derive the gradual type system by using lifted type predicates and type functions in the typing rules.
3. Derive the runtime semantics of the gradual language by proof normalization of gradual typing derivations.

4.1. Syntax and meaning of gradual types

We start by defining the syntax of gradual types. We decide to allow references to gradual types:

G ∈ GType

G ::= B | G → G | Ref G | ? (gradual types)

Terms t are lifted to gradual terms t ∈ GTerm, i.e. terms with gradual type annotations.
We then give meaning to gradual types via a concretization function γ from gradual types to non-empty sets of static

types. We write P∗(Type) to denote the non-empty power set of types. We start from the concretization function for GTFL

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 7
v ::= c | λx.t | o (values)
E ::= � | E ⊕ t | v ⊕ E | E t | v E | if E then t else t | ref E | !E | E:=t | v:=E | E :: T (Contexts)
μ := μ,o �→ v (store)

t | μ −→s t | μ Notions of Reduction

b1 ⊕ b2 | μ −→s b3 | μ where c3 = b1�⊕�b2 (λx.t) v | μ −→s ([v/x]t) | μ

if b then t1 else t2 | μ −→s

®
t1 | μ if b = true

t2 | μ if b = false
ref v | μ −→s o | μ[o �→ v] where o /∈ dom(μ)

!o | μ −→s v | μ where v = μ(o) o:=v | μ −→s unit | μ[o �→ v] v :: T | μ −→s v | μ

t | μ �−→s t | μ Reduction

t1 | μ −→s t2 | μ′

E[t1] | μ �−→s E[t2] | μ′

Fig. 2. λREF: Dynamic semantics.

given by Garcia et al. [20], adding an extra case to deal with reference types. This is the natural lifting of concretization to
the reference type constructor: Ref G denotes the set of reference types Ref T for each T in the concretization of G:

Definition 1 (Concretization). Let γ : GType → P∗(Type) be defined as follows:

γ (B) = { B }
γ (G1 → G2) = { T1 → T2 | T1 ∈ γ (G1) ∧ T2 ∈ γ (G2) }

γ (Ref G) = {Ref T | T ∈ γ (G) }
γ (?) = Type

The notion of type precision between gradual types coincides with set inclusion of their concretizations:

Definition 2 (Type Precision). G1 � G2 if and only if γ (G1) ⊆ γ (G2).

Proposition 2 (Precision, inductively). The following inductive definition of type precision is equivalent to Definition 2.

B � B

G1 � G ′
1 G2 � G ′

2

G1 → G2 � G ′
1 → G ′

2

G1 � G2

Ref G1 � Ref G2 G � ?

Once γ is defined, we proceed to define its corresponding abstraction function:

Definition 3 (Abstraction). Let the abstraction function α : P∗(Type) → GType be defined as follows:

α({ B }) = B

α({ Ti1 → Ti2 }) = α({ Ti1 }) → α({ Ti2 })
α({Ref Ti }) = Ref α({ Ti })

α(ÛT) = ? otherwise

The abstraction function preserves type constructors and falls back on the unknown type whenever a heterogeneous
set is abstracted. As expected, abstraction preserves the Ref type constructor when all static types in the set are reference
types. This abstraction function is both sound and optimal: it produces the most precise gradual type that over-approximates
a given set of static types.

Proposition 3 (Galois connection). 〈γ ,α〉 is a Galois connection, i.e.:

a) (Soundness) for any non-empty set of static types S = { T }, we have S ⊆ γ (α(S))

b) (Optimality) for any gradual type G, we have α(γ (G)) � G.

8 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Soundness (a) means that α always produces a gradual type whose concretization over-approximates the original set.
Optimality (b) means that α always yields the best (i.e. least) sound approximation that gradual types can represent.

4.2. Lifting the type system

In order to obtain the static semantics of λR̃EF , we lift type relations (here, equality) and type functions (dom, cod, tref ,
equate). Following AGT [20], this lifting is obtained by exploiting the Galois connection we have just established through
existential lifting.

Definition 4 (Consistency). G1 ∼ G2 if and only if T1 = T2 for some (T1, T2) ∈ γ (G1) × γ (G2). Inductively:

G ∼ ? ? ∼ G G ∼ G
G21 ∼ G11 G12 ∼ G22

G11 → G12 ∼ G21 → G22

G1 ∼ G2

Ref G1 ∼ Ref G2

As a first result, the concretization function justifies consistency variance for reference types—as adopted by all gradual
reference systems, except the invariant semantics of Siek and Taha [35].

Lifting type functions follows abstract interpretation as well. For example, consider a partial function F : Type × Type ⇀

Type. The lifting of F , called F̃ , is defined as F̃ (G1, G2) = α(ÛF (γ (G1), γ (G2)).2 Note that as F is partial, the collecting
application of F may be the empty set, which is not part of the domain of α; this situation captures the notion of type
errors [20].

For instance, the lifting of the equate operator presented in Fig. 1 is defined as follows:

Definition 5. ‡equate(G1, G2) = α({ equate(T1, T2) | (T1, T2) ∈ γ (G1) × γ (G2) }) and it comes as no surprise that this defini-
tion coincides with the meet operator in the precision order [20]:

Proposition 4. ‡equate(G1, G2) = G1 � G2 .
The meet operator is defined as G1 � G2 = α(γ (G1) ∩ γ (G2)), and inductively as:

B � B = B G1 � G2 = G2 � G1 G � ? = ?� G = G (G11 → G12) � (G21 → G22) = (G11 � G21) → (G12 � G22)

Ref G1 � Ref G2 = Ref G1 � G2 G1 � G2 is undefined otherwise

Compositional lifting. As previously noted by Garcia et al. [20] we cannot always apply compositionally lifting to predicates
that use both type relations and type functions. However, we justify that we can do it for application and assignment rules.

Proposition 5. Let P1(T1, T2) � T1 = dom(T2). Then P̃1(G1, G2) ⇐⇒ G1 ∼ fidom(G2).

Proposition 6. Let P2(T1, T2) � T1 = tref (T2). Then P̃2(G1, G2) ⇐⇒ G1 ∼ t̃ref (G2).

Consistent reference type function. The algorithmic consistent lifting of the tref type function, t̃ref , is provided in Fig. 3. As
expected, it justifies the fact that a term of the unknown type ? can be dealt with as if it were a reference type Ref ?, since
t̃ref (?) = ?.

4.3. Static semantics

The type system of λR̃EF is presented in Fig. 3, along algorithmic definitions of consistent functions; the type rules are
obtained by replacing type predicates and functions with their corresponding liftings. For simplicity, we use notation t :
G if ·
 t : G . Ascriptions play an important role in the gradual language [20]: they conveniently allow programmers to
introduce (im)precision as desired. For instance, the following program typechecks due to the convenient use of ascriptions:
((λb : Bool.if b then true :: ? else 1 :: ?) false) + 2. Note that the type equality premise of ascription in λREF is lifted to a type
consistency premise in λR̃EF. As we will see in the next section, ascriptions are also helpful in the dynamic semantics to
ensure that type precision is stable under substitution, hence ensuring typing preservation.

4.4. Dynamic semantics

Traditionally, the dynamic semantics of a gradual language is given by translation to an intermediate cast calculus [35].
One of the salient features of the AGT methodology is that it provides a direct dynamic semantics of gradual programs,
defined over gradual typing derivations [20]. The key idea is to apply proof reduction on gradual typing derivations [25]

2 ÛF is notation for the collecting function of F .

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 9
G ∈ GType, B ∈ BaseType, x ∈ Var, o ∈ Loc, b ∈ Const,

t ∈ GTerm, ⊕ ∈ Operator, � ∈ Var

fin
⇀ GType, � ∈ Loc

fin
⇀ GType

G ::= ? | B | G → G | Ref G (types)
t ::= b | (λx : G1.t) | o | x | t t | t ⊕ t | if t then t else t | t :: T | ref t | !t | t:=t (terms)

(Gx) x : G ∈ �

�;�
 x : G
(Gc)

θ(b) = B
�;�
 b : B

(Gapp)
�;�
 t1 : G1 �;�
 t2 : G2 G2 ∼ fidom(G1)

�;�
 t1 t2 : ›cod(G1)

(Gop)

�;�
 t1 : G1 �;�
 t2 : G2
ty(⊕) = B1 × B2 → B3 G1 ∼ B1 G2 ∼ B2

�;�
 t1 ⊕ t2 : B3
(G if)

�;�
 t1 : G1 �;�
 t2 : G2
�;�
 t3 : G3 G1 ∼ Bool

�;�
 if t1 then t2 else t3 : G2 � G3

(Gλ)
�, x : G1
 t : G2

�;�
 (λx : G1.t) : G1 → G2
(G::) �;�
 t : G ′ G ′ ∼ G

�;�
 (t :: G) : G
(Gref)

�;�
 t : G
�;�
 ref t : Ref G

(Gderef)
�;�
 t : G

�;�
 !t : tref (G)
(Gasgn)

�;�
 t1 : G1 �;�
 t2 : G2 G2 ∼ t̃ref (G1)

�;�
 t1 := t2 : Unit

(Go) o : G ∈ �

�;�
 o : Ref G

fidom : GType ⇀ GTypefidom(G1 → G2) = G1fidom(?) = ?fidom(G) undefined otherwise

›cod : GType ⇀ GType›cod(G1 → G2) = G2›cod(?) = ?›cod(G) undefined otherwise

t̃ref : GType ⇀ GType

t̃ref (Ref G) = G

t̃ref (?) = ?

t̃ref (G) undefined otherwise

Fig. 3. λR̃EF: Syntax and typing rules.

augmented with evidence for consistent judgments. By the Curry-Howard correspondence, this induces a notion of reduction
for gradual terms.

More specifically, the reduction of gradual typing derivations mirrors reasoning steps used in the type safety proof of the
static language. The static type safety proof relies on transitivity of type relations, but in a gradual setting, transitivity does
not always hold. For instance, equality is a transitive type relation, but type consistency—which only captures plausibility—
is not transitive in general: Int ∼ ? and ? ∼ Bool, but Int � Bool. In AGT, gradual typing derivations are augmented with
type-based justifications of why a consistent judgment holds, called evidence. Evidence can generally be represented by
a pair of gradual types, ε = 〈G1, G2〉, which capture the implied information about types related by a consistent judg-
ment; these types are at least as precise as the types involved in the judgment [20]. We use notation ε
 G1 ∼ G2
to denote that evidence ε justifies the consistency judgment G1 ∼ G2. During proof reduction (which corresponds to
a reduction step), when a transitivity claim between two consistent judgments needs to be justified, the corresponding
evidences of these judgments are combined via consistent transitivity. If the combination is defined, then the resulting ev-
idence justifies the new consistent judgment and the reduction step can be taken, otherwise the program halts with an
error.

Evidence is initially computed by a partial function called an initial evidence operator I= [20]. An initial evidence operator
computes the most precise evidence that can be deduced from a given judgment. For instance the initial evidence of
consistent judgment G1 ∼ G2 is ε = I=(G1, G2), i.e. I=(G1, G2)
 G1 ∼ G2. Formally the initial evidence operator is defined
as:

Definition 6 (Initial evidence operator).

I=(G1, G2) = α2({〈T1, T2〉 | T1 ∈ γ (G1), T2 ∈ γ (G2), T1 = T2)})

Given two sets of static types that belong to the concretization of both gradual types, this function abstracts the sets of
pairs of static types such that both types are equal.3 In this setting with only consistency (and not consistent subtyping),
the initial evidence operator coincides with the pair of meets between the two types.

Proposition 7. If G1 ∼ G2 , then I=(G1, G2) = 〈G1 � G2, G1 � G2〉.

3 α2({〈Ti1, Ti2〉}) = 〈α({Ti1}),α({Ti2})〉.

10 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Illustration. Consider the gradual typing derivation of (λx : ?.x + 1) false, called D (for simplicity we omit the store typing):

D = D′
θ(false) = Bool
ø
 false : Bool 〈Bool,Bool〉
 Bool ∼ ?

ø
 (λx : ?.x + 1) false : Int

where D′ =

x : ? ∈ x : ?
x : ?
 x : ?

θ(1) = Int
x : ?
 1 : Int 〈Int, Int〉
 ? ∼ Int 〈Int, Int〉
 Int ∼ Int

x : ?
 x + 1
ø
 (λx : ?.x + 1) : ? → Int

In the typing derivation of the function D′ , the consistent judgments ? ∼ Int and Int ∼ Int support the addition expression,
and at the top-level, the judgment Bool ∼ ? supports the application of the function to false. By knowing that ? ∼ Int holds,
we learn that the first type can only possibly be Int, while we do not learn anything new about the right-hand side, which
is already fully static. Therefore the evidence of that judgment is ε1 = I=(?, Int) = 〈Int, Int〉, i.e. 〈Int, Int〉
 ? ∼ Int. For the
Int ∼ Int consistent judgment we cannot learn anything new, therefore its evidence is ε2 = I=(Int, Int) = 〈Int, Int〉. Similarly,
the evidence for the third judgment is ε3 = I=(Bool, ?) = 〈Bool,Bool〉. �

At runtime, reduction rules need to combine evidence in order to either justify or refute a use of transitivity in the
type preservation argument. The combination operation, called consistent transitivity ◦= , determines whether two evidences
support the transitivity of their corresponding judgments. The definition of consistent transitivity for a type predicate P , ◦P ,
is given by the abstract interpretation framework [20]; in particular, for type equality it is defined as follows4:

Definition 7 (Consistent transitivity). Suppose εab
 Ga ∼ Gb and εbc
 Gb ∼ Gc . Evidence for consistent transitivity is deduced
as εab ◦= εbc
 Ga ∼ Gb , where:

〈G1, G21〉 ◦= 〈G22, G3〉 = α2({〈T1, T3〉 ∈ γ (G1) × γ (G3) | ∃T2 ∈ γ (G21) ∩ γ (G22), T1 = T2 ∧ T2 = T3})

As G1 = G21 and G22 = G3, the definition of consistent transitivity corresponds to the meet of gradual types �:

Lemma 8. 〈G1〉 ◦= 〈G2〉 = 〈G1 � G2, G1 � G2〉.

The only operators that create new evidence are the initial evidence and consistent transitivity operators. These two
operators always return evidence where both components are the same, therefore for simplicity we use notation 〈G〉 instead
of 〈G, G〉.

Illustration. Let us go back to the example above. The gradual typing derivation D is reduced by using preservation argu-
ments as follows:

D �−→

θ(false) = Bool
ø
 false : Bool 〈Bool〉
 Bool ∼ ?

ø
 false :: ? : ?
θ(1) = Int
ø
 1 : Int 〈Int〉
 ? ∼ Int 〈Int〉
 Int ∼ Int

ø
 (false :: ?) + 1 : Int
�−→ error

Note that the use of ascriptions is crucial to represent each step of evaluation as a legal source typing, and most importantly
to preserve evidence of different subterms. In this case, instead of replacing x with false, we replace x with false :: ?,
otherwise (1) the consistent judgment 〈Bool〉
 Bool ∼ ? would be lost, and (2) the resulting gradual typing derivation would
be ill-typed. To simplify the new ascription to ?, we need to combine ε1 and ε3 in order to (try to) obtain a justification for
the transitive judgment, namely that Bool ∼ Int, but ε3 ◦= ε1 = 〈Bool〉 ◦= 〈Int〉 = 〈Bool � Int〉, which is undefined, so a runtime
error is raised. �

To formalize this approach to the runtime semantics of gradual programs while avoiding writing reduction rules on
actual (bi-dimensional) derivation trees, Garcia et al. adopt intrinsic terms [9], which are a flat notation that is isomorphic to
typing derivations. In this paper, we use the same technique, and introduce the semantics via a language of intrinsic terms,
called λε

R̃EF
.

4.4.1. Static semantics of λε
R̃EF

The syntax and static semantics of λε
R̃EF

is presented in Fig. 4. Intrinsically-typed terms tG comprise a family T[G] of
type-indexed sets, such that ill-typed terms do not exist. Intrinsic terms are built up from disjoint families xG ∈ V[G] and

4 The consistent transitivity operator is parametrized by the type predicate being lifted. For instance, in other settings such as for subtyping, we write
◦<: instead, which is defined analogously.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 11
et ∈ EvTerm, 〈G〉 ∈ Evidence, u ∈ SimpleValue, v ∈ Value, t ∈ T[∗],
u ::= x | b | λx.t | oG

v ::= u | 〈G〉u :: G
et ::= 〈G〉t
t ::= v | et ⊕ et | et @G et | et :: G | if et then et else et | refG et | !G et | et :=G et

(IGb
θ(b) = B
b ∈T[B] (IGx)

xG ∈T[G] (IGapp)

tG1 ∈ T[G1] tG2 ∈ T[G2]
〈G ′

1〉
 G1 ∼ G11 → G12
〈G ′

2〉
 G2 ∼ G11

(〈G ′
1〉tG1) @G11→G12 (〈G ′

2〉tG2) ∈T[G12]

(IG⊕)

tG1 ∈T[G1] 〈B1〉
 G1 ∼ B1

tG2 ∈T[G2] 〈B2〉
 G2 ∼ B2
ty(⊕) = B1 × B2 → B3

〈B1〉tG1 ⊕ 〈B2〉tG2 ∈T[B3] (IG if)

G = (G2 � G3)

tG1 ∈T[G1] 〈Bool〉
 G1 ∼ Bool
tG2 ∈ T[G2] tG3 ∈T[G3]

if 〈Bool〉tG1 then 〈G〉tG2 else 〈G〉tG3 ∈T[G]

(IGλ)
tG2 ∈T[G2]

λxG1 .tG2 ∈T[G1 → G2] (IG::)
tG1 ∈ T[G1] 〈G ′

2〉
 G1 ∼ G2

〈G ′
2〉tG1 :: G2 ∈T[G2]

(IGref)
tG1 ∈T[G1] 〈G ′〉
 G1 ∼ G2

refG2 〈G ′〉tG1 ∈T[Ref G2]
(IGderef)

tG2 ∈T[G2] 〈Ref G1〉
 G2 ∼ Ref G

!G (〈Ref G1〉tG2) ∈ T[G]

(IGasgn)

tG1 ∈ T[G1] 〈G ′
1〉
 G1 ∼ Ref G3

tG2 ∈T[G2] 〈G ′
2〉
 G2 ∼ G3

〈G ′
1〉tG1 :=G3 〈G ′

2〉tG2 ∈T[Unit] (IG l)
oG ∈T[Ref G]

Fig. 4. λ
ε
R̃EF

: Syntax and typing rules.

oG ∈ L[G] of intrinsically-typed variables and locations respectively. Note that intrinsic terms do not need explicit type
environment � or store environments �. Essentially, an intrinsic term tG ∈ T[G] represents the typing derivation for the
λ
ε
R̃EF

judgment �; �
 t : G , where � and � correspond to the free (intrinsically-typed) variables and locations in tG . We
omit the type exponent on intrinsic terms when not needed, writing for instance t ∈ T[G].

The syntax and type rules for intrinsic terms is presented in Fig. 4. We use notation et to refer to an evidence term, which
are terms augmented with evidence. This evidence justifies why the type of the term is consistent with the corresponding
statically determined type.5 For instance, in term 〈Int〉1 :: ?, evidence 〈Int〉 is the companion of the raw value 1 and justifies
that Int ∼ ?. Intrinsic values v can either be simple values u or ascribed values εu :: G . A simple value u can be a variable x ,
a constant b , a lambda abstraction λx.t , or a location oG . Some terms carry extra type annotations purely to help prove type
safety, such as G in et :=G et, and to ensure unicity of typing during reduction such as G in et @G et. The type rules mirror
the type rules of λR̃EF where each consistent judgment is justified by some evidence. The presentation may differ sometimes:
for instance in Rule (IGasgn), its extrinsic counterpart has premise t̃ref (G1) ∼ G2 which is equivalent to both G1 ∼ Ref G3

and G2 ∼ G3. We choose the later representation because it allows us to track evidence for each of the subterms. Something
similar occurs in rules (IGderef) and (IGref): extrinsic rules (Gderef) and (Gref) has no consistent judgment whatsoever.
This judgment is justified as subterms may evolve during reduction into something of a different (but consistent) type. For
instance, in rule (IGderef), evidence 〈Ref G1〉 justifies that the type of subterm tG2 is consistent with Ref G , the type of the
subterm during type checking. Alternatively, rule (IGderef) may also be seen as the intrinsic counterpart of the following
λR̃EF rule:

(Gderef*)
�;�
 t : G1 G1 ∼ Ref G2

�;�
 !G2t : G2

where statically G1 = Ref G2. The elaboration rules for intrinsic terms, i.e. from λR̃EF to λε
R̃EF

, are explained later in §4.5.

5 As illustrated previously, evidence lives in a derivation tree, to justify a consistent judgment. When moving to the flat representation of intrinsic
terms, the question arises of where to put the evidence. If a consistent judgment naturally corresponds to a subterm, then we annotate that subterm with
evidence. Note however that in some gradual languages, such as security-typed languages, some consistent judgments may not correspond to one subterm,
and in that case the practice is to decorate the term constructor itself [41].

12 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
4.4.2. Dynamic semantics of λε
R̃EF

Now we turn to the reduction rules of intrinsic terms, possibly failing with an error when combining evidences using
consistent transitivity defined above. The reduction rules are presented in Fig. 5. They are defined over configurations
ConfigG which consist of a pair of a term and a store. Contrary to [20], instead of using evaluation frames, we define the
reduction semantics by using an equivalent representation using evaluation contexts [17], which make it easier to recover
space efficiency (§5.3). We explain how to derive Rules (r4), (r5), and (r6), which deal with references, in §4.4.3.

Rules (r1), (r2), and (r3), present no novelty with respect to the presentation of Garcia et al. [20].
Rule (r4) reduces a reference to a new location oG not already present in the domain of store μ . The store is extended

mapping oG to the evidence value ascribed to G2, the type of the reference determined statically. This use of ascriptions to
anchor new evidence and preserve typing upon reduction is used in almost all other reduction rules.

Rule (r5) reduces a dereference to the underlying value v of location oG2 , ascribed to the statically determined type G ,
where evidence 〈G1〉 justifies that G2 (the type of v), is consistent with G .

Rule (r6) updates the corresponding value on the heap of location oG1 , with raw value u ascribed to G . As 〈G2〉 justifies
that the type of u is consistent with G3, and by inversion lemmas, 〈G1〉 justifies that G3 ∼ G , then evidence 〈G2〉 ◦= 〈G1〉 =
〈G2 � G1〉 (if defined) justifies that the type of u is consistent with G . If G2 � G1 is not defined then a runtime error is
signaled.

4.4.3. Deriving the reduction rules of λε
R̃EF

We now intuitively describe how we derive all reference related rules: (r4), (r5) and (r6).

Rule (r4). We start with the last intrinsic term before elimination

(IGref)
u ∈ T[G1] 〈G ′〉
 G1 ∼ G2

refG2 〈G ′〉u ∈T[Ref G2]
By following the reduction rule for allocating a reference for λREF (Fig. 2), we would have to reduce allocations as follows:

refG2 〈G ′〉u | μ −→ oG2 | μ[oG2 �→ u]
where oG2 /∈ dom(μ). But u does not have type G2, therefore we ascribe the raw value to G2 using some evidence that
justifies that G1 ∼ G2. As we already know that 〈G ′〉
 G1 ∼ G2, we can finally derive the reduction rule for allocations as
follows:

refG2 〈G ′〉u | μ −→ oG2 | μ[oG2 �→ 〈G2〉u :: G2]

Rule (r5). Similarly to (r4), we start from the last intrinsic term before elimination:

(IGderef)
oG2 ∈ T[Ref G2] 〈Ref G1〉
 Ref G2 ∼ Ref G

!G(〈Ref G1〉oG2) ∈T[G]
Following Fig. 2 we would have to reduce dereferences as follows:

!G(〈Ref G1〉oG2) | μ −→ v | μ
where μ(oG2) = v . But as v ∈ T[G2] and the expected type of the dereference is G , we need to ascribe the dereferenced
value to G . Now there is the question about what evidence to use. Of course, we cannot make up new evidence from
thin air, we have to use and combine evidence already present in the redex. We know from the premise of the redex that
〈Ref G1〉
 Ref G2 ∼ Ref G , and by an inversion lemma we also know that 〈G1〉
 G2 ∼ G , which is exactly what we need.
The final reduction rule for dereferences is therefore:

!G(〈Ref G1〉oG2) | μ −→ 〈G1〉v :: G | μ

Rule (r6). Let us start from an assignment intrinsic term before elimination:

(IGasgn)

oG1 ∈ T[Ref G1] 〈Ref G ′
1〉
 Ref G1 ∼ Ref G3

u ∈T[G2] 〈G ′
2〉
 G2 ∼ G3

〈G ′
1〉oG1 :=G3 〈G ′

2〉u ∈ T[Unit]

If we follow the reduction rule for assignment of λREF (Fig. 2), then we would be tempted to reduce assignments as:

〈G ′
1〉oG1 :=G3 〈G ′

2〉u | μ −→ unit | μ[oG1 �→ u]

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 13
ev ∈ EvValue, t ∈T[∗], F ∈ EvCtx, E ∈ TmFrame

ev ::= 〈G〉u
F ::= � | E ⊕ et | ev ⊕ E | E @G et | ev @G E | E :: G |

if E then et else et | refG E | !G E | E :=G et | ev :=G E
E ::= F | 〈G〉F
μ := · | μ,oG �→ v

Notions of Reduction

ConfigG =T[G] × Store

−→: ConfigG × (ConfigG ∪ {error })
−→c : EvTerm × (EvTerm ∪ {error })

(r1) 〈B1〉b1 ⊕ 〈B2〉b2| μ −→ b3| μ where b3 = b1 �⊕� b2

(r2)(〈G ′
11 → G ′

12〉(λxG11 .t))@G1→G2 (〈G ′
2〉u)| μ −→

®〈G ′
12〉([(〈G ′

2 � G ′
11〉u :: G11)/xG11]t) :: G2| μ

error if G ′
2 � G ′

11 is not defined

(r3) if 〈Bool〉b then 〈G〉tG2 else 〈G〉tG3 | μ −→
®〈G〉tG2 :: G| μ b = true

〈G〉tG3 :: G| μ b = false
where G = G2 � G3

(r4) refG2 〈G1〉u | μ −→ oG2 | μ[oG2 �→ 〈G1〉u :: G2] where o /∈ dom(μ)

(r5) !G (〈Ref G1〉o G2) | μ −→ 〈G1〉v :: G | μ where v = μ(oG2)

(r6) 〈Ref G1〉o G :=G3 〈G2〉u | μ −→
®

unit | μ[oG �→ 〈G2 � G1〉u :: G]
error if G2 � G1 is not defined

(r7) 〈G2〉(〈G1〉u :: G) −→c

®〈G1 � G2〉u

error if G1 � G2 is not defined

�−→: ConfigG × (ConfigG ∪ {error }) Reduction

(RE)
tG

1 | μ1 −→ tG
2 | μ2

E[tG
1]| μ1 �−→ E[tG

2]| μ2
(REerr)

tG
1 | μ −→ error

E[tG
1]| μ �−→ error

(RF)
et −→c et′

F [et]| μ �−→ F [et′]| μ

(RF err)
et −→c error

F [et]| μ �−→ error

Fig. 5. λ
ε
R̃EF

: Dynamic semantics.

The problem here is that u ∈ T[G2], but oG1 should map to some value of type G1. We can extend the store as
μ[oG1 �→ εu :: G1], for some ε such that G2 ∼ G1. Again, we combine evidences already present in the redex to construct
new evidence. Notice that 〈Ref G ′

1〉
 Ref G1 ∼ Ref G3, then by an inversion lemma 〈G ′
1〉
 G1 ∼ G3. When considering

consistency and not subtyping, evidence is also symmetric, then 〈G ′
1〉
 G3 ∼ G1. Also as 〈G ′

2〉
 G2 ∼ G3, by consistent
transitivity 〈G ′

2〉 ◦= 〈G ′
1〉
 G2 ∼ G1 (if defined). As 〈G ′

2〉 ◦= 〈G ′
1〉 = 〈G ′

2 � G ′
1〉, then the final reduction rule is:

〈G ′
1〉oG1 :=G3 〈G ′

2〉u | μ −→ unit | μ[oG1 �→ 〈G ′
2 � G ′

1〉u :: G1]
if the meet is defined, and 〈G ′

1〉oG1 :=G3 〈G ′
2〉u | μ −→ error otherwise.

4.5. Elaboration of λε
R̃EF

terms

So far we have presented intrinsic terms without formally explaining how to derive them. Fig. 6 present the type-driven
elaboration rules from λR̃EF to λε

R̃EF
. Judgment �; �
 t �n tG : G6 denotes the elaboration of term tG from term t , where t is

typed G under environments � and �. For simplicity, we write t �n t : G if ·; ·
 t �n t : G . Basically each consistent type
judgment is replaced by the initial evidence operator I= .

Rule (TR ::) recursively translates the subterm t , and the consistent subtyping judgment G ′ ∼ G from (G ::) is replaced
with I=(G ′, G), which computes evidence ε for consistent subtyping. This evidence is eventually placed next to the trans-
lated term tG ′

. Most of the elaboration rules follow this same recipe. Rule (TRapp), uses metafunctions fidom and ›cod to
avoid writing three different elaboration rules, e.g. when t1 is typed ? then ε1 = I=(?, ? → ?). The same is applied in rules
(TRderef) and (TRasgn) where we use t̃ref instead.

6 We use the ε subindex to differentiate different translations presented in this chapter.

14 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
(TRx) x : G ∈ �

�;�
 x �n xG : G
(TRc)

θ(c) = B
�;�
 b �n b : B

(TRapp)

�;�
 t1 �n tG1 : G1 �;�
 t2 �n tG2 : G2

ε1 = I=(G1,fidom(G1) → ›cod(G1)) ε2 = I=(G2,fidom(G1))

�;�
 t1 t2 �n ε1tG1 @
fidom(G1)→›cod(G1) ε2tG2 : ›cod(G1)

(TRop)

�;�
 t1 �n tG1 : G1 �;�
 t2 �n tG2 : G2 ty(⊕) = B1 × B2 → B3
ε1 = I=(G1, B1) ε2 = I=(G2, B2)

�;�
 t1 ⊕ t2 �n ε1tG1 ⊕ ε2tG2 : B3

(TRif)

�;�
 t1 �n tG1 : G1 �;�
 t2 �n tG2 : G2 �;�
 t3 �n tG3 : G3
ε1 = I=(G1,Bool) G = G2 � G3 ε2 = I=(G2, G) ε3 = I=(G3, G)

�;�
 if t1 then t2 else t3 �n if ε1tG1 then ε2tG2 else ε3tG3 : G

(TRλ)
�, x : G1
 t �n tG2 : G2

�;�
 λx : G1.t �n λxG1 .tG2 : G1 → G2
(TR::) �;�
 t �n tG ′ : G ′ ε = I=(G ′, G)

�;�
 (t :: G) �n (εtG ′ :: G) : G

(TRref)
�;�
 t �n tG : G ε = I=(G, G)

�;�
 ref t �n refG εtG : Ref G

(TRderef)
�;�
 t �n tG ′ : G ′ G = t̃ref (G ′) ε = I=(G ′,Ref G)

�;�
 !t �n !GεtG ′ : G

(TRasgn)

�;�
 t1 �n tG1 : G1 �;�
 t2 �n tG2 : G2

G3 = t̃ref (G1) ε1 = I=(G1,Ref G3) ε2 = I=(G2, G3)

�;�
 t1 := t2 �n ε1tG1 :=G3 ε2tG2 : Unit
(TRl) o : G ∈ �

�;�
 o �n oG : Ref G

Fig. 6. Elaboration of λ
ε
R̃EF

from λR̃EF .

Note that the elaboration rules only enrich derivations with evidence (by using the initial evidence operator), and such
resulting derivations are represented as intrinsic terms. Then by construction, the elaboration rules trivially preserve typing:

Proposition 9 (Elaboration preserves typing). If �; �
 t : G and �; �
 t �n tG : G, then tG ∈T[G].

4.6. Properties

In order to establish type safety we first have to define well-typedness of the store μ. Well-typedness of the store is
usually defined with respect to a store environment, i.e. �
 μ . Here, as we can see in Fig. 4, intrinsically-typed locations
oG ∈ T[Ref G] obviate the need for store environment �: the store environment of a term t is simply the set of intrinsically-
typed free locations of the term, freeLocs(t). Therefore, contrary to standard reference type systems, well-typedness of the
store is defined with respect to an intrinsic term:

Definition 8 (μ is well typed). A store μ is said to be well typed with respect to an intrinsic term tG , written tG
 μ, if

1. freeLocs(tG) ⊆ dom(μ), and
2. ∀ oG ∈ dom(μ), μ(oG) ∈ T[G].

A store μ is well typed if all the free locations of a term are part of the domain of the store. Also for each of the intrinsic
locations oG ∈T[G] that are part of the domain of the store, then all the underlying values v ∈ T[G].

Now we can establish type safety: closed terms do not get stuck, though they may terminate with cast errors. Also the
store of a program is well typed.

Proposition 10 (Type safety). Let tG a closed intrinsic term. If tG ∈T[G] then one of the following is true:

1. tG is a value v ;
2. if tG
 μ then tG | μ �−→ t′ G | μ′ for some term t′ G ∈T[G] and some μ′ such that t′ G
 μ′ and dom(μ) ⊆ dom(μ′);
3. tG | μ �−→ error.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 15
Also, the gradual type system is a conservative extension of the static type system; i.e. both systems coincide on fully-
annotated terms (where every subterm has only static type annotations). We first present the conservative extension of the
static semantics of the static language.

Proposition 11 (Equivalence for fully-annotated terms (statics)). For any t ∈ Term, .
s t : T if and only if t : T

We now present the conservative extension of the dynamic semantics of the static language. The equivalence of the
dynamic semantics for fully-annotated terms is more subtle. We cannot rely on a syntactic comparison of values because
during reduction λε

R̃EF
inserts (possibly redundant) ascriptions. For instance, (λx : Int.1) is syntactically different, but equiva-

lent to (λxInt.〈Int〉1 :: Int). To capture this relation, we formally connect both languages using logical relations between pairs
of terms and stores.

We use notation 〈t,μ〉 ≈ 〈tT ,μ′〉 : T to denote that the pair of term t and store μ is related to the pair of term tT and
store μ′ at type T . Two pairs of values and stores are related values at type T , if first, both stores are related. Two stores
are related if for all locations that are common to both stores, the stored values are related. Second, if T is a constant B or a
reference Ref T , then both values must be equal. Third, if T is a function, then both functions applied to related arguments
yield two related computations. Two configurations (i.e. term-store pairs) are related computations if both configurations
reduce to related values and stores. The complete definition and proofs are presented in C.1.

Proposition 12 (Equivalence for fully-annotated terms (dynamics)). For any t ∈ Term, .
s t : T , t �n tT : T , then t | · �−→∗
s v |

μ ⇐⇒ tT | · �−→∗ v ′ | μ′ , for some μ, μ′ such that 〈v,μ〉 ≈ 〈v ′,μ′〉 : T .

Precision on terms, noted t1 � t2, is the natural lifting of type precision to terms. The gradual type system satisfies the
static gradual guarantee of Siek et al. [38], i.e. losing precision preserves typeability: if a program is well-typed, then a less
precise version of it also type checks, at a less precise type.

Proposition 13 (Static gradual guarantee). If t1 : G1 and t1 � t2 , then t2 : G2 , for some G2 such that G1 � G2 .

We also prove that λR̃EF satisfies the dynamic component of the gradual guarantee: “any program that runs without error
would continue to do so if it were given less precise types”. For this we must also extend the notion of precision over
stores: intuitively a store is more precise than another store if its locations and values are more precise than the locations
and values of the other.

Proposition 14 (Dynamic gradual guarantee). Suppose tG1
1 � tG2

1 and μ1 � μ2 . Then if tG1
1 | μ1 �−→ tG1

2 | μ′
1 then tG2

1 | μ2 �−→ tG2
2 |

μ′
2 where tG1

2 � tG2
2 and μ′

1 � μ′
2 .

4.7. λR̃EF in action

λR̃EF is semantically equivalent to HCC. The resulting language λR̃EF behaves exactly as HCC. Recall the examples from §2.3; λR̃EF ,
like HCC, rejects examples 2 and 4, and accepts examples 3 and 5.

For instance, consider example 2. The corresponding λR̃EF term is !((ref 4 :: ?) :: Ref Bool). Its elaboration reduces as
follows:

!Bool〈Ref Bool〉(〈Ref Bool〉(ref? 〈Int〉4 :: ?) :: Ref Bool) | ·
�−→!Bool〈Ref Bool〉(〈Ref Bool〉o? :: Ref Bool) | [o? �→ 〈Int〉4 :: ?]
�−→!Bool〈Ref Bool〉o? | [o? �→ 〈Int〉4 :: ?]
�−→〈Bool〉(〈Int〉4 :: ?) :: Bool | [o? �→ 〈Int〉4 :: ?]
�−→error

because 〈Int〉 ◦ 〈Bool〉 is not defined. Of course, this is just an example reduction; formally establishing the relation between
both languages is the subject of §5.

λR̃EF is not space efficient. Even though semantically equivalent, contrary to HCC, λR̃EF is not space efficient. We can write
programs in λR̃EF that accumulate an unbounded number of evidences during reduction.

To illustrate, consider λR̃EF term
 = (λx : ?.x x)(λx : ?.x x). Its elaboration to λε
R̃EF

is

? = 〈? → ?〉(λx?.〈? → ?〉x 〈?〉x) @?→? 〈? → ?〉(λx?.〈? → ?〉x 〈?〉x)

After multiple steps of reduction, the resulting term accumulates ascriptions as follows:

〈?〉(〈?〉(〈?〉...(〈?〉
? :: ?)... :: ?) :: ?) :: ?

16 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
This example illustrates how the order of combination of evidences impacts space efficiency and destroys tail recursion.
Note that this problem applies to any language derived with AGT.

In contrast, with HCC, the same program reduces as follows (we omit stores for simplicity):

�? = (λx : ?.c1x x) c2(λx : ?.c1x x) �−→ c1(c2(λx : ?.c1x x)) c2(λx : ?.c1x x) �−→ �? �−→ ...

where c1 is a coercion from ? to ? → ?, and c2 from ? → ? to ?.
Even though λR̃EF and HCC are different regarding space efficiency, they are semantically equivalent: given a term and its

compilations to λε
R̃EF

and HCC+ (an adapted version of HCC), either both terms reduce to values, both terms diverge, or both
terms reduce to an error. In the following, we formalize the relation between λR̃EF and HCC (§5), along with the changes
needed to recover space efficiency in λR̃EF (§5.3).

5. Comparing λ›REF and HCC

In this section we compare λR̃EF and HCC, the space-efficient coercion calculus of Herman et al. [24]. We start by present-
ing the static and dynamic semantics of HCC+ , an adapted version of HCC extended with conditionals and binary operations.
Then we formalize the relation between both semantics as follows: given a λR̃EF term and its corresponding elaboration to
λ
ε
R̃EF

and translation to HCC+ , we prove that the resulting terms are bisimilar, and that consequently they either both termi-
nate, both fail, or both diverge. Despite this tight relation, the dynamic semantics of λR̃EF are not space-efficient: ascriptions
can be repeatedly accumulated during reduction, contrary to HCC. We finalize this section by adjusting the dynamic seman-
tics of λε

R̃EF
to recover space efficiency.

5.1. The coercion calculus

In this section we present HCC+ , an adaptation of HCC extended with conditionals and binary operations. This language
is designed as a cast calculus for λR̃EF . The following presentation of this language is closely related to the coercion calculus
presented by Siek et al. [37].

Usually, the operational semantics of gradual languages generate proxies when reducing function applications which
involve casts. This approach may result in an unbounded growth in the number of proxies, which impacts space efficiency
and destroys tail recursion [24]. HCC was designed to represent and compress sequences of casts, by using coercions instead
of casts (and function proxies). HCC recovers space efficiency by combining and normalizing adjacent coercions to limit their
space consumption to a constant factor.

Static semantics. Fig. 7 presents the static semantics of HCC+ . The syntax includes gradual types G , ground types R , coercions
c , and terms t . Ground types R are the only types allowed to be coerced directly from/to the unknown type ?. A ground
type can be either a function ? → ?, a reference Ref ?, or a base type B . Terms t can also be coerced terms ct . The judgment
c
 G1 ⇒ G2 represents that coercion c is used to coerce values of type G1 to type G2. The identity coercion iG represents
a coercion from a type to itself. The failure coercion Fail represents an invalid coercion. The tagging coercion R! represents
a coercion from a ground type R to ?. The check-and-untag coercion R? represents a coercion from ? to a ground type R .
The function coercion c1 → c2 represents a coercion where c1 coerces the function argument, and c2 coerces the result.
The reference coercion Ref c1 c2 represents a coercion where c1 coerces values written in the heap, and c2 coerces values
read from the heap. Finally, a coercion composition c1; c2 represents the coercion c1 followed by coercion c2 . We consider
coercions equal up to associativity of composition. The type rules are standard for a cast calculus. Each type rule of Fig. 3
is simplified by replacing uses of consistency with equality. We replace the ascription rule (G::) with rule (HC), used to
typecheck coerced terms: a coerced term ct has type G if the subterm t has type G ′ , and c is a coercion from G ′ to G .

Dynamic semantics. Fig. 8 presents the dynamic semantics of HCC+ . A value v can be a raw value u , or a coerced value c u ,
where coercion c is in normal form. We say a coercion is in normal form if it is irreducible, denoted nm c; the predicate
is defined in Fig. 9. To reduce programs we use three different evaluation contexts: H to reduce coercions, and F and E to
reduce terms. Coercions are combined using the coerced term reduction rule −→c . Coercions are maintained in normal form
throughout evaluation using big step semantics of the coercion reduction rule �−→, and the normal form predicate nm c . The
coercion reduction rule combines coercions using the notion of coercion reduction rule −→. A failure coercion is produced
when a tagging and a check-and-untag coercions are combined, and the ground types involved are different. When the
types are the same, then an identity coercion is produced. The combination of an identity coercion with another coercion c
produces the same coercion c . On the contrary, the combination of a failure coercion with another coercion c propagates the
failure coercion. Reductions of both combination of function coercions and combination of reference coercions are defined
inductively. Notice the contravariant combination order for the argument of functions, and in the coercions for write values
in the heap respectively. Note that in the reduction of coerced terms, a failure coercion does not trigger a runtime error
immediately (i.e. Fail t −→c error), but after the subterm is reduced to a raw value (i.e. Fail u −→c error). The reason for
this is that HCC aims to regain space efficiency without changing the behavior of standard cast calculus/coercion semantics,
which combines casts when the subterm is a value. The rest of the dynamic semantics is standard to cast calculi. The
reduction of coerced dereferences coerces the value on the heap with the second component of the coercion, and dually the
reduction of coerced assignments coerces the updated value using the first component of the coercion.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 17
R ∈ GroundType, c ∈ Coercion, t ∈ CTerm,

G ::= ? | B | G → G | Ref G (Gradual types)
R ::= ? → ? | Ref ? | B (Ground types)
c ::= iG | Fail | R! | R? | c → c | Ref c c | c; c (coercions)
t ::= b | (λx : G.t) | o | x | t t | t ⊕ t | if t then t else t | c t | ref t | !t | t:=t (terms)

c
 G1 ⇒ G2 Coercion typing

iG
 G ⇒ G Fail
 G1 ⇒ G2 R?
 ? ⇒ R R!
 R ⇒ ?

c1
 G21 ⇒ G11 c2
 G12 ⇒ G22

c1 → c2
 G11 → G12 ⇒ G21 → G22

c1
 G2 ⇒ G1 c2
 G1 ⇒ G2

Ref c1 c2
 Ref G1 ⇒ Ref G2

c1
 G1 ⇒ G2 c2
 G2 ⇒ G3

c1; c2
 G1 ⇒ G3

�;�
H t : G Term typing

(Hx) x : G ∈ �

�;�
H x : G
(Hb)

θ(b) = B
�;�
H b : B

(Happ)
�;�
H t1 : G1 → G2 �;�
H t2 : G1

�;�
H t1 t2 : G2

(Hop)

�;�
H t1 : B1 �;�
H t2 : B2
ty(⊕) = B1 × B2 → B3

�;�
H t1 ⊕ t2 : B3
(Hif)

�;�
H t1 : Bool �;�
H t2 : G2
�;�
H t3 : G2

�;�
H if t1 then t2 else t3 : G2

(Hλ)
�, x : G1
H t : G2

�;�
H (λx : G1.t) : G1 → G2
(HC)

�;�
H t : G ′ c
 G ′ ⇒ G
�;�
H c t : G

(Href)
�;�
H t : G

�;�
H ref t : Ref G
(Hderef)

�;�
H t : Ref G
�;�
H !t : G

(Hasgn)
�;�
H t1 : Ref G �;�
H t2 : G

�;�
H t1:=t2 : Unit
(Hl) o : G ∈ �

�;�
H o : Ref G

Fig. 7. HCC+: Static semantics.

Translation semantics. Fig. 10 presents the translation rules from λR̃EF to HCC+ . The translation is a type-driven coercion
insertion. The key idea is to insert coercions where consistency is used in the typing derivation. The translation judgment
has the form �; �
 t �c t′ : G which represent translation from λR̃EF term t of type G , to HCC+ term t′ , under envi-
ronments � and �. We write t �n t : G if ·; ·
 t �n t : G . Note that we assume that variables x and x refer the same
variable. Similarly, constants b and b, and locations o and o refer to the same location. We paint them red only to dis-
ambiguate terms of different languages. Coercions are introduced using the 〈G1 ⇒ G2〉t metafunction, which represents
the insertion of a coercion from G1 to G2. This metafunction avoids the insertion of redundant coercions by checking if
G1 is syntactically equal to G2. If both types are the same, then the coercion is not introduced. Otherwise we use the
coercion function 〈〈G1 ⇒ G2〉〉 to elaborate the coercion from G1 to G2. The inductive definition of the coercion insert-
ing function is presented in Fig. 11, and follows closely the rules for coercion typing. For instance, as R?
 ? ⇒ R , then
〈〈? ⇒ R〉〉 = R?. There are some subtleties worth mentioning, such as the definition of 〈〈? ⇒ Ref G〉〉. This should result
in a coercion from ? to Ref G , but there is no direct coercion from unknown to any given type Ref G . Consequently
〈〈? ⇒ Ref G〉〉 is defined as the composition of a coercion from ? to Ref ?: (Ref ?)? (to test if the value is actually a
reference), with a coercion from Ref ? to Ref G: 〈〈Ref ? ⇒ Ref G〉〉, which follows the inductive definition. Analogously,
〈〈Ref G ⇒ ?〉〉 is defined as the composition of a coercion from Ref G to Ref ?, with a coercion from Ref ? to ?. Notice
that by construction, we do not need definitions for 〈〈G ⇒ G〉〉 and 〈〈? ⇒ ?〉〉 as these cases are avoided thanks to the 〈. ⇒ .〉
metafunction.

5.2. Relating λε
R̃EF

and HCC+

We now establish the equivalence of the λε
R̃EF

and HCC+ semantics for elaborated and translated λR̃EF terms respectively,
by using a bisimulation relation.

Fig. 12 presents function �.�, which relates evidence augmented consistent judgments with coercions during the def-
inition of the bisimulation relation. A naive relation between evidence and coercion is ambiguous unless one indicates
the gradual types involved in the judgment. For instance, evidence 〈Int〉 corresponds to both coercion Int? or Int!, unless
we expose the judgment associated with the evidence, so 〈Int〉
 Int ∼ ? correspond exactly to the coercion from Int to ?,
Int!. The definition follows the definition of the coercion insertion function presented in Fig. 10 (e.g. 〈〈? ⇒ R〉〉 = R?, so

18 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
u ::= b | (λx : G1.t) | o (raw values)
v ::= u | cu where nm c (values)
H ::= � | �; c | c;� | � → c | c →� | Ref � c | Ref c � (Coercion contexts)
F ::= � | E + t | v + E | E t | v E | E :: G |

if E then t else t | ref E | !E | E:=t | v:=E (Cast-free contexts)
E ::= F | c F (Evaluation contexts)

−→: Coercion × Coercion

Notion of coercion reduction

R!;R? −→ iR

R1!;R2? −→ Fail if R1 �= R2

(c11 → c12); (c21 → c22) −→ (c21; c11) → (c12; c22)

(Ref c11 c12); (Ref c21 c22) −→ Ref (c21; c11) (c12; c22)

iG; c −→ c

c; iG −→ c

Fail; c −→ Fail

c;Fail −→ Fail

�−→: Coercion × Coercion

Coercion reduction

c1 −→ c2

H[c1] �−→ H[c2]

−→c : CTerm × (CTerm ∪ {error})
Coerced term reduction

iG u | μ −→cu | μ
c1 (c2 t) | μ −→cc t | μ

if c2; c1 �−→∗ c ∧ nm c

Fail u −→cerror

Config = CTerm × Store

−→: Config × Config

Notion of term reduction

(λx : G.t) v | μ −→t[v/x] | μ
((c1 → c2)u)v | μ −→c1 (u (c2 v)) | μ

ref v | μ −→o | μ[o �→ v] o fresh

!o | μ −→μ(o) | μ
o :=v | μ −→unit | μ[o �→ v]

!((Ref c1 c2)o) | μ −→c2 !o | μ
(Ref c1 c2)o :=v | μ −→(o :=c1 v) | μ

if b then t2 else t3 | μ −→
®

t2 | μ if b = true

t3 | μ if b = false

u1 ⊕ u2 | μ −→u1 �⊕� u2

�−→: Config × (Config ∪ {error})
Term reduction

t | μ −→ t′ | μ′

E[t] | μ �−→ E[t′] | μ′

t | μ �−→ error
E[t] | μ �−→ error

t −→c t′

F[t] | μ �−→ F[t′] | μ
t −→c error

F[t] | μ �−→ error

Fig. 8. HCC+: Dynamic semantics.

nm c

nm iG nm Fail nm R? nm R! nm R?; R! nm c1 nm c2
c1 → c2

nm c1 nm c2

nm (? → ?)?; c1 → c2

nm c1 nm c2

nm c1 → c2; (? → ?)!
nm c1 nm c2

nm (? → ?)?; c1 → c2; (? → ?)!
nm c1 nm c2

Ref c1 c2

nm c1 nm c2

nm (Ref ?)?;Ref c1 c2

nm c1 nm c2

nm Ref c1 c2; (Ref ?)!
nm c1 nm c2

nm (Ref ?)?;Ref c1 c2; (Ref ?)!
Fig. 9. HCC+: Coercion normal forms.

�〈R〉
 ? ∼ R� = R?), save for a few extra cases described next. Reflexive judgments on ground types and the unknown type,
where evidence corresponds to the initial evidence, are mapped to identity coercions for ground types and the unknown
type respectively. The definition also takes into consideration judgments where both types are unknown, and the evidence

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 19
�;�
 t �c t′ : G Translation rules

(HRx) x : G ∈ �

�;�
 x �c x : G
(HRc)

θ(b) = B
�;�
 b �c b : B

(HRapp)
�;�
 t1 �c t′1 : G1 �;�
 t2 �c t′2 : G2

�;�
 t1 t2 �c 〈G1 ⇒ fidom(G1) → ›cod(G2)〉t′1 〈G2 ⇒ fidom(G1)〉t′2 : ›cod(G1)

(HRop)
�;�
 t1 �c t′1 : G1 �;�
 t2 �c t′2 : G2 ty(⊕) = B1 × B2 → B3

�;�
 t1 ⊕ t2 �c 〈G1 ⇒ B1〉t′1 ⊕ 〈G2 ⇒ B2〉t′2 : B3

(HRif)
�;�
 t1 �c t′1 : G1 �;�
 t2 �c t′2 : G2 �;�
 t3 �c t′3 : G3 G = G2 � G3

�;�
 if t1 then t2 else t3 �c if 〈G1 ⇒ Bool〉t′1 then 〈G2 ⇒ G〉t′2 else 〈G3 ⇒ G〉t′3 : G

(HRλ)
�, x : G1
 t �c t′2 : G2

�;�
 (λx : G1.t) �c (λx : G1.t′2) : G1 → G2
(HR::) �;�
 t �c t′ : G ′

�;�
 (t :: G) �c 〈G ′ ⇒ G〉t′ : G

(HRref)
�;�
 t �c t′ : G ′

�;�
 ref t �c ref 〈G ′ ⇒ G〉t′ : Ref G
(HRderef)

�;�
 t �c t′ : G ′ G = t̃ref (G ′)
�;�
 !t �c !〈G ′ ⇒ Ref G〉t′ : G

(HRasgn)
�;�
 t1 �c t′1 : G1 �;�
 t2 �c t′2 : G2 G3 = t̃ref (G1)

�;�
 t1 := t2 �c 〈G1 ⇒ Ref G3〉t′1:=〈G2 ⇒ G3〉t′2 : Unit
(HRl) o : G ∈ �

�;�
 o �c o : Ref G

where 〈G1 ⇒ G2〉t =
®

t if G1 = G2

〈〈G1 ⇒ G2〉〉t otherwise

Fig. 10. λR̃EF to HCC+ translation rules.

〈〈? ⇒ R〉〉 = R? 〈〈R ⇒ ?〉〉 = R! 〈〈? ⇒ G1 → G2〉〉 = (? → ?)?; 〈〈? → ? ⇒ G1 → G2〉〉
〈〈G1 → G2 ⇒ ?〉〉 = 〈〈G1 → G2 ⇒ ? → ?〉〉; (? → ?)!

〈〈G11 → G12 ⇒ G21 → G22〉〉 = 〈〈G21 ⇒ G11〉〉 → 〈〈G12 ⇒ G22〉〉 〈〈? ⇒ Ref G〉〉 = (Ref ?)?; 〈〈Ref ? ⇒ Ref G〉〉
〈〈Ref G ⇒ ?〉〉 = 〈〈Ref G ⇒ Ref ?〉〉; (Ref ?)! 〈〈Ref G2 ⇒ Ref G1〉〉 = Ref 〈〈G2 ⇒ G1〉〉 〈〈G1 ⇒ G2〉〉

Fig. 11. Coercion insertion function.

has become more precise. If the evidence is some ground type 〈R〉, then the judgment is mapped into the check-and-untag
coercion from ? to R , followed by the tagging coercion from R to ?. If the evidence is a function type (resp. reference type),
then the corresponding coercion is the check-and-untag coercion from ? to ? → ? (resp. Ref ?), followed by the correspond-
ing coercion of the consistent judgment between ? → ? and ? → ? (resp. Ref ? ∼ Ref ?) using the same evidence,7 finally
followed by the tagging coercion from ? → ? (resp. Ref ?) to ?.

The bisimulation relation is formally presented in Fig. 13. This relation syntactically relates a λε
R̃EF

term and an HCC+
term. Rules (bconst) and (bλ) are straightforward. Rules (bx) and (bb) relate two variables and two constants respectively,
where for simplicity we assume that xG and x refer to the same source variable x, and b and b refer to the same constant
b. Similarly, Rule (bo) relates two locations, assuming that the creation of locations is deterministic, i.e. new references
in two related executions are always allocated at the same address: oG and o refer to the same location o. Rule (bapp)
relates two application terms inductively, but notice that because evidence terms do not correspond to anything in HCC+ ,
we build an ascribed term instead, e.g. to relate ε1t11 with t21 we notice that the type of t21 has to be G1 → G2, therefore
as ε
 G ∼ G1 → G2 where t11 ∈ T[G], we can inductively relate ε1t11 :: G1 → G2 with t21 instead. Similarly, we relate
ε2t12 :: G1 (as ε2
 G ′ ∼ G1, where t2 ∈ T[G ′]) with t2 . We use the same reasoning for rules (bref), (b!), and (b:=). Rules
(b::eq), (b::id), and (b::leq) are the most important rules. Rule (b::eq) is the most intuitive rule; it relates an ascribed
term with a coerced term, only if the underlying evidence of the ascription is mapped to the coercion. Rule (b::id) relates
a redundant ascription with a term without a coercion. The reason is that a term like iGu (which is related to 〈G〉u G by
(b::eq) if u is related to u G :: G) reduces to u , whereas in λε

R̃EF
this redundant cast is not eliminated. Rule (b::leq) relates λε

R̃EF

terms with HCC+ terms that have eagerly combined coercions starting from the outermost pair of coercions. For instance,

7 Note that if 〈G1 → G2〉
 ? ∼ ? then 〈G1 → G2〉
 ? → ? ∼ ? → ?.

20 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
�〈R〉
 R ∼ R� = iR

�〈?〉
 ? ∼ ?� = i?

�〈R〉
 ? ∼ R� = R?

�〈R〉
 R ∼ ?� = R!
�〈R〉
 ? ∼ ?� = R?;R!

�〈G1 → G2〉
 G11 → G12 ∼ G21 → G22� = �〈G1〉
 G21 ∼ G11� → �〈G2〉
 G12 ∼ G22�

�〈G1 → G2〉
 ? ∼ G21 → G22� = (? → ?)?; �〈G1 → G2〉
 ? → ? ∼ G21 → G22�

�〈G1 → G2〉
 ? ∼ ?� = (? → ?)?; �〈G1 → G2〉
 ? → ? ∼ ? → ?�; (? → ?)!
�〈G1 → G2〉
 G11 → G12 ∼ ?� = �〈G1 → G2〉
 G11 → G12 ∼ ? → ?�; (? → ?)!

�〈Ref G〉
 Ref G1 ∼ Ref G2� = Ref �〈G〉
 G2 ∼ G1� �〈G〉
 G1 ∼ G2�

�〈Ref G1〉
 ? ∼ Ref G2� = (Ref ?)?; �〈Ref G1〉
 Ref ? ∼ Ref G2�

�〈Ref G1〉
 ? ∼ ?� = (Ref ?)?; �〈Ref G1〉
 Ref ? ∼ Ref ?�; (Ref ?)!
�〈Ref G1〉
 Ref G2 ∼ ?� = �〈Ref G1〉
 Ref G2 ∼ Ref ?�; (Ref ?)!

where (Gi �= Ri)

Fig. 12. Map from evidence augmented consistent judgments to coercions.

(bb)
b ≈ b

(bx)
xG ≈ x

(bλ)
t1 ≈ t2

λxG .t1 ≈ λx : G.t2
(bo)

oG ≈ o

(bapp)
ε1t11 :: G1 → G2 ≈ t21 ε2t12 :: G1 ≈ t22

ε1t11 @G1→G2 ε2t12 ≈ t21 t22
(b::eq)

tG ′ ≈ t c = �ε
 G ′ ∼ G�

εtG ′ :: G ≈ ct

(b::id)
tG ≈ t ε = 〈G〉

εtG :: G ≈ t
(b::leq)

c1
 G1 ⇒ G2 c2 = �ε
 G2 ∼ G3�
tG2 ≈ c1t c1; c2 �−→∗ c nm c

εtG2 :: G3 ≈ ct
(bref)

εt1 :: G ≈ t2

refG εt1 ≈ ref t2

(b!) εt1 :: Ref G ≈ t2

!Gεt1 ≈ !t2
(b:=)

ε1t11 :: Ref G3 ≈ t21 ε2t12 :: G3 ≈ t22

ε1t11 :=G3 ε2t12 ≈ t21:=t22

(bif)
ε1tG1 :: Bool ≈ t1 G = (G2 � G3) ε2tG2 :: G ≈ t2 ε3tG3 :: G ≈ t3

if ε1tG1 then ε2tG2 else ε3tG3 ≈ if t1 then t2 else t3

(b⊕)
ty(⊕) = B1 × B2 → B3 ε1t11 :: B1 ≈ t21 ε1t12 :: B2 ≈ t22

ε1t11 ⊕ ε2t12 ≈ t21 ⊕ t22

(bμ)
∀oG ∈ μ1,o ∈ μ2,oG ≈ o ⇒ μ1(oG) ≈ μ2(o)

μ1 ≈ μ2

Fig. 13. Bisimulation relation between intrinsic terms and the terms of the coercion calculus.

t = ε1(ε2t1 :: G2) :: G1 may be related to t = c1(c2t2), if t1 ≈ t2 , c1 = �ε1
 G2 ∼ G1�, and c2 = �ε2
 G3 ∼ G1� for some G3.
But t may take a step to c21t2 where c2; c1 �−→∗ c21 and nm c21 . By using (b::leq) we can relate t and c21t2 , by decomposing
c21 back into c1 and c2 , as we know by (b::eq) that ε2t1 :: G2 is related to c2t2 . Finally rule (bμ) relates two stores if for all
related locations, their corresponding values in the stores are related.

We can now state the bisimulation lemma between λε
R̃EF

and HCC+ as follows

Lemma 15 (Weak bisimulation between λε
R̃EF

and HCC+). If t1 ∈T[G], ·; �
H t2 : G, μ2 |= �, μ1 ≈ μ2 , and t1 ≈ t2 , then

1. If t1 | μ1 �−→ t′
1 | μ′

1 , then t2 | μ2 �−→∗ t′2 | μ′
2 such that t′

1 ≈ t′2 and μ′
1 ≈ μ′

2 .
2. If t2 | μ2 �−→ t′′2 | μ′′

2 , then ∃ j, 0 ≤ j ≤ 2, t′′2 | μ′′
2 �−→ j t′2 | μ′

2 and t1 | μ1 �−→∗ t′
1 | μ′

1 such that t′
1 ≈ t′2 and μ′

1 ≈ μ′
2 .

In words, if the λε
R̃EF

term takes a step, then the related HCC+ can take some steps to a related term/store configuration.
Conversely, after taking a step, a term of HCC+ may have to take up to two extra steps in order to be related to a (future)

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 21
F ::= � | E ⊕ et | ev ⊕ E | E @G et | ev @G E | E :: G |
if E then et else et | refG E | !G E | E :=G et | ev :=G E

E ::= F | 〈G〉F | � :: G

(r7) 〈G2〉(〈G1〉 t :: G) −→c

®〈G1 � G2〉 t

εerrt if G1 � G2is not defined

(r8) εerr(〈G1〉t :: G) −→c εerrt

(r9) εerru −→c error

Fig. 14. λ
ε
R̃EF

: Modifications for a space-efficient dynamic semantics.

λ
ε
R̃EF

term. This is because for cases like application and assignment, λε
R̃EF

does in one step what HCC+ may do in three. For
instance, take the following two related terms: (ε1(λxG .t) @G1→G2 ε2u) ≈ ((c1 → c2) (λx : G.t))c3u . After a step of reduction
the two terms are not related; the HCC+ term has to take two more steps to relate the body of the lambdas (we ignore
stores for simplicity):

(ε1(λxG .t) @G1→G2 ε2u) �−→ icod(ε1)([(ε2 ◦ idom(ε1)u :: G/xG]t) :: G2

((c1 → c2) (λx : G.t))c3u �−→ c1 ((λx : G.t) (c2 c3u)) �−→ c1 ((λx : G.t) (c′
3u)) �−→ c1 t[c′

3u/x]

The key result is that given a λR̃EF term, its elaboration to λε
R̃EF

and its translation to HCC+ are bisimilar.

Proposition 16 (Translations are bisimilar). Given t : G, if t �n t1 : G, and t �c t2 : G, then t1 ≈ t2 .

A direct consequence of bisimilarity is that elaborating to λε
R̃EF

and translating to HCC+ yield programs that co-terminate,
co-fail, or co-diverge. We write t ⇓ (resp. t ⇓ error), if t | · �−→∗ v | μ (resp. t | · �−→∗ error) for some resulting store μ , and
similarly, we write t ⇓ (resp. t ⇓ error), if t | · �−→∗ v | μ (resp. t | · �−→∗ error) for some resulting store μ .

Corollary 17. Given t : G, if t �n t1 : G and t �c t2 : G, then t1 ⇓ ⇐⇒ t2 ⇓ and t1 ⇓ error ⇐⇒ t2 ⇓ error. (Co-divergence follows
trivially.)

5.3. Recovering space efficiency in λR̃EF

Although we have established that given a λR̃EF term, its elaboration to λε
R̃EF

and its translation to HCC+ are bisimilar,
the dynamic semantics of λε

R̃EF
are not space-efficient, i.e. ascriptions can be repeatedly accumulated during reduction as

illustrated in §4.7. We now present the changes needed in the runtime semantics of λε
R̃EF

in order to enjoy a space-efficient
operational semantics.

The main space efficiency problem with λε
R̃EF

is that the definition of evaluation contexts allows ascriptions and evi-
dences to accumulate until the corresponding subterm is reduced to a value. Fig. 14 presents a space-efficient dynamic
semantics variant with respect to the original dynamic semantics of Fig. 5 (changes are highlighted in gray). To achieve
space efficiency, we eliminate the E :: G evaluation context, so as to forbid reduction inside nested ascriptions. Instead of
combining evidences starting from the innermost pair of evidences, rule (r7) now combines evidence eagerly starting from
the outermost pair of evidences by using the new � :: G evaluation context, before subterm t is reduced to a value.

Preserving the failure behavior. To preserve the failure behavior of the original dynamic semantics (and fail at the same point
of execution), (r7) cannot simply reduce to an error when consistent transitivity is not defined. For instance, consider
t = 〈Bool〉(〈Int〉(〈Int〉1 + 〈Int〉1) :: ?) :: ?. Using the original dynamic semantics, this term reduces to an error as follows

t | · �−→ 〈Bool〉(〈Int〉2 :: ?) :: ? | · �−→ error

If we combine evidences starting from the outermost pair of evidence, t would reduce to an error immediately, i.e. t | · �−→
error, because 〈Int〉 ◦ 〈Bool〉 is not defined.

If combination of evidences is not defined then instead of reducing directly to an error, we reduce to an evidence term
using the pending error evidence εerr . The pending error evidence εerr is defined such that εerr
 G1 ∼ G2 for any G1 and G2.
We also update the definition of intrinsic values v to raw values u , or ascribed simple values εu :: G where ε �= εerr . Rule
(r8) just propagates evidence εerr until rule (r9) finally reduces a pending error evidence combined with a simple value to
an error. Using the space-efficient semantics, t now reduces as follows:

t | · �−→ εerr(〈Int〉1 + 〈Int〉1) :: ? �−→ εerr2 :: ? �−→ error

22 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Space efficiency. We now demonstrate that the total cost of maintaining evidences during reduction in λε
R̃EF

is bounded. We
proceed analogously to Herman et al. [24], and refer to their work for more details.

First, to reason about the space required by evidences we introduce the notion of size and height of evidences and types:

size(〈G〉) = size(G)

size(εerr) = 1

size(?) = 1

size(B) = 1

size(G1 → G2) = 1 + size(G1) + size(G2)

size(Ref G1) = 1 + size(G1)

height(〈G〉) = height(G)

height(εerr) = 1

height(?) = 1

height(B) = 1

height(G1 → G2) = 1 + max(height(G1),height(G2))

height(Ref G1) = 1 + height(G1)

size and height respectively compute the size and depth of the abstract syntax of evidence and types. Note that the
maximum number of children for a given node is two (functions), therefore we can bound the size of evidences in terms of
its height as a binary tree:

Lemma 18. ∀ε
 G1 ∼ G2, size(ε) ≤ 2height(ε) − 1

Note that we get a tighter bound than in HCC8 because evidence composition in λε
R̃EF

is not part of the syntax of evidence.
The height of any type computed by the meet operator is bounded by the maximum height of both types.

Lemma 19. If G1 � G2 = G3 , then height(G3) ≤ max(height(G1), height(G2))

This lemma allows us to establish two similar lemmas to bound the maximum height of evidences:

Lemma 20. If I=(G1, G2) = ε , then height(ε) ≤ max(height(G1), height(G2))

Lemma 21. If ε1 ◦= ε2 = ε3 , then height(ε3) ≤ max(height(ε1), height(ε2))

Given a λR̃EF term and its elaboration to λε
R̃EF

, the size and height of every evidence found at any step of reduction is
bounded by some types found during the elaboration.

Proposition 22. If t �n t : G and t | · �−→∗ t′ | μ′ such that ε occurs in (t′, μ′), then there exists G ′ in the derivation of t �n t : G
such that height(ε) ≤ height(G ′) and size(ε) ≤ 2height(G ′) − 1.

Finally, we bound the total cost of maintaining evidences. To do this we define the size of a program configuration
p = 〈t,μ〉 as the sum of the sizes of its term and store subcomponents. Following [24], for the store, we only count the
locations that an idealized garbage collector would consider live, by using an auxiliary reachable metafunction:

size(〈t,μ〉) =size(t) + size(μ |reachable(t))

size(μ) =
∑

oG ∈dom(μ)(size(oG) + size(μ(oG)))

size(b) = = 1

size(oG) =size(xG) = 1 + size(G)

8 In HCC the bound is 5(2height(ε) − 1), where 5 represents the maximum width of a normalized coercion.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 23
size(λxG .t) =1 + size(xG) + size(t)

size(refG2 εtG1) =size(!G2εtG1) = size(εtG1 :: G2) = 1 + size(ε) + size(tG1) + size(G2)

size(ε1tG1 :=G3 ε2tG2) =size(ε1tG1 @G3 ε2tG2) = 1 + size(ε1) + size(tG1) + size(ε2) + size(tG2) + size(G3)

We now compare the size of a program configuration with the size of a program configuration reduced in an “ora-
cle” semantics, where evidences require no space. The oracular measure sizeOR is defined analogous to size, but where
sizeOR(ε) = 0.

Proposition 23. If t �n t : G and t | · �−→∗ t′ | μ′ , then there exists G ′ in the derivation of t �n t : G such that size(〈t′,μ′〉) ∈
O (2height(G ′) · sizeOR(〈t′,μ′〉)).

As explained by Herman et al. [24], this result shows that when reducing a term t , coercions occupy bounded space,
which depends on the height of some type used in the type derivation of t .

Relating the space-efficient semantics and HCC+. Regarding the result of §5.2, the new space-efficient semantics are now more
closely related to HCC+ . In particular rule (b::leq) of Fig. 13 is not needed anymore as evidences and coercions are reduced
in lock-step. The only difference between both semantics is that identity coercions are eliminated during reduction, whereas
redundant evidences are not (and this is why we have to keep the (b::id) rule).

Eager space-efficient dynamic semantics. Alternatively, we could have defined the space-efficient dynamic semantics without
rules (r8) and (r9), and where (r7) would be defined as follows:

〈G2〉(〈G1〉 t :: G) −→c

®〈G1 � G2〉t
error if G1 � G2 is not defined

This variant would yield a more eager semantics. Going back to the previous example where t =
〈Bool〉(〈Int〉(〈Int〉1 + 〈Int〉1) :: ?) :: ?, t would now reduce immediately to an error after trying to combine the 〈Int〉 and 〈Bool〉
outer evidences: t | · �−→ error.

The main difference with the previous approach is that a program that may diverge using the original dynamic semantics
may now also fail with an error (therefore the bisimulation would be weaker). To illustrate this, consider the following
program, where
 is a non-terminating term:

〈Int〉(〈?〉(〈Bool〉(〈?〉
 :: ?) :: Bool) :: ?) :: Int

Using the original dynamic semantics, this program diverges because
 is evaluated first before combining the outer evi-
dences. Using the first variant of the space-efficient semantics, this program also diverges because the outer evidence εerr
never triggers an error because
 never reduces to a value. But using the eager variant of the space-efficient semantics, the
program reduces to an error just after combining the 〈Bool〉 and 〈Int〉 evidences.

6. Encoding permissive and monotonic references in λ›REF

In this section we present λpm
R̃EF

, an extension of λR̃EF with support for both permissive and monotonic references [39].
We codify permissive and monotonic references by introducing new term constructors for each form of reference in λpm

R̃EF
.

Encoding monotonic references is more difficult than encoding permissive references, as it involves extending the dynamic
semantics of λε

R̃EF
.

λ
pm
R̃EF

supports two constructors to create references: ref for guarded reference, and mref for monotonic references. For
instance, to emulate the behavior of monotonic references in examples 3 and 5, we use mref as illustrated below:

1 let x = mref (4 :: ?)
2 let y: Ref Bool = x ← runtime error
3 y := true
4 !y

Example 3

1 let x = mref (4 :: ?)
2 let y: Ref Int = x
3 x := true ← runtime error

Example 5

6.1. Static semantics

We start by extending the syntax of λR̃EF as follows:

z ::= g | p | m (reference mode)
v ::= ... | o z (values)
t ::= ... | refG t (terms)
z

24 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
... (Grefz)
z ∈ {g,p} �;�
 t : G ′ G ′ ∼ G

�;�
 refGz t : Ref G
(Grefp)

�;�
 t : G ′ G ′ ∼ ?

�;�
 ref ?
p t : Ref ?

(G l)
o z : G ∈ �

�;�
 o z : Ref G

Fig. 15. λ
pm
R̃EF

: Extensions to the static semantics.

A reference mode z may be a guarded reference g, a permissive reference p, or a monotonic reference m (notice that the
mref and ref constructors correspond to refGm and refGg respectively). Locations are now indexed by a reference mode oz ,
e.g. om represent a monotonic reference. Reference terms are also indexed with a tag z to know which kind of reference to
create during reduction.

Fig. 15 highlights the changes to the typing rules of Fig. 3. Rule (Gref) is split into (Grefz) and (Grefp), the former to
type check guarded and monotonic references, and the latter for permissive references. Note that in λR̃EF , references created
at type ? (Ref ?) already behave like permissive references. This is because stored values of locations typed Ref ? never
change its type (?) allowing for any arbitrary update. Therefore, to support permissive references in λpm

R̃EF
, we simply add

the (Grefp) type rule, which assigns type Ref ? to any permissive reference, as it may be used freely with any value of any
type.

6.2. Dynamic semantics

Analogous to λR̃EF , the dynamic semantics of λpm
R̃EF

are defined via elaboration to their intrinsic representation. The ex-

tended language of intrinsic terms is called λpmε

R̃EF
. The elaboration rules are identical to Fig. 6, save for terms and types

corresponding to references, which are now indexed by a reference mode.
Fig. 16 presents selected rules of the dynamic semantics of λpmε

R̃EF
. We highlight in gray the key changes with respect

to Fig. 5. Following Siek et al. [39], we use in some rules evolving stores to reduce programs. An evolving store ν is a
mapping between locations and terms, and intuitively it represents a store with pending evidence combinations. Compared
to Siek et al. [39], the fact that λpmε

R̃EF
does not have pairs allows us to simplify the definition of an evolving store as a store

with a single pending combination. Evolving stores are used to propagate ascriptions on monotonic locations recursively.
Configurations are pairs of an intrinsic term and an evolving store. Rule (r2) is factorized to perform the ascription of the
argument separately, because the argument can be a monotonic reference, and thus the ascription needs to be propagated
into the store. Rules (r4), (r5) and (r6) are adapted by adding a reference mode z to the corresponding terms and types
constructors. Rule (r4), instead of reducing to a location, now reduces to an ascribed location. Although this ascription may
seem redundant, it is used later by other rules to push more precise evidence information in the store when working with
monotonic locations as shown in rule (r7). Rule (r6) is adapted for monotonic locations: instead of updating the location
cell to a new value, the cell is updated to a new ascribed value with evidence information of what was before in that cell.
By doing this, we make sure that the evidence of a cell can only gain precision. Rule (r7) reduces an evidence term and
a store, as the store may change during combination of evidence. There is also a new special case when the raw value u
is a monotonic location. In that case, the underlying value in the store is ascribed with information of evidence 〈G3〉 as
it may gain precision (or fail!). Rule (r7) uses function ev which returns the outermost evidence of a term, and is defined
as ev(εt :: G) = ε . As there may be cycles in the store, this new ascription can trigger the same reduction again in the
future. Following Siek et al. [39], to avoid infinite loops, this special case is considered only if we are gaining precision. But
instead of demanding that G ′ �= t̃ref (G3), to prove the dynamic gradual guarantee we have to impose a stronger condition:
G ′ �� t̃ref (G3).

To illustrate rule (r7), consider the following step of reduction:

〈Ref (? → Int)〉(〈Ref (? → ?)〉o?→?
m :: Ref (? → ?)) | o?→?

m �→ (〈? → ?〉(λx : ?.x) :: ? → ?)

−→c〈Ref (? → Int)〉o?→?
m | o?→?

m �→ (〈Int → ?〉(〈? → ?〉(λx : ?.x) :: ? → ?) :: ? → ?)

The corresponding value in the store of the monotonic location is updated to a new term: its evidence will gain precision
when the evolving store is reduced to a store. Following Siek et al. [39], rules (Rν) and (RνErr) are added to reduce evolving
stores. Rule (RνErr) steps to an error when one of the terms in the store reduces to an error. Notice that, differently
from Siek et al. [39], propagation of ascriptions stops when a non-monotonic location is encountered. In the example, the
evolving store is reduced as follows:

〈Ref (? → Int)〉o?→?
m | o?→?

m �→ (〈Int → ?〉(〈? → ?〉(λx : ?.x) :: ? → ?) :: ? → ?)

−→c〈Ref (? → Int)〉o?→?
m | o?→?

m �→ (〈Int → ?〉(λx : ?.x) :: ? → ?)

Finally, contexts (RF) and (RF err) are also adapted to include the store when combining evidences.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 25
...

μ := · | μ,oG
z �→ v

ν := · | μ | μ,oG
z �→ et :: G,μ

Notions of Reduction

ConfigG =T[G] × EvolvingStore

...

(r2)(〈G ′
11 → G ′

12〉(λxG11 .t))@G1→G2 (〈G ′
2〉u)| μ −→

®〈G ′
12〉([v /xG11]t) :: G2| ν

error if G ′
2 � G ′

11 is not defined

where 〈G ′
11〉(〈G ′

2〉u :: G1) :: G11| μ �−→ v | ν
...

(r4) refG2
z 〈G1〉u | μ −→ 〈Ref G2〉 oG2

z :: Ref G2 | μ[oG2
z �→ 〈G1〉u :: G2]

where o z /∈ dom(μ)

(r5) !G (〈Ref G1〉oG2
z) | μ −→ 〈G1〉v :: G | μ where v = μ(oG2

z)

(r6) 〈Ref G1〉oG
z :=G3 〈G2〉u | μ −→

®
unit | μ[oG

z �→ t]
error if G2 � G3 is not defined

where μ(oG
z) = 〈G ′〉u′ :: G, t = 〈G3〉(〈G2〉u :: G3) :: G and

if z = m then G3 = G1 � G ′, otherwise G3 = G1

(r7) 〈G2〉(〈G1〉u :: G) | ν −→c

⎧⎪⎪⎨
⎪⎪⎩

〈G3〉u | ν if u �= oG
m

〈G3〉u | ν[u �→ 〈G4〉ν(u) :: G5] if u = oG5
m , G ′ �� t̃ref (G3)

error if G3 or G4 are not defined

where ev(ν(u)) = 〈G ′〉, G3 = G1 � G2, and G4 = t̃ref (G3) � G ′

Reduction

(RE)
tG

1 | μ −→ tG
2 | ν

E[tG
1]| μ �−→ E[tG

2]| ν
... (RF)

et | μ −→c et′ | ν
F [et]| μ �−→ F [et′]| ν

(RF err)
et | μ −→c error

F [et]| μ �−→ error
...

(Rν)

ν(oG
z) = et :: G et | ν −→c et′ | ν ′

tG ′ | ν �−→ tG ′ | ν ′[oG
z �→ et′ :: G]

(RνErr)
ν(oG

z) = et :: G et | ν −→c error

tG ′ | ν �−→ error

Fig. 16. λ
pmε

R̃EF
: Dynamic semantics (selected rules).

6.3. Properties

λ
pm
R̃EF

satisfies all the properties described in §4.6. As ref is not part of the source language λpm
R̃EF

, to make sense of the
conservative extension of the static discipline properties (Propositions 11 and 58), any ref term must be converted to either
a refGg or a refGm term (when considering fully precise programs, a guarded reference and a monotonic reference behave
identically). Notice that converting a ref term to a ref?p term breaks Propositions 11, e.g.
 ref 1 : Ref Int but
 ref?p 1 : Ref ?.

For monotonic references we state two properties that best describe their behavior.

Proposition 24 (Monotonicity of the evolving heap). If tG | ν �−→ t′ G | ν ′ , then ∀oG ′
m ∈ dom(μ), ev(ν ′(oG ′

m)) � ev(ν(oG ′
m)).

Monotonicity of the evolving heap means that, by taking a step, for every monotonic reference the outermost evidence
of the corresponding term in the heap may only gain precision.

Proposition 25 (Monotonicity of the heap). If tG | μ �−→∗ t′ G | μ′ , then ∀oG ′
m ∈ dom(μ), μ(oG ′

m) = εu :: G ′ , then μ′(oG ′
m) = ε′u′ :: G ′

and ε′ � ε .

26 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Monotonicity of the heap states that by reducing a term, starting from a heap and ending from a heap, the evidence of
the underlying value of a monotonic evidence may only gain precision.

To the best of our knowledge, the dynamic gradual guarantee has never been proven for monotonic references. We prove
this result here, which turns out to be challenging, and requires subtle considerations. We start by defining some operations
on intrinsic terms: flat is a partial function that combines every evidence of nested ascriptions (which we call flattened
evidence), and uval extracts a simple value from a nested ascription or a value:

flat(εtG :: G) = ε ◦= flat(tG) flat(εu :: G) = ε

uval(εtG :: G) = uval(t) uval(εu :: G) = u

With these definitions we can now establish the precision relation between evolving stores.

�ν

∀oG1 ∈ dom(ν1).∃oG2 ∈ dom(ν2) s.t.

 oG1 � oG2 G1 � G2 uval(ν1(oG1)) � uval(ν2(oG2))

flat(ν1(oG1)) is defined ⇒ flat(ν1(oG1)) � flat(ν2(oG2))

 ν1 � ν2

The difference with respect to precision of regular stores is that the values in the evolving stores of the same location must
satisfy that the simple values and the combination of nested evidences are related by precision. Note that if the simple
values are related, but consistent transitivity is not defined for flat(ν1(oG1)), then the condition holds for that location.
The intuition is that when defining the dynamic gradual guarantee, we need to relate evolving stores that may potentially
fail in future steps. As we are only interested in the cases where the more precise term reduces, then the flat(ν1(oG1)) �
flat(ν2(oG2)) requirement makes sense only when flat(ν1(oG1)) is defined. Note also that if both evolving stores are regular
stores, then this definition coincides with the precision relation of stores defined for λε

R̃EF
.

We introduce the notion of monotonic well-formedness, written
m (t, ν), which states that, for every monotonic location
εoG

m found in either the term t or the evolving store ν , if the flattened evidence of the underlying value in the evolving heap
flat(ν(oG

m)) is defined, then flat(ν(oG
m)) � iref (ε). Intuitively, if a monotonic reference gains precision, then its underlying

value must also gain precision (sometimes in future steps). Crucially, reduction preserves monotonic well-formedness:

Lemma 26 (Monotonic well-formedness preservation). If
m (t, ν) and t | ν �−→ t′ | ν ′ , then
m (t′, ν ′).

With the definitions of precision for evolving stores and monotonic well-formedness, we state the dynamic gradual
guarantee as follows:

Proposition 27 (Dynamic guarantee). Suppose
m (ti, νi), t1 � t2 and ν1 � ν2 . If t1 | ν1 �−→ t′
1 | ν ′

1 then t2 | ν2 �−→∗ t′
2 | ν ′

2 , such
that t′

1 � t′
2 and ν ′

1 � ν ′
2 .

Note that the dynamic gradual guarantee is stated in an unusual way. First it requires that monotonic well-formedness
holds for each related term. Second, as rule (r7) may reduce differently (subject to the type precision test, which may
potentially endanger the dynamic gradual guarantee), both terms are not necessarily related after each step of reduction:
one can reduce to an evolving store whereas the other does not. For this reason, we state the relation after taking zero or
more steps for the less precise term and evolving store. The proof of the dynamic gradual guarantee differs from the proof
of that property in λε

R̃EF
in the parts involving reduction of evolving stores. For these, the proof depends on the following

two lemmas.
First, reducing the more precise evolving store preserves the precision relation:

Lemma 28. Let t1 | ν1 � t2 | ν2 . If t1 | ν1 �−→ t1 | ν ′
1 , then ν ′

1 � ν2 .

Second, we can safely reduce a less precise evolving store into a regular store:

Lemma 29. If
m (ti, μi) and t1 | μ1 � t2 | ν2 then t2 | ν2 �−→∗ t2 | μ2 , such that μ1 � μ2 .

This last property requires that no infinite cycles occur when reducing an evolving store. This fact depends on the
monotonic well-formedness of terms and stores:

Lemma 30. If
m (t, μ[oG
m �→ ε1(ε2u :: G) :: G]), t | μ[oG

m �→ ε1(ε2u :: G) :: G] �−→ t | ν[oG
m �→ ε3u :: G], then t | ν[oG

m �→
ε3u :: G] ��−→∗ t | ν ′[oG

m �→ ε4(ε5u :: G) :: G].

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 27
7. Related work

We have already extensively discussed the four main approaches to gradual references found in the literature [35,24,39].
Vitousek et al. [46] present Reticulated Python, a tool for experimenting with gradual typing in Python 3 with support for
references. They give two different dynamic semantics for casts: guarded semantics (with support for guarded references),
and transient semantics. Instead of performing proxying of function or wrapping of runtime values, the transient seman-
tics translate source programs by inserting type checks at all elimination forms, and at the entry and output of function
definitions. These checks only test if values shallowly conform to a given type: only immediately-checkable information is
considered. Greenman and Felleisen [22] compare guarded and transient semantics, and show that soundness for the tran-
sient semantics is a weaker notion that only guarantees preservation of the top-level constructor of the static type of an
expression. For instance, consider h = (λ f : (? → ?). f :: Int → Int), g = (λx : Bool.x), and term h g . Using guarded semantics
and either space efficient coercions, threesomes, or evidences based semantics, this program reduces to an error after re-
ducing the body of h, because Bool → Bool (the type of the returned value, g) is not consistent with the expected return
type, Int → Int. On the contrary, using the transient semantics, this program reduces successfully to g as its conforms with
the expected top-level type constructor (a function). Of course, if we evaluate the program (h g) 1 then we will get an
error right after applying g with 1 (thanks to the check at the entry of the body of g). Similarly, checks involving pair
types only test if a given value is a pair. In Reticulated Python, for references (objects) the story is slightly different. Checks
involving reference types (object types) recursively inspect a given value. For instance, consider the previous application of
h g where now h = (λx : Ref ?.x :: Ref Int), and g = ref true. Using transient semantics this program reduces to an error as
expected. After reducing the body of h, the resulting location content does not conform with the expected type Ref Int. But
when we combine references and functions, the same issue as before manifests: if h = (λx : Ref (? → ?).x :: Ref Int → Int),
and g = ref (λx : Bool.x), then h g reduces successfully to a location whose content conforms with the expected resulting
type: a reference to a function. We believe that the discussion about transient semantics is orthogonal to references, and is
extensively analyzed by Greenman and Felleisen [22], therefore we did not include it in the main body of this work.

Much prior work on gradual security typing also supports references [14,18,19,41], although imprecision is introduced
exclusively via security labels, e.g. types like Ref Int? are supported but not types like Ref ?. Toro et al. [41] derive their
gradual security language using AGT. The semantics of references corresponds to guarded references in which imprecision
is limited to security labels.

Cimini and Siek [10] present the Gradualizer, a methodology and algorithm to systematically derive the static and cast
insertion semantics of a gradual language from a static type system. They illustrate the application of this methodology
to a language with references. We conjecture that the resulting gradual language treats gradual references as guarded or
monotonic references, but it is hard to know precisely as the dynamic semantics were left as future work. They later extend
the Gradualizer to also be able to derive the dynamic semantics of a gradual language [11]. The handling of auxiliary struc-
tures such as the heap is however not supported. The authors mention informally how the algorithm could be adapted to
references, and conjecture that the resulting dynamic semantics correspond to the guarded semantics of Herman et al. [24];
however the precise formal treatment of this extension is left as future work.

There are many languages that integrate static and dynamic typing in some way, and support references: TypeScript [31],
Flow [16], Hack [15], Dart [13], and Typed Clojure [6]. These languages adopt another approach called optional typing [7],
which allows programmers to partially introduce type annotations to capture some errors statically, but do not perform any
additional runtime checks at runtime beyond those that are performed for fully-untyped programs. This means that the
runtime semantics are not sound with respect to its static type system.

Finally, there are many efforts related to gradualizing advanced typing disciplines, such as typestates [47,21], ownership
types [34], annotated type systems [40], effects [4,5,43], refinement types [30,29], parametric polymorphism [2,27,42,32],
and the security type systems discussed above, among others. Since the formulation of the refined criteria for gradually-
typed languages [38], however, only refinement types [30], data type refinements [29] and a non-standard polymorphic
language with explicit sealing [32] have been shown to fully respect such guarantees. Toro et al. [41,42] reveal some ten-
sions between semantic type-based properties (noninterference, parametricity) and the dynamic gradual guarantee when
following a type-driven approach to gradual typing, as that induced by AGT among others. The present work contributes to
the gradualization of advanced typing disciplines by deriving a gradual language with references that satisfies the refined
criteria. Additionally, this work presents the first formal statement and proof of the conservative extension of the dynamic
semantics of the static language for a gradual language derived using AGT. Finally, the proof of the dynamic gradual guar-
antee for monotonic references is also novel.

8. Conclusion

We present λR̃EF, a gradual language with support for mutable references. This language is derived step-by-step using the
AGT methodology [20]. We compare the resulting language with other gradual languages with mutable references: mono-
tonic references, permissive references, and guarded references. We find that λR̃EF treats references as guarded references,
similar to how references are treated in the coercion calculus of Herman et al. [24] (HCC).

We formalize this relation by introducing HCC+, an adapted version of HCC with conditionals and binary operations.
We prove semantic correspondence between λε (the intrinsic semantics of λR̃EF) and HCC+ for elaborated and translated
R̃EF

28 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
λR̃EF terms. The main difference between both semantics has nothing to do with references, but with the order in which
evidences/casts are combined. Under certain conditions (and contrary to HCC), a gradual language derived with AGT may
accumulate an unbounded number of runtime checks. We describe the changes needed in the dynamic semantics of λR̃EF to
recover space efficiency. We also present λpm

R̃EF
, an extension of λR̃EF that supports both permissive and monotonic references.

Finally, we formally prove that monotonic references satisfy the dynamic gradual guarantee, a non-trivial novel result that
requires a careful consideration of updates to the store.

An interesting perspective for future work is to extend λR̃EF with nominal subtyping. We anticipate that a refined inter-
pretation of evidences (such as pair of type intervals) might be needed to precisely capture type bounds at runtime, similarly
to the security label intervals used in evidence by Toro et al. [41]. It would also be interesting to port the space-efficiency
technique developed here to other AGT-derived gradual languages.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Gradualizing λREF, elaborating λε›REF

In this section we present some proofs used in the gradualization of λREF and elaboration of λε
R̃EF

.

Proposition 31 (Precision, inductively). The following inductive definition of type precision is equivalent to Definition 2.

B � B

G1 � G ′
1 G2 � G ′

2

G1 → G2 � G ′
1 → G ′

2

G1 � G2

Ref G1 � Ref G2 G � ?

Proof. We have to prove that γ (G1) ⊆ γ (G2) ⇐⇒ G1 � G2, where G1 � G2 correspond to the inductive definition of type
precision. We prove ⇒ (the other direction is analogous). We proceed by induction on γ (G1) ⊆ γ (G2).

Case (γ (B) ⊆ γ (G2)). If G2 = B then we have to prove that γ (B) ⊆ γ (B) ⇒ B � B , which is trivial. If G2 = ? then we have
to prove that γ (B) ⊆ Type ⇒ B � ?, which is also trivial.

Case (γ (G11 → G12) ⊆ γ (G2)). If γ (G11 → G12) = {T11 → T12 | T11 ∈ γ (G11) ∧ T12 ∈ γ (G12)}, then G2 is either ? and
γ (G2) = Type, but G1 � G2 and the result holds, or G2 is G21 → G22 such that γ (G21 → G22) = {T21 → T22 | T21 ∈ γ (G21) ∧
T22 ∈ γ (G22)} and {T11 → T12 | T11 ∈ γ (G11) ∧ T12 ∈ γ (G12)} ⊆ {T21 → T22 | T21 ∈ γ (G21) ∧ T22 ∈ γ (G22)}. For this to be
true then γ (G11) = {T11 ∈ γ (G11)} ⊆ γ (G21) = {T21 ∈ γ (G21)}, and γ (G12) = {T12 ∈ γ (G12)} ⊆ γ (G22) = {T22 ∈ γ (G22)}.
By induction hypotheses on γ (G11) � γ (G21) and γ (G12) � γ (G22) we know that G11 � G21 and G12 � G22. Therefore
G11 → G12 � G21 → G22 and the result holds.

Case (γ (Ref G11) ⊆ γ (G2)). We proceed similar to case function. �
Proposition 32 (Galois connection). 〈γ ,α〉 is a Galois connection, i.e.:

a) (Soundness) for any non-empty set of static types S = { T }, we have S ⊆ γ (α(S))

b) (Optimality) for any gradual type G, we have α(γ (G)) � G.

Proof. We first proceed to prove a) by induction on the structure of the non-empty set S .

Case ({ B }). Then α({ B }) = B . But γ (B) = { B } and the result holds.

Case ({ Ti1 → Ti2 }). Then α({ Ti1 → Ti2 }) = α({ Ti1 }) → α({ Ti2 }). But by definition of γ , γ (α({ Ti1 }) → α({ Ti2 })) = {T1 →
T2 | T1 ∈ γ (α({ Ti1 })), T2 ∈ γ (α({ Ti2 }))}. By induction hypotheses, { Ti1 } ⊆ γ (α({ Ti1 })) and { Ti2 } ⊆ γ (α({ Ti2 })), therefore
{ Ti1 → Ti2 } ⊆ { T1 → T2 | T1 ∈ { Ti1 } , T2 ∈ { Ti2 } } ⊆ {T1 → T2 | T1 ∈ γ (α({ Ti1 })), T2 ∈ γ (α({ Ti2 }))} and the result holds.

Case ({Ref Ti }). Then α({Ref Ti }) = Ref α({ Ti }). But by definition of γ , γ (Ref α({ Ti })) = {Ref T | T ∈ γ (α({ Ti }))}. By
induction hypothesis, { Ti } ⊆ γ (α({ Ti })), therefore {Ref Ti } = {Ref T | T ∈ { Ti } } ⊆ {Ref T | T ∈ γ (α({ Ti }))} and the result
holds.

Case ({ Ti } heterogeneous). Then α({ Ti }) = ? and therefore γ (α({ Ti })) = Type, but { Ti } ⊆ Type and the result holds.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 29
Now let us proceed to prove b) by induction on gradual type G .

Case (B). Trivial because γ (B) = { B }, and α({ B }) = B .

Case (G1 → G2). We have to prove that α(γ (G1 → G2)) � G1 → G2, which is equivalent to prove that γ (α(ÛT)) ⊆ ÛT , where ÛT = γ (G1 → G2) = { T1 → T2 | T1 ∈ γ (G1), T2 ∈ γ (G2) }. Then ÛT has the form { Ti1 → Ti2 }, such that ∀i, Ti1 ∈ γ (G1) and
Ti2 ∈ γ (G2). Also note that { Ti1 } = γ (G1) and { Ti2 } = γ (G2). But by definition of α, α({ Ti1 → Ti2 }) = α({ Ti1 }) →
α({ Ti2 }) and therefore γ (α({ Ti1 }) → α({ Ti2 })) = {T1 → T2 | T1 ∈ γ (α({ Ti1 })), T2 ∈ γ (α({ Ti2 }))}. But by induction hy-
potheses γ (α({ Ti1 })) ⊆ γ (G1) and γ (α({ Ti2 })) ⊆ γ (G2) and the result holds.

Case (Ref G). We have to prove that α(γ (Ref G)) � Ref G , which is equivalent to prove that γ (α(ÛT)) ⊆ ÛT , where ÛT =
γ (Ref G) = {Ref T | T ∈ γ (G) }. Then ÛT has the form {Ref Ti }, such that ∀i, Ti ∈ γ (G). Also note that { Ti } = γ (G). But
by definition of α, α({Ref Ti }) = Ref α({ Ti }) and therefore γ (Ref α({ Ti })) = {Ref T | T ∈ γ (α({ Ti }))}. But by induction
hypothesis γ (α({ Ti })) ⊆ γ (G) and the result holds.

Case (?). Then we have to prove that γ (α(?)) ⊆ γ (?) = Type, but this is always true and the result holds immediately. �
Proposition 33. ‡equate(G1, G2) = G1 � G2 .

The meet operator is defined as G1 � G2 = α(γ (G1) ∩ γ (G2)), and inductively as:

B � B = B G1 � G2 = G2 � G1 G � ? = ?� G = G (G11 → G12) � (G21 → G22) = (G11 � G21) → (G12 � G22)

Ref G1 � Ref G2 = Ref G1 � G2 G1 � G2 is undefined otherwise

Proof. By induction on G1 and G2. �
Proposition 34. Let P1(T1, T2) � T1 = dom(T2). Then P̃1(G1, G2) ⇐⇒ G1 ∼ fidom(G2).

Proof. The ⇒ direction by induction on P̃1(G1, G2), and the ⇐ direction by induction on G1 ∼ fidom(G2). �
Proposition 35. Let P2(T1, T2) � T1 = tref (T2). Then P̃2(G1, G2) ⇐⇒ G1 ∼ t̃ref (G2).

Proof. The ⇒ direction by induction on P̃2(G1, G2), and the ⇐ direction by induction on G1 ∼ t̃ref (G2). �
Proposition 36. If G1 ∼ G2 , then I=(G1, G2) = 〈G1 � G2, G1 � G2〉.

Proof. Notice that in this setting I=(G1, G2) = α({〈T 〉 | T ∈ γ (G1), T ∈ γ (G2)}) = α({〈T 〉 | T ∈ γ (G1) ∩ γ (G2)}) =
〈α({〈T 〉 | T ∈ γ (G1) ∩ γ (G2)})〉 = 〈α(γ (G1) ∩ γ (G2)})〉 = 〈G1 � G2〉. �
Lemma 37. 〈G1〉 ◦= 〈G2〉 = 〈G1 � G2, G1 � G2〉.

Proof. Similar to Proposition 7. �
Proposition 38 (Elaboration preserves typing). If �; �
 t : G and �; �
 t �n tG : G, then tG ∈T[G].

Proof. Straightforward induction on �; �
 t : G . We only present one case as the other are analogous.

Case (�; �
 t1 := t2 : Unit). We know by (Gasgn) that

(Gasgn)
�;�
 t1 : G1 �;�
 t2 : G2 G2 ∼ t̃ref (G1)

�;�
 t1 := t2 : Unit

Then by (TRasgn):

(TRasgn)

�;�
 t1 �n tG1 : G1 �;�
 t2 �n tG2 : G2

G3 = t̃ref (G1) ε1 = I=(G1,Ref G3) ε2 = I=(G2, G3)

G1 G3 G2
�;�
 t1 := t2 �n ε1t := ε2t : Unit

30 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
By induction hypothesis on �; �
 t1 : G1, if �; �
 t1 �n tG1 : G1 then tG1 ∈ T[G1]. Similarly by induction hypothesis on
�; �
 t2 : G2, if �; �
 t2 �n tG2 : G2 then tG2 ∈ T[G2]. Also by definition of the interior function, ε1
 G1 ∼ Ref G3 and
ε2
 G2 ∼ G3. Then by (IGasgn):

(IGasgn)

tG1 ∈T[G1] ε1
 G1 ∼ Ref G3

tG2 ∈ T[G2] ε2
 G2 ∼ G3

ε1tG1 :=G3 ε2tG2 ∈ T[Unit]
and the result holds. �
Appendix B. Type safety

In this section we present the proof of type safety for λε
R̃EF

.

Lemma 39 (Canonical forms). Consider a value v ∈T[G]. Then either v = u, or v = εu :: G with u ∈T[G ′] and ε
 G ′ ∼ G. Further-
more:

1. If G = Bool then either v = b or v = εb :: Bool with b ∈T[Bool].
2. If G = Int then either v = n or v = εn :: Int with n ∈T[Int].
3. If G = G1 −→ G2 then either v = (λxG1 .tG2) with tG2 ∈ T[G2] or v = ε(λxG ′

1 .tG ′
2) :: G1 −→ G2 with tG ′

2 ∈ T[G ′
2] and ε

G ′
1 −→ G ′

2 ∼ G1 −→ G2 .

4. If G = Ref G ′ then either v = o G ′
or v = εo G ′

with oG ′ ∈T[Ref G ′] and ε
 Ref G ′ −→ Ref G.

Proof. By direct inspection of the formation rules of gradual intrinsic terms (Fig. 4). �
Lemma 40 (Substitution). If tG ∈T[G] and v ∈ T[G1], then [v/xG1]tG ∈T[G].

Proof. By induction on the derivation of tG . �
Proposition 41 (−→ is well defined). If tG
 μ′ and tG −→ r, then r ∈ ConfigG ∪ {error }, and if r = t′ G | μ′ , then also t′ G
 μ′ and
dom(μ) ⊆ dom(μ′).

Proof. By induction on the structure of a derivation of tG −→ r, considering the last rule used in the derivation.

Case (r1). Then tG = t B3 = ε1b1 ⊕ ε2b2. Then

(IG⊕)
b1 ∈T[B1] ε1
 B1 ∼ B1 b2 ∈ T[B2] ε2
 B2 ∼ B2 ty(⊕) = B1xB2 → B3

ε1b1 ⊕ ε2b2 ∈T[B3]
Therefore

ε1b1 ⊕ ε2b2 | μ −→ b3 | μ where b3 = b1 �⊕� b2

But b3 ∈ T[B3] and the result holds.

Case (r2). Then tG = ε1(λxG11 .tG12
1) @G1→G2 (ε2u) and G = G2. Then

(Iapp)

D1

tG12
1 ∈T[G12]

(λxG11 .tG12
1) ∈T[G11 → G12]

D2

u ∈T[G ′
2] ε2
 G ′

2 ∼ G1
ε1
 G11 → G12 ∼ G1 → G2

ε1(λxG11 .tG12
1) @G1→G2 ε2u ∈T[G2]

If ε′ = (ε2 ◦= idom(ε1)) is not defined, then tG −→ error, and then the result hold immediately. Suppose that consistent
transitivity does hold, then

ε1(λxG11 .tG12
1) @G1→G2 ε2u | μ −→ icod(ε1)([(ε′u :: G11)/xG11]t) :: G2 | μ

As ε2
 G ′
2 ∼ G1 and by inversion lemma idom(ε1)
 G1 ∼ G11, then ε′
 G ′

2 ∼ G11. Therefore ε′u :: G11 ∈ T[G11], and by
Lemma 40, t′ G12 = [(ε′u :: G11)/xG11]tG12 ∈T[G12].

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 31
Then

(IG::)
t′ G12 ∈T[G12] icod(ε1)
 G12 ∼ G2

icod(ε1)t′ G12 :: G2 ∈T[G2]
and the result holds.

Case (r3 − true). Then tG = if ε1b then ε2tG2 else ε3tG3 , G = G2 � G3 and

(IG if)

b ∈T[G1] ε1
 G1 ∼ Bool G = (G2 � G3)

tG2 ∈T[G2] ε2
 G2 ∼ G
tG3 ∈T[G3] ε3
 G3 ∼ G

if ε1b then ε2tG2 else ε3tG3 ∈T[G]
Therefore

if ε1b then ε2tG2 else ε3tG3 | μ −→ ε2tG2 :: G2 � G3 | μ
But

(IG::)
tG2 ∈T[G2] ε
 G2 ∼ G2 � G3

ε2tG2 :: G2 � G3 ∈T[G2 � G3]
and the result holds.

Case (r3 − false). Analogous to case (if-true).

Case (r4). Then tG = refG2 εu. Then

(IGref)
u ∈T[G1] ε
 G1 ∼ G2

refG2 εu ∈T[Ref G2]
Then

refG2 εu | μ −→ oG2 | μ[oG2 �→ εu :: G2]
where o /∈ dom(μ). But as εu :: G2 ∈ T[G2], then oG2
 μ[oG2 �→ εu :: G2]. Also oG2 ∈ T[Ref G2] and the result holds.

Case (r5). Then tG = !G2 (εo G1). Then

(IGasgn)
oG1 ∈T[Ref G1] ε
 Ref G1 ∼ Ref G2

!G2(εoG1) ∈T[G2]
Then

!G2(εoG1) | μ −→ iref (ε)v :: G2 | μ
where v = μ(oG1) As μ is well formed, then v ∈ T[G1]. Then by inversion lemma iref (ε)
 G1 ∼ G2, therefore iref (ε)v ::
G2 ∈ T[G2] and the result holds.

Case (r6). Then tG = ε1o G1 :=G3 ε2u. Then

(IGasgn)

oG1 ∈T[Ref G1] ε1
 Ref G1 ∼ Ref G3
u ∈T[G2] ε2
 G2 ∼ G3

ε1oG1 :=G3 ε2u ∈ T[Unit]
If ε′ = (ε2 � iref (ε1)) is not defined, then tG −→ error, and then the result hold immediately. Suppose that consistent
transitivity does hold, then

ε1oG1 :=G3 ε2u | μ −→ unit | μ[oG1 �→ ε′u :: G1]
As ε2
 G2 ∼ G3 and by inversion lemma iref (ε1)
 G1 ∼ G3, and as evidence is symmetrical iref (ε1)
 G3 ∼ G1, then
ε′
 G2 ∼ G1. Therefore ε′u :: G1 ∈ T[G1], and therefore unit
 μ[oG1 �→ ε′u :: G1]. Also

θ(unit) = Unit
unit ∈ T[Unit]

and the result holds. �

32 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Proposition 42 (�−→ is well defined). If tG
 μ and tG | μ �−→ r, then r ∈ ConfigG ∪ {error }, and if r = t′ G | μ′ , then also t′ G
 μ′
and dom(μ) ⊆ dom(μ′).

Proof. By induction on the structure of a derivation of tG �−→ r.

Case (R−→). tG | μ −→ r. By well-definedness of −→ (Proposition 41), r ∈ ConfigG ∪ {error }, and if r = t′ G | μ′ , then also
t′ G
 μ′ and dom(μ) ⊆ dom(μ′).

Case (RE). tG = E[tG ′
1], E[tG ′

1] ∈ T[G], tG ′
1 | μ �−→ tG ′

2 | μ′ , tG ′
1 ∈ T[G ′], and E : T[G ′] → T[G]. By induction hypothesis, tG ′

2 ∈
T[G ′], so E[tG ′

2] ∈ T[G].
By induction hypothesis we also know that tG ′

2
 μ′ .
If freeLocs(tG ′

2) ⊆ μ′ , freeLocs(f [tG
1]) ⊆ μ , and dom(μ) ⊆ dom(μ′), then it is easy to see that freeLocs(f [tG ′

2]) ⊆ μ′ , and
therefore conclude that f [tG2]
 μ′ .

Case (REerr, RF err). r = error.

Case (RF). Let EvTermG2 be notation for the family of evidence terms εtG1 such that ε
 G1 ∼ G2. Then tG = F [et], F [et] ∈
T[G], and F : EvTermGx → T[G], and et −→c et′ . Then there exists Ge, Gx such that et = εetGe

e and εe
 Ge ∼ Gx . Also,
te = εv u :: Ge , with u ∈T[G v] and εv
 G v ∼ Ge .

We know that εc = εv ◦= εe is defined, and et = εete −→c εcu = et′ . By definition of ◦= we have εc
 G v ∼ Gx , so
F [et′] ∈T[G].

As freeLocs(et) = freeLocs(et′) and μ′ = μ then it is easy to conclude that F [et′]
 μ . �
Now we can establish type safety: programs do not get stuck, though they may terminate with cast errors. Also the store

of a program is well typed.

Proposition 43 (Type Safety). If tG ∈ T[G] then one of the following is true:

1. tG is a value v;

2. if tG
 μ then tG | μ �−→ t′G | μ′ for some term t′G ∈ T[G] and some μ′ such that t′ G
 μ′ and dom(μ) ⊆ dom(μ′);
3. tG | μ �−→ error.

Proof. By induction on the structure of tG . We only present some cases as all proceed the same way.

Case (IGc, IGx, IGλ, IGo). tG is a value.

Case (IG ::). tG = ε1tG1 :: G2, and

(I::) tG1 ∈ T[G1] ε1
 G1 ∼ G2

ε1tG1 :: G2 ∈T[G2]

By induction hypothesis on tG1 , one of the following holds:

1. tG1 is a simple value u, in which case tG is also a value.
2. tG1 is an ascribed value v , then the result holds by Proposition 42 and either (RF), or (RFerr).
3. tG1 | μ �−→ r1 for some r1 ∈ ConfigG ∪ {error }. Hence tG | μ �−→ r for some r ∈ ConfigG ∪ {error } by Proposition 42

and either (RE), or (REerr).

Case (IGif). tG = if ε1tG1 then ε2tG2 else ε3tG3 and

(IG if)

tG1 ∈ T[G1] ε1
 G1 ∼ Bool G = (G2 � G3)

tG2 ∈ T[G2] ε2
 G2 ∼ G
tG3 ∈ T[G3] ε3
 G3 ∼ G

if ε1tG1 then ε2tG2 else ε3tG3 ∈T[G]

By induction hypothesis on tG1 , one of the following holds:

1. tG1 is a simple value u, then by (R−→), tG | μ �−→ r and r ∈ ConfigG ∪ {error } by Proposition 42.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 33
(Sb)
b = b θ(c) = B μ1 ≈ μ2

〈b,μ1〉 ≈ 〈b,μ2〉 : B
So

o = o μ1 ≈ μ2

〈o,μ1〉 ≈ 〈oG ,μ2〉 : B

(Sλ)

μ1 ≈ μ2 ∀v ′
1, v ′

2, ε1, ε2,μ′
1,μ′

2.

μ1 � μ′
1,μ2 ⊆ μ′

2, 〈v ′
1,μ′

2〉 ≈ 〈v ′
2,μ′

2〉 : T1,
ε1
 T1 → T2 ∼ T1 → T2 ε2
 T1 ∼ T1
〈v1 v ′

1,μ′
1〉 ≈ 〈ε1u2 @T1→T2 ε2 v2,μ′

2〉 : T2

〈v1,μ1〉 ≈ 〈u2,μ2〉 : T1 → T2
(S::)

〈v1,μ1〉 ≈ 〈u2,μ2〉 : T
ε
 T ∼ T

〈v1,μ1〉 ≈ 〈εu2 :: T ,μ2〉 : T

(St)
μ1 ≈ μ2 (t | μ1 �−→∗ v1 | μ′

1 ⇐⇒ tT | μ2 �−→∗ v2 | μ′
2 s.t. 〈t,μ′

1〉 ≈ 〈v2,μ′
2〉 : T)

〈t,μ1〉 ≈ 〈tT ,μ2〉 : T

(Sμ)
∀o ∈ dom(μ1),oT ∈ dom(μ2),o = o, 〈μ1(o),μ1〉 ≈ 〈μ2(oT),μ2〉 : T

μ1 ≈ μ2

Fig. C.17. Logical relation between λREF and λ
ε
R̃EF

.

2. tG1 is an ascribed value v , then, ε1tG1 −→c r′ for some r′ ∈ EvTermBool ∪ {error }. Hence tG | μ �−→ r for some r ∈
ConfigG ∪ {error } by Proposition 42 and either (RF), or (RF err).

3. tG1 | μ �−→ r1 for some r1 ∈ T[G1] ∪ {error }. Hence tG | μ �−→ r for some r ∈ ConfigG ∪ {error } by Proposition 42
and either (RE), or (REerr).

Case (IGapp). tG = (ε1tG1) @G11→G12 (ε2tG2)

(IGapp)

tG1 ∈ T[G1] ε1
 G1 ∼ G11 → G12

tG2 ∈ T[G2] ε2
 G2 ∼ G11

(ε1tG1) @G11→G12 (ε2tG2) ∈T[G12]

By induction hypothesis on tG1 , one of the following holds:

1. tG1 is a value (λxG ′
11 .tG ′

12) (by canonical forms Lemma 39), posing G1 = G ′
11 −→ G ′

12.
Then by induction hypothesis on tG2 , one of the following holds:
(a) tG2 is a simple value u, then by (R−→), tG | μ �−→ r and r ∈ ConfigG ∪ {error } by Proposition 42.
(b) tG2 is an ascribed value v , then, ε2tG2 −→c r′ for some r′ ∈ EvTermG11 ∪ {error }. Hence tG | μ �−→ r for some

r ∈ ConfigG ∪ {error } by Proposition 42 and either (RF), or (RF err).
(c) tG2 | μ �−→ r2 for some r2 ∈ ConfigG2 ∪ {error }. Hence tG | μ �−→ r for some r ∈ ConfigG ∪ {error } by Proposi-

tion 42 and either (RE), or (REerr).
2. tG1 is an ascribed value v , then, ε1tG1 −→c r′ for some r′ ∈ EvTermG11→G12 ∪ {error }. Hence tG | μ �−→ r for some

r ∈ ConfigG ∪ {error } by Proposition 42 and either (RF), or (RF err).
3. tG1 | μ �−→ r1 for some r1 ∈ ConfigG1 ∪ {error }. Hence tG | μ �−→ r for some r ∈ ConfigG ∪ {error } by Proposition 42

and either (RE), or (REerr).

Case. Other cases are similar to the app case. �
Appendix C. Gradual guarantee

In this section we present the proof of the conservative extensions of the static discipline and the static and the dynamic
gradual guarantee.

C.1. Conservative extensions of the static discipline

Proposition 44 (Equivalence for fully-annotated terms (statics)). For any t ∈ Term, .
s t : T if and only if t : T

Proof. By induction over the typing derivations. The proof is trivial because static types are given singleton meanings via
concretization. �

The equivalence for the dynamics of fully-annotated terms is defined in terms of a logical relation between terms of the
static language λREF, and λε

R̃EF
terms. The logical relation is presented in Fig. C.17.

Definition 9 (Related substitutions). We say that tuples 〈σ1,μ1〉 and 〈σ2,μ2〉 are related under � and �, notation �; �

〈σ1,μ1〉 ≈ 〈σ2,μ2〉 if σ1 |= �, σ2 |= �, �
 μ1, �
 μ2, μ1 ≈ μ2, and

34 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
∀x ∈ dom(�), 〈σ1(x),μ1〉 ≈ 〈σ2(x),μ2〉 : �(x)

Definition 10 (Semantic equivalence).

�;�
 t ≈ tT : T ⇐⇒ ∀σ1,σ2,μ1,μ1,�
 μ1,�
 μ2,�;�
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉 ,

we have 〈σ1(t),μ1〉 ≈ 〈σ2(tT),μ2〉 : T

Proposition 45 (Fundamental property). For any t ∈ Term, �; �
s t : T , �; �
 t �n tT : T , then �; �
 t ≈ tT : T .

Proof. By induction on the type derivation of t .

Case (T x). Then t = x and therefore

(Tx)
x : T ∈ �

�;�
s x : T

Then we have to prove that x ≈ xT : T . But the result follows directly by Proposition 48.

Case (T b). Then t = b and therefore

(Tc)
θ(b) = B

�;�
s b : B

and tT = b . The result follows by Proposition 47.

Case (T app). Then t = t1 t2 and T = T2 where

(Tapp)
�;�
s t1 : T1 → T2 �;�
s t2 : T1 T2 = dom(T1)

�;�
s t1 t2 : T2

and

(TRapp)

�;�
 t1 �n tG1 : T1 → T2 �;�
 t2 �n tT2 : T1

ε1 = 〈T1 → T2〉 = I=(T1 → T2,fidom(T1 → T2) → ›cod(T1 → T2))

ε2 = 〈T1〉 = I=(T1,fidom(T1 → T2))

�;�
 t1 t2 �n ε1tT1→T2 @T1→T2 ε2tT1 : T2

We have to prove that �; �
 t1 t2 ≈ ε1tT1→T2 @T1→T2 ε2tT1 : T2. By induction hypotheses we know that �; �
 t1 ≈ tT1→T2 :
T1 → T2 and that �; �
 t2 ≈ tT1 : T1. The result follows directly by Proposition 49.

Case (T op). Then t = t1 ⊕ t2 and T = B3, where

(Top)

�;�
s t1 : B1 �;�
s t2 : B2
ty(⊕) = B1 × B2 → B3

�;�
s t1 ⊕ t2 : B3

and

(TRop)

�;�
 t1 �n t B1 : B1 �;�
 t2 �n t B2 : B2 ty(⊕) = B1xB2 → B3
ε1 = 〈B1〉 = I=(B1, B1) ε2 = 〈B2〉 = I=(B2, B2)

�;�
 t1 ⊕ t2 �n ε1t B1 ⊕ ε2t B2 : B3

We have to prove that �; �
 t1 ⊕ t2 ≈ ε1t B1 ⊕ ε2t B2 : T2. By induction hypotheses we know that �; �
 t1 ≈ t B1 : B1 and
that �; �
 t2 ≈ t B2 : B2. The result follows directly by Proposition 50.

Case (T if). Then t = if t1 then t2 else t3, where

(Tif)
�;�
s t1 : Bool �;�
s t2 : T �;�
s t3 : T

�;�
s if t1 then t2 else t3 : T

and

(TRif)

�;�
 t1 �n tBool
1 : Bool �;�
 t2 �n tT

2 : T �;�
 t3 �n tT
3 : T

ε1 = 〈Bool〉 = I=(Bool,Bool) ε = 〈T 〉 = I=(T , T) ε = 〈T 〉 = I=(T , T)

�;�
 if t then t else t � if ε tBool then εtT else εtT : T
1 2 3 n 1 1 2 3

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 35
We have to prove that �; �
 if t1 then t2 else t3 ≈ if ε1tBool
1 then εtT

2 else εtT
3 : T . By induction hypotheses we know that

�; �
 t1 ≈ tBool
1 : Bool and that �; �
 t2 ≈ tT

2 : T , and �; �
 t3 ≈ tT
3 : T . The result follows directly by Proposition 51.

Case (T λ). Then t = (λx : T1.t′) and T = T1 → T2, and therefore

(Tλ)
�, x : T1;�
s t′ : T2

�;�
s (λx : T1.t′) : T1 → T2

and

(TRλ)
�, x : T1
 t′ �n tT2 : T2

�;�
 λx : T1.t′ �n λxT1 .tT2 : T1 → T2

Then we have to prove that �; �
 (λx : T1.t′) ≈ (λxT1 .tT2) : T1 → T2. By induction hypothesis we already know that �, x :
T1; �
 t′ ≈ tT2 : T2. But the result follows directly by Proposition 52.

Case (T ::). Then t = t′ :: T

(T::) �;�
s t′ : T T = T

�;�
s (t′ :: T) : T

and

(TR::)
�;�
 t′ �n t′ T : T ε = 〈T 〉 = I=(T , T)

�;�
 (t :: T) �n (εt′ T :: T) : T

We have to prove that �; �
 t′ :: T ≈ εt′ T :: T : T . By induction hypothesis we know that �; �
 t′ ≈ t′ T : T . The result
follows directly by Proposition 53.

Case (T ref). Then t = ref t′ and T = Ref T , where

(Tref)
�;�
s t′ : T

�;�
s ref t′ : Ref T

and

(TRref)
�;�
 t′ �n t′ T : T ε = 〈T 〉 = I=(T , T)

�;�
 ref t′ �n refG εt′ T : Ref T

We have to prove that �; �
 ref t′ ≈ refG εt′ T : Ref T . By induction hypothesis we know that �; �
 t′ ≈ t′ T : T . The result
follows directly by Proposition 54.

Case (T deref). Then t = !t′ , where

(Tderef)
�;�
s t′ : Ref T

�;�
s !t′ : T

and

(TRderef)
�;�
 t′ �n t′Ref T : Ref T ε = 〈Ref T 〉I=(Ref T ,Ref T)

�;�
 !t′ �n !T εt′Ref T : T

We have to prove that �; �
 !t′ ≈ !T εt′ T : T . By induction hypothesis we know that �; �
 t′ ≈ t′Ref T : Ref T . The result
follows directly by Proposition 55.

Case (T asgn). Then t = t1 := t2 and T = Unit, where

(Tasgn)
�;�
s t1 : Ref T �;�
s t2 : T

�;�
s t1 := t2 : Unit

and

(TRasgn)

�;�
 t1 �n tRef T : Ref T �;�
 t2 �n tT : T
ε1 = 〈Ref T 〉 = I=(Ref T ,Ref T) ε2 = 〈T 〉 = I=(T , T)

�;�
 t1 := t2 �n ε1tRef T :=T ε2tT : Unit

We have to prove that �; �
 t1 := t2 ≈ ε1tRef T :=T ε2tT : Unit. By induction hypotheses we know that �; �
 t1 ≈ tRef T :
Ref T and that �; �
 t2 ≈ tT : T . The result follows directly by Proposition 56.

36 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Case (T o). Then t = o and T = Ref T , where

(To)
o : T ∈ �

�;�
s o : Ref T

and

(TRl)
o : G ∈ �

�;�
 o �n oG : Ref G

Then we have to prove that o ≈ oG : Ref T . But the result follows directly by Proposition 57. �
Lemma 46. Consider 〈t,μ1〉 ≈ 〈tT ,μ2〉 : and μ′

1 ≈ μ′
2 , such that μ1 ⊆ μ′

1 and μ2 ⊆ μ′
2 , then 〈t,μ′

1〉 ≈ 〈tT ,μ′
2〉 :.

Proof. Direct as evolution of the store to related store does not alter the relation between values that not depend on new
locations. �
Proposition 47 (Compatibility T b). If b ∈ B, then �; �
 b ≈ b : B.

Proof. Trivial as b = b . �
Proposition 48 (Compatibility T x). If x : T ∈ �, then �; �
 x ≈ xT : T .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(x),μ1〉 ≈ 〈σ2(xT),μ2〉 : T

which is immediately by the definition of �; �
 �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. �
Proposition 49 (Compatibility T app). If �; �
 t1 ≈ tT1→T2 : T1 → T2 , �; �
 t2 ≈ tT1 : T1 , ε1
 T1 → T2 ∼ T1 → T2, ε2
 T1 ∼
T1 , then �; �
 t1 t2 ≈ ε1tT1→T2 @T1→T2 ε2tT1 : T2 .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(t1 t2),μ1〉 ≈ 〈σ2(ε1tT1→T2 @T1→T2 ε2tT1),μ2〉 : T1 → T2

which, by definition of substitution, is equivalent to prove that

〈σ1(t1) σ1(t2),μ1〉 ≈ 〈ε1σ2(t
T1→T2) @T1→T2 ε2σ2(t

T1),μ2〉 : T1 → T2

We instantiate �; �
 t1 ≈ tT1→T2 : T1 → T2 with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know
then that 〈t1,μ1〉 ≈ 〈tT1→T2 ,μ2〉 : T1 → T2. Then suppose σ1(t1) | μ1 �−→∗ v11 | μ′

1 and σ2(tT1→T2) | μ2 �−→∗ v21 | μ′
2

(otherwise the result holds immediately). We know that 〈v11,μ′
1〉 ≈ 〈v21,μ

′
2〉 : T1 → T2. Similarly we instantiate �; �

t2 ≈ tT1 : T1 with σ1, σ2, μ′
1 and μ′

2. Notice μ1 ⊆ μ′
1 (μ2 ⊆ μ′

2 resp.), therefore �
 μ′
1 (�
 μ′

2 resp.). Then we know
that 〈t2,μ

′
1〉 ≈ 〈tT1 ,μ′

2〉 : T1. Then suppose σ1(t2) | μ′
1 �−→∗ v12 | μ′′

1 and σ2(tT1) | μ′
2 �−→∗ v22 | μ′′

2 (otherwise the result
holds immediately). We know that 〈v21,μ′′

1〉 ≈ 〈v22,μ
′′
2〉 : T1. Let us assume v21 = u21 (the other case is analogous modulo

one trivial step of reduction). Then the result holds by definition of related lambdas instantiating with ε1, ε2, μ′′
1, μ′′

2, v12
and v22. �
Proposition 50 (Compatibility T op). If �; �
 t1 ≈ t B1 : B1 , �; �
 t2 ≈ t B2 : B2 , ε1
 B1 ∼ B1, ε2
 B2 ∼ B2 , ty(⊕) = B1xB2 →
B3 , then �; �
 t1⊕; t2 ≈ ε1t B1 ⊕ ε2t B2 : B3 .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(t1 ⊕ t2),μ1〉 ≈ 〈σ2(ε1t B1 ⊕ ε2t B2),μ2〉 : B3

which, by definition of substitution, is equivalent to prove that

〈σ1(t1) ⊕ σ1(t2),μ1〉 ≈ 〈ε1σ2(t
B1) ⊕ ε2σ2(t

B2),μ2〉 : B3

We instantiate �; �
 t1 ≈ t B1 : B1 with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know then that
〈t1,μ1〉 ≈ 〈t B1 ,μ2〉 : B1. Then suppose σ1(t1) | μ1 �−→∗ v11 | μ′

1 and σ2(t B1) | μ2 �−→∗ v21 | μ′
2 (otherwise the result holds

immediately). We know that 〈v11,μ′
1〉 ≈ 〈v21,μ

′
2〉 : B1. Similarly we instantiate �; �
 t2 ≈ t B2 : B2 with σ1, σ2, μ′

1 and
μ′ . Notice μ1 ⊆ μ′ (μ2 ⊆ μ′ resp.), therefore �
 μ′ (�
 μ′ resp.). Then we know that 〈t2,μ

′ 〉 ≈ 〈t B2 ,μ′ 〉 : B2. Then
2 1 2 1 2 1 2

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 37
suppose σ1(t2) | μ′
1 �−→∗ v12 | μ′′

1 and σ2(t B2) | μ′
2 �−→∗ v22 | μ′′

2 (otherwise the result holds immediately). We know that
〈v21,μ

′′
1〉 ≈ 〈v22,μ

′′
2〉 : B2. Let us assume v21 = u21 and v22 = u22 (the other cases are analogous modulo one or two trivial

steps of reduction). Then σ1(t1) ⊕ σ1(t2) | μ1 �−→∗ v11 �⊕� v12 | μ′′
1 and ε1σ2(t B1) ⊕ ε2σ2(t B2) | μ2 �−→∗ ε1u21 �⊕� ε2u22 |

μ′′
2 �−→ u21 �⊕� u22. But as v11 = u21 and v12 = u22, then v11 �⊕� v12 = u21 �⊕� u22 and the result holds. �

Proposition 51 (Compatibility T if). If �; �
 t1 ≈ tBool
1 : Bool, �; �
 t2 ≈ tT

2 : T , �; �
 t3 ≈ tT : T , ε1
 Bool ∼ Bool, ε
 T ∼ T ,
�; �
 if t1 then t2 else t3 ≈ if ε1tBool

1 then εtT
2 else εtT

3 : T .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(if t1 then t2 else t3),μ1〉 ≈ 〈σ2(if ε1tBool
1 then εtT

2 else εtT
3),μ2〉 : T

which, by definition of substitution, is equivalent to prove that

〈if σ1(t1) then σ1(t2) else σ1(t3),μ1〉 ≈ 〈if ε1σ2(t
Bool
1) then εσ2(t

T
2) else εσ2(t

T
3),μ2〉 : T

We instantiate �; �
 t1 ≈ tBool
1 : Bool with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know then

that 〈t1,μ1〉 ≈ 〈tBool
1 ,μ2〉 : Bool. Then suppose σ1(t1) | μ1 �−→∗ v11 | μ′

1 and σ2(tBool) | μ2 �−→∗ v21 | μ′
2 (otherwise the

result holds immediately). We know that 〈v11,μ′
1〉 ≈ 〈v21,μ

′
2〉 : Bool. Let us assume v21 = u21 (the other case is analogous

modulo one trivial step of reduction). Also let us assume v11 = true (the false case is analogous), therefore as 〈v11,μ′
1〉 ≈

〈u21,μ
′
2〉 : Bool, u21 = true as well. Then t1 | μ1 �−→∗ t2 | μ′

1 and tBool | μ2 �−→∗ if 〈Bool〉true then εσ2(tT
2) else εσ2(tT

3) |
μ′

2 �−→ 〈T 〉tT
2 :: T | μ′

2.
But by instantiating �; �
 t2 ≈ tT

2 : T with σ1, σ2, μ′
1, and μ′

2, then 〈t2,μ
′
1〉 ≈ 〈tT

2 ,μ′
2〉 :, and then t2 | μ′

1 �−→∗ v12 | μ′′
1

and tT
2 | μ′

2 �−→∗ v22 | μ′′
2, and 〈v12,μ

′′
1〉 ≈ 〈v22,μ

′′
2〉 :. Let us assume v22 = u22 (the other case is analogous), then as

〈v12,μ
′′
1〉 ≈ 〈〈T 〉u22 :: T ,μ′′

2〉 : the result holds. �
Proposition 52 (Compatibility T λ). If �, x : T1; �
 t′ ≈ tT2 : T2 , then �; �
 (λx : T1.t′) ≈ (λxT1 .tT2) : T1 → T2 .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1((λx : T1.t
′)),μ1〉 ≈ 〈σ2((λxT1 .tT2)),μ2〉 : T1 → T2

which, by definition of substitution, is equivalent to prove that

〈(λx : T1.σ1(t
′)),μ1〉 ≈ 〈(λxT1 .σ2(t

T2)),μ2〉 : T1 → T2

Consider v ′
1, v

′
2, ε1, ε2, μ′

1, μ
′
2 such that μ1 � μ′

1, μ2 ⊆ μ′
2, 〈v ′

1,μ
′
2〉 ≈ 〈v ′

2,μ
′
2〉 : T1, ε1 = 〈T1 → T2〉
 T1 → T2 ∼ T1 →

T2, and ε2 = 〈T1〉
 T1 ∼ T1. We have to prove that

〈(λx : T1.σ1(t
′)) v ′

1,μ
′
1〉 ≈ 〈ε1(λxT1 .σ2(t

T2)) @T1→T2 ε2 v2,μ
′
2〉 : T2

Consider v2 = u2 (the other case is trivial because if v2 = ε′
2u2 :: T1, then as everything is static the only possibility is

that ε′
2 = 〈T1〉 and as ε2 = 〈T1〉, consistent transitivity does not fail). By taking one step of evaluation (where consistent

transitivity trivially does not fail):

(λx : T1.σ1(t
′)) v ′

1 | μ′
1 �−→ σ1(t

′)[v ′
1/x]

and

ε1(λxT1 .σ2(t
T2)) @T1→T2 ε2 v2 | μ′

2 �−→ 〈T2〉(σ2(t
T2)[〈T1〉u2 :: T1/xT1]) :: T2 | μ′

2

Notice that σ1(t′)[v ′
1/x] = σ ′

1(t
′), where σ ′

1 = σ1[x �→ v ′
1], and analogously σ2(tT2)[〈T1〉u2 :: T1/xT1] = σ ′

2(t
T2), where σ ′

2 =
σ2[xT1 �→ 〈T1〉u2 :: T1]. Also, as

〈v1,μ
′
1〉 ≈ 〈u2,μ

′
2〉 : T1

〈v1,μ
′
1〉 ≈ 〈〈T1〉u2 :: T1,μ

′
2〉 : T1

then �, x : T1; �
 〈σ ′
1,μ1〉 ≈ 〈σ ′

2,μ2〉. Then by instantiating premise �, x : T1; �
 t′ ≈ tT2 : T2 with σ ′
1, μ1, σ ′

2, and μ2, we
know that σ ′

1(t
′) | μ′

1 �−→∗ v ′′
1 | μ′′

1 ⇐⇒ σ ′
2(t

T2) | μ′
2 �−→∗ v ′′

2 | μ′′
2, where 〈v ′′

1,μ′′
1〉 ≈ 〈v ′′

2,μ′′
2〉 : T2. If v ′′

2 = 〈T2〉u′′
2 :: T2 (the

other case is similar), 〈T2〉v ′′
2 :: T2 | μ′

2 → 〈T2〉u′′
2 :: T2 | μ′

2, but 〈v ′′
1,μ′′

1〉 ≈ 〈〈T2〉u′′
2 :: T2,μ

′′
2〉 : T2, and the result holds. �

Proposition 53 (Compatibility T ::). If �; �
 t ≈ tT : T , ε
 T ∼ T , then �; �
 t :: T ≈ εtT :: T : T .

38 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(t :: T),μ1〉 ≈ 〈σ2(εtT :: T),μ2〉 : T

which, by definition of substitution, is equivalent to prove that

〈σ1(t) :: T ,μ1〉 ≈ 〈εσ2(t
T) :: T ,μ2〉 : T

We instantiate �; �
 t ≈ tT : T with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know then that
〈t,μ1〉 ≈ 〈tT ,μ2〉 : T . Then suppose σ1(t) | μ1 �−→∗ v1 | μ′

1 and σ2(tT) | μ2 �−→∗ v2 | μ′
2 (otherwise the result holds

immediately). We know that 〈v1,μ′
1〉 ≈ 〈v2,μ

′
2〉 : T . Let us assume v2 = u2 (the other case is analogous modulo one trivial

step of reduction). Then v1 :: T | μ′
1 �−→ v1 | μ′

1, so we have to prove that 〈v1,μ
′
1〉 ≈ 〈〈T 〉u2 :: T ,μ′

2〉 : T , which holds
because 〈v1,μ

′
1〉 ≈ 〈u2,μ

′
2〉 : T . �

Proposition 54 (Compatibility T ref). If �; �
 t ≈ tT : T , ε
 T ∼ T , then �; �
 ref t ≈ refT εtT : Ref T .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(ref t),μ1〉 ≈ 〈σ2(refT εtT),μ2〉 : T

which, by definition of substitution, is equivalent to prove that

〈ref σ1(t),μ1〉 ≈ 〈refT εσ2(t
T),μ2〉 : T

We instantiate �; �
 t ≈ tT : T with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know then that
〈t,μ1〉 ≈ 〈tT ,μ2〉 : T . Then suppose σ1(t) | μ1 �−→∗ v1 | μ′

1 and σ2(tT) | μ2 �−→∗ v2 | μ′
2 (otherwise the result holds

immediately). We know that 〈v1,μ′
1〉 ≈ 〈v2,μ

′
2〉 : T . Let us assume v2 = u2 (the other case is analogous modulo one trivial

step of reduction). Then ref v1 | μ′
1 �−→ o | μ′

1[o �→ v1], and refT εu2 | μ′
2 �−→ oT | μ′

2[oT �→ εu2 :: T]. Let μ′′
1 = [o �→ v1] and

μ′′
2 = [oT �→ εu2 :: T]. By (S::), 〈v1,μ

′
1〉 ≈ 〈εu2 :: T ,μ′

2〉 : T , and by Lemma 46, 〈v1,μ
′′
1〉 ≈ 〈εu2 :: T ,μ′′

2〉 : T , then by (Sμ),
μ′′

1 ≈ μ′′
2, and as o = o , by (So), 〈o,μ′′

1〉 ≈ 〈oT ,μ′′
2〉 : T and the result holds. �

Proposition 55 (Compatibility T deref). If �; �
 t ≈ tRef T : Ref T , ε
 Ref T ∼ Ref T , then �; �
 !t ≈ !Ref T εtRef T : T .

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(!t),μ1〉 ≈ 〈σ2(!T εtRef T),μ2〉 : T

which, by definition of substitution, is equivalent to prove that

〈!σ1(t),μ1〉 ≈ 〈!T εσ2(t
Ref T),μ2〉 : T

We instantiate �; �
 t ≈ tRef T : Ref T with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know then
that 〈t,μ1〉 ≈ 〈tRef T ,μ2〉 : Ref T . Then suppose σ1(t) | μ1 �−→∗ v1 | μ′

1 and σ2(tRef T) | μ2 �−→∗ v2 | μ′
2 (otherwise the

result holds immediately). We know that 〈v1,μ′
1〉 ≈ 〈v2,μ

′
2〉 : Ref T . Let us assume v1 = o and v2 = oT (the other case is

analogous modulo one trivial step of reduction). Then !v1 | μ′
1 �−→ μ′

1(o) | μ′
1, and !T 〈Ref T 〉u2 | μ′

2 �−→ 〈T 〉μ′
2(o

T) :: T | μ′
2.

By definition of μ′
1 ≈ μ′

2, 〈μ′
1(o),μ′

1〉 ≈ 〈μ′
2(o

T),μ′
2〉 : T , therefore the result follows by (S::). �

Proposition 56 (Compatibility T asgn). If �; �
 t1 ≈ tRef T : Ref T , �; �
 t2 ≈ tT : T , ε1
 Ref T ∼ Ref T , ε2
 T ∼ T , then
�; �
 t1:=t2 ≈ ε1tRef T :=T ε2tT : Unit.

Proof. Consider arbitrary σ1, σ2, μ1, μ2, such that �; �
 〈σ1,μ1〉 ≈ 〈σ2,μ2〉. We are required to show that:

〈σ1(t1:=t2),μ1〉 ≈ 〈σ2(ε1tRef T :=T ε2tT),μ2〉 : Unit

which, by definition of substitution, is equivalent to prove that

〈σ1(t1):=σ1(t2),μ1〉 ≈ 〈ε1σ2(t
Ref T) :=T ε2σ2(t

T),μ2〉 : Unit

We instantiate �; �
 t1 ≈ tRef T : Ref T with σ1, σ2 and arbitrary μ1 and μ2 such that �
 μ1 and �
 μ2. We know
then that 〈t1,μ1〉 ≈ 〈tRef T ,μ2〉 : Ref T . Then suppose σ1(t1) | μ1 �−→∗ v11 | μ′

1 and σ2(tRef T) | μ2 �−→∗ v21 | μ′
2 (oth-

erwise the result holds immediately). We know that 〈v11,μ′
1〉 ≈ 〈v21,μ

′
2〉 : Ref T . Similarly we instantiate �; �
 t2 ≈

tT : B2 with σ1, σ2, μ′
1 and μ′

2. Notice μ1 ⊆ μ′
1 (μ2 ⊆ μ′

2 resp.), therefore �
 μ′
1 (�
 μ′

2 resp.). Then we know that
〈t2,μ

′
1〉 ≈ 〈t B2 ,μ′

2〉 : B2. Then suppose σ1(t2) | μ′
1 �−→∗ v12 | μ′′

1 and σ2(t B2) | μ′
2 �−→∗ v22 | μ′′

2 (otherwise the result holds
immediately). We know that 〈v21,μ′′〉 ≈ 〈v22,μ

′′〉 : B2. Let us assume v21 = u21 = oT and v22 = u22 (the other cases are
1 2

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 39
analogous modulo one or two trivial steps of reduction). Then σ1(t1):=σ1(t2) | μ1 �−→∗ o:=v12 | μ′′
1 �−→ unit | μ′′

1[o �→ v12]
and ε1σ2(tRef T) :=T ε2σ2(tT) | μ2 �−→∗ 〈Ref T 〉σ2(oT) :=T 〈T 〉u22 | μ′′

2 �−→ unit | μ′′
2[oT �→ 〈T 〉u22 :: T].

Let μ′′′
1 = [o �→ v12] and μ′′′

2 = [oT �→ 〈T 〉u22 :: T]. By (S::), 〈v12,μ
′′
1〉 ≈ 〈〈T 〉u22 :: T ,μ′′

2〉 : T , and by Lemma 46, 〈v1,μ
′′′
1 〉 ≈

〈〈T 〉u22 :: T ,μ′′′
2 〉 : T , then by (Sμ), μ′′′

1 ≈ μ′′′
2 , and as unit = unit, by (Sb), 〈unit,μ′′′

1 〉 ≈ 〈unit,μ′′′
2 〉 : T and the result holds. �

Proposition 57 (Compatibility T o). If o : T ∈ �, then �; �
 o ≈ oT : T .

Proof. Direct by definition of related stores. �
Proposition 58 (Equivalence for fully-annotated terms (dynamics)). For any t ∈ Term, .
s t : T , t �n tT : T , then t | · �−→∗

s v |
μ ⇐⇒ tT | · �−→∗ v ′ | μ′ , for some μ, μ′ such that 〈v,μ〉 ≈ 〈v ′,μ′〉 : T .

Proof. As a special case of the fundamental Property 45 and the unfolding of related computations. �
C.2. Static gradual guarantee

Definition 11 (Term precision).

(Px)
x � x

(Pc)
c � c

(Pλ)
t � t′ G1 � G ′

1

(λx : G1.t) � (λx : G ′
1.t

′)
(P⊕)

t1 � t′
1 t2 � t′

2

t1 ⊕ t2 � t′
1 ⊕ t′

2

(Papp)
t1 � t′

1 t2 � t′
2

t1 t2 � t′
1 t′

2
(Pif)

t � t t1 � t′
1 t2 � t′

2

if t then t1 else t2 � if t′ then t′
1 else t′

2
(P::)

t � t′ G � G ′

t :: G � t′ :: G ′

(Pref)
t � t′ G � G ′

refG t � refG
′

t′ (Pderef)
t � t′

!t � !t′ (Passign)
t1 � t′

1 t2 � t′
2

t1 := t2 � t′
1 := t′

2
(Po)

o � o

Definition 12 (Type environment precision).

. � .

� � �′ G � G ′
�, x : G � �′, x : G ′

Definition 13 (Store typing precision).

. � .

� � �′ G � G ′
�,o : G � �′,o : G ′

Lemma 59. If �; �
 t : G, � � �′ and � � �′ , then �′; �′
 t : G ′ for some G � G ′ .

Proof. Simple induction on typing derivations. �
Lemma 60. If G1 ∼ G2 and G1 � G ′

1 and G2 � G ′
2 then G ′

1 ∼ G ′
2 .

Proof. By definition of ∼, there exists 〈T1, T2〉 ∈ 〈ÛT1, ÛT2〉 ∈ γ 2(G1, G2) such that T1 = T2. G1 � G ′
1 and G2 � G ′

2 mean that
γ (G1) ⊆ γ (G ′

1) and γ (G2) ⊆ γ (G ′
2), therefore 〈T1, T2〉 ∈ 〈ÛT1, ÛT2〉 ∈ γ 2(G ′

1, G
′
2). �

Proposition 61 (Static gradual guarantee). If t1 : G1 and t1 � t2 , then t2 : G2 , for some G2 such that G1 � G2 .

Proof. We prove the property on opens terms instead of closed terms: If �; �
 t1 : G1 and t1 � t2 then �; �
 t2 : G2 and
G1 � G2.

The proof proceeds by induction on the typing derivation.

Case (Gx, Gb). Trivial by definition of � using (P x), (Pb) respectively.

Case (Gλ). Then t1 = (λx : G1.t) and G1 = G ′
1 → G ′

2. By (Gλ) we know that:

(Gλ)
�, x : G ′

1;�
 t : G ′
2

�
 (λx : G ′
1.t) : G ′

1 → G ′
2

(C.1)

40 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = (λx : G ′′
1.t′)′ and therefore

(Gλ)
t � t′ G ′

1 � G ′′
1

(λx : G ′
1.t) � (λx : G ′′

1.t′)
(C.2)

Using induction hypotheses on the premise of C.1, �, x : G ′
1; �′
 t′ : G ′′

2 with G ′
2 � G ′′

2. By Lemma 59, �, x : G ′′
1
 t′ : G ′′′

2
where G ′′

2 � G ′′′
2 . Then we can use rule (Gλ) to derive:

(Gλ)
�, x : G ′′

1;�′
 t′ : G ′′′
2

�;�′
 (λx : G ′
1.t

′) : G ′′
1 → G ′′′

2

Where G2 � G ′′
2. Using the premise of C.2 and the definition of type precision we can infer that

G ′
1 → G ′

2 � G ′′
1 → G ′′′

2

and the result holds.

Case (G⊕). Then t1 = t′
1 ⊕ t′

2 and G1 = Int. By (G⊕) we know that:

(T⊕)
�;�
 t1 : G1 �;�
 t2 : G2 G1 ∼ B1 G2 ∼ B2

�;�
 t1 ⊕ t2 : B3
(C.3)

Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = t′′
1 ⊕ t′′

2 and therefore

(P⊕)
t′

1 � t′′
1 t′

2 � t′′
2

t′
1 ⊕ t′

2 � t′′
1 ⊕ t′′

2
(C.4)

Using induction hypotheses on the premises of C.3, �; �
 t′′
1 : G ′

1 and �; �
 t′′
2 : G ′

2, where G1 � G ′
1 and G2 � G ′

2. By
Lemma 60, G ′

1 ∼ B1 and G ′
2 ∼ B2. Therefore we can use rule (G⊕) to derive:

(T⊕)
�′;�′
 t′

1 : G ′
1 �′;�′
 t′

2 : G ′
2 G ′

1 ∼ B1 G ′
2 ∼ B2

�′;�′
 t′
1 ⊕ t′

2 : B3

and the result holds.

Case (Gapp). Then t1 = t′
1 t′

2 and G1 = G12. By (Gapp) we know that:

(Gapp)
�;�
 t′

1 : G ′
1 �;�
 t′

2 : G ′
2 G ′

2 ∼ fidom(G ′
1)

�;�
 t′
1 t′

2 : ›cod(G ′
1)

(C.5)

Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = t′′
1 t′′

2 and therefore

(Papp)
t′

1 � t′′
1 t′

2 � t′′
2

t′
1 t′

2 � t′′
1 t′′

2
(C.6)

Using induction hypotheses on the premises of C.5, �; �
 t′′
1 : G ′′

1 and �; �
 t′′
2 : G ′′

2, where G ′
1 � G ′′

1 and G ′
2 � G ′′

2.
By definition precision (Definition 2) and the definition of fidom, fidom(G ′

1) � fidom(G ′′
1) and, therefore by Lemma 60, G ′′

2 ∼fidom(G ′′
1). Also, by the previous argument ›cod(G ′

1) � ›cod(G ′′
1) Then we can use rule (Gapp) to derive:

(Gapp)
�′;�′
 t′′

1 : G ′′
1 �′;�′
 t′′

2 : G ′′
2 G ′′

2 ∼ fidom(G ′′
1)

�′;�′
 t′′
1 t′′

2 : ›cod(G ′′
1)

and the result holds.

Case (Gif). Then t1 = if t′
1 then t′

2 else t′
3 and G1 = (G ′

2 � G ′
3). By (Gif) we know that:

(Gif)
�;�
 t′

1 : G ′
1 �;�
 t′

2 : G ′
2 �;�
 t′

3 : G ′
3

�;�
 if t′
1 then t′

2 else t′
3 : (G ′

2 � G ′
3)

(C.7)

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 41
Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = if t′′
1 then t′′

2 else t′′
3 and therefore

(Pif)
t′

1 � t′′
1 t′

1 � t′′
1 t′

2 � t′′
2

if t′
1 then t′

2 else t′
3 � if t′′

1 then t′′
2 else t′′

3
(C.8)

Then we can use induction hypotheses on the premises of C.7 and derive:

(G if)
�′; ;�′
 t′′

1 : G ′′
1 �′; ;�′
 t′′

2 : G ′′
2 �′; ;�′
 t′′

3 : G ′′
3

�′; ;�′
 if t′′
1 then t′′

2 else t′′
3 : (G ′′

2 � G ′′
3)

Where G ′
1 � G ′′

1 and G ′
2 � G ′′

2. Using the definition of type precision (Definition 2) we can infer that

(G ′
1 � G ′

2) � (G ′′
1 � G ′′

2)

and the result holds.

Case (G::). Then t1 = t :: G1. By (G::) we know that:

(G::)
�
 t : G ′

1 G ′
1 ∼ G1

�
 t :: G ′
1 : G1

(C.9)

Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = t′ :: G2 and therefore

(P::)
t � t′ G1 � G2

t :: G1 � t′ :: G2
(C.10)

Using induction hypotheses on the premises of C.9, �
 t′ : G ′
2 where G ′

1 � G ′
2. We can use rule (G::) and Lemma 60 to

derive:

(G::)
�
 t′ : G ′

2 G ′
2 ∼ G2

�
 t′ :: G2 : G2

Where G1 � G2 and the result holds.

Case (Gref). Then t1 = refG t′
1. By (Gref) we know that:

(Gref)
�;�
 t′

1 : G ′
1 G ′

1 ∼ G

�;�
 ref t′
1 : Ref G

(C.11)

Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = refG
′

t′
2 and therefore

(Pref)
t′

1 � t′
2 G � G ′

refG t′
1 � refG

′
t′

2

(C.12)

Using induction hypotheses on the premise of C.11, �; �
 t′
1 : G ′

1, where G ′
1 � G ′

2. By definition of precision on types
Ref G � Ref G ′ . Then we can use rule (Gref) to derive:

(Gref)
�′;�′
 t′

2 : G ′
2 G ′

2 ∼ G ′

�′;�′
 ref t′
2 : Ref G ′

and the result holds.

Case (Gderef). Then t1 = !t′
1. By (Gderef) we know that:

(Gderef)
�;�
 t′

1 : G

�;�
 !t′
1 : t̃ref (G)

(C.13)

Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = !t′
2 and therefore

(Pref)
t′

1 � t′
2

!t′
1 � !t′

2
(C.14)

42 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496

 ∪ { xG1 � xG2 }
 xG1 � xG2

 b � b
�A P P

 tG11 � tG21

 tG12 � tG22

ε11 � ε21 ε12 � ε22 G1 � G2

 ε11tG11 @G1 ε12tG12 �
ε21tG21 @G2 ε22tG22

�⊕

 tG11 � tG21

 tG12 � tG22

ε11 � ε21 ε12 � ε22

 (ε11tG11 ⊕ ε12tG12) � (ε21tG21 ⊕ ε22tG22)
�I F

 tG11 � tG21 ε11 � ε21

 tG12 � tG23 ε12 � ε22

 tG13 � tG23 ε13 � ε23

 if ε11tG11 then ε12tG12 else ε13tG13 �
if ε21tG21 then ε22tG22 else ε23tG23

�λ
G11 � G12
 ∪ { xG11 � xG12 }
 tG12 � tG22

 (λxG11 .tG12) � (λxG21 .tG22)
�::

 tG11 � tG21

G12 � G22 ε1 � ε2

(ε1tG11 :: G12) � (ε2tG21 :: G22)

�R E F

 tG12 � tG22 ε1 � ε2 G11 � G21

refG11 ε1tG12 � refG21 ε2tG22
�!

 tG12 � tG22 ε1 � ε2 G11 � G21

!G11 ε1tG12 � !G21 ε2tG22

�:=

 tG11 � tG21

 tG12 � tG22

ε11 � ε21 ε12 � ε22 G1 � G2

 ε11tG11 :=G1 ε12tG12 �
ε21tG21 :=G2 ε22tG22

�o

 ∪ {oG1 � oG2 }
 oG1 � oG2

�μ

∀oG1 ∈ dom(μ1).∃oG2 ∈ dom(μ2) s.t.

 oG1 � oG2

 μ1(oG1) � μ2(oG2)

 μ1 � μ2

Fig. C.18. Intrinsic term precision.

Using induction hypotheses on the premise of C.13, �; �
 t′
1 : G ′

1. By definition of t̃ref , t̃ref G � t̃ref G ′ . Then we can use rule
(Gderef) to derive:

(Gderef)
�′;�′
 t′

2 : G ′

�′;�′
 !t′
2 : t̃ref (G ′)

and the result holds.

Case (Gassign). Then t1 = t′
1 := t′

2 and G1 = G12. By (Gassign) we know that:

(Gassign)
�;�
 t′

1 : G ′
1 �;�
 t′

2 : G ′
2 G ′

2 ∼ t̃ref (G ′
1)

�;�
 t′
1 := t′

2 : ›cod(G ′
1)

(C.15)

Consider t2 such that t1 � t2. By definition of term precision t2 must have the form t2 = t′′
1 := t′′

2 and therefore

(Passign)
t′

1 � t′′
1 t′

2 � t′′
2

t′
1 := t′

2 � t′′
1 := t′′

2
(C.16)

Using induction hypotheses on the premises of C.15, �; �
 t′′
1 : G ′′

1 and �; �
 t′′
2 : G ′′

2, where G ′
1 � G ′′

1 and G ′
2 � G ′′

2. By
definition precision (Definition 2) and the definition of t̃ref , t̃ref (G ′

1) � t̃ref (G ′′
1) and, therefore by Lemma 60, G ′′

2 ∼ t̃ref (G ′′
1).

Then we can use rule (Gassign) to derive:

(Gassign)
�′;�′
 t′′

1 : G ′′
1 �′;�′
 t′′

2 : G ′′
2 G ′′

2 ∼ t̃ref (G ′′
1)

�′;�′
 t′′
1 := t′′

2 : Unit

and the result holds. �
C.3. Dynamic gradual guarantee

In this section we present the proof the Dynamic Gradual Guarantee for λε
R̃EF

.

Definition 14 (Intrinsic term precision). Let
 ∈ P(V[∗] ×V[∗]) ∪ P(Loc∗ × Loc∗) be defined as
 ::= { xGi1 � xGi2 ,o G j1 � o G j2 }
We define an ordering relation (·
 · � ·) ∈ (P(V[∗] ×V[∗]) ∪ P(Loc∗ × Loc∗)) ×T[∗] ×T[∗] shown in Fig. C.18.

Definition 15 (Well Formedness of
). We say that
 is well formed iff ∀ { xGi1 � xGi2 } ∈
.Gi1 � Gi2.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 43
Before proving the gradual guarantee, we first establish some auxiliary properties of precision. For the following propo-
sitions, we assume Well Formedness of
 (Definition 15).

Proposition 62. If

 tG1 � tG2 for some
 ∈ P(V[∗] ×V[∗]) ∪ P(Loc∗ × Loc∗), then G1 � G2 .

Proof. Straightforward induction on

 tG1 � tG2 , since the corresponding precision on types is systematically a premise
(either directly or transitively). �
Proposition 63 (Substitution preserves precision). If
 ∪ {xG3 � xG4 }
 tG1 � tG2 and

 tG3 � tG4 , then

 [tG3/xG3]tG1 �
[tG4/xG4]tG2 .

Proof. By induction on the derivation of tG1 � tG2 , and case analysis of the last rule used in the derivation. All cases follow
either trivially (no premises) or by the induction hypotheses. �
Proposition 64 (Monotonicity of evidence). If ε1 � ε2 , ε3 � ε4 , and ε1 ◦= ε3 is defined, then ε1 ◦= ε3 � ε2 ◦= ε4 .

Proof. By definition of consistent transitivity for = and the definition of precision. �
Proposition 65. If G11 � G12 and G21 � G22 then G11 � G21 � G12 � G22 .

Proof. By induction on the type derivation of the types and meet. �
Proposition 66 (Dynamic guarantee for −→). Suppose

 tG1

1 � tG2
1 and μ1 � μ2 . If tG1

1 | μ1 −→ tG1
2 | μ′

1 then tG2
1 | μ2 −→ tG2

2 |
μ′

2 , where
′
 tG1
2 � tG2

2 , μ′
1 � μ′

2 for some
′ ⊇
.

Proof. By induction on reduction tG1
1 | μ1 −→ tG1

2 | μ′
1. For simplicity we omit the

 notation on precision relations when

it is not relevant for the argument.

Case (r1). We know that tG1
1 = (ε11(c1) ⊕ ε12(c2)) then by (�⊕) tG2

1 = (ε21(c1) ⊕ ε22(c2)) for some ε21, ε22 such that ε11 �
ε21 and ε12 � ε22.

If tG1
1 | μ1 −→ c3 | μ1 where c3 = (c1 �⊕� c2), then tG2

1 | μ2 −→ c′
3 | μ2 where c′

3 = (c1 �⊕� c2). But c3 = c′
3 and therefore

tG1
2 � tG2

2 and the result holds.

Case (r2). We know that tG1
1 = ε11(λxG11 .tG12) @G1−→G2 ε12u then by (�app) tG2

1 must have the form tG2
1 = ε21(λxG21 .tG22)

@G3−→G4 ε22u2 for some ε21, xG21 , tG22 , G3, G4, ε22 and u2.
Let us pose ε1 = ε12 ◦= idom(ε11). Then

tG1
1 | μ1 −→ icod(ε11)t

′
1 :: G2 | μ1 with t′

1 = [(ε1u1 :: G11)/xG11]tG12 .

Also, by 64, ε2 = ε22 ◦= idom(ε21) is defined. Then

tG2
1 | μ2 −→ icod(ε21)t

′
2 :: G4 | μ2 with t′

2 = [(ε2u2 :: G21)/xG21]tG22 .

As

 tG1
1 � tG2

1 , then u1 � u2, ε12 � ε22 and idom(ε11) � idom(ε21) as well, then by Proposition 64 ε1 � ε2. Then ε1u1 ::
G11 � ε2u2 :: G21 by (�::).

We also know by (�A P P) and (�λ) that
 ∪ {xG21 � xG21 }
 tG12 � tG22 . By Substitution preserves precision (Proposi-
tion 63) t′

1 � t′
2, therefore icod(ε11)t′

1 :: G2 � icod(ε21)t′
2 :: G4 by (�::). Then tG1

2 � tG2
2 .

Case (r3 − true). tG1
1 = if ε11true then ε12tG12 else ε13tG13 then by (�i f) tG2

1 has the form tG2
1 = if ε21 true then

ε22tG22 else ε23tG23 for some ε21, ε22, tG22, ε23, and tG32 . Then tG1
1 | μ1 −→ ε12tG12 :: (G12 � G13) | μ1, and tG2

1 | μ2 −→
ε22tG22 :: (G22 � G23) | μ2. Using the fact that tG1

1 � tG2
2 we know that ε12 � ε22, tG12 � tG22 and by Proposition 62, G12 � G22

and G13 � G23. Therefore by Proposition 65 (G12 � G13) � (G22 � G23). Then using (�::), tG1
2 � tG2

2 .

Case (r3 − false). Same as case −→if-true, using the fact that ε13 � ε23 and tG13 � tG23 .

Case (r4). We know that tG1
1 = refG

′
1 ε1u1 where G1 = Ref G ′

1, then by (�R E F) tG2
1 must have the form tG2

1 = refG
′
2 ε2u2 for

some ε2, u2, G ′ such that ε1 � ε2, u1 � u2, and G ′ � G ′ .
2 1 2

44 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Then

tG1
1 | μ1 −→ oG ′

1 | μ1[oG ′
1 �→ ε1u1 :: G ′

1].
Also, tG2

1 | μ2 −→ o G ′
2 | μ2[o G ′

2 �→ ε2u2 :: G ′
2].

Then by (�::), ε1u1 :: G ′
1 � ε2u2 :: G ′

2, and then μ1[o G ′
1 �→ ε1u1 :: G ′

1] � μ2[o G ′
2 �→ ε2u2 :: G ′

2]. Also by (�o), as G ′
1 � G ′

2,
o G ′

1 � o G ′
2 and the result holds.

Case (r5). We know that tG1
1 = !G1ε1oG ′

1 , then by (�!) tG2
1 must have the form tG2

1 = !G2ε2oG ′
2 for some ε2, oG ′

2 , G ′
2 such that

ε1 � ε2, oG ′
1 � oG ′

2 , and G ′
1 � G ′

2.

Then tG1
1 | μ1 −→ ε1μ1(oG ′

1) :: G1 | μ1.

Also, tG2
1 | μ2 −→ ε2μ2(oG ′

2) :: G2 | μ2.
As μ1 � μ2, then μ1(oG ′

1) � μ2(oG ′
2). Then by (�::), ε1μ1(oG ′

1) :: G ′
1 � ε2μ2(oG ′

2) :: G ′
2, and the result holds.

Case (r6). We know that tG1
1 = ε11oG11 :=G12 ε12u1 where G1 = Unit, then by (�:=) tG2

1 must have the form tG2
1 =

ε21oG21 :=G22 ε22u2 for some ε21, ε22, u2, G21, G22 such that ε11 � ε21, ε12 � ε22, u1 � u2, G11 � G21, G12 � G22.
Let us pose ε1 = ε12 ◦= iref (ε11). Then tG1

1 | μ1 −→ unit | μ1[o G11 �→ ε1u1 :: G11].
By inspection of evidence and inversion lemma, as ε12 � ε21 then iref (ε12) � iref (ε21). Also, by 64, ε2 = ε22 ◦= iref (ε21)

is defined and ε1 � ε2. Then, tG2
1 | μ2 −→ unit | μ2[o G21 �→ ε2u2 :: G21].

Then by (�::), ε1u1 :: G11 � ε2u2 :: G21, and then μ1[oG21 �→ ε1u1 :: G11] � μ2[oG21 �→ ε2u2 :: G21] and the result
holds. �
Proposition 67 (Dynamic gradual guarantee). Suppose tG1

1 � tG2
1 and μ1 � μ2 . Then if tG1

1 | μ1 �−→ tG1
2 | μ′

1 then tG2
1 | μ2 �−→ tG2

2 |
μ′

2 where tG1
2 � tG2

2 and μ′
1 � μ′

2 .

Proof. We prove the following property instead: Suppose

 tG1
1 � tG2

1 and μ1 � μ2. If tG1
1 | μ1 �−→ tG1

2 | μ′
1 then tG2

1 |
μ2 �−→ tG2

2 | μ′
2 where
′
 tG1

2 � tG2
2 , and μ′

1 � μ′
2 for some
′ ⊇
.

By induction on reduction tG1
1 | μ1 �−→ tG1

2 | μ′
1. For simplicity we omit the

 notation on precision relations when it

is not relevant for the argument.

Case (tG1
1 | μ1 −→ tG1

2 | μ′
1). By dynamic guarantee of −→ (Proposition 66), tG2

1 | μ2 −→ tG2
2 | μ′

2 where
′
 tG1
2 � tG2

2 ,
μ′

1 � μ′
2 for some
′ ⊇
. And the result holds immediately.

Case (ε11tG11
11 @G13 ε12tG12

12 | μ1 �−→ ε′
11t′ G11

11 @G13 ε12tG12
12 | μ′

1). By inspection of (�A P P) tG2 = ε21tG21
21 @G23 ε22tG22

22 , where ε11 �
ε21, ε12 � ε22 G13 � G23, tG11

11 � tG21
21 , and tG12

12 � tG22
22 . By induction hypothesis on ε11tG11

11 :: G13 | μ1 �−→ ε′
11t′ G11

11 :: G13 | μ′
1,

then ε21tG21
21 :: G23 | μ2 �−→ ε′

21t′ G21
21 :: G23 | μ′

2, where t′ G11
11 � t′ G21

21 , ε′
11 � ε′

21 and μ′
1 � μ′

2. Then by (�A P P) and Lemma 92,
ε′

11t′ G11
11 @G13 ε12tG12

12 � ε′
21t′ G21

21 @G23 ε22tG22
22 and the result holds.

Case (ε11u1 @G13 ε12tG12
12 | μ1 �−→ ε11u1 @G13 ε′

12t′ G12
12 | μ′

1). By inspection of (�A P P) tG2 = ε21u2 @G23 ε22tG22
22 , where ε11 � ε21,

ε12 � ε22 G13 � G23, u1 � u2, and tG12
12 � tG22

22 . By induction hypothesis on ε12tG12
12 :: fidom(G13) | μ1 �−→ ε′

12t′ G12
12 :: fidom(G13) |

μ′
1, then ε22tG22

22 :: fidom(G23) | μ2 �−→ ε′
22t′ G22

22 :: fidom(G23) | μ2, where t′ G12
12 � t′ G22

22 , ε′
12 � ε′

22, and μ′
1 � μ′

2. Then by (�A P P)
and Lemma 93, ε11u1 @G13 ε12tG12

12 � ε21u2 @G23 ε22tG22
22 and the result holds.

Case (refG12 ε1tG11 | μ1 �−→ refG12 ε′
1t′ G11 | μ′

1). By inspection of (�R E F) tG2 = refG22 ε2tG21 , where ε1 � ε2, G11 � G21,
G12 � G22, tG11 � tG21 . By induction hypothesis on ε1tG11 :: G12 | μ1 �−→ ε′

1t′ G11 :: G12 | μ′
1, then ε2tG21 :: G22 | μ2 �−→

ε′
2t′ G21 :: G22 | μ′

2, where t′ G11 � t′ G21 , ε′
1 � ε′

2, and μ′
1 � μ′

2. Then by (�R E F) and Lemma 96, refG12 ε′
1t′ G11 � refG22 ε′

2t′ G21

and the result holds.

Case (!G12ε1tG11 | μ1 �−→ !G12ε′
1t′ G11 | μ′

1). By inspection of (�!) tG2 = !G22ε2tG21 , where ε1 � ε2, G11 � G21, G12 � G22,
tG11 � tG21 . By induction hypothesis on ε1tG11 :: G12 | μ1 �−→ ε′

1t′ G11 :: G12 | μ′
1, then ε2tG21 :: G22 | μ2 �−→ ε′

2t′ G21 :: G22 | μ′
2,

where t′ G11 � t′ G21 , ε′
1 � ε′

2, and μ′
1 � μ′

2. Then by (�!) and Lemma 96, !G12ε′
1t′ G11 � !G22ε′

2t′ G21 and the result holds.

Case (ε11tG11
11 :=G13 ε12tG12

12 | μ1 �−→ ε′
11t′ G11

11 :=G13 ε12tG12
12 | μ′

1). By inspection of (�:=) tG2 = ε21tG21
21 :=G23 ε22tG22

22 , where
ε11 � ε21, ε12 � ε22 G13 � G23, tG11

11 � tG21
21 , and tG12

12 � tG22
22 . By induction hypothesis on ε11tG11

11 :: Ref G13 | μ1 �−→
ε′

11t′ G11
11 :: Ref G13 | μ′

1, then ε21tG21
21 :: Ref G23 | μ2 �−→ ε′

21t′ G21
21 :: Ref G23 | μ′

2, where t′ G11
11 � t′ G21

21 , ε′
11 � ε′

21 and μ′
1 � μ′

2.
Then by (�:=) and Lemma 94, ε′ t′ G11 :=[ε12tG12 G13] � ε′ t′ G21 :=[ε22tG22 G23] and the result holds.
11 11 12 21 21 22

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 45
Case (ε11u1 :=G13 ε12tG12
12 | μ1 �−→ ε11u1 :=G13 ε′

12t′ G12
12 | μ′

1). By inspection of (�:=) tG2 = ε21u2 :=G23 ε22tG22
22 , where ε11 �

ε21, ε12 � ε22 G13 � G23, u1 � u2, and tG12
12 � tG22

22 . By induction hypothesis on ε12tG12
12 :: G13 | μ1 �−→ ε′

12t′ G12
12 :: G13 | μ′

1,
then ε22tG22

22 :: G23 | μ2 �−→ ε′
22t′ G22

22 :: G23 | μ2, where t′ G12
12 � t′ G22

22 , ε′
12 � ε′

22, and μ′
1 � μ′

2. Then by (�:=) and Lemma 95,
ε11u1 :=G13 ε12tG12

12 � ε21u2 :=G23 ε22tG22
22 and the result holds.

Case (if ε11tG11 then ε12tG12 else ε13tG13 | μ1 �−→ if ε′
11t′ G11 then ε12tG12 else ε13tG13 | μ′

1). By inspection of (�I F) tG2 =
if ε21tG21 then ε22tG22 else ε23tG23 , where ε11 � ε21, ε12 � ε22, ε13 � ε23, tG11 � tG21 , tG12 � tG22 , tG13 � tG23 . By
induction hypothesis on ε11tG12 :: Bool | μ1 �−→ ε′

11t′ G12 :: Bool | μ′
1, then ε21tG22 :: Bool | μ2 �−→ ε′

21t′ G22 :: Bool | μ′
2,

where t′ G11 � t′ G21 , ε′
11 � ε′

21 and μ′
1 � μ′

2. Then by (�I F) and Lemma 98, if ε′
11t′ G11 then ε12tG12 else ε13tG13 �

if ε′
21t′ G21 then ε22tG22 else ε23tG23 and the result holds.

Case (ε1tG11 :: G12 | μ1 �−→ ε1t′ G11 :: G12 | μ′
1). By inspection of (�::) tG2 = ε2tG21 :: G22, where ε1 � ε2, G11 � G21, G12 �

G22, tG11 � tG21 . By induction hypothesis on tG12 | μ1 �−→ t′ G12 | μ′
1, then tG22 | μ2 �−→ t′ G12 | μ2, where t′ G12 � t′ G22 , and

μ′
1 � μ′

2. Then by (�::), ε1t′ G11 :: G12 � ε2t′ G21 :: G22 and the result holds.

Case (ε12(ε11u1 :: G11) :: G12 | μ1 �−→ ε′
11u1 :: G12 | μ1). By inspection of (�::) tG2 = ε22(ε21u2 :: G21) :: G22, where ε11 � ε21,

ε12 � ε22, G11 � G21, G12 � G22, u1 � u2. If ε′
11 = ε11 ◦ ε12 is defined, then by Proposition 64 ε′

21 = ε21 ◦ ε22 is also
defined, and furthermore ε′

11 � ε′
21. Then ε22(ε21u2 :: G21) :: G22 | μ2 �−→ ε′

21u2 :: G22 | μ2, and the result holds directly by
(�R E F). �
Appendix D. Space efficiency

Lemma 68. ∀ε
 G1 ∼ G2, size(ε) ≤ 2height(ε) − 1

Proof. By induction on ε . �
Lemma 69. If G1 � G2 = G3 , then height(G3) ≤ max(height(G1), height(G2))

Proof. By induction on G1 � G2 = G3.

Case (B � B = B). Trivial.

Case (G � ? = ?� G = G). We know that height(G) ≥ 1, and that height(?) = 1, therefore max(height(G), height(?)) = height(G),
and the result holds immediately.

Case ((G11 → G12) � (G21 → G22) = (G11 � G21) → (G12 � G22)). We know by induction hypothesis that height(G11 � G21) ≤
max(height(G11), height(G21)), and height(G12 � G22) ≤ max(height(G12), height(G22)). We also know that height(G11 →
G12) = 1 + max(height(G11), height(G12)), and height(G21 → G22) = 1 + max(height(G21), height(G22)).

Then we have to prove that

height((G11 � G21) → (G12 � G22)) ≤ max(height(G11 → G12),height(G21 → G22))

But we know that

height((G11 � G21) → (G12 � G22))

=1 + max(height(G11 � G21),height(G12 � G22))

≤1 + max(max(height(G11),height(G21)),max(height(G12),height(G22)))

and that

max(height(G11 → G12),height(G21 → G22))

=max(1 + max(height(G11),height(G12)),1 + max(height(G21),height(G22)))

=1 + max(max(height(G11),height(G12)),max(height(G21),height(G22)))

therefore the result follows.

46 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Case (Ref G1 � Ref G2 = Ref G1 � G2). We know by induction hypothesis that height(G1 � G2) ≤ max(height(G1), height(G2)).
We also know that height(Ref G1) = 1 + max(height(G1), height(G12)). Then we have to prove that

height(Ref G1 � G2) ≤ max(height(Ref G1),height(Ref G2))

But we know that

height(Ref G1 � G2) =1 + height(G1 � G2)

≤1 + max(height(G1),height(G2))

=max(1 + height(G1),1 + height(G2))

=max(height(Ref G1),height(Ref G2))

and the result holds. �
Lemma 70. If I=(G1, G2) = ε , then height(ε) ≤ max(height(G1), height(G2))

Proof. Direct by 19 as 〈G1〉 ◦= 〈G2〉 = 〈G1 � G2〉 if defined. �
Lemma 71. If ε1 ◦= ε2 = ε3 , then height(ε3) ≤ max(height(ε1), height(ε2))

Proof. Direct by 19 as 〈G1〉 ◦= 〈G2〉 = 〈G1 � G2〉 if defined. �
Lemma 72. If ø; ø
 t �n t : G, then if ε occurs in t , then ∃G ′ in the derivation ø; ø
 t �n t : G, such that height(ε) ≤ height(G ′)
and size(ε) ≤ 2height(G ′) − 1.

Proof. By induction on ø; ø
 t �n t : G using Lemmas 20 and 18. �
Lemma 73. Let ε
 G1 ∼ G2 , then

1. height(idom(ε)) < height(ε) if idom(ε) is defined.
2. height(icod(ε)) < height(ε) if icod(ε) is defined.
3. height(iref (ε)) < height(ε) if iref (ε) is defined.

Proposition 74. If t �n t : G and t | · �−→∗ t′ | μ′ such that ε occurs in (t′, μ′), then there exists G ′ in the derivation of t �n t : G
such that height(ε) ≤ height(G ′) and size(ε) ≤ 2height(G ′) − 1.

Proof. By induction on the length of reduction t | · �−→∗ t′ | μ .

Case (t | · �−→0 t | ·). Direct by Lemma 72.

Case (t | · �−→k t′′ | μ′′ , and t′′ | μ′′ �−→ t′ | μ′ ,). We only show representative cases. By induction hypothesis we know that, ∀ε′
such that ε′ occurs in (t′′, μ′′), then ∃G ′ in the derivation ø; ø
 t �n t : G , such that height(ε′) ≤ height(G ′) and size(ε′) ≤
2height(G ′) − 1 (1). One set of cases is when ε occurs in (t′′, μ′′), then the result follows immediately. Otherwise, the only
cases that produces new evidences are the following:

• Case (RE) and (r2). Let G1 = G11 → G12.

ε1(λxG11 .t′) @G1→G ε2u | μ′′ �−→ icod(ε1)([(ε2 ◦= idom(ε1))u :: G11/xG11]t′) :: G2 | μ′′

By induction hypotheses, ∃G ′
1, G

′
2, height(ε1) ≤ height(G ′

1), and height(ε2) ≤ height(G ′
2). Let G ′ the tallest of types

G ′
1 and G ′

2. Note that by Lemma 73, height(idom(ε1)) < height(ε1), and height(icod(ε1)) < height(ε1). Let ε′ = ε2 ◦=
idom(ε1). By Lemma 21, height(ε′) ≤ max(height(ε2), height(idom(ε1))) ≤ max(height(ε2), height(ε1)) ≤ height(G ′). Then
by Lemma 18, size(ε′) ≤ 2height(ε′) − 1 ≤ 2height(G ′) − 1. Also by Lemma 18, and as height(icod(ε1)) ≤ height(ε1) ≤
height(G ′), then size(icod(ε1)) ≤ 2height(icod(ε1)) − 1 ≤ 2height(G ′) − 1, and the result holds.

• Case (RE) and (r5). Analogously to (r2), noticing that by Lemma 73, height(iref (ε)) ≤ height(ε).
• Case (RE) and (r6).

ε1oG1 :=G3 ε2u | μ′′ �−→ unit | μ′′[oG �→ (ε2 ◦= iref (ε1))u :: G1]

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 47
By induction hypotheses, ∃G ′
1, G ′

2, height(ε1) ≤ height(G ′
1), and height(ε2) ≤ height(G ′

2). Let G ′ the tallest of types G ′
1

and G ′
2. Note that by Lemma 73, height(iref (ε1)) < height(ε1). Let ε′ = ε2 ◦= iref (ε1). By Lemma 21, height(ε′) ≤

max(height(ε2), height(iref (ε1))) ≤ max(height(ε2), height(ε1)) ≤ height(G ′). Then by Lemma 18, size(ε′) ≤ 2height(ε′)−1 ≤
2height(G ′) − 1, and the result holds.

• Case (RF) and (r7). Then ε1t1 | μ′′ �−→ ε′
1t′′

1 | μ′′ . Suppose ε1t1 = ε1(ε
′′
1t′′

1 :: G1)t1. Then ε′
1 = ε1 ◦= ε′′

1 . By Lemma 21,
height(ε′

1) ≤ max(height(ε1), height(ε′′
1)), but by (1) we know that ∃G ′ in the elaboration, such that height(ε1) ≤

height(G ′) and height(ε′′
1) ≤ height(G ′). Therefore height(ε′

1) ≤ height(G ′). By Lemma 18, size(ε′
1) ≤ 2height(ε′

1) − 1 but
as height(ε′

1) ≤ height(G ′), then size(ε′
1) ≤ 2height(G ′) − 1 and the result follows. �

Proposition 75. If t �n t : G and t | · �−→∗ t′ | μ′ , then there exists G ′ in the derivation of t �n t : G such that size(〈t′,μ′〉) ∈
O (2height(G ′) · sizeOR(〈t′,μ′〉)).

Proof. Rule (r7) prevents nesting of adjacent ascriptions in any term in the evaluation context, redex or store. Therefore the
number of evidences of a program is proportional to the size of the program state (in the worst case, although assignments
and applications introduce two evidences, each correspond to each of its subterms). Therefore by Proposition 22, the size of
each evidence is in O (2height(G ′)) for some G ′ in the elaboration of t . �
Appendix E. Relation to the coercion calculus

Lemma 76. G1 � G2 = G ⇐⇒ G2 � G1 = G.

Proof. We prove both sides of the proposition by induction on the premise, i.e. by induction on G1 � G2 for the ⇒ case,
and induction on G2 � G1 for the ⇐ (both cases as identical). �
Lemma 77. ε1 ◦= ε2 = ε ⇐⇒ ε2 ◦= ε1 = ε

Proof. Direct by Proposition 76. �
Lemma 78. c = �ε
 G1 ∼ G2�, then nm c

Proof. Straightforward induction on judgment ε
 G1 ∼ G2. �
Proposition 79. Let c1 = �ε1
 G1 ∼ G2� and c2 = �ε2
 G2 ∼ G3�. Then

1. c1; c2 �−→∗ Fail ⇐⇒ ε1 ◦= ε2 is undefined
2. (c1; c2 �−→∗ c ∧ nm c) ⇐⇒ ε1 ◦= ε2 is defined. Furthermore c = �(ε1 ◦= ε2)
 G1 ∼ G3�.

Proof. Direct by induction on types G1, G2 and G3, inspection on the coercion reduction rules and transitivity of evidence.
We only present interesting cases.

Case (G1 = R1, G2 = ?, G3 = R2). Then ε1 = 〈R1〉, ε2 = 〈R2〉, c1 = R1!, and c2 = R2?. If R1 �= R2 then R1 � R2 is not defined
and then ε1 ◦= ε2 is not defined. Also R1!; R2? �−→ Fail and the result holds.

If R1 = R2 = R then R1 � R2 = R and then ε1 ◦= ε2 = 〈R〉. Also R!; R? �−→ iR , but iR = �〈R〉
 R ∼ R� and the result holds.

Case (G1 = ?, G2 = R, G3 = ?). Then ε1 = 〈R〉, ε2 = 〈R〉, c1 = R?, and c2 = R!. As R � R = R then ε1 ◦= ε2 = 〈R〉. Also R?; R!
is in normal form, but R?; R! = �〈R〉
 ? ∼ ?� and the result holds.

Case (G1 = ?, G2 = ?, G3 = ?). Then we proceed on cases for ε1 and ε2.

1. (ε1 = 〈?〉, ε2 = 〈?〉). Then c1 = i? and c2 = i? . But i?; i? −→ i? , nm i? , ε1 ◦= ε2 = 〈?〉, and i? = �〈?〉
 ? ∼ ?� and the
result holds.

2. (ε1 = 〈R〉, ε2 = 〈?〉). Then c1 = R?; R! and c2 = i? . But R?; R!; i? −→ R?; R!, nm R?; R!, ε1 ◦= ε2 = 〈R〉, and R?; R! =
�〈R〉
 ? ∼ ?� and the result holds.

3. (ε1 = 〈?〉, ε2 = 〈R〉). Analogous to previous sub-case.
4. (ε1 = 〈R1〉, ε2 = 〈R2〉). Then c1 = R1?; R1! and c2 = R2?; R2!. If R1 �= R2, then R1?; R1!; R2?; R2! −→3 Fail, but also ε1 ◦=

ε2 = 〈R1〉 ◦= 〈R2〉 is undefined as R1 � R2 is not defined.

48 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
If R1 = R2 = R , then

R1?;R1!;R2?;R2!
=R?;R!;R?;R!

−→R?; iR;R!
−→R?;R!
−→iR

where nm iR . But also ε1 ◦= ε2 = 〈R1〉 ◦= 〈R2〉 = 〈R〉 ◦= 〈R〉 = 〈R〉, and iR = �〈R〉
 ? ∼ ?� and the result holds.

Case (G1 = R1, G2 = ?, G3 = ?). Then we proceed on cases for ε2.

1. (ε1 = 〈R1〉, ε2 = 〈?〉). Then c1 = R1?; R1! and c2 = i? . But R1?; R1!; i? −→ R1?; R1!, nm R1?; R1!, ε1 ◦= ε2 = 〈R1〉, and
R1?; R1! = �〈R1〉
 ? ∼ ?� and the result holds.

2. (ε1 = 〈R1〉, ε2 = 〈R2〉). Then c1 = R1?; R1! and c2 = R2?; R2!. If R1 �= R2, then R1?; R1!; R2?; R2! −→3 Fail, but also ε1 ◦=
ε2 = 〈R1〉 ◦= 〈R2〉 is undefined as R1 � R2 is not defined.
If R1 = R2 = R , then

R1?;R1!;R2?;R2!
= R?;R!;R?;R!

−→R?; iR;R!
−→R?;R!
−→iR

where nm iR . But also ε1 ◦= ε2 = 〈R1〉 ◦= 〈R2〉 = 〈R〉 ◦= 〈R〉 = 〈R〉, and iR = �〈R〉
 ? ∼ ?� and the result holds.

Case (G1 = ?, G2 = ?, G3 = R2). Analogous to previous case.

Case (G1 = Ref G ′
1 �= R1, G2 = Ref G ′

2 �= R2, G3 = Ref G ′
3 �= R3). Then ε1 = 〈Ref G ′

12〉, ε2 = 〈Ref G ′
23〉, c1 = Ref c21 c12 ,

where c21 = �〈G ′
12〉
 G ′

2 ∼ G ′
1� and c12 = �〈G ′

12〉
 G ′
1 ∼ G ′

2�, and c2 = Ref c32 c23 , where c32 = �〈G ′
23〉
 G ′

3 ∼ G ′
2� and

c23 = �〈G ′
23〉
 G ′

2 ∼ G ′
3�.

But,

c1; c2 = (Ref c21 c12); (Ref c32 c23)

−→Ref (c32; c21) (c12; c23)

and ε1 ◦= ε2 = 〈Ref G ′
12〉 ◦= 〈Ref G ′

23〉 = 〈Ref G ′
23〉 ◦= 〈Ref G ′

12〉 (Proposition 77).
By induction hypothesis on c32 = �〈G ′

23〉
 G ′
3 ∼ G ′

2� and c21 = �〈G ′
12〉
 G ′

2 ∼ G ′
1�, if c32; c21 −→∗ Fail, and G ′

23 � G ′
12

is not defined, therefore Ref (c32; c21) (c12; c23) −→∗ Fail, and 〈Ref G ′
12〉 ◦= 〈Ref G ′

23〉 is not defined and the result holds.
Similarly by induction hypothesis on c12 = �〈G ′

12〉
 G ′
1 ∼ G ′

2� and c23 = �〈G ′
23〉
 G ′

2 ∼ G ′
3�, if c32; c21 −→∗ Fail and G ′

12 �G ′
23

is not defined, therefore the result holds.
The only case left is that if we apply both induction hypotheses and we know that c32; c21 −→∗ c31 , nm c31 ,

c31 = �〈G ′
23 � G ′

12〉
 G ′
3 ∼ G ′

1� = �〈G ′
12 � G ′

23〉
 G ′
3 ∼ G ′

1� (Proposition 77), c12; c23 −→∗ c13 , nm c13 , and c13 =
�〈G ′

12 � G ′
23〉
 G ′

1 ∼ G ′
3�. Then Ref (c32; c21) (c12; c23) −→∗ Ref c31 c13 , nm Ref c31 c13 , and ε1 ◦=ε2 = 〈Ref G ′

12〉◦= 〈Ref G ′
23〉= 〈Ref G ′

12 � G ′
23〉.

But �〈Ref G ′
12 � G ′

23〉
 Ref G ′
1 ∼ Ref G ′

2� = Ref �〈G′
12 � G′

23〉
 G′
3 ∼ G′

1� �〈G′
12 � G′

23〉
 G′
1 ∼ G′

3� = Ref c31 c13 and the re-
sult holds.

Case (G1 = Ref G ′
1 �= R1, G2 = Ref G ′

2 �= R2, G3 = ?). Then ε1 = 〈Ref G ′
12〉, ε2 = 〈Ref G ′

23〉, c1 = Ref c21 c12 , where
c21 = �〈G ′

12〉
 G ′
2 ∼ G ′

1� and c12 = �〈G ′
12〉
 G ′

1 ∼ G ′
2�, and c2 = Ref c32 c23 , where c32 = �〈G ′

23〉
 G ′
3 ∼ G ′

2� and c23 =
�〈G ′

23〉
 G ′
2 ∼ G ′

3�, and we proceed analogous to previous case.

Case (G1 = Ref G ′
1 �= R1, G2 = ?, G3 = ?). Then ε1 = 〈Ref G ′

12〉, c1 = �〈Ref G ′
12〉
 Ref G ′

1 ∼ Ref ?�; (Ref ?)!, and we proceed
by cases for ε2.

1. (ε2 = 〈?〉). Then c2 = i? , and c1; c2 −→ c1 . We also know nm c1 (by Lemma 78), and ε1 ◦= ε2 = 〈Ref G ′
12 � ?〉 =

〈Ref G ′ 〉, but c1 = �〈Ref G ′ 〉
 Ref G ′ ∼ ?�, and the result holds.
12 12 1

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 49
2. (ε2 = 〈Ref ?〉). Then c2 = (Ref ?)?; (Ref ?)!, and

c1; c2 = �〈Ref G ′
12〉
 Ref G ′

1 ∼ Ref ?�; (Ref ?)!; (Ref ?)?; (Ref ?)!
−→�〈Ref G ′

12〉
 Ref G ′
1 ∼ Ref ?�; (Ref ?)!

−→�〈Ref G ′
12〉
 Ref G ′

1 ∼ Ref ?�; iRef ?; (Ref ?)!
= c1

i.e. c1; c2 −→∗ c1 . We also know nm c1 (by Lemma 78), and ε1 ◦= ε2 = 〈(Ref G ′
12) � (Ref ?)〉 = 〈Ref (G ′

12 � ?)〉 =
〈Ref G ′

12〉, but c1 = �〈Ref G ′
12〉
 Ref G ′

1 ∼ ?�, and the result holds.
3. (ε2 = 〈R〉, R �= Ref ?). Then c2 = R?; R!, and

c1; c2 = �〈Ref G ′
12〉
 Ref G ′

1 ∼ Ref ?�; (Ref ?)!;R?;R!
−→�〈Ref G ′

12〉
 Ref G ′
1 ∼ Ref ?�;Fail

−→∗Fail

We also know that ε1 ◦= ε2 = is not defined as Ref G ′
12) � (R) is undefined, and the result holds immediately. �

Lemma 80. If ε1 ◦= ε2 is not defined then ∀ε′
2 � ε2 , ε1 ◦= ε′

2 is not defined.

Proof. By induction on ε1 and ε2 subject to consistent transitivity being not defined. �
Lemma 81. If ε1 ◦= ε2 is not defined then ∀ε′

1 � ε1 , ε′
1 ◦= ε2 is not defined.

Proof. Direct by Lemma 80 and Lemma 77. �
Proposition 82. If G = G1 � G2 is defined, then G � G1 and G � G2 .

Proof. Straightforward induction on G1 � G2. �
Proposition 83. If 〈Ref G〉
 Ref G1 ∼ Ref G2 then G
 G1 ∼ G2 .

Proof. Straightforward induction on 〈Ref G〉
 Ref G1 ∼ Ref G2. �
Proposition 84. If 〈G1 → G2〉
 G11 → G12 ∼ G21 → G22 then G1
 G21 ∼ G11 .

Proof. Straightforward induction on 〈G1 → G2〉
 G11 → G12 ∼ G21 → G22. �
Proposition 85. If 〈G1 → G2〉
 G11 → G12 ∼ G21 → G22 then G2
 G12 ∼ G22 .

Proof. Straightforward induction on 〈Ref G〉
 Ref G1 ∼ Ref G2. �
Proposition 86 (Optimality). If ε = ε1 ◦= ε2 is defined, then π1(ε) � π1(ε1) and π2(ε) � π2(ε2).

Proof. Direct by Lemma 82, as evidences can be represented as singletons. �
Lemma 87. (c1; c2 �−→∗ c ∧ c; c3 �−→∗ c′) ⇐⇒ (c1; c2); c3 �−→∗ c′

Proof. Straightforward induction on (c1; c2) and then induction on c3 . �
Lemma 88. (c2; c3 �−→∗ c ∧ c1; c �−→∗ c′) ⇐⇒ (c1; c2); c3 �−→∗ c′

Proof. For proving (⇒), we use straightforward induction on (c2; c3) and then induction on c1 . For proving the other
direction (⇐), we use induction on (c1; c2); c3 . �
Proposition 89 (Associativity). Let ε1
 G1 ∼ G2 , ε2
 G2 ∼ G3 and ε3
 G3 ∼ G4 . Then (ε1 ◦= ε2) ◦= ε3 = ε1 ◦= (ε2 ◦= ε3) or both
are undefined.

50 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Proof. By straightforward induction on evidences ε1, ε2, and ε3, noticing that if ε1 = 〈G12〉, ε2 = 〈G23〉, ε3 = 〈G34〉, then it
is equivalent to prove that (G12 � G23) � G34 = G12 � (G23 � G34) or both are undefined. We only present interesting cases.

Case (ε1 = 〈G〉, ε1 = 〈G〉, ε1 = 〈G〉). Then the result is trivial as 〈G〉 ◦= 〈G〉 = 〈G〉.

Case (ε1 = 〈G1〉, ε1 = 〈?〉, ε1 = 〈G2〉). As (ε1 ◦= ε2) ◦= ε3 = (〈G1〉 ◦= 〈?〉) ◦= 〈G2〉 = 〈G1〉 ◦= 〈G2〉, and ε1 ◦= (ε2 ◦= ε3) =
〈G1〉 ◦= (〈?〉 ◦= 〈G2〉) = 〈G1〉 ◦= 〈G2〉, the result holds immediately.

Case (ε1 = 〈G〉, ε1 = 〈?〉, ε1 = 〈?〉). As (ε1 ◦= ε2) ◦= ε3 = (〈G〉 ◦= 〈?〉) ◦= 〈?〉 = 〈G〉 ◦= 〈G〉 = 〈G〉, and ε1 ◦= (ε2 ◦= ε3) =
〈G〉 ◦= (〈?〉 ◦= 〈?〉) = 〈G〉 ◦= 〈?〉 = 〈B〉, the result holds immediately.

Case (ε1 = 〈?〉, ε1 = 〈?〉, ε1 = 〈?〉). As (ε1 ◦= ε2) ◦= ε3 = (〈?〉 ◦= 〈?〉) ◦= 〈?〉 = 〈?〉 ◦= 〈?〉 = 〈?〉, and ε1 ◦= (ε2 ◦= ε3) = 〈?〉 ◦=
(〈?〉 ◦= 〈?〉) = 〈?〉 ◦= 〈?〉 = 〈?〉, the result holds immediately.

Case (ε1 = 〈G1〉, ε1 = 〈G2〉, ε1 = 〈?〉). As (ε1 ◦= ε2) ◦= ε3 = (〈G1〉 ◦= 〈G2〉) ◦= 〈?〉 = 〈G1 � G2〉 ◦= 〈?〉 = 〈G1 � G2〉 if G1 � G2
is defined, and ε1 ◦= (ε2 ◦= ε3) = 〈G1〉 ◦= (〈G2〉 ◦= 〈?〉) = 〈G1〉 ◦= 〈G2〉 = 〈G1 � G2〉 if G1 � G2 is defined, the result holds
immediately.

Case (ε1 = 〈?〉, ε1 = 〈G〉, ε1 = 〈?〉). As (ε1 ◦= ε2) ◦= ε3 = (〈?〉 ◦= 〈G〉) ◦= 〈?〉 = 〈G〉 ◦= 〈?〉 = 〈G〉, and ε1 ◦= (ε2 ◦= ε3) = 〈?〉 ◦=
(〈G〉 ◦= 〈?〉) = 〈?〉 ◦= 〈G〉 = 〈G〉, the result holds immediately.

Case (ε1 = 〈G1〉, ε1 = 〈G2〉, ε1 = 〈G3〉, G1 � G2 not defined). We know that (ε1 ◦= ε2) ◦= ε3 = (〈G1〉 ◦= 〈G2〉) ◦= 〈G3〉 is not
defined, and that ε1 ◦= (ε2 ◦= ε3) = 〈G1〉 ◦= (〈G2〉 ◦= 〈G3〉) = 〈G1〉 ◦= 〈G2 � G3〉 (if G2 � G3 is not defined the result holds
immediately). By Proposition 86, 〈G2 � G3〉 � 〈G2〉. Then by Proposition 80 〈G1〉 ◦= 〈G2 � G3〉 is not defined, and the result
holds.

Case (ε1 = 〈G1〉, ε1 = 〈G2〉, ε1 = 〈G3〉, G2 � G3 not defined). We know that ε1 ◦= (ε2 ◦= ε3) = 〈G1〉 ◦= (〈G2〉 ◦= 〈G3〉) is not
defined, and that (ε1 ◦= ε2) ◦= ε3 = (〈G1〉 ◦= 〈G2〉) ◦= 〈G3〉 = 〈G1 � G2〉 ◦= 〈G3〉 (if G1 � G2 is not defined the result holds
immediately). By Proposition 86, 〈G1 � G2〉 � 〈G2〉. Then by Proposition 81 〈G1 � G2〉 ◦= 〈G3〉 is not defined, and the result
holds.

Case (ε1 = 〈G1〉, ε1 = 〈G2〉, ε1 = 〈G3〉, G1 � G3 not defined). We know that (ε1 ◦= ε2) ◦= ε3 = (〈G1 � G2〉) ◦= 〈G3〉, and that
ε1 ◦= (ε2 ◦= ε3) = 〈G1〉 ◦= (〈G2 � G3〉) (if G1 � G2 or G2 � G3 are not defined then the result holds immediately by next
argument).

Then by Proposition 86, 〈G1 � G2〉 � 〈G1〉 and 〈G2 � G3〉 � 〈G3〉, therefore by Proposition 81 〈G1 � G2〉 ◦= 〈G3〉 is not
defined, and by Proposition 80, 〈G1〉 ◦= 〈G2 � G3〉 is not defined, and the result holds as both combinations of evidence fail,
regardless if G1 � G2 or G2 � G3 are defined or not.

Case (ε1 = 〈Ref G ′
1〉, ε1 = 〈Ref G ′

2〉, ε1 = 〈Ref G ′
3〉). Notice that (〈Ref G ′

1〉 ◦= 〈Ref G ′
2〉) ◦= 〈Ref G ′

3〉 = 〈Ref G〉 is defined if and
only if 〈G〉 = (〈G ′

1〉 ◦= 〈G ′
2〉) ◦= 〈G ′

3〉 is defined. Similarly 〈Ref G ′
1〉 ◦= (〈Ref G ′

2〉 ◦= 〈Ref G ′
3〉) = 〈Ref G ′〉 is defined if and only

if 〈G ′〉 = 〈G ′
1〉 ◦= (〈G ′

2〉 ◦= 〈G ′
3〉) is defined. Also 〈Ref G ′

1〉
 Ref G ′′
1 ∼ Ref G ′′

2, 〈Ref G ′
2〉
 Ref G ′′

2 ∼ Ref G ′′
3, and 〈Ref G ′

3〉

Ref G ′′

3 ∼ Ref G ′′
4, then by inversion lemma (Lemma 83), 〈G ′

1〉
 G ′′
1 ∼ G ′′

2, 〈G ′
2〉
 G ′′

2 ∼ G ′′
3, and 〈G ′

3〉
 G ′′
3 ∼ G ′′

4
Then the result holds immediately as by induction hypothesis (〈G ′

1〉 ◦= 〈G ′
2〉) ◦= 〈G ′

3〉 = 〈G ′
1〉 ◦= (〈G ′

2〉 ◦= 〈G ′
3〉) or both are

undefined.

Case (ε1 = 〈G ′
11 → G ′

12〉, ε1 = 〈G ′
21 → G ′

22〉, ε1 = 〈G ′
31 → G ′

32〉). Analogous to the previous case but using inversion Lem-
mas 85 and 84. �
Proposition 90. Let c1
 G1 ⇒ G2 , c2
 G2 ⇒ G3 and c3
 G3 ⇒ G4 . Then either

• (c1; c2); c3 �−→∗ c and c1; (c2; c3) �−→∗ c , or
• (c1; c2); c3 �−→∗ Fail and c1; (c2; c3) �−→∗ Fail

Proof. By induction on c1, c2 , and c3 . Alternatively, by Proposition 79 and Proposition 89, noticing that ci = �εi
 Gi ∼ Gi+1�
for some εi . �
Proposition 91 (Confluence). Let c1
 G1 ⇒ G2 , nm c1 , c2
 G2 ⇒ G3 , and nm c2 . If c1; c2 �−→∗ c′

1 and nm c′
1 , and c1; c2 �−→∗ c′

2
and nm c′ , then c′ = c′ .
1 1 2

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 51
Proof. By a lengthy induction on c1
 G1 ⇒ G2 ∧ nm c1 and then induction on c2
 G2 ⇒ G3 ∧ nm c2 . We show a represen-
tative case:

Case (c1 = (? → ?)?; c11 → c12; (? → ?)!). where nm c1i , and G2 = ?. We now proceed by induction on c2
 ? ⇒ G3 ∧ nm c2:

• (Case c2 = Fail). Then

(? → ?)?; c11 → c12; (? → ?)!;Fail �−→(? → ?)?; c11 → c12;Fail (as nm (? → ?)?; c11 → c12)

�−→(? → ?)?;Fail (as nm (? → ?)?)

�−→Fail

and as nm Fail, the result holds.
• (Case c2 = ? → ??). Then

(? → ?)?; c11 → c12; (? → ?)!;? → ?? �−→(? → ?)?; c11 → c12; i?→? (as nm (? → ?)?; c11 → c12)

�−→(? → ?)?; c11 → c12 (as nm (? → ?)?)

and as nm (? → ?)?; c11 → c12 , the result holds.
• (Case c2 = Ref ??). Then

(? → ?)?; c11 → c12; (? → ?)!;Ref ?? �−→(? → ?)?; c11 → c12;Fail (as nm (? → ?)?; c11 → c12)

�−→(? → ?)?;Fail (as nm (? → ?)?)

�−→Fail

and as nm Fail, the result holds.
• (Case c2 = B?). Similar to c2 = Ref ?? case.
• (Case c2 = (? → ?)?; c21 → c22; (? → ?)!). Then

(? → ?)?; c11 → c12; (? → ?)!; (? → ?)?; c21 → c22; (? → ?)!
�−→(? → ?)?; c11 → c12; i?→?; c21 → c22; (? → ?)!

as nm (? → ?)?; c11 → c12 and nm c21 → c22; (? → ?)!. Then

(? → ?)?; c11 → c12; i?→?; c21 → c22; (? → ?)!
�−→(? → ?)?; c11 → c12; c21 → c22; (? → ?)!

Notice that we get to the same result either if we reduce the sub coercion c11 → c12; i?→? , or i?→?; c21 → c22 . Then,

(? → ?)?; c11 → c12; c21 → c22; (? → ?)!
�−→(? → ?)?; (c21; c11) → (c12; ; c22); (? → ?)!

as nm ? → ?? and nm ? → ?!. Now we apply induction hypotheses:
(1) if c21; c11 �−→∗ c′

11 and c21; c11 �−→∗ c′
12 , nm c′

11 , and nm c′
12 , then c′

11 = c′
12 .

(2) if c12; c22 �−→∗ c′
21 and c12; c22 �−→∗ c′

22 , nm c′
21 , and nm c′

22 , then c′
21 = c′

22 .
Then

(? → ?)?; (c21; c11) → (c12; ; c22); (? → ?)!
�−→∗(? → ?)?; c′

11 → c′
12; (? → ?)!

But as nm c′
11 and nm c′

12 , then nm (? → ?)?; c′
11 → c′

12; (? → ?)! and the result follows.
• (Case c2 = (? → ?)?; c21 → c22). Then

(? → ?)?; c11 → c12; (? → ?)!; (? → ?)?; c21 → c22

�−→(? → ?)?; c11 → c12; i?→?; c21 → c22

as nm (? → ?)?; c11 → c12 and nm c21 → c22 . Then

52 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
(? → ?)?; c11 → c12; i?→?; c21 → c22

�−→(? → ?)?; c11 → c12; c21 → c22

Notice that we get to the same result either if we reduce the sub coercion c11 → c12; i?→? , or i?→?; c21 → c22 . Then,

(? → ?)?; c11 → c12; c21 → c22

�−→(? → ?)?; (c21; c11) → (c12; ; c22)

as nm ? → ??. Now we apply induction hypotheses:
(1) if c21; c11 �−→∗ c′

11 and c21; c11 �−→∗ c′
12 , nm c′

11 , and nm c′
12 , then c′

11 = c′
12 .

(2) if c12; c22 �−→∗ c′
21 and c12; c22 �−→∗ c′

22 , nm c′
21 , and nm c′

22 , then c′
21 = c′

22 .
Then

(? → ?)?; (c21; c11) → (c12; ; c22)

�−→∗(? → ?)?; c′
11 → c′

12

But as nm c′
11 and nm c′

12 , then nm (? → ?)?; c′
11 → c′

12 and the result follows.
• (Case c2 = Ref ??; Ref c21 c22; Ref ?!). Analogous to the function case.
• (Case c2 = Ref ??; Ref c21 c22). Analogous to the function case. �

Lemma 92. ε1t1 @G1→G2 ε2t2 | μ �−→ ε′
1t′

1 @G1→G2 ε2t2 | μ′ if and only if ε1t1 :: G1 → G2 | μ �−→ ε′
1t′

1 :: G1 → G2 | μ′ .

Proof. We start by proving ⇒ by case analysis on t1 (the other direction is analogous).

• If t1 = ε3t3 :: G3 where ε1(ε3t3 :: G3) @G1→G2 ε2t2 | μ �−→ ε1(ε
′
3t′

3 :: G3) @G1→G2 ε2t2 | μ′ , then it is easy to see that
ε1(ε3t3 :: G3) :: G1 → G2 | μ �−→ ε1(ε

′
3t′

3 :: G3) :: G1 → G2 | μ′ and the result holds.
• If t1 = ε3u :: G3 where ε1(ε3u :: G3) @G1→G2 ε2t2 | μ �−→ ε′

1u @G1→G2 ε2t2 | μ and ε′
1 = ε3 ◦ ε1, then also

ε1(ε3u :: G3) :: G1 → G2 | μ �−→ ε′
1u :: G1 → G2 | μ and the result holds. �

Lemma 93. ε1t1 @G1→G2 ε2t2 | μ �−→ ε1t1 @G1→G2 ε′
2t′

2 | μ′ if and only if ε2t2 :: G1 | μ �−→ ε′
2t′

2 :: G1 | μ′ .

Proof. Analogous to Lemma 92. �
Lemma 94. ε1t1 :=G3 ε2t2 | μ �−→ ε′

1t′
1 :=G3 ε2t2 | μ′ if and only if ε1t1 :: Ref G3 | μ �−→ ε′

1t′
1 :: Ref G3 | μ′ .

Proof. Similar to Lemma 92. �
Lemma 95. ε1t1 :=G3 ε2t2 | μ �−→ ε1t1 :=G3 ε′

2t′
2 | μ′ if and only if ε2t2 :: G3 | μ �−→ ε′

2t′
2 :: G3 | μ′ .

Proof. Analogous to Lemma 94. �
Lemma 96. refG εt | μ �−→ refG ε′t′ | μ′ if and only if εt :: G | μ �−→ ε′t′ :: G | μ′ .

Proof. Similar to Lemma 92. �
Lemma 97. !Gεt | μ �−→ !Gε′t′ | μ′ if and only if εt :: Ref G | μ �−→ ε′t′ :: Ref G | μ′ .

Proof. Similar to Lemma 92. �
Lemma 98. if ε1t1 then ε2t2 else ε3t3 | μ �−→ if ε′

1t′
1 then ε2t2 else ε3t3 | μ′ if and only if ε1t1 :: Bool | μ �−→ ε′

1t′
1 :: Bool | μ′ .

Proof. Similar to Lemma 92. �
Lemma 99. If c1 → c2 = �ε
 G ′

1 → G ′
2 ∼ G1 → G2�, then c1 = �idom(ε)
 G1 ∼ G ′

1� and c2 = �icod(ε)�
 G ′
2 ∼ G2 .

Proof. By definition of the map function between evidence augmented consistent judgments and coercions we know that
�ε
 G11 → G12 ∼ G21 → G22� = �idom(ε)
 G1 ∼ G ′

1� → �icod(ε)
 G ′
2 ∼ G2� which is equal to c1 → c2 , and the result

holds immediately. �

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 53
Lemma 100. If Ref c1 c2 = �ε
 Ref G ′ ∼ Ref G�, then c1 = �iref (ε)
 Ref G ∼ Ref G ′� and c2 = �iref (ε)
 Ref G ′ ∼ Ref G�.

Proof. By definition of the map function between evidence augmented consistent judgments and coercions we know that
�ε
 Ref G ′ ∼ Ref G� = Ref �iref (ε)
 G ∼ G ′� → �iref (ε)
 G ′ ∼ G� which is equal to Ref c1 c2 , and the result holds imme-
diately. �
Lemma 101. If t1 ≈ t2 , v1 ∈ T[G], and v1 ≈ v2 , then t1[v1/xG] ≈ t2[v2/x]

Proof. By induction on the derivation t1 ≈ t2 . �
Lemma 102. Consider 〈G〉
 G ∼ G, then

1. ∀ε
 G ∼ G ′ , 〈G〉 ◦ ε = ε , and
2. ∀ε
 G!’ ∼ G, ε ◦ 〈G〉 = ε

Proof. By induction on evidence augmented consistent judgment 〈G〉
 G ∼ G . �
Lemma 103 (Weak bisimulation between λε

R̃EF
and HCC+). If t1 ∈ T[G], ·; �
H t2 : G, μ2 |= �, μ1 ≈ μ2 , and t1 ≈ t2 , then

1. If t1 | μ1 �−→ t′
1 | μ′

1 , then t2 | μ2 �−→∗ t′2 | μ′
2 such that t′

1 ≈ t′2 and μ′
1 ≈ μ′

2 .
2. If t2 | μ2 �−→ t′′2 | μ′′

2 , then ∃ j, 0 ≤ j ≤ 2, t′′2 | μ′′
2 �−→ j t′2 | μ′

2 and t1 | μ1 �−→∗ t′
1 | μ′

1 such that t′
1 ≈ t′2 and μ′

1 ≈ μ′
2 .

Proof. 1. We proceed by induction on t1 | μ1 �−→ t′
1 | μ′

1.

Case (ε1(λxG11 .t′
1) @

G1→G2 ε2u1 | μ1 �−→ ε′
1t′

1[ε′
2u1 :: G11/xG11] :: G2 | μ1). Where ε′

1 = icod(ε1) and ε′
2 = ε2 ◦ idom(ε1). By

inspection of (bapp), we know that t2 = t21 t22 , for some t21, t22 such that ε1(λxG11 .t′
1) :: G1 → G2 ≈ t21 and ε2u1 :: G1 ≈ t22 .

We proceed by case analysis on t21 t22 .

• If t21 t22 = ((c1 → c2) (λx : G11.t′2))v22 . Where c1 → c2 = �ε1
 G11 → G12 ∼ G1 → G2�. By Lemma 99,
c1 = �idom(ε1)
 G1 ∼ G11�, and c2 = �icod(ε1)
 G12 ∼ G2�.
– If v22 = cvu22 , where cv = �ε2
 Gu ∼ G1� and u1 ≈ u22 , then by Proposition 79,

c′
1 = cv; c1 = �ε′

2
 Gu ∼ G11�. Then if we assume c′
1 �= iGu (the other case is analogous)

((c1 → c2) (λx : G11.t
′
2))cvu22 | μ2 �−→c1((λx : G11.t

′
2)c1(cvu22)) | μ2

�−→c1((λx : G11.t
′
2)c′

1u22) | μ2

�−→c1(t′2[c′
1u22/x]) | μ2

But we know that t′
1 ≈ t′2 , and that by (b::eq) ε′

2u1 :: G11 ≈ c′
1u22 , by Lemma 101 and (b::eq),

idom(ε1)t′
1[ε′

2u1 :: G11/xG11] :: G2 ≈ c1(t′2[c′
1u22/x]) and the result holds.

– If v22 = u22 where u1 ≈ u22 , then by (b::id) ε2 = 〈G1〉 and u1 ∈ T[G1], therefore 〈G1〉
 G1 ∼ G1. Therefore by
Lemma 102, ε′

2 = idom(ε1). Then

((c1 → c2) (λx : G11.t
′
2))u22 | μ2 �−→c1((λx : G11.t

′
2)c1(u22)) | μ2

�−→c1(t′2[c1u22/x]) | μ2

But we know that t′
1 ≈ t′2 , and that by (b::eq) ε′

2u1 :: G11 ≈ c1u22 , by Lemma 101 and (b::eq),
idom(ε1)t′

1[ε′
2u1 :: G11/xG11] :: G2 ≈ c1(t′2[c1u22/x]) and the result holds.

• If t21 t22 = (λx : G1.t′2)v22 . Then G11 = G1, t′
1 ∈ T[G2], ε1 = 〈G1 → G2〉, and 〈G1 → G2〉
 G1 → G2 ∼ G1 → G2. By

the inversion lemmas idom(ε1) = 〈G1〉
 G1 ∼ G1 and icod(ε1) = 〈G2〉
 G2 ∼ G2. But we know that t′
1 ≈ t′2 , therefore

by Lemma 102, ε′
2 = ε2. Finally by (b::id) and as ε2u1 :: G1 ≈ v22 , by Lemma 101, idom(ε1)t′

1[ε2u1 :: G11/xG11] :: G2 ≈
(t′2[v22/x]) and the result holds.

Case (refG1 εu1 | μ1 �−→ oG1 | μ1[oG1 �→ εu1 :: G1]). We know by (b::ref) that t2 = ref v2 , for some v2 such that εu1 :: G1 ≈
v2 . But ref v2 | μ2 �−→ o | μ2[o �→ v2]. As oG1 ≈ o , and μ1 ≈ μ2 , we only have to prove that εu1 :: G1 ≈ v2 , but we already
know that by (b::ref), and the result holds immediately.

Case (!G(εoG2) | μ1 �−→ iref (ε)v1 :: G | μ1). Where μ1(xG2) = v1. By inspection of (b!), we know that t2 = !v2 , for some v2
such that εoG2 :: Ref G ≈ v2 . We proceed by case analysis on v2 .

54 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
• If v2 = (Ref c1 c2)o . Where Ref c1 c2 = �ε
 Ref G2 ∼ Ref G�, and oG2 ≈ o . By Lemma 100, c1 = �iref (ε)
 G ∼ G2�, and
c2 = �iref (ε)
 G2 ∼ G�. Then

!(Ref c1 c2)o | μ2 �−→c2!o | μ2

�−→c2v′
2 | μ2

where μ2(o) = v′
2 , and v′

2 ≈ v1. The result follows by applying (b::eq).
• If v2 = o . Then G2 = G and ε = 〈Ref G〉. By the inversion lemma on evidence iref (ε) = 〈G〉
 G ∼ G . Then !o | μ2 �−→

v′
2 | μ2 , where μ2(o) = v′

2 , and v′
2 ≈ v1. By (b::id) we know that 〈G〉v1 :: G ≈ v′

2 and the result holds.

Case (ε1oG1 :=G3 ε2u12 | μ1 �−→ unit | μ′
1). Where μ′

1 = μ1[oG1 �→ ε′
2u12 :: G1], and ε′

2 = ε2 ◦ iref (ε1). By inspection of (b:=),
we know that t2 = t21:=t22 , for some t21, t22 such that ε1oG1 :: Ref G3 ≈ t21 and ε2u12 :: G3 ≈ t22 . We proceed by case
analysis on t21:=t22 .

• If t21:=t22 = ((Ref c1 c2)o)v22 . Where Ref c1 c2 = �ε1
 Ref G1 ∼ Ref G3�. By Lemma 100, c1 = �iref (ε1)
 G3 ∼ G1�,
and c2 = �iref (ε1)
 G1 ∼ G3�.
– If v22 = cvu22 , where cv = �ε2
 Gu ∼ G3� and u1 ≈ u22 , then by Proposition 79, c′

1 = cv; c1 = �ε′
2
 Gu ∼ G1�. Then if

we assume c′
1 �= iGu (the other case is analogous)

((Ref c1 c2)o):=cvu22 | μ2 �−→o:=c1(cvu22) | μ2

�−→o:=c′
1u22 | μ2

�−→unit | μ2[o �→ c′
1u22]

But we know that unit ≈ unit, and that by (b::eq) ε′
2u1 :: G1 ≈ c′

1u22 , and so μ1[oG1 �→ ε′
2u12 :: G1] ≈ μ2[o �→ c′

1u22],
and the result holds.

– If v22 = u22 where u1 ≈ u22 , then by (b::id) ε2 = 〈G3〉 and u1 ∈ T[G3], therefore 〈G3〉
 G3 ∼ G3. Therefore by
Lemma 102, ε′

2 = iref (ε1). Then

((Ref c1 c2)o):=u22 | μ2 �−→o:=c1(u22) | μ2

�−→unit | μ2[o �→ c1u22]
But we know that unit ≈ unit, and that by (b::eq) ε′

2u1 :: G1 ≈ c1u22 , and so μ1[oG1 �→ ε′
2u12 :: G1] ≈ μ2[o �→ c1u22],

and the result holds.
• If t21:=t22 = o:=v22 . Then G1 = G3, ε1 = 〈Ref G3〉, and 〈G3〉
 Ref G3 ∼ Ref G3. By the inversion lemmas iref (ε1) =

〈G3〉
 G3 ∼ G3 and iref (ε1) = 〈G3〉
 G3 ∼ G3. We also know that o :=v22 | μ2 �−→ o:=v22 | μ2[o �→ v22], and unit ≈ unit.
Also by Lemma 102, ε′

2 = ε2. Finally by premise ε2u1 :: G1 ≈ v22 , and so μ1[oG1 �→ ε2u12 :: G1] ≈ μ2[o �→ v22], and the
result holds.

Case (if ε1b then ε2t12 else ε3t13 | μ1 −→ ε2t12 :: G | μ1). Where b = true and ε1 = 〈Bool〉. By inspection of (b), we know
that t2 = if t21 then t22 else t23 , for some t21, t22, t23 , such that 〈Bool〉b :: Bool ≈ t21 , ε2t12 :: G ≈ t22 , and ε3t13 :: G ≈ t23 . By
(b::leq) or (b::id) and (bb), we know that either t21 = true or t21 = iBooltrue. Let us assume t21 = true (the other case is anal-
ogous modulo one extra step of evaluation). Then t2 | μ2 �−→ t22 | μ2 , but ε2t12 :: G ≈ t22 and the result holds immediately.

Case (if ε1b then ε2t12 else ε3t13 | μ1 −→ ε2t13 :: G | μ1). Where b = false and ε1 = 〈Bool〉. By inspection of (b), we know
that t2 = if t21 then t22 else t23 , for some t21, t22, t23 , such that 〈Bool〉b :: Bool ≈ t21 , ε2t12 :: G ≈ t22 , and ε3t13 :: G ≈ t23 .
By (b::leq) or (b::id) and (bb), we know that either t21 = false or t21 = iBoolfalse. Let us assume t21 = false (the other
case is analogous modulo one extra step of evaluation). Then t2 | μ2 �−→ t23 | μ2 , but ε2t13 :: G ≈ t23 and the result holds
immediately.

Case (〈B1〉b1 ⊕ 〈B2〉b2 | μ1 −→ b13 | μ1). Where b3 = b1 �⊕� b2. Then either t2 = t21 ⊕ t22 . Where by (b::leq) or (b::id) and
(bb) t21 = c[1] or t21 = iB1 b1, and t22 = b2 or t22 = iB2 b2. Let us assume t21 = b1 and t22 = b2 (the other cases is analogous
modulo one or two extra steps of evaluation). Then b1 ⊕ b2 = b3, where b3 = b1 �⊕� b2, and the result holds immediately
by (b::b).

Case (ε1t11 @G1→G2 ε2t12 | μ1 �−→ ε′
1t′

11 @G1→G2 ε2t12 | μ′
1). Then by (bapp) t2 = t21 t22 . By Lemma 92 we know that

ε1t11 :: G1 → G2 | μ1 �−→ ε′
1t′

11 :: G1 → G2 | μ′
1. Also by (bapp) we know that ε1t11 :: G1 → G2 ≈ t21 . Then by induction

hypothesis we know that t21 | μ2 �−→∗ t′21 | μ′
2 , and that ε′

1t′
11 :: G1 → G2 ≈ t′21 and μ′

1 ≈ μ′
2 . The result follows directly by

(bapp).

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 55

|

Case (ε1u11 @G1→G2 ε2t12 | μ1 �−→ ε1u11 @G1→G2 ε′
2t′

12 | μ′
1). Analogous to previous case but using Lemma 93

Case (if ε1t11 then ε2t12 else ε3t13 | μ1 �−→ if ε1t′
11 then ε2t12 else ε3t13 | μ′

1). Then by (bif) t2 = if t21 then t22 else t23 . By
Lemma 98 we know that ε1t11 :: Bool | μ1 �−→ ε′

1t′
11 :: Bool | μ′

1. Also by (bif) we know that ε1t11 :: Bool ≈ t21 . Then by
induction hypothesis we know that t21 | μ2 �−→∗ t′21 | μ′

2 , and that ε′
1t′

11 :: Bool ≈ t′21 and μ′
1 ≈ μ′

2 . The result follows di-
rectly by (bif).

Case (ε1t11 :=G3 ε2t12 | μ1 �−→ ε′
1t′

11 :=G3 ε2t12 | μ′
1). Then by (b:=) t2 = t21:=t22 . By Lemma 94 we know that ε1t11 :: Ref G3

μ1 �−→ ε′
1t′

11 :: Ref G3 | μ′
1. Also by (b:=) we know that ε1t11 :: Ref G3 ≈ t21 . Then by induction hypothesis we know that

t21 | μ2 �−→∗ t′21 | μ′
2 , and that ε′

1t′
11 :: Ref G3 ≈ t′21 and μ′

1 ≈ μ′
2 . The result follows directly by (b:=).

Case (ε1u11 :=G3 ε2t12 | μ1 �−→ ε1u11 :=G3 ε′
2t′

12 | μ′
1). Analogous to previous case but using Lemma 95

Case (refG
′
ε1t11 | μ1 �−→ refG

′
ε′

1t′
11 | μ′

1). Then by (bref) t2 = ref t21 . By Lemma 96 we know that ε1t11 :: G ′ | μ1 �−→
ε′

1t′[11] :: G ′ | μ′
1. Also by (bref) we know that ε1t11 :: G ′ ≈ t21 . Then by induction hypothesis we know that t21 | μ2 �−→∗

t′21 | μ′
2 , and that ε′

1t′
11 :: G ′ ≈ t′21 and μ′

1 ≈ μ′
2 . The result follows directly by (bref).

Case (!G ′
ε1t11 | μ1 �−→ !G ′

ε′
1t′

11 | μ′
1). Then by (b!) t2 = !t21 . By Lemma 97 we know that ε1t11 :: Ref G ′ | μ1 �−→

ε′
1t′

11 :: Ref G ′ | μ′
1. Also by (b!) we know that ε1t11 :: Ref G ′ ≈ t21 . Then by induction hypothesis we know that t21 | μ2 �−→∗

t′21 | μ′
2 , and that ε′

1t′
11 :: Ref G ′ ≈ t′21 and μ′

1 ≈ μ′
2 . The result follows directly by (b!).

Case (ε1t11 :: G | μ1 �−→ ε′
1t′

1 :: G | μ′
1). Without loosing generality let us assume that ε1t11 :: G = ε1(...(εnt1n :: Gn)...) :: G ,

where t1n ∈T[Gn−1] is not an ascribed term.
Then by (b::eq), (b::id) and (b::leq), either t2 = c1(...(cmt2m)...) (and m ≤ n) or t2 = t21 , where t2m and t21 are not

coerced terms, such that t1n ≈ t2m or t1n ≈ t21 respectively.
Let us assume that t2 = c1(...(cmt2m)...) (the other case is analogous to the second subcase below). Then we

know that c1(...(cmt2m)...) �−→ c′
1t2m , where cm; cm−1...; c1 �−→∗ c′

1 and nm c′
1 . Also by repeatedly applying (b::eq)

and (b::leq), ε1(...(εnt1n :: Gn)...) :: G ≈ c′
1t2m . Additionally, by inspection of (b::eq) and (b::leq), ∃c′

11, ...c
′
1n , such that

c′
1i = �εi
 Gi+1 ∼ Gi�, and that c′

1n; ...c′
11 �−→∗ c′

1 .
We now proceed by case analysis on t1n .

• If t1n = u1. Then ε1(...(εn−1(εnu1 :: Gn) :: Gn−1)...) :: G �−→ ε1(...(ε
′
n−1u1 :: Gn−1)...) :: G , where ε′

n−1 = (εn ◦ εn−1). Then
c′

1n; c′
1n−1 �−→∗ c′′

1n−1 , for some c′′
1n−1 , therefore by Lemma 79, c′′

1n−1 = �ε′
n−1
 Gn+1 ∼ Gn−1�. Then by (b::eq),

ε′
n−1u1 :: Gn−1 ≈ c′′

1n−1u2 . Then the result holds by using (b::leq) and (b::eq) repeatedly and using c′
11, ..., c′

1n−2, c
′′
1n−1

and Lemma 90.
• If t1n is not a simple value, and therefore t1n | μ1 �−→ t′

1n | μ′
1. By induction hypothesis t2m | μ2 �−→∗ t′2m | μ′

2 , such that
t′

1n ≈ t′2m and μ′
1 ≈ μ′

2 Therefore by (b::leq) and (b::eq), ε1(...(εnt′
1n :: Gn)...) :: G ≈ c′

1t′2m and the result holds.

The proof of (2) is similar but choosing sometimes j = 1 or j = 2 in cases for application, dereference or assignment. �
Lemma 104. If c = �ε
 G ′ ∼ G�, then nm c .

Proof. Direct by induction on ε
 G ′ ∼ G and definition of �� (Fig. 12). �
Lemma 105. If t1 ∈ T[G], ø; �
H t2 : G, μ2 |= �, μ1 ≈ μ2 , and t1 ≈ t2 , then t1 | μ1 ⇓ ⇐⇒ t2 | μ2 ⇓.

Proof.

Case (⇒). We proceed by induction on t1 | μ1 �−→∗ v1 | μ′
1.

Case (t1 = v1). As t1 ≈ t2 and by Lemma 15, then t2 | μ2 �−→∗ t′2 | μ′
2 , and v1 ≈ t′2 and μ1 ≈ μ′

2 . If v1 = u , then the result
holds immediately by inspection of (Bb), (bλ), and (bo). If v1 = εu :: G then either by (b::id) t′2 = u2 and the result holds,
or by (b::eq) t′2 = cu2 , where c = �ε
 Gu ∼ G� (and therefore c �= Fail) and by Lemma 104 the result holds.

Case (t1 | μ1 �−→ t′
1 | μ′′

1 and t′
1 | μ′′

1 �−→∗ v1 | μ′
1). By Lemma 15 then t2 | μ2 �−→∗ t′2 | μ′

2 and t′
1 ≈ t′2 and μ′

1 ≈ μ2 . Then by
induction hypothesis, t′2 | μ′′

2 ⇓, and therefore t2 | μ2 ⇓ and the result holds.

Case (⇐). We proceed similarly by induction on t2 | μ2 �−→∗ v2 | μ′ .
2

56 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Case (t2 = v2). Similar to the (t1 = v1) case.

Case (t2 | μ2 �−→k t′2 | μ′′
2 and t′2 | μ′′

2 �−→n−k v2 | μ′
2). By Lemma 15 we know that there exists some j ∈ {1, 2, 3}, such

that t1 | μ1 �−→∗ t′
1 | μ′′

1 and t′
1 ≈ t′2 and μ′

1 ≈ μ2 . We choose k = j, and by induction hypothesis, t′
1 | μ′′

2 ⇓, and therefore
t′

1 | μ1 ⇓ and the result holds. �
Lemma 106. If t1 ∈ T[G], ø; �
H t2 : G, μ2 |= �, μ1 ≈ μ2 , and t1 ≈ t2 , then

1. If t1 | μ1 �−→ error, then t2 | μ2 �−→∗ error.
2. If t2 | μ2 �−→ r, for some r = t′2 | μ′

2 or r = error, then ∃ j, 0 ≤ j ≤ 2. if r �−→ j error, then t1 | μ1 �−→∗ error

Proof. 1. We proceed by induction on t1 | μ1 �−→ error.

Case (ε1(λxG11 .t′
1) @

G1→G2 ε2u1 | μ1 �−→ error). Where ε2 ◦ idom(ε1) is not defined. By inspection of (bapp), we know that
t2 = t21 t22 , for some t21, t22 such that ε1(λxG11 .t′

1) :: G1 → G2 ≈ t21 and ε2u1 :: G1 ≈ t22 . We proceed by case analysis on
t21 t22 .

• If t21 t22 = ((c1 → c2) (λx : G11.t′2))v22 . Where c1 → c2 = �ε1
 G11 → G12 ∼ G1 → G2�. By Lemma 99, c1 =
�idom(ε1)
 G1 ∼ G11�.
– If v22 = cvu22 , where cv = �ε2
 Gu ∼ G1� and u1 ≈ u22 , then by Proposition 79, c′

1 = cv; c1 = Fail.

((c1 → c2) (λx : G11.t
′
2))cvu22 | μ2 �−→c1((λx : G11.t

′
2)c1(cvu22)) | μ2

�−→c1((λx : G11.t
′
2)c′

1u22) | μ2

�−→error

and the result holds.
– If v22 = u22 . This case cannot happen: as u1 ≈ u22 , then by (b::id) ε2 = 〈G1〉 and u1 ∈ T[G1], therefore 〈G1〉
 G1 ∼

G1. Therefore by Lemma 102, ε2 ◦ idom(ε1) is defined, which is a contradiction.
• If t21 t22 = (λx : G1.t′2)v22 . This case cannot happen as ε1 = 〈G1 → G2〉 and as ε2
 Gu ∼ G1, ε2 ◦ idom(ε1) = ε2 ◦ 〈G1〉

by Lemma 102 it would never fail.

Case (ε1oG1 :=G3 ε2u12 | μ1 �−→ error). Where ε2 ◦ iref (ε1) is not defined. By inspection of (b:=), we know that t2 =
t21:=t22 , for some t21, t22 such that ε1oG1 :: Ref G3 ≈ t21 and ε2u12 :: G3 ≈ t22 . We proceed by case analysis on t21:=t22 .

• If t21:=t22 = ((Ref c1 c2)o)v22 . Where Ref c1 c2 = �ε1
 Ref G1 ∼ Ref G3�. By Lemma 100, c1 = �iref (ε1)
 G3 ∼ G1�,
and c2 = �iref (ε1)
 G1 ∼ G3�.
– If v22 = cvu22 , where cv = �ε2
 Gu ∼ G3� and u1 ≈ u22 , then by Proposition 79, c′

1 = cv; c1 = Fail.

((Ref c1 c2)o):=cvu22 | μ2 �−→o:=c1(cvu22) | μ2

�−→o:=c′
1u22 | μ2

�−→error

And the result holds.
– If v22 = u22 . This case cannot happen: as u1 ≈ u22 , then by (b::id) ε2 = 〈G3〉 and u1 ∈ T[G3], therefore 〈G3〉
 G3 ∼

G3. Therefore by Lemma 102, ε2 ◦ idom(ε1) is defined, which is a contradiction.
• If t21:=t22 = o:=v22 . This case cannot happen as ε1 = 〈Ref G3〉 and as ε2
 Gu ∼ G3, ε2 ◦ iref (ε1) = ε2 ◦ 〈G3〉 by

Lemma 102 it would never fail.

Case (ε1t11 @G1→G2 ε2t12 | μ1 �−→ error, t11 �= u). Then by (bapp) t2 = t21 t22 . By Lemma 92 we know that ε1t11 :: G1 → G2 |
μ1 �−→ error. Also by (bapp) we know that ε1t11 :: G1 → G2 ≈ t21 . Then by induction hypothesis we know that t21 | μ2 �−→∗
error, and the result holds.

Case (if ε1t11 then ε2t12 else ε3t13 | μ1 �−→ error, t11 �= u). Then by (bif) t2 = if t21 then t22 else t23 . By Lemma 98 we know
that ε1t11 :: Bool | μ1 �−→ error. Also by (bif) we know that ε1t11 :: Bool ≈ t21 . Then by induction hypothesis we know that
t21 | μ2 �−→∗ error, and the result holds.

Case (ε1u11 @G1→G2 ε2t12 | μ1 �−→ error, t12 �= u). Analogous to previous case but using Lemma 93.

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 57
Case (ε1t11 :=G3 ε2t12 | μ1 �−→ error, t11 �= u). Then by (b:=) t2 = t21:=t22 . By Lemma 94 we know that ε1t11 :: Ref G3 |
μ1 �−→ error. Also by (b:=) we know that ε1t11 :: Ref G3 ≈ t21 . Then by induction hypothesis we know that t21 | μ2 �−→∗
error, and the result follows.

Case (ε1u11 :=G3 ε2t12 | μ1 �−→ error, t12 �= u). Analogous to previous case but using Lemma 95.

Case (refG
′
ε1t11 | μ1 �−→ error, t11 �= u). Then by (bref) t2 = ref t21 . By Lemma 96 we know that ε1t11 :: G ′ | μ1 �−→ error.

Also by (bref) we know that ε1t11 :: G ′ ≈ t21 . Then by induction hypothesis we know that t21 | μ2 �−→∗ error, and the result
follows.

Case (!G ′
ε1t11 | μ1 �−→ error, t11 �= u). Then by (b!) t2 = !t21 . By Lemma 97 we know that ε1t11 :: Ref G ′ | μ1 �−→ error. Also

by (b!) we know that ε1t11 :: Ref G ′ ≈ t21 . Then by induction hypothesis we know that t21 | μ2 �−→∗ error, and the result
follows.

Case (ε1t11 :: G | μ1 �−→ ε′
1t′

1 :: G | μ′
1). Without loosing generality let us assume that ε1t11 :: G = ε1(...(εnt1n :: Gn)...) :: G ,

where t1n ∈T[Gn−1] is not an ascribed term.
Then by (b::eq), (b::id) and (b::leq), either t2 = c1(...(cmt2m)...) (and m ≤ n) or t2 = t21 , where t2m and t21 are not

coerced terms, such that t1n ≈ t2m or t1n ≈ t21 respectively.
Let us assume that t2 = c1(...(cmt2m)...) (the other case is analogous to the second subcase below). Then we

know that c1(...(cmt2m)...) �−→ c′
1t2m , where cm; cm−1...; c1 �−→∗ c′

1 and nm c′
1 . Also by repeatedly applying (b::eq)

and (b::leq), ε1(...(εnt1n :: Gn)...) :: G ≈ c′
1t2m . Additionally, by inspection of (b::eq) and (b::leq), ∃c′

11, ...c
′
1n , such that

c′
1i = �εi
 Gi+1 ∼ Gi�, and that c′

1n; ...c′
11 �−→∗ c′

1 .
We now proceed by case analysis on t1n .

• If t1n = u1. Then t2m = u2 for some u2 , also ε1(...(εn−1(εnu1 :: Gn) :: Gn−1)...) :: G �−→ error, where (εn ◦ εn−1) is not
defined. Then by Lemma 79, c′

1n; c′
1n−1 �−→∗ Fail, therefore by Lemma 90 c′

1 = Fail, but Fail u2 �−→ error and the result
holds.

• If t1n is not a simple value, and therefore t1n | μ1 �−→ error. By induction hypothesis t2m | μ2 �−→∗ error and the result
holds.

The proof of (2) is similar but choosing sometimes j = 2 or j = 3 in cases for application, dereference or assignment. �
Lemma 107. Let G1 �= G2 such that G1 ∼ G2 , then 〈〈G1 ⇒ G2〉〉 = �I(G1, G2)
 G1 ∼ G2�

Proof. Straightforward induction on G1 ∼ G2. �
Lemma 108. If t1 ∈ T[G], ø; �
H t2 : G, μ2 |= �, μ1 ≈ μ2 , and t1 ≈ t2 , then t1 | μ1 ⇓ error ⇐⇒ t2 | μ2 ⇓ error.

Proof. Similar to Lemma 105 �
Proposition 109 (Translations are bisimilar). Given t : G, if t �n t1 : G, and t �c t2 : G, then t1 ≈ t2 .

Proof. We prove the proposition on open terms: If �; ø
 t : G , �; ø
 t �n t1 : G , and �; ø
 t �c t2 : G , then t1 ≈ t2 .
We proceed by induction on �; ø
 t : G (we only show some cases as the others are analogous).

Case (�; ø
 t′ :: G : G). Then

(TR::) �;ø
 t′ �n tG ′ : G ′ ε = I=(G ′, G)

�;ø
 (t′ :: G) �n (εtG ′ :: G) : G
(HR::) �;ø
 t′ �c t′ : G ′

�;ø
 (t′ :: G) �c 〈G ′ ⇒ G〉t′ : G

By (G ::) we know that �; ø
 t′ : G ′ , then by induction hypothesis tG ′ ≈ t′ . If G ′ = G , then ε = 〈G〉 and 〈G ⇒ G〉t′ = t′ ,
therefore the result holds immediately by (b::id). If G ′ �= G , then by Lemma 107, 〈G ′ ⇒ G〉 = 〈〈G ′ ⇒ G〉〉 = �ε
 G ′ ∼ G�, and
the result holds immediately by (b::eq).

Case (�; ø
 λx : G1.t′ : G1 → G2). Then

(TRλ)
�, x : G1
 t′ �n tG2 : G2

′ G1 G2
(HRλ)

�, x : G1
 t′ �c t′2 : G2

�;ø
 (λx : G .t′) � (λx : G .t′) : G → G
�;ø
 λx : G1.t �n λx .t : G1 → G2 1 c 1 2 1 2

58 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
By (Gλ) we know that �, x : G1
 t′ : G2, then by induction hypothesis tG2 ≈ t′2 . Then the result holds immediately by (bλ).

Case (�; ø
 t1 := t2 : Unit).

(TRasgn)

�;ø
 t1 �n tG1 : G1 �;ø
 t2 �n tG2 : G2

G3 = t̃ref (G1) ε1 = I=(G1,Ref G3) ε2 = I=(G2, G3)

�;ø
 t1 := t2 �n ε1tG1 :=G3 ε2tG2 : Unit

(HRasgn)
�;ø
 t1 �c t′1 : G1 �;ø
 t2 �c t′2 : G2 G3 = t̃ref (G1)

�;ø
 t1 := t2 �c 〈G1 ⇒ Ref G3〉t′1:=〈G2 ⇒ G3〉t′2 : Unit

By (G :=) �; ø
 t1 : G1 and �; ø
 t2 : G2, therefore by induction hypothesis tG1 ≈ t′1 and tG2 ≈ t′2 . Let us consider
G1 �= Ref G3 and G2 �= G3 (the other cases are similar – see case for ascription). By Lemma 107, 〈G1 ⇒ Ref G3〉 =
〈〈G1 ⇒ Ref G3〉〉 = �ε1
 G1 ∼ Ref G3�, therefore by (b::eq), ε1tG1 :: Ref G3 ≈ 〈〈G1 ⇒ Ref G3〉〉t′1 . By using similar argument,
ε2t G2 :: G3 ≈ 〈〈G2 ⇒ G3〉〉t′2 . Then the result holds by (b:=). �
Corollary 110. Given t : G, if t �n t1 : G and t �c t2 : G, then t1 ⇓ ⇐⇒ t2 ⇓ and t1 ⇓ error ⇐⇒ t2 ⇓ error. (Co-divergence
follows trivially.)

Proof. By Proposition 16, and then combining Lemmas 105 and 108. �
Appendix F. Encoding permissive and monotonic references in λ›REF

Lemma 111. If et | ν −→c et′ | ν ′ , then

1. ev(et′) � ev(et)
2. ∀oG ′

m ∈ dom(ν), ev(ν ′(oG ′
m)) � ev(ν(oG ′

m))

Proof.

Case (et = 〈G2〉(〈G1〉oG5
m :: G ′′), ν(oG5

m) = 〈G ′〉u′ :: G5, G3 = G1 � G2, and G ′ �= t̃ref (G3)). Then et | ν �−→ 〈G3〉oG5
m | ν[oG5

m �→
〈G ′ � t̃ref (G3)〉ν(oG5

m) :: G5]. We have to prove that G1 � G2 � G2, and that G ′ � t̃ref (G3) � G ′ which is immediate from
Proposition 82.

Case (otherwise). Then 〈G2〉(〈G1〉u :: G ′′) | ν �−→ 〈G3〉u | ν , where G3 = G1 � G2. We only have to prove that G1 � G2 � G2
which is immediate from Proposition 82. �
Proposition 112 (Monotonicity of the evolving heap). If tG | ν �−→ t′ G | ν ′ , then ∀oG ′

m ∈ dom(μ), ev(ν ′(oG ′
m)) � ev(ν(oG ′

m)).

Proof. We proceed by induction on tG | ν �−→ t′ G | ν ′ . We only illustrate representative cases.

Case (RE and r4). Then refG2
z 〈G1〉u | ν �−→ 〈Ref G1〉oG2

z :: Ref G2 | ν ′ , where ν ′ = ν[oG2
z �→ 〈G1〉u :: G2] and oG2

z /∈ dom(ν). But
then ∀oG ′

z ∈ dom(ν), ν(oG ′
z) = ν ′(oG ′

z) and the result holds immediately.

Case (RE and r6, tG = 〈Ref G1〉oG4
m :=G3 〈G2〉u). Then tG | ν �−→ unit | ν[oG4

m �→ 〈G ′〉(〈G2 � G1〉u :: G4) :: G4], where ν(oG4
m) =

〈G ′〉u :: G4. Then we have to prove that 〈G ′〉 � 〈G ′〉, but is trivial.

Case (RE and r6, tG = 〈Ref G1〉oG4
z :=G3 〈G2〉u, z �= m). The result is immediate as the updated location is not monotone.

Case (Rν). We know that t | ν �−→ t | ν ′[oG ′
z �→ et′ :: G ′], where ν(oG ′

z) = et :: G ′ and et | ν −→c et′ | ν ′ , and ev(ν(oG
z)) =

ev(ν ′(oG
z)). By Lemma 111, et′ � et and ∀oG ′

m ∈ dom(ν), ev(ν ′(oG ′
m)) � ev(ν(oG ′

m)). We have to prove that
∀oG ′

m ∈ dom(ν), ev(ν ′[oG ′
z �→ et′ :: G ′](oG ′

m)) � ev(ν(oG ′
m)), which means that we only have to show that et′ :: G ′ � et :: G ′ , but

as et′ � et, the result is immediate. �
Proposition 113 (Monotonicity of the heap). If tG | μ �−→∗ t′ G | μ′ , then ∀oG ′

m ∈ dom(μ), μ(oG ′
m) = εu :: G ′ , then μ′(oG ′

m) =
ε′u′ :: G ′ and ε′ � ε .

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 59
Proof. By induction on tG | μ �−→∗ t′ G | μ′ and Proposition 24. �
Proposition 114 (−→ is well defined). If tG
 μ and tG | μ −→ r, then r ∈ ConfigG ∪ {error }, and if r = t′ G | μ , then also t′ G
 ν
and dom(μ) ⊆ dom(ν ′).

Proof. By induction on the structure of a derivation of tG −→ r, considering the last rule used in the derivation. The proof
is analogous to some cases considered in Proposition 24. We only illustrate representative cases.

Case (r4). Then tG = refG2
z 〈G1〉u. Then

(IGref)
u ∈T[G1] 〈G1〉
 G ′

1 ∼ G2

refG2
z 〈G1〉u ∈T[Ref G2]

Then

refG2
z 〈G1〉u | μ −→ 〈Ref G2〉oG2

z :: Ref G2 | μ[oG2 �→ 〈G1〉u :: G2]
where oG2

z /∈ dom(μ). But as 〈G1〉u :: G2 ∈ T[G2], then 〈Ref G2〉oG2
z :: Ref G2
 μ[oG2

z �→ 〈G1〉u :: G2]. Also as 〈Ref G2〉

Ref G2 ∼ Ref G2, 〈Ref G2〉oG2

z :: Ref G2 ∈T[Ref G2] and the result holds.

Case (r6). Then tG = ε1oG1
z :=G3 ε2u. Then

(IGasgn)

oG1 ∈T[Ref G1] ε1
 Ref G1 ∼ Ref G3
u ∈T[G2] ε2
 G2 ∼ G3

ε1oG1
z :=G3 ε2u ∈ T[Unit]

Suppose μ(oG1
z) = ε3u′ :: G1, and z = m. If ε′ = (ε2 �ε3 � iref (ε1)) is not defined, then tG −→ error, and then the result hold

immediately. We know that v = ε2u :: G3 ∈ T[G3]. Also iref (ε1)
 G3 ∼ G1, and ε3
 Gu′ ∼ G1, and ε3
 G1 ∼ Gu′ , therefore
ε3
 G1 ∼ G1, then iref (ε1) ◦= ε3
 G3 ∼ G1, then t = (iref (ε1) ◦= ε3)v :: G1 ∈ T[G1]. If z �= m, then by using arguments
analogous to the other case we know that t = iref (ε1)v :: G1 ∈ T[G1]. Therefore as freeLocs(unit) = ∅ ⊆ dom(μ), we know
from tG
 μ that ∀oG ′ ∈ dom(μ), μ(oG ′

) ∈T[G ′], and as t ∈ T[G1], therefore unit
 μ[oG1 �→ t]. Also

θ(unit) = Unit
unit ∈ T[Unit]

and the result holds. �
Proposition 115 (−→c is well defined). If εt ∈ EvTermG , t
 ν and εt | ν −→c r, then r ∈ (EvTermG × EvolvingStore) ∪ {error },
and if r = ε′t′ | ν ′ , then also t′
 ν ′ and dom(ν) ⊆ dom(ν ′).

Proof. As εt | ν −→c r, then t = εuu :: G ′ , and as ε(εuu :: G ′) ∈ EvTermG then εu
 Gu ∼ G ′ and ε
 G ′ ∼ G , for some
Gu, G ′ , with u ∈ T[Gu]. If εu � ε is not defined then r = error and the result holds immediately. Let us assume that
εc = εu � ε is defined. Then εt | ν −→c εcu | ν ′ . By definition of consistent transitivity εc
 Gu ∼ G , therefore t′ = εcu ∈
EvTermG . If u �= o

G ′
u

m , or if (u = o
G ′

u
m and ν(u) = iref (εc))t′′ :: G ′

u), then ν = ν ′ and the result holds. Let us assume that
u = o

G ′
u

m , ν(u) = ε′′t′′ :: G ′
u , and ε′′ �= iref (εc), then ν ′ = ν[u �→ ε′

cν(u) :: G ′
u], where ε′

c = ε′′ � iref (εc). Also Gu = Ref G ′
u

and G = Ref G ′′ , for some G ′′ . No new locations are created then dom(ν) = dom(ν ′) ⇒ dom(ν) ⊆ dom(ν ′). We have the
obligation to prove that u
 ν ′ . As the domains are the same it is easy to see that freeLocs(u) ⊆ dom(ν ′). Then we only
have to prove that ε′

cν(u) :: Gu ∈ T[Gu]. But as εc
 Ref G ′
u ∼ Ref G ′′ , then iref (εc)
 G ′

u ∼ G ′′ , and also iref (εc)
 G ′′ ∼ G ′
u ,

therefore iref (εc)
 G ′
u ∼ G ′

u . Similarly ε′′
 G ′
u ∼ G ′

u , thus ε′
c
 G ′

u ∼ G ′
u . Finally then ε′

cν(u) :: Gu ∈ T[Gu] and the result
holds. �
Proposition 116 (�−→ is well defined). If tG
 ν and tG | ν �−→ r, then r ∈ ConfigG ∪ {error }, and if r = t′ G | ν ′ , then also t′ G
 ν ′
and dom(ν) ⊆ dom(ν ′).

Proof. By induction on the structure of a derivation of tG �−→ r.
We proceed almost identical to 42, therefore we only illustrate main differences.

Case (RF). Let EvTermG2 be notation for the family of evidence terms εtG1 such that ε
 G1 ∼ G2. Then tG = F [et], F [et] ∈
T[G], and F : EvTermGx → T[G], and et | ν −→c et′ | ν ′ . By Lemma 115, et′ ∈ EvTermGx , et′
 ν ′ , and dom(ν) ⊆ dom(ν ′).
Then F [et′] ∈ T[G], and as freeLocs(et) = freeLocs(et′) we can conclude that F [et′]
 ν .

60 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
Case (Rν). We know that t | ν �−→ t | ν ′[oG ′
z �→ et′ :: G ′], where ν(oG ′

z) = et :: G ′ and et | ν −→c et′ | ν ′ , and ev(ν(oG
z)) =

ev(ν ′(oG
z)). By Lemma 115, et′ ∈ EvTermG ′ , et′
 ν ′ , and dom(ν) ⊆ dom(ν ′). As dom(ν) ⊆ dom(ν ′) then freeLocs(t) ⊆ dom(ν ′).

As et′
 ν ′ , we know that ∀oG ′′ ∈ dom(ν ′), ν ′(oG ′′
) ∈ T[G]. Then we only have to prove that et′ :: G ′ , but we know that

et′ ∈ EvTermG ′ , therefore et′ :: G ′ ∈ T[G ′] and the result holds.

Case (νErr). Trivial as t | ν �−→ error. �
To define the dynamic gradual guarantee, first we have to extend the notion of precision to evolving stores. Note that

rule (r7) propagates casts into the store based on a type test, which may seem to jeopardize the dynamic gradual guarantee.
Consider two terms and store in the precision relation, one of the two terms can reduce to a new term and evolving store
(that needs to be reduced) whereas the other to another term and store (that does not need to be reduced). Therefore to
maintain the precision relation in lock step, we define precision between evolving stores as follows:

flat(ε2tG :: G) = ε1 ◦= flat(tG) flat(ε1u :: G) = ε1

uval(ε2tG :: G) = uval(t) uval(ε1u :: G) = u

�ν

∀oG1 ∈ dom(ν1).∃oG2 ∈ dom(ν2) s.t.

 oG1 � oG2 G1 � G2 uval(ν1(oG1)) � uval(ν2(oG2))

flat(ν1(oG1)) is defined ⇒ flat(ν1(oG1)) � flat(ν2(oG2))

 ν1 � ν2

Note that (1) if G � G ′ , uval(tG) � uval(tG ′
), but consistent transitivity is not defined in flat of t G , then the relation hold,

and (2) if both evolving stores are stores, then this definition coincides with the precision relation of stores defined for λε
R̃EF

.

Proposition 117 (Dynamic guarantee for −→). Suppose

 tG1
1 � tG2

1 and μ1 � μ2 . If tG1
1 | μ1 −→ tG1

2 | ν1 then tG2
1 | μ2 −→ tG2

2 |
ν2 , where
′
 tG1

2 � tG2
2 , ν1 � ν2 for some
′ ⊇
.

Proof. By induction on reduction tG1
1 | μ1 −→ tG1

2 | ν1. We proceed almost identical to 66, therefore we only illustrate main
differences. For simplicity we omit the

 notation on precision relations when it is not relevant for the argument.

Case (r2). We know that tG1
1 = ε11(λxG11 .tG12) @G1−→G2 ε12u then by (�app) tG2

1 must have the form tG2
1 =

ε21(λxG21 .tG22) @G3−→G4 ε22u2 for some ε21, xG21 , tG22 , G3, G4, ε22 and u2.
Let us pose ε1 = ε12 ◦= idom(ε11). Then tG1

1 | μ1 −→ icod(ε11)t′
1 :: G2 | μ1 with t′

1 = [t′
1/xG11]tG12 , and t′

1 =
idom(ε11)(ε12u1 :: G1) :: G11.

Also, by 64, ε2 = ε22 ◦= idom(ε21) is defined. Then tG2
1 | μ2 −→ icod(ε21)t′

2 :: G4 | μ2 with t′
2 = [t′

2/xG21]tG22 , and t′
2 =

idom(ε21)(ε22u2 :: G3) :: G21.
As

 tG1

1 � tG2
1 , then u1 � u2, ε12 � ε22 and idom(ε11) � idom(ε21) as well. Then t′

1 � t′
2 by (�::).

We also know by (�A P P) and (�λ) that
 ∪ {xG21 � xG21 }
 tG12 � tG22 . By Substitution preserves precision (Proposi-
tion 63) t′

1 � t′
2, therefore icod(ε11)t′

1 :: G2 � icod(ε21)t′
2 :: G4 by (�::). Then tG1

2 � tG2
2 .

Case (r4). We know that tG1
1 = refG

′
1 ε1u1 where G1 = Ref G ′

1, then by (�R E F) tG2
1 must have the form tG2

1 = refG
′
2 ε2u2 for

some ε2, u2, G ′
2 such that ε1 � ε2, u1 � u2, and G ′

1 � G ′
2.

Then tG1
1 | μ1 −→ 〈Ref G ′

1〉oG ′
1

z :: Ref G ′
1 | μ1[oz

G ′
1 �→ ε1u1 :: G ′

1].
Also, tG2

1 | μ2 −→ 〈Ref G ′
2〉oG ′

2
z :: Ref G ′

2 | μ2[oz
G ′

2 �→ ε2u2 :: G ′
2].

Then by (�::), ε1u1 :: G ′
1 � ε2u2 :: G ′

2, and then μ1[oz
G ′

1 �→ ε1u1 :: G ′
1] � μ2[oz

G ′
2 �→ ε2u2 :: G ′

2]. Also by (�o), as G ′
1 � G ′

2

and by (�::), 〈Ref G ′
1〉oG ′

1
z :: Ref G ′

1 � 〈Ref G ′
2〉oG ′

2
z :: Ref G ′

2 and the result holds.

Case (r6 where z = m). We know that tG1
1 = ε11oG11

z :=G12 ε12u1 where G1 = Unit, then by (�:=) tG2
1 must have the form

tG2
1 = ε21oG21

z :=G22 ε22u2 for some ε21, ε22, u2, G21, G22 such that ε11 � ε21, ε12 � ε22, u1 � u2, G11 � G21, G12 � G22.

Suppose μ1(o
G11
z) = ε′

1u′
1 :: G11, and as μ1 � μ2, then μ2(o

G21
z) = ε′

2u′
2 :: G21, such that ε′

1 � ε′
2, u′

1 � u′
2. Let us pose

ε1 = iref (ε11) ◦= ε′
1. Then tG1

1 | μ1 −→ unit | μ1[oG11
z �→ 〈ε1〉(ε12u1 :: G11) :: G11].

By inspection of evidence and inversion lemma, as ε11 � ε21 then iref (ε11) � iref (ε21). Also, by Lemma 64, ε2 =
iref (ε21) ◦= ε′

2 is defined (similarly ε22 ◦= ε2 is also defined) and ε1 � ε2. Then, tG2
1 | μ2 −→ unit | μ2[oG21

z �→
〈ε2〉(ε22u2 :: G21) :: G21].

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 61
Now we know that ε12 ◦= ε1 is defined, and as ε1 � ε2 and ε12 � ε22, by Lemma 64, ε22 ◦= ε2 is also defined. Therefore
flat(〈ε1〉(ε12u2 :: G11) :: G11]) � flat(〈ε2〉(ε22u2 :: G21) :: G21]) and the result holds �
Definition 16.

m (t, ν) ⇐⇒ if εoG
m appears in (t, ν), either flat(ν(oG

m)) is not defined, or flat(ν(oG
m)) � iref (ε).

Lemma 118. If ε1 � ε2 and ε1 ◦= ε2 is defined, then ε1 ◦= ε2 � ε2

Proof. We know that ε2 ◦= ε2 = ε2. Then by Proposition 64, ε1 ◦= ε2 � ε2 ◦= ε2, and the result holds. �
Lemma 119. If ε1 � ε2 and ε1 ◦= ε3 is defined, then ε1 ◦= ε3 � ε2

Proof. Direct by formal definition of meet and precision using the concretization function. �
Lemma 120. If ε1 � ε2 , ε1 � ε3 , then ε2 ◦= ε3 is defined, and ε1 � ε2 ◦= ε3

Proof. By induction on ε1. �
Lemma 121 (Monotonic well-formedness preservation). If
m (t, ν) and t | ν �−→ t′ | ν ′ , then
m (t′, ν ′).

Proof. By induction on t | ν �−→ t′ | ν ′ . We only consider interesting cases where references are involved.

Case (r2). Then

F [(〈G ′
11 → G ′

12〉(λxG11 .t))@G1→G2 (〈G ′
2〉u)]| μ �−→ F 〈G ′

12〉([v/xG11]t) :: G2]| ν
where 〈G ′

11〉(〈G ′
2〉u :: G1) :: G11| μ �−→ v | ν .

We know that
m (〈G ′
2〉u, μ), then the result follows from induction hypothesis on 〈G ′

11〉(〈G ′
2〉u :: G1) :: G11| μ �−→ v | ν .

Case (r4). Then

F [refG2
m 〈G1〉u] | μ �−→ F [〈Ref G2〉oG2

m :: Ref G2] | μ[oG2
m �→ 〈G1〉u :: G2]

where 〈G ′
11〉(〈G ′

2〉u :: G1) :: G11| μ �−→ v | ν .
Suppose u ∈ T[G ′]. We know that 〈G1〉
 G ′ ∼ G2, therefore G1 � G2, and thus 〈G1〉 � 〈G2〉. We have to prove that

〈G1〉 � iref (〈Ref G2〉) = 〈G2〉 which follows immediately. The result follows because from
m (t, ν) we know that if u = oG ′
m ,

then flat(μ(u)) � iref 〈G1〉.

Case (r5). Then

F [!G(〈Ref G1〉oG2
m)] | μ �−→ F [〈G1〉v :: G] | μ

where v = μ(oG2
m). The result is immediately as we know that
m (v , μ).

Case (r6). Then

F [〈Ref G1〉oG
m :=G3 〈G2〉u] | μ �−→ F [unit] | μ[oG

m �→ t′]
where μ(oG

m) = 〈G ′〉u′ :: G, t′ = 〈G1 � G ′〉(〈G2〉u :: G3) :: G We have two obligations: (1) if ε′oG
m appears in cod(μ), then

flat(t′) � iref (ε′), and (2) if u is a monotonic location then iref (〈G2〉) � flat(μ(u)).
Let us prove (1). We know by
m (t, μ), that if ε′oG

m appears in cod(μ), then 〈G ′〉 � iref (ε′). If flat(t′) = 〈G2〉 ◦= 〈G1 � G ′〉
is defined (if not defined the result is trivial) then by Proposition 118, flat(t′) � 〈G ′〉, and therefore flat(t′) � iref (ε′).

Now to prove (2), we already know that
m (〈G2〉u :: G3, μ), then it is trivial to see that
m (t′, μ) and the result holds.

Case (r7). Then

〈G2〉(〈G1〉oG5
m :: G)| ν −→c 〈G3〉oG5

m | ν[oG5
m �→ 〈G4〉ν(oG5

m) :: G5] G ′ �= t̃ref (G3)

where ev(ν(oG5
m)) = 〈G ′〉, G3 = G1 � G2, and G4 = t̃ref (G3) � G ′ , by either (Rν) or (RF). Let us prove first that
m

(〈G3〉oG5
m , ν[oG5

m �→ 〈G4〉ν(oG5
m) :: G5]).

Then we have to prove that

62 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
1. If ε′oG5
m appears in cod(ν), then flat(〈G4〉ν(oG5

m) :: G5) � iref (ε′). Notice that flat(〈G4〉ν(oG5
m) :: G5) = 〈G ′′ � G4〉 , for some

G ′′ � G ′ (if not defined the result follows). We know from
m (t, ν) that flat(ν(oG5
m)) = 〈G ′′〉 � iref (ε′), then it by

Proposition 118, 〈G ′′ � G4〉 � 〈G ′′〉 � iref (ε′) and the result follows.
2.
m (〈G4〉ν(oG5

m) :: G5, ν ′). We know from
m (t, ν) that if ε′oG6
m appears in ν(oG5

m), then flat(ν(oG6
m)) � iref (ε′). Then as

ε′oG6
m also appears in 〈G4〉ν(oG5

m) :: G5 the result follows.

Now if (Rν) is used, i.e.

(Rν)
ν(oG

m) = et :: G et | ν −→c et′ | ν ′

t | ν �−→ t | ν ′[oG
m �→ et′ :: G]

Then we have to prove that

1. If ε′oG5
m appears in (t, ν), then flat(〈G4〉ν(oG5

m) :: G5) � iref (ε′). Notice that flat(〈G4〉ν(oG5
m) :: G5) = 〈G ′′ � G4〉 , for some

G ′′ � G ′ (if not defined the result follows). We know from
m (t, ν) that flat(ν(oG5
m)) = 〈G ′′〉 � iref (ε′), then by Proposi-

tion 118, 〈G ′′ � G4〉 � 〈G ′′〉 � iref (ε′) and the result follows.
2. If ε′oG

m appears in (t, ν), then flat(〈G3〉oG5
m :: G) = 〈G3〉 � iref (ε′). We know from
m (t, ν) that flat(ν(oG

m)) = 〈G1〉 �
iref (ε′), then by Proposition 118, 〈G1 � G2〉 � 〈G1〉 � iref (ε′) and the result follows.

3. flat(〈G4〉ν(oG5
m) :: G5) � iref (〈G3〉). We know that flat(ν(oG5

m)) � iref (〈G1〉). Then by Proposition 118
flat(〈t̃ref (G2)〉ν(oG5

m) :: G5) = flat(iref (〈G2〉)ν(oG5
m) :: G5) � 〈t̃ref (G1 � G2)〉 = iref (〈G3〉). Also,

flat(〈G4〉ν(oG5
m) :: G5) = flat(〈t̃ref (G1 � G2) � G ′〉ν(oG5

m) :: G5) � flat(iref (〈G2〉)ν(oG5
m) :: G5)

therefore from Proposition 118 flat(〈G4〉ν(oG5
m) :: G5) � flat(ν(oG5

m)) � iref (〈G3〉) and the result holds.

Case (RF) is analogous to (Rν) (and simpler) . �
Lemma 122. If iref (iref (G)) � G is defined, then G � t̃ref (t̃ref (G)).

Proof. We proceed by induction on t̃ref (t̃ref (G)).

Case (G = ?). Then we have to prove that ? � ?, which is direct.

Case (G = Ref ?). Then we have to prove that Ref ? � ?, which is direct.

Case (G = Ref Ref G ′ = Ref 2G ′). We have to prove that Ref 2G ′ � G ′ . We analyze two possible cases. If G ′ = ?, then the
result is trivial as Ref 2? � ?. If G ′ = Ref G ′′ for some G ′′ , then we have to prove that Ref 3G ′′ � Ref G ′′ , but by inspection
of �, it is equivalent to prove that Ref 2G ′′ � G ′′ , which is equivalent to prove that Ref 2G ′′ � iref 2(Ref 2G ′′). We know that
Ref G ′′ � Ref 3G ′′ is defined, therefore by definition of �, it must be the case that G ′′ � Ref 2G ′′ is defined. Then by induction
hypothesis Ref 2G ′′ � iref 2(Ref 2G ′′), and the result holds. �
Lemma 123. If
m (t, μ[oG

m �→ ε1(ε2u :: G) :: G]), t | μ[oG
m �→ ε1(ε2u :: G) :: G] �−→ t | ν[oG

m �→ ε3u :: G], then t | ν[oG
m �→

ε3u :: G] ��−→∗ t | ν ′[oG
m �→ ε4(ε5u :: G) :: G].

Proof. We proceed by contradiction. Without losing generality, let us suppose that there is the following cycle: ν(oG1
m) =

ε(ε1oG2
m :: G1) :: G1, ν(oG2

m) = ε2oG1
m :: G2. Then suppose

t | ν �−→t | μ[oG1
m �→ (ε1 ◦ ε)oG2

m :: G1,oG2
m �→ iref (ε1 ◦ ε)(ε2oG1

m :: G2) :: G2]
�−→t | μ[oG1

m �→ iref (ε′)((ε1 ◦ ε)oG2
m :: G1) :: G1,oG2

m �→ ε′oG1
m :: G2]

where ε′ = ε2 ◦ iref (ε1 ◦ ε). From last step of reduction we know that (ε1 ◦ ε) �� iref (ε2 ◦ iref (ε1 ◦ ε)). From
m (t, ν) and
Lemma 26, we know that (ε1 ◦ ε) � iref (ε2). Also as iref (ε2 ◦ iref (ε1 ◦ ε)) ◦ (ε1 ◦ ε) = (iref (ε2) ◦ iref (iref (ε1 ◦ ε))) ◦ (ε1 ◦ ε) =
iref (ε2) ◦ (iref (iref (ε1 ◦ ε)) ◦ (ε1 ◦ ε)) is defined (using Lemma 89), then iref (iref (ε1 ◦ ε)) ◦ (ε1 ◦ ε) is defined. Then by
Lemma 122, (ε1 ◦ ε) � iref (iref (ε1 ◦ ε)), but we know that (ε1 ◦ ε) � iref (ε2), therefore by Lemma 120, (ε1 ◦ ε) � iref (ε2 ◦
iref (ε1 ◦ ε)) which is a contradiction and the result holds. �
Lemma 124. If
m (ti, μi), t1 | μ1 � t2 | ν2 , then t2 | ν2 �−→ t2 | ν ′ , and μ1 � ν ′ .
2 2

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 63
Proof. Let us assume ν2(oG ′
m) = ε2(ε

′
1u′ :: G ′) :: G ′ , then

(Rν)
ε2(ε

′
1u′ :: G ′) | ν2 −→c ε′

3u′ | ν ′′
2

t2 | ν2 �−→ t2 | ν ′′
2 [oG ′

m �→ ε′
3u′ :: G ′]

We know that if μ1(oG
m) = ε1u :: G , where u � u′ and G � G ′ , then ε1 � flat(ε2(ε

′
1u′ :: G ′) :: G ′) ⇒ ε1 � ε′

1 ◦= ε2 = ε3,
then μ1(oG

m) � ν2(oG ′
m).

If u, u′ are not locations then the result holds immediately. If u = oGu
m and u′ = o

G ′
u

m , suppose that μ1(u) =
ε4u4 :: G4, ν1(u′) = ε4u′

4 :: G ′
4. We know that ε1 � ε3, and thus iref (ε1) � iref (ε3). Also as
m (t1, μ1) we know

that ε4 � iref (ε1), therefore ε4 � iref (ε3). As ε4 � ε′
4, then by Lemma 120 ε4 � iref (ε3) ◦= ε′

4. Then ν ′′
2 = ν2[oG ′

u
m �→

(iref (ε3) ◦= ε4)(ε4u′
4 :: G ′

4) :: G ′
4], Notice that flat((iref (ε3) ◦= ε4)(ε4u′

4 :: G ′
4) :: G ′

4) = (iref (ε3) ◦= ε′
4) ◦= ε′

4 = iref (ε3) ◦= ε′
4

and the result holds. �
Lemma 125. If
m (ti, μi) and t1 | μ1 � t2 | ν2 then t2 | ν2 �−→∗ t2 | μ2 , such that μ1 � μ2 .

Proof. By Lemma 124 we make sure that the precision relation holds after every step, and by Lemma 30 we notice that
there are no cycles, so the biggest amount of steps before getting to a μ2 is size(dom(ν2)) − 1. �
Lemma 126. Let t1 | ν1 � t2 | ν2 . If t1 | ν1 �−→ t1 | ν ′

1 , then ν ′
1 � ν2 .

Proof. Let us assume ν1(oG
m) = ε2(ε1u :: G) :: G , then

(Rν)
ε2(ε1u :: G) | ν2 −→c ε3u | ν ′′

1

t1 | ν1 �−→ t1 | ν ′′
1 [oG

m �→ ε3u :: G]
If ν2(oG ′

m) = ε′
1u′ :: G , where ε1 ◦= ε2 � ε′

1, u � u′ and G � G ′ , then as flat(ν2(oG ′
m)) = ε′

1, we have to prove that ε1 ◦= ε2 �
ε′

1 which is direct. Similarly, if ν2(oG ′
m) = ε′

2 :: ε′
1u′ :: G , where ε1 ◦= ε2 � ε′

1 ◦= ε′
2, u � u′ and G � G ′ , then as flat(ν2(oG ′

m)) =
ε′

1 ◦ ε′
2, we have to prove that ε1 ◦= ε2 � ε′

1 ◦= ε′
2 which is direct.

If u, u′ are not locations then the result holds immediately. If u = oGu
m and u′ = o

G ′
u

m , suppose that ν1(u) = ε4u4 :: G4,
ν1(u′) = ε4u′

4 :: G ′
4. We have to prove that (iref (ε1 ◦= ε2) ◦= ε4) ◦= ε4 � ε′

4, but this is direct by Lemma 119. If ν1(u) =
ε4u4 :: G4, and ν1(u′) = ε′

5(ε4u′
4 :: G ′

4) :: G ′
4, then we have to prove that (iref (ε1 ◦= ε2) ◦= ε4) ◦= ε4 � ε′

4 ◦= ε′
5. But we know

by definition of precision on evolving stores that ε4 � ε′
4 ◦= ε′

5 and the result holds by Lemma 119. �
Proposition 127 (Dynamic guarantee). Suppose
m (ti, νi), t1 � t2 and ν1 � ν2 . If t1 | ν1 �−→ t′

1 | ν ′
1 then t2 | ν2 �−→∗ t′

2 | ν ′
2 , such

that t′
1 � t′

2 and ν ′
1 � ν ′

2 .

Proof. We prove the following property instead: Suppose

 tG1
1 � tG2

1 and ν1 � ν2. If tG1
1 | ν1 �−→ tG1

2 | ν ′
1 then tG2

1 |
ν2 �−→∗ tG2

2 | ν ′
2 where
′
 tG1

2 � tG2
2 , and ν ′

1 � ν ′
2 for some
′ ⊇
.

By induction on reduction tG1
1 | ν1 �−→ tG1

2 | ν ′
1. We proceed almost identical to 14, therefore we only illustrate main

differences. For simplicity we omit the

 notation on precision relations when it is not relevant for the argument. Note
that in all cases we are using Lemma 26, to pose that
m (tGi

2 , ν ′
i). Also in every rule where the starting store is not an

evolving store, then we can always apply Lemma 124, to advance an evolving store of the less precise term into a not
evolving store in the precision relation.

Case (RF) and F [ε12(ε11u1 :: G11)] | μ1 �−→ F [ε′
11u1] | ν ′

1 , where u1 = oGu1
m . By inspection of (�::) tG2 = F ′[ε22(ε21u2 :: G21)],

where ε11 � ε21, ε12 � ε22, G11 � G21, u1 � u2. Therefore by (�o), u2 = oGu2
m , for some Gu2 such that Gu1 � Gu2. If ν2 is

an evolving store then by Lemma 29, tG2
1 | ν2 �−→∗ tG2

1 | μ2, such that μ1 � μ2.
Suppose μ1(u1) = εu1u′

1 :: Gu1 and εu1 �� iref (ε′
11), then as μ1 � μ2, then μ2(u2) = εu2u′

2 :: Gu2, where εu1 � εu2, u′
1 �

u′
2. If ε′

11 = ε11 ◦ ε12 is defined, and ε′
12 = iref (ε′

11) ◦ εu1 is defined, then ν ′
1 = μ1[u1 �→ ε′

12(εu1u′
1 :: Gu1) :: Gu1].

By Proposition 64 ε′
21 = ε21 ◦ ε22 is defined and ε′

11 � ε′
21, ε′

22 = iref (ε′
21) ◦ εu2 is also defined and ε′

12 � ε′
22.

Let us first assume that εu2 �� iref (ε′
21), then ν ′

2 = μ2[u2 �→ ε′
22(εu2u′

2 :: Gu2) :: Gu2]. Then we have to prove that
flat(ν ′

1(u1)) � flat(ν ′
2(u2)), i.e. iref (ε′

11) ◦ εu1 � iref (ε′
21) ◦ εu2, but the result holds by Lemma 64.

If ¬(εu2 �� iref (ε′
21)), then we have to prove that iref (ε′

11) ◦ εu1 � εu2, which holds by Lemma 119.

Case (Rν) and tG1
1 | ν1 �−→ tG1

2 | ν ′
1 and ν ′

1 �= μ′
1 . The result holds by Lemma 28.

Case (Rν) and tG1 | ν1 �−→ tG1 | μ′ . The result holds by Lemma 28, and then Lemma 124. �
1 2 1

64 M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496
References

[1] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, Philip Wadler, Blame for all, in: Proceedings of the 38th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, ACM Press, Austin, Texas, USA, 2011, pp. 201–214.

[2] Amal Ahmed, Dustin Jamner, Jeremy G. Siek, Philip Wadler, Theorems for free for free: parametricity, with and without types, in: ICFP, 2017,
pp. 39:1–39:28.

[3] Johannes Bader, Jonathan Aldrich, Éric Tanter, Gradual program verification, in: Işil Dillig, Jens Palsberg (Eds.), Proceedings of the 19th International
Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2018, in: Lecture Notes in Computer Science, vol. 10747, Springer-
Verlag, Los Angeles, CA, USA, 2018, pp. 25–46.

[4] Felipe Bañados Schwerter, Ronald Garcia, Éric Tanter, A theory of gradual effect systems, in: Proceedings of the 19th ACM SIGPLAN Conference on
Functional Programming, ICFP 2014, ACM Press, Gothenburg, Sweden, 2014, pp. 283–295.

[5] Felipe Bañados Schwerter, Ronald Garcia, Éric Tanter, Gradual type-and-effect systems, J. Funct. Program. 26 (2016) 19:1–19:69.
[6] Ambrose Bonnaire-Sergeant, Rich Hickey, Typed clojure: an optional type system for clojure, https://typedclojure .org/. (Accessed May 2020).
[7] Gilad Bracha, Pluggable type systems, in: Workshop on Revival of Dynamic Languages, 2004.
[8] Giuseppe Castagna, Victor Lanvin, Gradual typing with union and intersection types, in: ICFP, 2017, pp. 41:1–41:28.
[9] Alonzo Church, A formulation of the simple theory of types, J. Symb. Log. 5 (2) (1940) 56–68.

[10] Matteo Cimini, Jeremy Siek, The gradualizer: a methodology and algorithm for generating gradual type systems, in: Proceedings of the 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, ACM Press, St Petersburg, FL, USA, 2016, pp. 443–455.

[11] Matteo Cimini, Jeremy G. Siek, Automatically generating the dynamic semantics of gradually typed languages, in: Proceedings of the 44th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2017, ACM Press, Paris, France, 2017, pp. 789–803.

[12] Patrick Cousot, Radhia Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of
fixpoints, in: Conference Record of the 4th ACM Symposium on Principles of Programming Languages, POPL 77, ACM Press, Los Angeles, CA, USA, 1977,
pp. 238–252.

[13] Dart Team, Dart Programming Language Specification, 2013, Version 0.41.
[14] Tim Disney, Cormac Flanagan, Gradual information flow typing, in: International Workshop on Scripts to Programs, 2011.
[15] Facebook Inc., Hack: programming productivity without breaking things, https://hacklang .org/. (Accessed May 2019).
[16] Facebook Inc., Flow is a static type checker for JavaScript, https://flow.org/. (Accessed May 2020).
[17] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Semantics Engineering with PLT Redex, MIT Press, 2009.
[18] Luminous Fennell, Peter Thiemann, Gradual security typing with references, in: Proceedings of the 26th Computer Security Foundations Symposium,

CSF, 2013, pp. 224–239.
[19] Luminous Fennell, Peter Thiemann, LJGS: gradual security types for object-oriented languages, in: Shriram Krishnamurthi, Benjamin S. Lerner (Eds.),

Proceedings of the 30th European Conference on Object-Oriented Programming, ECOOP 2016, in: Leibniz International Proceedings in Informatics
(LIPIcs), vol. 56, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Rome, Italy, 2016, pp. 9:1–9:26.

[20] Ronald Garcia, Alison M. Clark, Éric Tanter, Abstracting gradual typing, in: Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, ACM Press, St. Petersburg, FL, USA, 2016, pp. 429–442.

[21] Ronald Garcia, Éric Tanter, Roger Wolff, Jonathan Aldrich, Foundations of typestate-oriented programming, ACM Trans. Program. Lang. Syst. 36 (4)
(2014) 12:1–12:44, Article 12.

[22] Ben Greenman, Matthias Felleisen, A spectrum of type soundness and performance, in: Proceedings of the ACM on Programming Languages, vol. 2,
ICFP, Sept. 2018, 2018, pp. 71:1–71:32.

[23] Fritz Henglein, Dynamic typing: syntax and proof theory, Sci. Comput. Program. 22 (3) (1994) 197–230.
[24] David Herman, Aaron Tomb, Cormac Flanagan, Space-efficient gradual typing, Higher-Order Symb. Comput. 23 (2) (2010) 167–189.
[25] William A. Howard, The formulae-as-types notion of construction, in: J.P. Seldin, J.R. Hindley (Eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda

Calculus, and Formalism, Academic Press, New York, 1980, pp. 479–490, Reprint of 1969 article.
[26] Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, Philip Wadler, Gradual session types, in: ICFP, 2017, pp. 38:1–38:28.
[27] Yuu Igarashi, Taro Sekiyama, Atsushi Igarashi, On polymorphic gradual typing, in: ICFP 2017, 2017, pp. 40:1–40:29.
[28] Lintaro Ina, Atsushi Igarashi, Gradual typing for generics, in: Proceedings of the 26th ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages and Applications, OOPSLA 2011, ACM Press, Portland, Oregon, USA, 2011, pp. 609–624.
[29] Khurram A. Jafery, Joshua Dunfield, Sums of uncertainty: refinements go gradual, in: Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2017, ACM Press, Paris, France, 2017, pp. 804–817.
[30] Nico Lehmann, Éric Tanter, Gradual refinement types, in: Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2017, ACM Press, Paris, France, 2017, pp. 775–788.
[31] Microsoft Co., Typescript language specification, https://www.typescriptlang .org/. (Accessed June 2017).
[32] Max S. New, Dustin Jamner, Amal Ahmed, Graduality and parametricity: together again for the first time, in: Proceedings of the ACM on Programming

Languages, vol. 4, POPL, Jan. 2020, 2020, pp. 46:1–46:32.
[33] Benjamin C. Pierce, Types and Programming Languages, MIT Press, Cambridge, MA, USA, ISBN 0-262-16209-1, 2002.
[34] Ilya Sergey, Dave Clarke, Gradual ownership types, in: Helmut Seidl (Ed.), Proceedings of the 21st European Symposium on Programming Languages

and Systems, ESOP 2012, in: Lecture Notes in Computer Science, vol. 7211, Springer-Verlag, Tallinn, Estonia, 2012, pp. 579–599.
[35] Jeremy Siek, Walid Taha, Gradual typing for functional languages, in: Proceedings of the Scheme and Functional Programming Workshop, 2006,

pp. 81–92.
[36] Jeremy Siek, Walid Taha, Gradual typing for objects, in: Erik Ernst (Ed.), Proceedings of the 21st European Conference on Object-oriented Programming,

ECOOP 2007, in: Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 2007, pp. 2–27.
[37] Jeremy Siek, Philip Wadler, Threesomes, with and without blame, in: Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2010, ACM Press, Madrid, Spain, 2010, pp. 365–376.
[38] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, John Tang Boyland, Refined criteria for gradual typing, in: 1st Summit on Advances in Program-

ming Languages, SNAPL 2015, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 32, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Asilomar, California, USA, 2015, pp. 274–293.

[39] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, Ronald Garcia, Monotonic references for efficient gradual typing, in: Jan
Vitek (Ed.), Proceedings of the 24th European Symposium on Programming Languages and Systems, ESOP 2015, in: Lecture Notes in Computer Science,
vol. 9032, Springer-Verlag, London, UK, 2015, pp. 432–456.

[40] Peter Thiemann, Luminous Fennell, Gradual typing for annotated type systems, in: Zhong Shao (Ed.), Proceedings of the 23rd European Symposium on
Programming Languages and Systems, ESOP 2014, in: Lecture Notes in Computer Science, vol. 8410, Springer-Verlag, Grenoble, France, 2014, pp. 47–66.

[41] Matías Toro, Ronald Garcia, Éric Tanter, Type-driven gradual security with references, ACM Trans. Program. Lang. Syst. 40 (4) (2018) 16:1–16:55.
[42] Matías Toro, Elizabeth Labrada, Éric Tanter, Gradual parametricity, revisited, in: Proceedings of the ACM on Programming Languages, vol. 3, POPL 2019,

Jan. 2019, pp. 17:1–17:30.

http://refhub.elsevier.com/S0167-6423(20)30105-2/bibCAB2C301BB92728676E984C08625A647s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibCAB2C301BB92728676E984C08625A647s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibD96978B314FA6FC75A6919DB7DA66DFAs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibD96978B314FA6FC75A6919DB7DA66DFAs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib24E2D156DCFCFB7B1C5CB83E82F53745s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib24E2D156DCFCFB7B1C5CB83E82F53745s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib24E2D156DCFCFB7B1C5CB83E82F53745s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib093E408D306B6ED030D3ED8D97D2C451s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib093E408D306B6ED030D3ED8D97D2C451s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibE9DDD65EA9A375245C0D038FC31DC883s1
https://typedclojure.org/
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib95586236760319AA5775F6465BAD0128s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibB74FCC2BD8B194499D10B42AACFC313As1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib78B05724E3D46D4829EBC63A1ECDAFCBs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibDF38F08A0BC80D664F2CDC018147E48Ds1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibDF38F08A0BC80D664F2CDC018147E48Ds1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib07271615053357BD47CB5797FFE4651Es1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib07271615053357BD47CB5797FFE4651Es1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibE2FF120D0861D90002AE35E23F3964EFs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibE2FF120D0861D90002AE35E23F3964EFs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibE2FF120D0861D90002AE35E23F3964EFs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib01C78976EFC3F2045CD392E3FA8B1A69s1
https://hacklang.org/
https://flow.org/
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib835865BCF96D169A9AC7F1CA4BF02848s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibD9B8CC37132A58D97A057D1D3A89E05Bs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibD9B8CC37132A58D97A057D1D3A89E05Bs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib0D806CC3C46A49ACC5ED258E701484D0s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib0D806CC3C46A49ACC5ED258E701484D0s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib0D806CC3C46A49ACC5ED258E701484D0s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib5AFC18E913AAC41957B724239AF715F9s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib5AFC18E913AAC41957B724239AF715F9s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib2B58FF28DA50F9E48B852ADE0005A9AAs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib2B58FF28DA50F9E48B852ADE0005A9AAs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib6F45B6F2F4CF2989403B69108CD0B765s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib6F45B6F2F4CF2989403B69108CD0B765s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib39227568A71D376B7A28DDD33CAC44E1s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib1070572E1F479E172E1A3E82AD777DC6s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib33D04FF8C733E905F5C96EAC7E7D69D3s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib33D04FF8C733E905F5C96EAC7E7D69D3s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibBAB654E588C3E9AF99BB188984674620s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib60D888C2754A7307B28FFEF0BFD181EAs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib41DD1F642A3FFFB420147F18F3042B2As1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib41DD1F642A3FFFB420147F18F3042B2As1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib81D05EAD9A6FD77A19FF33019E0E3070s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib81D05EAD9A6FD77A19FF33019E0E3070s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibF4AED2FED2289E8AC30B863A0E7DA33Cs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibF4AED2FED2289E8AC30B863A0E7DA33Cs1
https://www.typescriptlang.org/
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib5BEA760A8ECD74201918BB841EBC7D7Fs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib5BEA760A8ECD74201918BB841EBC7D7Fs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib4794B8EDA7F2E5960B4F8D49DC22C529s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib1EFA3AF3A8B8A1AE09693AB1CE5853C8s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib1EFA3AF3A8B8A1AE09693AB1CE5853C8s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibF82B19D27F2A66E6756D5C574D1A2315s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibF82B19D27F2A66E6756D5C574D1A2315s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib43C8D746D87F0ABD5D1020FED92DAC6Fs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib43C8D746D87F0ABD5D1020FED92DAC6Fs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib9041979A8866FEBED8CC44C1A663D3C5s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib9041979A8866FEBED8CC44C1A663D3C5s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibA3799CEB0981FBF6242EA76F68C570C1s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibA3799CEB0981FBF6242EA76F68C570C1s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibA3799CEB0981FBF6242EA76F68C570C1s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib7E537662E6F2338D9BEC7162C34C418Bs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib7E537662E6F2338D9BEC7162C34C418Bs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib7E537662E6F2338D9BEC7162C34C418Bs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib79148DC4154944520E477316C96A6E9Ds1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib79148DC4154944520E477316C96A6E9Ds1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibBCD525D9EBB76B34828664BD2A8B7061s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib05AE0D267257849EE0DB249B99A30533s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib05AE0D267257849EE0DB249B99A30533s1

M. Toro, É. Tanter / Science of Computer Programming 197 (2020) 102496 65
[43] Matías Toro, Éric Tanter, Customizable gradual polymorphic effects for scala, in: Proceedings of the 30th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2015, ACM Press, Pittsburgh, PA, USA, 2015, pp. 935–953.

[44] Matías Toro, Éric Tanter, A gradual interpretation of union types, in: Proceedings of the 24th Static Analysis Symposium, SAS 2017, in: Lecture Notes
in Computer Science, vol. 10422, Springer-Verlag, New York City, NY, USA, 2017, pp. 382–404.

[45] Niki Vazou, Éric Tanter, David Van Horn, Gradual liquid type inference, in: Proceedings of the ACM on Programming Languages, vol. 2, OOPSLA 2018,
Nov. 2018.

[46] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, Jim Baker, Design and evaluation of gradual typing for python, in: Proceedings of the 10th ACM
Dynamic Languages Symposium, DLS 2014, ACM Press, Portland, OR, USA, 2014, pp. 45–56, ACM SIGPLAN Notices, 50(2).

[47] Roger Wolff, Ronald Garcia, Éric Tanter, Jonathan Aldrich, Gradual typestate, in: Mira Mezini (Ed.), Proceedings of the 25th European Conference on
Object-oriented Programming, ECOOP 2011, in: Lecture Notes in Computer Science, vol. 6813, Springer-Verlag, Lancaster, UK, 2011, pp. 459–483.

[48] Ningning Xie, Xuan Bi, Bruno C.d.S. Oliveira, Consistent subtyping for all, in: Amal Ahmed (Ed.), Proceedings of the 27th European Symposium on
Programming Languages and Systems, ESOP 2018, in: Lecture Notes in Computer Science, vol. 10801, Springer-Verlag, Thessaloniki, Greece, 2018,
pp. 3–30.

http://refhub.elsevier.com/S0167-6423(20)30105-2/bib49F889F31EF9E58E7DF4350579FF9B22s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib49F889F31EF9E58E7DF4350579FF9B22s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib67AD32FCE323730A39F68732671AFA67s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib67AD32FCE323730A39F68732671AFA67s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibCEFDC94E8156034320F00EA54381C21As1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibCEFDC94E8156034320F00EA54381C21As1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibC419B03365C889854ADEA522DA7CFF80s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bibC419B03365C889854ADEA522DA7CFF80s1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib5515EAB5DC0CF62106711C12824107FCs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib5515EAB5DC0CF62106711C12824107FCs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib8256C632D7FCC7672E27E9CBA1403C9Cs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib8256C632D7FCC7672E27E9CBA1403C9Cs1
http://refhub.elsevier.com/S0167-6423(20)30105-2/bib8256C632D7FCC7672E27E9CBA1403C9Cs1

	Abstracting gradual references
	1 Introduction
	2 Gradual typing with references
	2.1 Background: mutable references
	2.2 Background: gradual typing
	2.3 Existing approaches
	2.4 Gradual references, systematically

	3 Preliminary: the static language λREF
	4 Gradualizing λREF
	4.1 Syntax and meaning of gradual types
	4.2 Lifting the type system
	4.3 Static semantics
	4.4 Dynamic semantics
	4.4.1 Static semantics of λεREF
	4.4.2 Dynamic semantics of λεREF
	4.4.3 Deriving the reduction rules of λεREF

	4.5 Elaboration of λεREF terms
	4.6 Properties
	4.7 λREF in action

	5 Comparing λ›REF and HCC
	5.1 The coercion calculus
	5.2 Relating λεREF and HCC+
	5.3 Recovering space efficiency in λREF

	6 Encoding permissive and monotonic references in λ›REF
	6.1 Static semantics
	6.2 Dynamic semantics
	6.3 Properties

	7 Related work
	8 Conclusion
	Appendix A Gradualizing λREF, elaborating λε›REF
	Appendix B Type safety
	Appendix C Gradual guarantee
	C.1 Conservative extensions of the static discipline
	C.2 Static gradual guarantee
	C.3 Dynamic gradual guarantee

	Appendix D Space efficiency
	Appendix E Relation to the coercion calculus
	Appendix F Encoding permissive and monotonic references in λ›REF
	References

