
Agile Artificial Intelligence
in Pharo

Implementing Neural Networks,
Genetic Algorithms,
and Neuroevolution

Alexandre Bergel

1

2

3

4

5

6

Agile Artificial Intelligence in Pharo: Implementing Neural Networks, Genetic
Algorithms, and Neuroevolution

ISBN-13 (pbk): 978-1-4842-5383-0			 ISBN-13 (electronic): 978-1-4842-5384-7
https://doi.org/10.1007/978-1-4842-5384-7

Copyright © 2020 by Alexandre Bergel​

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253830. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alexandre Bergel
Santiago, Chile

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

https://doi.org/10.1007/978-1-4842-5384-7

iii

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Table of Contents

Part I: �Neural Networks�� 1

Chapter 1: �The Perceptron Model�� 3

1.1 ��Perceptron as a Kind of Neuron��� 3

1.2 ��Implementing the Perceptron�� 5

1.3 ��Testing the Code��� 10

1.4 ��Formulating Logical Expressions��� 13

1.5 ��Handling Errors�� 15

1.6 ��Combining Perceptrons�� 16

1.7 ��Training a Perceptron��� 19

1.8 ��Drawing Graphs��� 24

1.9 ��Predicting and 2D Points�� 25

1.10 ��Measuring the Precision�� 31

1.11 ��Historical Perspective�� 33

1.12 ��Exercises�� 34

1.13 ��What Have We Seen in This Chapter?�� 34

1.14 ��Further Reading About Pharo��� 35

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

https://doi.org/10.1007/978-1-4842-5384-7_1
https://doi.org/10.1007/978-1-4842-5384-7_1
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec11
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec12
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec13
https://doi.org/10.1007/978-1-4842-5384-7_1#Sec14

iv

Chapter 2: �The Artificial Neuron�� 37

2.1 ��Limit of the Perceptron�� 37

2.2 ��Activation Function�� 38

2.3 ��The Sigmoid Neuron��� 40

2.4 ��Implementing the Activation Functions�� 41

2.5 ��Extending the Neuron with the Activation Functions��� 43

2.6 ��Adapting the Existing Tests�� 46

2.7 ��Testing the Sigmoid Neuron��� 46

2.8 ��Slower to Learn�� 48

2.9 ��What Have We Seen in This Chapter?�� 51

Chapter 3: �Neural Networks�� 53

3.1 ��General Architecture�� 53

3.2 ��Neural Layer��� 54

3.3 ��Modeling a Neural Network��� 59

3.4 ��Backpropagation�� 62

3.4.1 ��Step 1: Forward Feeding��� 63

3.4.2 ��Step 2: Error Backward Propagation��� 64

3.4.3 ��Step 3: Updating Neuron Parameters�� 66

3.5 ��What Have We Seen in This Chapter?�� 68

Chapter 4: �Theory on Learning�� 69

4.1 ��Loss Function��� 69

4.2 ��Gradient Descent��� 73

4.3 ��Parameter Update�� 76

4.4 ��Gradient Descent in Our Implementation��� 78

4.5 ��Stochastic Gradient Descent�� 79

4.6 ��The Derivative of the Sigmoid Function��� 87

4.7 ��What Have We Seen in This Chapter?�� 88

4.8 ��Further Reading��� 88

Table of Contents

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec8

v

Chapter 5: �Data Classification��� 89

5.1 ��Training a Network��� 89

5.2 ��Neural Network as a Hashmap�� 92

5.3 ��Visualizing the Error and the Topology��� 93

5.4 ��Contradictory Data��� 98

5.5 ��Classifying Data and One-Hot Encoding�� 99

5.6 ��The Iris Dataset�� 100

5.7 ��Training a Network with the Iris Dataset�� 102

5.8 ��The Effect of the Learning Curve��� 103

5.9 ��Testing and Validation�� 106

5.10 ��Normalization��� 109

5.11 ��Integrating Normalization into the NNetwork Class��� 114

5.12 ��What Have We Seen in This Chapter?�� 116

Chapter 6: �A Matrix Library��� 117

6.1 ��Matrix Operations in C��� 117

6.2 ��The Matrix Class��� 119

6.3 ��Creating the Unit Test��� 122

6.4 ��Accessing and Modifying the Content of a Matrix�� 123

6.5 ��Summing Matrices��� 125

6.6 ��Printing a Matrix�� 127

6.7 ��Expressing Vectors��� 128

6.8 ��Factors��� 129

6.9 ��Dividing a Matrix by a Factor��� 131

6.10 ��Matrix Product��� 132

6.11 ��Matrix Subtraction��� 133

6.12 ��Filling the Matrix with Random Numbers�� 135

6.13 ��Summing the Matrix Values��� 135

6.14 ��Transposing a Matrix�� 136

6.15 ��Example��� 137

6.16 ��What Have We Seen in This Chapter?�� 139

Table of Contents

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

https://doi.org/10.1007/978-1-4842-5384-7_5
https://doi.org/10.1007/978-1-4842-5384-7_5
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec11
https://doi.org/10.1007/978-1-4842-5384-7_5#Sec12
https://doi.org/10.1007/978-1-4842-5384-7_6
https://doi.org/10.1007/978-1-4842-5384-7_6
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec11
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec12
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec13
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec14
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec15
https://doi.org/10.1007/978-1-4842-5384-7_6#Sec16

vi

Chapter 7: �Matrix-Based Neural Networks�� 141

7.1 ��Defining a Matrix-Based Layer�� 141

7.2 ��Defining a Matrix-Based Neural Network�� 145

7.3 ��Visualizing the Results��� 149

7.4 ��Iris Flower Dataset��� 150

7.5 ��What Have We Seen in This Chapter?�� 151

Part II: �Genetic Algorithms��� 153

Chapter 8: �Genetic Algorithms��� 155

8.1 ��Algorithms Inspired from Natural Evolution��� 155

8.2 ��Example of a Genetic Algorithm��� 156

8.3 ��Relevant Vocabulary��� 157

8.4 ��Modeling Individuals�� 158

8.5 ��Crossover Genetic Operations�� 165

8.6 ��Mutation Genetic Operations��� 169

8.7 ��Parent Selection��� 173

8.8 ��Evolution Monitoring�� 179

8.9 ��The Genetic Algorithm Engine�� 181

8.10 ��Terminating the Algorithm�� 188

8.11 ��Testing the Algorithm��� 190

8.12 ��Visualizing Population Evolution�� 191

8.13 ��What Have We Seen in This Chapter?�� 194

Chapter 9: �Genetic Algorithms in Action��� 195

9.1 ��Fundamental Theorem of Arithmetic�� 195

9.2 ��The Knapsack Problem�� 197

9.2.1 ��The Unbounded Knapsack Problem Variant��� 198

9.2.2 ��The 0-1 Knapsack Problem Variant��� 200

9.2.3 ��Coding and Encoding��� 202

9.3 ��Meeting Room Scheduling Problem��� 202

Table of Contents

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

https://doi.org/10.1007/978-1-4842-5384-7_7
https://doi.org/10.1007/978-1-4842-5384-7_7
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_8
https://doi.org/10.1007/978-1-4842-5384-7_8
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec11
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec12
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec13
https://doi.org/10.1007/978-1-4842-5384-7_9
https://doi.org/10.1007/978-1-4842-5384-7_9
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec6

vii

9.4 ��Mini Sodoku��� 204

9.5 ��What Have We Seen in This Chapter?�� 207

Chapter 10: �The Traveling Salesman Problem��� 209

10.1 ��Illustration of the Problem�� 209

10.2 ��Relevance of the Traveling Salesman Problem�� 210

10.3 ��Naive Approach�� 211

10.4 ��Adequate Genetic Operations��� 218

10.5 ��The Swap Mutation Operation�� 218

10.6 ��The Ordered Crossover Operation�� 219

10.7 ��Revisiting Our Large Example�� 222

10.8 ��What Have We Seen in This Chapter?�� 224

Chapter 11: �Exiting a Maze�� 225

11.1 ��Encoding the Robot’s Behavior�� 225

11.2 ��Robot Definition��� 225

11.3 ��Map Definition�� 227

11.4 ��Example��� 231

11.5 ��What Have We Seen in This Chapter?�� 235

Chapter 12: �Building Zoomorphic Creatures��� 237

12.1 ��Modeling Join Points�� 238

12.2 ��Modeling Platforms�� 242

12.3 ��Defining Muscles��� 244

12.4 ��Generating Muscles��� 249

12.5 ��Defining the Creature��� 253

12.6 ��Creating Creatures��� 255

12.6.1 ��Serialization and Materialization of a Creature��� 257

12.6.2 ��Accessors and Utility Methods�� 258

12.7 ��Defining the World�� 259

12.8 ��Cold Run��� 262

12.9 ��What Have We Seen in This Chapter?�� 264

Table of Contents

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

https://doi.org/10.1007/978-1-4842-5384-7_9#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_10
https://doi.org/10.1007/978-1-4842-5384-7_10
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_10#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_11
https://doi.org/10.1007/978-1-4842-5384-7_11
https://doi.org/10.1007/978-1-4842-5384-7_11#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_11#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_11#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_11#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_11#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_12
https://doi.org/10.1007/978-1-4842-5384-7_12
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_12#Sec11

viii

Chapter 13: �Evolving Zoomorphic Creatures��� 265

13.1 ��Interrupting a Process�� 265

13.2 ��Monitoring the Execution Time�� 266

13.3 ��The Competing Conventions Problem�� 267

13.4 ��The Constrained Crossover Operation�� 268

13.5 ��Moving Forward��� 269

13.6 ��Serializing the Muscle Attributes��� 273

13.7 ��Passing Obstacles�� 274

13.8 ��Climbing Stairs��� 277

13.9 ��What Have We Seen in This Chapter?�� 280

Part III: �Neuroevolution��� 281

Chapter 14: �Neuroevolution��� 283

14.1 ��Supervised, Unsupervised Learning, and Reinforcement Learning����������������������������������� 283

14.2 ��Neuroevolution��� 284

14.3 ��Two Neuroevolution Techniques��� 285

14.4 ��The NeuroGenetic Approach��� 285

14.5 ��Extending the Neural Network��� 286

14.6 ��NeuroGenetic by Example�� 287

14.7 ��The Iris Dataset�� 292

14.8 ��Further Reading About NeuroGenetic��� 294

14.9 ��What Have We Seen in This Chapter?�� 294

Chapter 15: �Neuroevolution with NEAT�� 295

15.1 ��Vocabulary��� 295

15.2 ��The Node Class�� 297

15.3 ��Different Kinds of Nodes�� 298

15.4 ��Connections��� 304

15.5 ��The Individual Class��� 306

15.6 ��Species�� 313

15.7 ��Speciation�� 315

Table of Contents

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

https://doi.org/10.1007/978-1-4842-5384-7_13
https://doi.org/10.1007/978-1-4842-5384-7_13
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_13#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_14
https://doi.org/10.1007/978-1-4842-5384-7_14
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_14#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_15
https://doi.org/10.1007/978-1-4842-5384-7_15
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec7

ix

15.8 ��Crossover Operations��� 318

15.9 ��Abstract Definition of Mutation�� 320

15.10 ��Structural Mutation Operations�� 321

15.10.1 ��Adding a Connection�� 322

15.10.2 ��Adding a Node��� 325

15.11 ��Non-Structural Mutation Operation�� 326

15.12 ��Logging�� 326

15.13 ��NEAT��� 330

15.14 ��Visualization��� 340

15.15 ��The XOR Example��� 346

15.16 ��The Iris Example��� 351

15.17 ��What Have We Seen in This Chapter?�� 353

Chapter 16: �The MiniMario Video Game�� 355

16.1 ��Character Definition��� 356

16.2 ��Modeling Mario�� 360

16.3 ��Modeling an Artificial Mario Player�� 360

16.4 ��Modeling Monsters�� 361

16.5 ��Modeling the MiniMario World��� 363

16.6 ��Building the Game’s Visuals��� 368

16.7 ��Running MiniMario��� 372

16.8 ��NEAT and MiniMario��� 373

16.9 ��What Have We Seen in This Chapter?�� 375

�Afterword: Last Words��� 377

�Index�� 379

Table of Contents

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

https://doi.org/10.1007/978-1-4842-5384-7_15#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec11
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec12
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec13
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec14
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec15
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec16
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec17
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec18
https://doi.org/10.1007/978-1-4842-5384-7_15#Sec19
https://doi.org/10.1007/978-1-4842-5384-7_16
https://doi.org/10.1007/978-1-4842-5384-7_16
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_16#Sec9

xi

About the Author

Alexandre Bergel, Ph.D., is a professor (associate) at the University of Chile and is a

member of the Intelligent Software Construction laboratory (ISCLab). His research

interests include software engineering, software performance, software visualization,

the programming environment, and machine learning. He is interested in improving the

way we build and maintain software. His current hypotheses are validated using rigorous

empirical methodologies. To make his research artifacts useful not only to stack papers,

he co-founded Object Profile.

237

238

239

240

241

242

243

244

xiii

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and

software developer and has helped many companies

automate and enhance their business solutions through data

synchronization, SaaS architecture, and machine learning.

Jason obtained his Bachelor of Science in Computer Science

from Arkansas State University, but he traces his passion

for development back many years before then, having first

taught himself to program BASIC on his family’s computer

while in middle school.

When he’s not mentoring and helping his team at work,

writing, or pursuing one of his many side-projects, Jason enjoys spending time with his

wife and four children and living in the Tulsa, Oklahoma region. More information about

Jason can be found on his website: https://jason.whitehorn.us.

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

https://jason.whitehorn.us

xv

Acknowledgments

Agile Artificial Intelligence in Pharo is the result of a long and collective effort made by

the ESUG community and beyond. The writing and the necessary research of the book

was sponsored by Lam Research and ESUG. Thank you! You made the book happen!

Many people helped get the book in shape. In no particular order, we are deeply

grateful to CH Huang, Chris Thorgrimsson, Milton Mamani, Jhonny Cerezo, Oleks

Zaytsev, Stéphane Ducasse, Torsten Bergmann, Serge Stinckwich, Alexandre Rousseau,

Sean P. DeNigris, Julián Grigera, Cesar Rabak, Yvan Guemkam, John Borden, Sudhakar

Krishnamachari, Leandro Caniglia, mldavis99, darth-cheney, Andy S., Jon Paynter,

Esteban Lorenzano, Juan-Pablo Silva, Francisco Ary Martins, Norbert Fortelny, forty,

Sebastián Zapata, and Renato Cerro.

Publishing a book involves some legal aspects that need to be carefully considered.

We thank Fernanda Carvajal Gezan and Rosa Leal, from the University of Chile.

We also thank the Apress team for trusting in the project and thank Jason Whitehorn,

who tech-reviewed the book.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

xvii

Introduction

Artificial Intelligence (AI) is radically changing the way we use computers to solve

problems. For example, by exploiting previous experience, which may be expressed in

terms of examples, a machine can identify patterns in a given situation and try to identify

the same patterns in a slightly different situation. This is essentially the way AI is used

nowadays. The field of AI is moving quickly, and unfortunately, it is often difficult to

understand.

The objective of the Agile Artificial Intelligence in Pharo book is to provide a practical

foundation for a set of expressive artificial intelligence algorithms using the Pharo

programming language. The book makes two large contributions over existing related

books. The first contribution is to bring agility in the way some techniques related to

artificial intelligence are designed, implemented, and evaluated. The book provides

material in an incremental fashion, beginning with a little perception and ending with a

full implementation of two algorithms for neuroevolution.

The second contribution is about making these techniques accessible to

programmers by detailing their implementation without overwhelming the reader

with mathematical material. There is often a significant gap between reading

mathematical formulas and producing executable source code from those formulas,

unfortunately. The book is meant to be accessible to a large audience by focusing on

executable source code.

Overall, this book details and illustrates some easy-to-use recipes to solve actual

problems. Furthermore, it highlights some technical details of these recipes using the

Pharo programming language. Agile Artificial Intelligence in Pharo is not a book about

how to use an existing API provided by external libraries. Instead, this book guides you to

build your own API for artificial intelligence.

�Book Overview
Agile Artificial Intelligence in Pharo is divided into three parts, each targeting a specific

topic within the field of artificial intelligence—neural networks, genetic algorithms, and

neuroevolution.

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

xviii

The first part of the book is about neural networks. A neural network is a

computational metaphor simulating the interaction occurring between biological

neurons. The chapter begins with the implementation of a single neuron and shows its

limitations in terms of what it can achieve. Neural networks are then presented to solve

more complex problems. Various examples involving relatively simple data classification

tasks are presented.

The second part of the book covers genetic algorithms (GAs). The GA is a

computational metaphor simulating the evolution occurring in biological species. GAs

provide a way to solve problems without knowing the structure and shape of the solution

in advance. GAs simulate the way biological species evolve over time. For two candidate

solutions, as soon as the machine is able to say which one is closer to the solution, then

GAs may be considered to solve the problem. Numerous examples are provided in this

second part of the book, including an implementation of zoomorphic creatures, which

is a simulation of artificial life. We define a zoomorphic creature as an artificial organism

able to evolve in order to move itself through obstacles.

The third part of the book covers the field of neuroevolution, which is a combination

of genetic algorithms and neural networks. The evolution of neural networks is called

neuroevolution. Instead of training a neural network, as in classical deep learning (Part

1 of the book), neuroevolution begins with extremely simple networks and incrementally

adds complexity to them. Evolution makes those networks able to solve particular tasks.

This third part uses a Mario Bros-like game, which is used to build an artificial player

using neuroevolution.

�Installing Pharo
Pharo works on the three common platforms, Mac OSX, Windows, and Linux. The web

page at https://pharo.org/download gives a very detailed instruction set and some

links to download Pharo. Pharo is easy to install. Just a matter of a few clicks.

The content of the book is known to work up until Pharo 9. The code provided in

the book does not heavily rely on the Pharo runtime. So the code provided in this book

should be easy to adapt to future versions of Pharo or to another dialect of Smalltalk.

Introduction

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

https://pharo.org/download

xix

�Accompanying Source Code
Agile Artificial Intelligence in Pharo is a book about programming. It provides and

details a sizable amount of source code. Most of the code in the book is self-contained.

This means that no external libraries are used besides the Pharo core and the Roassal

visualization engine. Roassal is used to visually explore data and build a user interface.

Readers may prefer to transcribe the code into Pharo or use our dedicated Git repository

at https://github.com/Apress/agile-ai-in-pharo.

A script that begins with ellipses (i.e., ...) means that you need to append the script

to the last one seen before.

The code provided in this book is known to run on Pharo 8 and 9. To load the code,

you simply need to open a playground and execute the following code:

Metacello new

 baseline: 'AgileArtificialIntelligence';

 repository: 'github://Apress/agile-ai-in-pharo/src';

 load.

The GitHub repository contains the scripts folder, which contains all the scripts

and code snippets provided in the book.

The book focuses on Pharo; however, at the cost of a few small adaptations, all the

provided code will run on an alternative Smalltalk implementation (e.g., VisualWorks).

�Who Should Read This Book?
This book is designed to be read by a wide audience of programmers. As such, there is no

need to have prior knowledge of neural networks, genetic algorithms, or neuroevolution.

There is even no need to have a strong mathematical background. We made sure that

there is no such prerequisite for most of the chapters. Some chapters require mild

mathematical knowledge. However, these chapters are self-contained and skipping them

will not negatively affect your overall understanding.

The book exposes some sophisticated AI techniques through the lenses of Pharo.

Readers will acquire the theoretical and practical tools to be used in Pharo. Note

that people willing to learn Pharo through AI are encouraged to complement it with

additional sources of information.

Introduction

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

https://github.com/Apress/agile-ai-in-pharo

xx

The book is not made for people who want to learn about AI techniques without

heavily investing in a programming activity. Instead, Agile Artificial Intelligence in Pharo

is made for programmers who are either familiar with Pharo or are willing to be.

�The Pharo Experience
The code provided in this book uses the Pharo programming environment.

Programming in Pharo is a fantastic and emotional experience. Literally. Pharo gives

meaning to Agile programming that cannot be experienced in another programming

language, or at least, not to the same degree. We will try to convey this wonderful

experience to the readers.

Pharo has a very simple syntax, which means that code should be understandable as

soon as you have some programming knowledge. Chapter 2 briefly introduces the Pharo

programming language and its environment in case you want to be familiar with it.

Why did we pick Pharo for this book? Pharo is a beautiful programming language

with a sophisticated environment. It also provides a new way of communication

between a human and a machine. By offering a live programming environment

and a language with minimal syntax, programmers may express their thoughts

in an incremental and open fashion. Although a number of similar programming

environments exist (e.g., Scratch and Squeak), Pharo is designed to be used in an

industrial software development setting.

Pharo syntax is concise, simple, unambiguous, and requires very little explanation

to be fully understood. If you do not know Pharo, we encourage you to become familiar

with the basics of its syntax and programming environment. Chapter 2 should help

in that respect. The debugger, inspector, and playground are unrivaled compared to

other programming languages and environments. Using these tools really brings an

unmatchable feeling when programming.

Introduction

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2

xxi

�Additional Reading
Agile Artificial Intelligence in Pharo provides a gentle introduction to Pharo in Chapter 2.

However, the presentation of Pharo is shallow and not complete. Readers who do

not know Pharo and but have experience in programming may find the chapter to be

enough. Readers who want to deepen their knowledge may want to look for additional

sources of learning. Here are some good readings on Pharo:

•	 http://pharo.org is the official website about Pharo.

•	 https://mooc.pharo.org is probably the most popular way to learn

Pharo. It provides many short videos covering various aspects of

Pharo.

•	 http://books.pharo.org offers many valuable books and booklets

on Pharo.

•	 http://agilevisualization.com describes the Roassal visualization

engine, which also contains a gentle introduction to Pharo.

Visualization is omnipresent in Agile Artificial Intelligence in Pharo. Roassal is used

in many chapters and the reader is welcome to read Agile Visualization to become

familiar with this wonderful visualization toolkit.

Introduction

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

https://doi.org/10.1007/978-1-4842-5384-7_2
http://pharo.org/
https://mooc.pharo.org
http://books.pharo.org/
http://agilevisualization.com/

PART I

Neural Networks

1

2

3
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_1

CHAPTER 1

The Perceptron Model
All major animal groups have brains made of neurons. A neuron is a specialized cell that

transmits electrochemical stimulation using an axon to other neurons. A neuron receives

this nerve impulse via a dendrite. Since the early age of computers, scientists have tried

to produce a computational model of a neuron. The perceptron was one of the first

models to mimic the behavior of a neuron.

This chapter plays two essential roles in the book. First, it presents the perceptron,

a fundamental model on which neural networks are based. Second, it also provides a

gentle introduction to the Pharo programming language. The chapter builds a simple

perceptron model in Pharo.

1.1  �Perceptron as a Kind of Neuron
A perceptron is a kind of artificial neuron that models the behavior of a biological

neuron. A perceptron is a machine that produces an output for a provided set of input

values. Figure 1-1 gives a visual representation of a perceptron.

A perceptron accepts one, two, or more numerical values as inputs. It produces

a numerical value as output (the result of a simple equation that we will see shortly).

A perceptron operates on numbers, which means that the inputs and the output are

numerical values (e.g., integers or floating point values).

Figure 1-1.  Representing the perceptron

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec8

4

Figure 1-1 depicts a perceptron. A perceptron is usually represented as a circle with

some inputs and one output. Inputs are represented as incoming arrows located on

the left of the central circle and the output as an outgoing arrow on the right of it. The

perceptron in Figure 1-1 has three inputs, noted x1, x2, and x3.

Not all inputs have the same importance for the perceptron. For example, an input

may be more important than other inputs. Relevance of an input is expressed using

a weight (also a numerical value) associated with that input. In Figure 1-1, the input

x1 is associated with the weight w1, x2 with the weight w2, and x3 with w3. Different

relevancies of some inputs allow the network to model a specialized behavior. For

example, for an image-recognition task, pixels located at the border of the picture

usually have less relevance than the pixels located in the middle. Weights associated

with the inputs corresponding to the border pixels will therefore be rather close to zero.

In addition to the weighted input value, a perceptron requires a bias, a numerical value

acting as a threshold. We denote the bias as b.

A perceptron receives a stimulus as input and responds to that stimulus by

producing an output value. The output obeys a very simple rule: if the sum of the

weighted inputs is above a particular given value, then the perceptron fires 1; otherwise,

it fires 0. Programmatically, we first compute the sum of the weighted inputs and

the bias. If this sum is strictly above 0, then the perceptron produces 1; otherwise, it

produces 0.

Formally, based on the perceptron given in Figure 1-1, we write z = x1 * w1 + x2 *

w2 + x3 * w3 + b. In the general case, we write z = i xi * wi + b. The variable i ranges

over all the inputs of the perceptron. If z > 0, then the perceptron produces 1 or if z ≤ 0,

it produces 0.

In the next section, we will implement a perceptron model that is both extensible

and maintainable. You may wonder what the big deal is. After all, the perceptron model

may be implemented in a few lines of code. However, implementing the perceptron

functionality is just a fraction of the job. Creating a perceptron model that is testable,

well tested, and extensible is the real value of this chapter. Soon will see how to train a

network of artificial neurons, and it is important to build this network framework on a

solid base.

Chapter 1 The Perceptron Model

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

5

1.2  �Implementing the Perceptron
In this section, we will put our hands to work and implement the perceptron model in

the Pharo programming language. We will produce an object-oriented implementation

of the model. We will implement a class called Neuron in a package called

NeuralNetwork. The class will have a method called feed, which will be used to compute

two values—z and the perceptron output.

This code will be contained in a package. To create a new package, you first need

to open a system browser by selecting the corresponding entry in the Pharo menu. The

system browser is an essential tool in Pharo. It allows us to read and write code. Most of

the programming activity in Pharo typically happens in a system browser.

Figure 1-2 shows a system browser, which is composed of five different parts. The top

part is composed of four lists. The left-most list gives the available and ready-to-be-used

packages. In Figure 1-2, the names Announcement, AST-Core and Alien are examples of

packages. The Announcement package is selected in the figure.

The second list gives the classes that belong to the selected package. Many classes

are part of the Announcement package, including the classes called Announcement,

AnnouncementSet, and Announcer.

The third list shows the method categories of the selected class. Method categories

sort methods into logical groups to clarify their purpose and make them easier to find.

Think of them as a kind of package for methods. Since no class is selected in the figure,

no method category is listed.

The right-most list shows the methods of the selected class, filtered by the selected

method category if any. Since no class is selected, no methods are listed. The bottom

part of a system browser displays source code, which is one of the following:

Selection Code Displayed

Method Selected method source code

Class Selected class definition

None New class template

Chapter 1 The Perceptron Model

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

t1.1

t1.2

t1.3

t1.4

6

Right-click the left-most top list to create a new package, named NeuralNetwork. This

package will contain most of the code we will write in this first part of the book.

Select the package NeuralNetwork you just created and modify the template in the

bottom pane as follows:

Objectsubclass: #Neuron

 instanceVariableNames: 'weightsbias'

 classVariableNames: ''

 package: 'NeuralNetwork'

You then need to compile the code by “accepting” the source code. Right-click

the text pane and select the Accept option. The Neuron class defines two instance

variables—weights and bias. Note that we do not need to have variables for the

inputs and output values. These values will be provided as message arguments and

Figure 1-2.  The Pharo system browser

Chapter 1 The Perceptron Model

76

77

78

79

80

81

82

83

84

85

86

87

7

returned values. We need to add some methods to define the logic of this perceptron. In

particular, we need to compute the intermediate z and the output values. Let’s first focus

on the weights variable. We will define two methods to write a value in that variable and

another one to read from it.

You may wonder why we define a class called Neuron and not Perceptron. In the

next chapter, we will extend the Neuron class by turning it into an open abstraction for

an artificial neuron. This Neuron class is therefore a placeholder for improvements we

will make in the subsequent chapters. In this chapter we consider a perceptron, but in

the coming chapter we will move toward an abstract neuron implementation. The name

Neuron is therefore better suited.

Here is the code of the weights: method defined in the Neuron class:

Neuron>>weights: someWeightsAsNumbers

 "Set the weights of the neuron.

 Takes a collection of numbers as argument."

 weights := someWeightsAsNumbers

To define this method, you need to select the Neuron class in the class panel (second

top list panel). Then, write the code given without Neuron>>, which is often prepended in

documentation to indicate the class that should host the method. It is not needed in the

browser because the class is selected in the top pane. Figure 1-3 illustrates this. Next, you

should accept the code (again by right-clicking the Accept menu item). In Pharo jargon,

accepting a method has the effect of actually compiling it (i.e., using the Pharo compiler

to translate the Pharo source code into some bytecodes understandable by the Pharo

virtual machine). Once it’s compiled, a method may be executed. The code defines the

method named called weights: which accepts one argument, provided as a variable

named someWeightsAsNumbers.

The weights:=someWeightsAsNumbers expression assigns the value

someWeightsAsNumbers to the variable weights.

Chapter 1 The Perceptron Model

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

8

Your system browser should now look like Figure 1-3. The weights: method writes a

value to the variable weights. Its sibling method that returns the weight is

Neuron>>weights

 "Return the weights of the neuron."

 ^ weights

The ^ character returns the value of an expression, in this case the value of the

variable weights.

Figure 1-3.  The weights: method of the Neuron class

Chapter 1 The Perceptron Model

115

116

117

118

119

120

121

9

Similarly, you need to define methods to assign a value to the bias variable and to

read its content. The method bias: is defined as follows:

Neuron>>bias: aNumber

 "Set the bias of the neuron"

 bias := aNumber

Reading the variable bias is provided by the following:

Neuron>>bias

 "Return the bias of the neuron"

 ^ bias

So far, we have defined the Neuron class, which contains two variables (weights and

bias), and four methods (weights:, weights, bias:, and bias). We now need to define

the logic of this perceptron by applying a set of input values and obtaining the output

value. Let’s add a feed: method that does exactly this small computation:

Neuron>>feed: inputs

 | z |

 z := (inputs with: weights collect: [:x :w | x * w]) sum + bias.

 ^ z > 0 ifTrue: [1] ifFalse: [0].

The feed: method simply translates the mathematical perceptron activation

formula previously discussed into the Pharo programming language. The expression

inputswith:weightscollect: [:x:w|x*w] transforms the inputs and weights

collections using the supplied function. Consider the following example:

#(1 2 3)with: #(10 20 30)collect: [:a:b|a+b]

The expression #(1 2 3) is an array made of three numbers—1, 2, and 3. The

expression evaluates to #(11 22 33). Syntactically, the expression means that the

literal value #(1 2 3) receives a message called with:collect: with two arguments,

the literal array #(10 20 30) and the block [:a:b|a+b]. You can verify the value of

that expression by opening a playground (accessible from the Tools top menu).

A playground is a kind of command terminal for Pharo (e.g., xterm in the UNIX world).

Figure 1-4 illustrates the evaluation of the expression (evaluated either by choosing

Print It from the right-click menu or using the adequate shortcut—Cmd+p on OSX or

Alt+p on other operating systems).

Chapter 1 The Perceptron Model

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

10

We can now play a little bit with the perceptron and evaluate the following code in

the playground we just opened:

p := Neuron new.

p weights: #(1 2).

p bias: -2.

p feed: #(5 2)

This piece of code evaluates to 1 (since (5*1 + 2*2)-2 equals to 7, which is greater

than 0), as shown in Figure 1-5.

1.3  �Testing the Code
Now it is time to talk about testing. Testing is an essential activity whenever we write

code using Agile methodologies. Testing is about raising the confidence that the code we

write does what it is supposed to do.

Although this book is not about writing large software artifacts, we do write source

code. And making sure that this code can be tested in an automatic fashion significantly

improves the quality of our work. More importantly, most code is read far more

Figure 1-4.  The playground

Figure 1-5.  Evaluating the perceptron

Chapter 1 The Perceptron Model

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

11

often than it is written. Testing helps us produce maintainable and adaptable code.

Throughout this book, we will improve our code base. It is very important to make sure

that our improvements do not break existing functionalities.

For example, we previously defined a perceptron and informally tested it in a

playground. This informal test costs us a few keystrokes and a little bit of time. What if we

could repeat this test each time we modified our definition of perceptron? This is exactly

what unit testing is all about.

We will now leave the playground for a while and return to the system browser to

define a class called PerceptronTest:

TestCase subclass: #PerceptronTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

The TestCase class belongs to the built-in Pharo code base. Subclassing it is the first

step to creating a unit test. Many perceptrons will be created by the tests we define. We

can define the method as follows:

PerceptronTest>>newNeuron

 "Return a new neuron"

 ^ Neuron new

Tests can now be added to PerceptronTest. Define the following method:

PerceptronTest>>testSmallExample

 | p result |

 p := self newNeuron.

 p weights: #(1 2).

 p bias: -2.

 result := p feed: #(5 2).

 self assert: result equals: 1.

The testSmallExample method tests that the code snippet we previously gave

returns the value 1. You can run the test by clicking the gray circle located next to the

method name. The gray circle turns green to indicate that the test passes (see Figure 1-6).

Chapter 1 The Perceptron Model

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

12

A green test means that no assertion failed and no error was raised during the test

execution. The testSmallExample method sends the assert:equals: message, which

tests whether the first argument equals the second argument.

EXERCISE: So far, you have only shallowly tested this perceptron. You can improve

these tests in two ways:

•	 Expand testSmallExample by feeding the perceptron p with different

values (e.g., -2 and 2 gives 0 as a result).

•	 Test the perceptron with different weights and biases.

In general, it is a very good practice to write a thorough suite of tests, even for a small

component such as this Neuron class.

Figure 1-6.  Testing the perceptron

Chapter 1 The Perceptron Model

198

199

200

201

202

203

204

205

206

207

13

1.4  �Formulating Logical Expressions
A canonical example of using a perceptron is to express boolean logical gates. The idea is

to have a perceptron with two inputs (each being a boolean value), and the result of the

modeled logical gate as output.

A little bit of arithmetic indicates that a perceptron with the weights #(1 1) and

the bias -1.5 formulates the AND logical gate. Recall that #(1 1) is an array of size 2

that contains the number 1 twice. The AND gate is a basic digital logic gate, and it is an

idealized device for implementing the AND boolean function. The AND gate may be

represented as the following table:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

We could therefore verify this with a new test method:

PerceptronTest>>testAND

 | p |

 p := self newNeuron.

 p weights: #(1 1).

 p bias: -1.5.

 self assert: (p feed: #(0 0)) equals: 0.

 self assert: (p feed: #(0 1)) equals: 0.

 self assert: (p feed: #(1 0)) equals: 0.

 self assert: (p feed: #(1 1)) equals: 1.

Chapter 1 The Perceptron Model

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

t2.1

t2.2

t2.3

t2.4

t2.5

14

Similarly, a perceptron can formulate the OR logical gate:

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Consider the following test:

PerceptronTest>>testOR

 | p |

 p := self newNeuron.

 p weights: #(1 1).

 p bias: -0.5.

 self assert: (p feed: #(0 0)) equals: 0.

 self assert: (p feed: #(0 1)) equals: 1.

 self assert: (p feed: #(1 0)) equals: 1.

 self assert: (p feed: #(1 1)) equals: 1.

Negating the weights and bias results in the negated logical gate:

PerceptronTest>>testNOR

 | p |

 p := self newNeuron.

 p weights: #(-1 -1).

 p bias: 0.5.

 self assert: (p feed: #(0 0)) equals: 1.

 self assert: (p feed: #(0 1)) equals: 0.

 self assert: (p feed: #(1 0)) equals: 0.

 self assert: (p feed: #(1 1)) equals: 0.

Chapter 1 The Perceptron Model

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

t3.1

t3.2

t3.3

t3.4

t3.5

15

So far we have built perceptrons with two inputs. The number of input values has to

be the same as the number of weights. Therefore, if only one weight is provided, only one

input is required. Consider the NOT logical gate, as follows:

PerceptronTest>>testNOT

 | p |

 p := self newNeuron.

 p weights: #(-1).

 p bias: 0.5.

 self assert: (p feed: #(1)) equals: 0.

 self assert: (p feed: #(0)) equals: 1.

1.5  �Handling Errors
In testNOT, we defined a perceptron with only one weight. The array provided when

calling feed: must have only one entry. But what would happen if we had two entries

instead of one? An error would occur, as we are wrongly using the (small) API we have

defined.

You should also test this behavior to make sure errors are properly generated. Define

the following test:

PerceptronTest>>testWrongFeeding

 | p |

 p := self newNeuron.

 p weights: #(-1).

 p bias: 0.5.

 self should: [p feed: #(1 1)] raise: Error

The testWrongFeeding test passes only if the expression pfeed: #(1 1) raises an

error, which it does.

Chapter 1 The Perceptron Model

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

16

Until now, we have defined the Neuron class with five methods, and the unit test

PerceptronTest with six test methods. You can run these tests by pressing the circle next

to the unit test name, PerceptronTest (see Figure 1-7).

It is important to emphasize that rigorously testing your code, which also involves

verifying that errors are properly handled, is important when you’re implementing a

neural network from scratch. Facing errors due to mismatched input sizes and weights is

unfortunately too frequent to be lax on that front.

1.6  �Combining Perceptrons
Until now, we defined the AND, NOR, NOT, and OR logical gates. Logical gates become

interesting when combined. A digital comparator circuit is a combination of two NOT

gates with two AND gates and one NOR gate. The overall combination is useful for

comparing two values, A and B. There are three possible outcomes:

Figure 1-7.  Running the tests

Chapter 1 The Perceptron Model

275

276

277

278

279

280

281

282

283

284

285

286

https://doi.org/10.1007/978-1-4842-5384-7_7
https://doi.org/10.1007/978-1-4842-5384-7_7
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_7#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_8
https://doi.org/10.1007/978-1-4842-5384-7_8
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec10
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec11
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec12
https://doi.org/10.1007/978-1-4842-5384-7_8#Sec13
https://doi.org/10.1007/978-1-4842-5384-7_9
https://doi.org/10.1007/978-1-4842-5384-7_9
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_9#Sec6

17

•	 A is greater than B

•	 A is equal to B

•	 A is less than B

We can therefore model our circuit with two inputs and three outputs. The following

table summarizes the circuit:

A B A < B A = B A > B

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

Figure 1-8 illustrates the circuit. Three different logical gates are necessary: AND,

NOT, and NOR. We need to make the connection between these gates. As we previously

did, some tests will drive this effort. The digitalComparator: method, defined in our

unit test for convenience, models the digital comparator circuit:

PerceptronTest>>digitalComparator: inputs

 "Return an array of three elements"

 | not and nor a b aGb aEb aLb notA notB |

 a := inputs first.

 b := inputs second.

Figure 1-8.  Digital comparator circuit

Chapter 1 The Perceptron Model

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

t4.1

t4.2

t4.3

t4.4

t4.5

18

 and := self newNeuron weights: #(1 1); bias: -1.5.

 not := self newNeuron weights: #(-1); bias: 0.5.

 nor := self newNeuron weights: #(-1 -1); bias: 0.5.

 notA := not feed: { a }.

 notB := not feed: { b }.

 aLb := and feed: { notA . b }.

 aGb := and feed: { a . notB }.

 aEb := nor feed: { aGb . aLb }.

 ^ { aGb . aEb . aLb }

The method accepts a set of inputs as its argument. We begin by extracting the first and

second elements of these inputs and assigning them to the temporary variables, a and b.

Next, we create our three logical gates as perceptrons and wire them together using

the variables notA, notB, aGb (a greater than b), aLb (a less than b), and aEb (a equals b).

We then compute notA and notB. Here, we use an alternative syntax to define an

array. The {A} expression creates an array with the object referenced by A. The elements

of this array syntax will be evaluated at runtime, unlike the #(...) notation, which

is evaluated at compile time. Therefore, for “literal” objects like numbers, always use

#(...) (e.g., #(1 -1)). To create an array that contains the results of expressions, always

use {...}. Note that technically we can also write numbers using the {...} syntax (e.g.,

{1 . -1}), but this is rarely done due to the performance penalty of runtime evaluation

without any advantage. It is important to keep these two notations in mind, as we will

use them heavily throughout the book.

The digitalComparator: method returns the result of the circuit evaluation as an

array. We can test it using the following test method:

PerceptronTest>>testDigitalComparator

 self assert: (self digitalComparator: #(0 0)) equals: #(0 1 0).

 self assert: (self digitalComparator: #(0 1)) equals: #(0 0 1).

 self assert: (self digitalComparator: #(1 0)) equals: #(1 0 0).

 self assert: (self digitalComparator: #(1 1)) equals: #(0 1 0).

The digital comparator circuit example shows how perceptrons may be “manually”

combined. The overall behavior is divided into parts, each referenced with a variable.

These variables must then be combined to express the logical flow (e.g., the variable

notA must be computed before computing an output).

Chapter 1 The Perceptron Model

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

19

1.7  �Training a Perceptron
So far, we have used perceptron with a particular set of weights and bias. For example,

we defined the AND logical gate with the value 1 for its two weights and a bias of -1.5.

Consider the following exercise: manually compute the weights and bias to model the

NAND logical gate (e.g., we recall that table for NAND is #(#(0 0 1)#(0 1 1)#(1 0 1)

#(1 1 0)). Doing so requires a moment to compute some simple arithmetic. Imagine

a perceptron taking thousands of inputs. Identifying adequate values for the weights

and bias cannot be realistically done by hand. This is exactly what training a perceptron

is about—finding adequate weights and bias to make the perceptron behave to solve a

particular problem.

Learning typically involves a set of input examples with some known outputs.

The learning process assesses how good the artificial neuron is against the desired

output. In particular, as defined by Frank Rosenblatt in the late 1950s, each weight of

the perceptron is modified by an amount that is proportional to (i) the product of the

input and (ii) the difference between the real output and the desired output. Learning in

neural networks means adjusting the weights and the bias in order to make the output

close to the set of training examples.

The way a perceptron learns simply follows these rules

wi(t + 1) = wi(t) + (d − z) * xi * α

b(t + 1) = b(t) + (d − z) * α

in which

•	 i is the weight index

•	 wi(t) is the weight i at a given time t

•	 b(t) is the bias at a given time t

•	 d is the desired value

•	 z is the actual output of the perceptron

•	 xi corresponds to the provided input at index i

•	 α is the learning rate, typically, a small positive value, close to 0

Chapter 1 The Perceptron Model

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

20

We have wi(0) equal to a random number, usually within a narrow range

centered on 0. The previous two equations given can be translated into the following

pseudocode:

diff = desiredOutput - realOutput

alpha = 0.1

For all N:

 weightN = weightN + (alpha * inputN * diff)

bias = bias + (alpha * diff)

This pseudocode can be written in Pharo with the train:desiredOutput: method.

But before that, we need to slightly adjust the definition of the Neuron class by adding the

learningRate instance variable. The definition is as follows:

Object subclass: #Neuron

 instanceVariableNames: 'weights bias learningRate'

 classVariableNames: ''

 package: 'NeuralNetwork'

We can also provide the necessary methods to modify the learningRate variable:

Neuron>>learningRate: aNumber

 "Set the learning rate of the neuron"

 learningRate := aNumber

To obtain the value of the variable, use the following:

Neuron>>learningRate

 "Return the learning rate of the neuron"

 ^ learningRate

The variable can be initialized in the constructor, as follows:

Neuron>>initialize

 super initialize.

 learningRate := 0.1

Chapter 1 The Perceptron Model

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

21

We can now define the train:desiredOutput: method to make a perceptron learn.

Neuron>>train: inputs desiredOutput: desiredOutput

 | theError output newWeight |

 output := self feed: inputs.

 theError := desiredOutput - output.

 inputs

 withIndexDo: [:anInput :index |

 �newWeight := (weights at: index) + (learningRate * theError *

anInput).

 weights at: index put: newWeight].

 bias := bias + (learningRate * theError)

Before adjusting the weights and bias, we need to know how well the perceptron

evaluates the set of inputs. We therefore need to evaluate the perceptron with the inputs

argument, which is a collection of numerical values. The result is assigned to the output

variable. The theError variable represents the difference between the desired output

and the actual output. We also need to decide how fast the perceptron is supposed to

learn. The learningRate value ranges between 0.0 and 1.0. This example arbitrarily

uses the value of 0.1.

Let’s see how to use the training in practice. Consider the perceptron p in the

following example:

p := Neuron new.

p weights: #(-1 -1).

p bias: 2.

p feed: #(0 1).

You can evaluate this code in a playground. We have pfeed: #(0 1) equal to 1. What

if we wish the perceptron to output 0 for the input #(0 1)? We would need to train p. As

we said, this training will adjust the weights and the bias. Let’s try the following:

p := Neuron new.

p weights: #(-1 -1).

p bias: 2.

p train: #(0 1) desiredOutput: 0.

p feed: #(0 1).

Chapter 1 The Perceptron Model

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

22

Evaluating this expression still outputs 1. Huh?! Were we not supposed to train our

perceptron? A perceptron learns slowly. We therefore need to train the perceptron a few

times on the desired output. We can repeatedly train the perceptron as follows:

p := Neuron new.

p weights: #(-1 -1).

p bias: 2.

10 timesRepeat: [p train: #(0 1) desiredOutput: 0].

p feed: #(0 1).

Evaluating the code produces 0, which is what we were hoping for (see Figure 1-9).

The perceptron has learned!

We can now train a perceptron to learn how to express the logical gates. Consider the

following testTrainingOR:

PerceptronTest>>testTrainingOR

 | p |

 p := self newNeuron.

 p weights: #(-1 -1).

 p bias: 2.

 40 timesRepeat: [

 p train: #(0 0) desiredOutput: 0.

 p train: #(0 1) desiredOutput: 1.

 p train: #(1 0) desiredOutput: 1.

 p train: #(1 1) desiredOutput: 1.

].

Figure 1-9.  Teaching a perceptron

Chapter 1 The Perceptron Model

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

23

 self assert: (p feed: #(0 0)) equals: 0.

 self assert: (p feed: #(0 1)) equals: 1.

 self assert: (p feed: #(1 0)) equals: 1.

 self assert: (p feed: #(1 1)) equals: 1.

The testTrainingOR method first creates a perceptron with some arbitrary weights

and bias. We successfully train it with the four possible combinations of the OR logical

gate. After the training, we verify whether the perceptron has properly learned.

In testTrainingOR, we train the perceptron 40 times on the complete set of

examples. Training a perceptron (or a large neural network) with the complete set of

examples is called an epoch. So, in this example, we train p with 40 epochs. The epoch is

the unit of training.

Similarly, we can define a test that trains a perceptron to model the NOT logical gate:

PerceptronTest>>testTrainingNOT

 | p |

 p := self newNeuron.

 p weights: #(-1).

 p bias: 2.

 40 timesRepeat: [

 p train: #(0) desiredOutput: 1.

 p train: #(1) desiredOutput: 0.

].

 self assert: (p feed: #(0)) equals: 1.

 self assert: (p feed: #(1)) equals: 0.

EXERCISE:

•	 What is the necessary minimum number of epochs to train p? Try to

reduce the number of epochs and run the test to see if it still passes.

•	 We have shown how to train a perceptron to learn the OR logical gate.

Write methods called testTrainingNOR and testTrainingAND for the

other gates we have seen.

•	 How does the value of the learningRate impact the minimum

number of epochs for the training?

Chapter 1 The Perceptron Model

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

24

1.8  �Drawing Graphs
Drawing graphs is often necessary to monitor progress made by the network. We will use

the Roassal visualization engine to visualize such evolution. Roassal offers the Grapher

API, which is dedicated to drawing graphs. You can load Roassal by executing the

following in a playground:

Metacello new

 baseline: 'Roassal2';

 repository: 'github://ObjectProfile/Roassal2/src';

 load.

The coming section uses Roassal. Make sure you have it loaded, or part of the

following code will not work or even compile. More information about Roassal may be

found on http://AgileVisualization.com and detailed loading instructions may be

found on https://github.com/ObjectProfile/Roassal2.

Here is an example of drawing a simple graph (see Figure 1-10):

g := RTGrapher new.

d := RTData new.

d connectColor: Color blue.

d points: (1 to: 100).

d y: [:x | (x / 3.14) sin].

g add: d.

g

Figure 1-10.  Example of a graph

Chapter 1 The Perceptron Model

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

25

We will make intense use of graphs throughout the book. More information about

drawing graphs can be found in the examples of Roassal.

1.9  �Predicting and 2D Points
We will now see a new application of the perceptron, which can be used to classify data

and make some predictions. We will pick a simple classification problem. Consider the

following:

•	 A space composed of red and blue points

•	 A straight line divides the red points from the blue points

Consider the following interaction between two (real) people, a teacher and a student.

The goal of the teacher is to let the student infer where the straight separation line is between

the blue and the red points. First, the teacher can give an arbitrary number of examples. Each

example is given to the student as a location and a color. After a few examples, the student

can guess the color of a random location. Intuitively, the more examples the teacher gives to

the student, the more likely the student can correctly predict the color of a location.

Some questions arise:

•	 Can we teach a perceptron to correctly assign the color of a point?

•	 How many example points do we need to train the perceptron to

make a good prediction?

Let’s pick a linear function, such as f(x) = −2x − 3. A given point (x, y) is colored in

red if y > f(x); otherwise, it is blue. Consider the following script:

somePoints := OrderedCollection new.
500 timesRepeat: [

 somePoints add: {(50 atRandom - 25) . (50 atRandom - 25)}

].

f := [:x | (-2 * x) - 3].

"We use the Roassal Grapher engine to plot our points"

g := RTGrapher new.
d := RTData new.
d dotShape

Chapter 1 The Perceptron Model

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

26

 color: [:p | (p second > (f value: p first))

 ifTrue: [Color red trans]

 ifFalse: [Color blue trans]].

d points: somePoints.

d x: #first.

d y: #second.

g add: d.

g

Inspecting this code snippet produces a graph with 500 colored dots (see Figure 1-11).

The script begins by defining a set of 500 points, ranging within a squared area of

50 (from -25 to +25). The 50atRandom expression returns a random number between

1 and 50. The expression {(50 atRandom- 25). (50atRandom- 25)} creates an

array with two random values in it. Each point is represented as an array of two

numbers. Our 500 points are kept in a collection, which is an instance of the class

OrderedCollection.

We assign to the variable f a block representing our function f(x), written in the

Pharo syntax. A block may be evaluated with the value: message. For example, we have

fvalue: 3 that returns -9 and fvalue: -2 that returns 1.

Figure 1-11.  Classifying dots along a line

Chapter 1 The Perceptron Model

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

27

The remainder of the script uses Grapher to plot the points. A point p is red

if psecond is greater than fvalue:pfirst; otherwise, it’s blue. The expression

Colorredtrans evaluates to a transparent red color.

We can add the line defined by f to the graph. Consider the small revision (see

Figure 1-12):

somePoints := OrderedCollection new.

500 timesRepeat: [

 somePoints add: {(50 atRandom - 25) . (50 atRandom - 25)}

].

f := [:x | (-2 * x) - 3].

g := RTGrapher new.

d := RTData new.

d dotShape

 color: [:p | (p second > (f value: p first))

 ifTrue: [Color red trans]

 ifFalse: [Color blue trans]].

d points: somePoints.

d x: #first.

d y: #second.

g add: d.

"Added code below"

d2 := RTData new.

d2 noDot.

d2 connectColor: Color red.

d2 points: (-15 to: 15 by: 0.1).

d2 y: f.

d2 x: #yourself.

g add: d2.

g

Chapter 1 The Perceptron Model

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

28

We will now add a perceptron to the script and see how well it guesses on which side

of the line a point falls. Consider the following script (see Figure 1-13):

f := [:x | (-2 * x) - 3].

p := Neuron new.

p weights: { 1 . 2 }.

p bias: -1.

r := Random new seed: 42.

"We are training the perceptron"

500 timesRepeat: [

 anX := (r nextInt: 50) - 25.

 anY := (r nextInt: 50) - 25.

 designedOutput := (f value: anX) >= anY

 ifTrue: [1] ifFalse: [0].

 p train: { anX . anY } desiredOutput: designedOutput

].

Figure 1-12.  Adding a separation line

Chapter 1 The Perceptron Model

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

29

"Test points"

testPoints := OrderedCollection new.

2000 timesRepeat: [

 testPoints add: { ((r nextInt: 50) - 25) . ((r nextInt: 50) - 25) }

].

g := RTGrapher new.

d := RTData new.

d dotShape

 color: [:point | (p feed: point) > 0.5

 ifTrue: [Color red trans]

 ifFalse: [Color blue trans]].

d points: testPoints.

d x: #first.

d y: #second.

g add: d.

d2 := RTData new.

d2 noDot.

d2 connectColor: Color red.

d2 points: (-15 to: 15 by: 0.1).

d2 y: f.

d2 x: #yourself.

g add: d2.

g

Chapter 1 The Perceptron Model

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

30

Figure 1-13 gives the result of the prediction. We can see that some red dots are not

properly classified. Some red dots are located on the right side of the line. In general, the

precision is good since most of the dots are placed on the correct side.

As in the previous script, the script begins with the definition of the block function

f. It then creates a perceptron with some arbitrary weights and bias. Subsequently, a

random number generator is created. In the previous scripts, to obtain a random value

between 1 and 50, we simply wrote 50atRandom. Using a random number generator, we

need to write the following:

r:=Random new seed: 42.

rnextInt: 50.

Why is this? First of all, being able to generate random numbers is necessary in

all stochastic approaches, including neural networks. Although randomness is very

important, we usually do not want to let such a random value create situations that

cannot be reproduced. Imagine that our code behaves erratically, likely due to a random

value. How can we track down the anomaly in our code? If we have truly random

numbers, it means that executing the same piece of code twice may produce (even

Figure 1-13.  Predicting the color of the dot

Chapter 1 The Perceptron Model

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

31

slightly) different behaviors. It may therefore be complicated to properly test. Instead, we

will use a random generator with a known seed to produce a known sequence of random

numbers. Consider this expression:

(1to: 5)collect: [:i| 50atRandom]

Each time you evaluate this expression, you will obtain a new sequence of five

random numbers. Using a generator, you have the following:

r:=Random new seed: 42.

(1to: 5)collect: [:i|rnextInt: 50]

Evaluating this small script several times always produces the same sequence. This is

the key to having reproducible and deterministic behavior. In the remainder of the book,

we will frequently use random number generators.

Our script then trains a perceptron with 500 points. Next, we create 2,000 test

points, which will be displayed on the screen using Grapher. We wrote the condition

(pfeed:point)> 0.5 to color a point as red. We could instead have (pfeed:point)= 1,

but in an upcoming chapter we will replace the perceptron with another kind of artificial

neuron, which will not exactly produce the value 1.

We see that the area of blue and red points is very close to the straight line. This

means that our perceptron is able to classify points with a relatively good accuracy.

What if we reduce the number of trainings of our perceptron? You can try this by

changing the value 500 to, let’s say, 100. What is the result? The perceptron does not

classify points as accurately. In general, the more training a perceptron has, the more

accurate it will be (however, this is not always true with neural networks, as we will see

later on).

EXERCISE: Reduce the number of times the perceptron is trained. Verify that

lowering the value below 500 leads to some errors by the perceptron, illustrated as a

mismatch between the red line and the area of colored points.

1.10  �Measuring the Precision
We have seen that the accuracy of a perceptron in classifying points is very dependent

on the number of times we train it. How much training do we need to have acceptable

precision? Keeping track of the precision and training is essential to see how good our

system is at classification.

Chapter 1 The Perceptron Model

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

32

Evaluate the following script in a playground:

learningCurve := OrderedCollection new.

f := [:x | (-2 * x) - 3].

0 to: 2000 by: 10 do: [:nbOfTrained |

 r := Random new seed: 42.

 p := Neuron new.

 p weights: #(1 2).

 p bias: -1.

 nbOfTrained timesRepeat: [

 anX := (r nextInt: 50) - 25.

 anY := (r nextInt: 50) - 25.

 trainedOutput := (f value: anX) >= anY ifTrue: [1] ifFalse:

 [0].

 p train: (Array with: anX with: anY) desiredOutput:

 trainedOutput].

 nbOfGood := 0.

 nbOfTries := 1000.

 nbOfTries timesRepeat: [

 anX := (r nextInt: 50) - 25.

 anY := (r nextInt: 50)- 25.

 realOutput := (f value: anX) >= anY ifTrue: [1] ifFalse: [0].

 ((p feed: { anX . anY }) - realOutput) abs < 0.2

 ifTrue: [nbOfGood := nbOfGood + 1].

].

 learningCurve add: { nbOfTrained . (nbOfGood / nbOfTries) }.

].

g := RTGrapher new.

d := RTData new.

d noDot.

d connectColor: Color blue.

d points: learningCurve.

d x: #first.

d y: #second.

Chapter 1 The Perceptron Model

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

33

g add: d.

g axisY title: 'Precision'.

g axisX noDecimal; title: 'Training iteration'.

g

The script produces a curve with the precision on the y axis and the number

of trainings on the x axis (see Figure 1-14). We see that the perceptron started with

a rather poor performance, around 0.25. However, it quickly steps up to reach a

precision close to 1.0. After a few epochs, our perceptron can guess the color of a dot

with good precision.

1.11  �Historical Perspective
Warren S. McCulloch and Walter Pitts were the first to express a computation in terms

of artificial neurons. They did so in 1943, in their seminal article, “A Logical Calculus

of the Ideas Immanent in Nervous Activity.” This paper had a significant impact on

the field of artificial intelligence. It is interesting to read about the knowledge we had

about biological neurons at that time. The perceptron model presented in this chapter

originated from this seminal paper.

Figure 1-14.  Precision of the dot classification task

Chapter 1 The Perceptron Model

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

34

1.12  �Exercises
•	 We have seen how the perceptron can be used to implement some

logical gates. In particular, we have seen how AND, OR, and NOT

can be implemented. What about the XOR gate? Can you train a

perceptron to learn XOR behavior? (As a reminder, we have 0XOR0 =

0, 0XOR1 = 1, 1XOR0 = 1, and 1XOR1 = 0.)

•	 We have seen how five perceptrons may be combined to form a

digital comparator. Do you think you can train the combination of

these five perceptrons as a whole to learn the behavior of the digital

comparator?

1.13  �What Have We Seen in This Chapter?
This chapter covered the following topics:

•	 Providing the concept of a perceptron. We defined a perceptron,

an essential abstraction that we will build upon in upcoming

chapters.

•	 A step-by-step guide to programming with Pharo. While we

implemented the perceptron, we sketched out how programming

happens in Pharo. This chapter is by no means an introduction

to Pharo. Instead, it is an example of how to use the Pharo

programming environment. In particular, we saw how to write

code using the system browser and how to run code using the

playground. These two tools are fundamental and deserve to be

well understood.

•	 Implementing a perceptron. We implemented and tested the

perceptron. Testing is important, as it is a way to formalize the

behavior we wish for the perceptron.

•	 Making a perceptron learn. We saw a rudimentary way to make a

perceptron learn. It is rather simple, but, as you will see in future

chapters, the very same technique can bring us very far.

Chapter 1 The Perceptron Model

35

1.14  �Further Reading About Pharo
Pharo is a wonderful programming language and a live, dynamic programming

environment. This first chapter has given you a taste of programming with Pharo.

However, it is highly recommended that you seek further material in order to feel truly

comfortable with Pharo and learn what makes it powerful. In particular, the Pharo

by Example book is an excellent introduction to learn and master Pharo. The website

http://books.pharo.org contains a free copy of the book as well as many others.

Check it out!

Chapter 1 The Perceptron Model

69
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_4

CHAPTER 4

Theory on Learning
Understanding the learning algorithm that’s used with neural networks involves a fair

dose of mathematical notations. This chapter details some relevant theoretical aspects

of the way that neural networks operate. We will therefore review the notions of loss

functions and gradient descent. Note that this chapter is by no means a complete

description of how networks learn. As indicated at the end of this chapter, many other

people have done an excellent job of accurately describing the theoretical foundation of

learning and optimization mechanisms. Instead, this chapter is meant to back up some

aspects of the implementation explained in the previous chapters, with the assumption

that you are comfortable with basic differential calculus.

You can safely skip this chapter if the theory behind neural networks does not

interest you.

This chapter intensively uses Roassal to visualize data. You therefore need to have it

loaded, as indicated in the previous chapters, in order to run the scripts in this chapter.

4.1  �Loss Function
A network needs to learn in order to reduce the amount of errors it makes when making

a prediction. Such a prediction could be used either to classify data or to run regression

analysis. It is therefore essential to have a way to measure the errors made by a network.

This is exactly what a loss function does.

A loss function is a measure of the error made by a particular model. The loss

function is also commonly called the error function or the cost function. To illustrate the

use and need of a loss function, let’s consider the following problem: for a given set of

points, what is the straight line that is the closest to these points?

Consider a set of four points:

points :={(1 @ 3.0). (3 @ 5.2). (2 @ 4.1). (4 @ 7.5)}.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

70

g := RTGrapher new.

d := RTData new.

d dotShape color: Color red.

d points: points.

d x: #x; y: #y.

g add: d.

g

Figure 4-1.  Plotting four points

Figure 4-1 shows the plot of these four points. Identifying a straight line that is close

to these points means that we need to find the best value of a and b to have the function

y = f(x) = a * x + b that is closest to these points. Since the points are not perfectly

aligned, there is no line that exactly passes through all of them.

Let’s pick an arbitrary a and b and draw a line:

points :={(1 @ 3.0). (3 @ 5.2). (2 @ 4.1). (4 @ 7.5)}.

a := 0.5.

b := 3.

f := [:x | a * x + b].

g := RTGrapher new.

d := RTData new.

d dotShape color: Color red.

d points: points.

Chapter 4 Theory on Learning

27

28

29

30

31

32

33

71

d x: #x; y: #y.

g add: d.

d := RTData new.

d noDot; connectColor: Color blue.

d points: (0 to: 5).

d x: #yourself.

d y: f.

g add: d.

g

Figure 4-2.  Points and a line

Figure 4-2 shows the points and the line that we arbitrarily defined. As you can see,

the values we picked for a and b are not really good since the line is rather far away

from the first and the fourth points. If we want to look for a better a and b, we need to

translate in some way how far the line is from the points. We know our line is not great,

but how bad is it? It is important that we have some way of measuring how good our

approximation is.

A loss function is a mathematical function that maps an event, described as a set of

values of one or more variables, into a numerical value. The numerical value given by the

loss function intuitively represents the cost associated with the event, generally a numerical

value. In this case, the loss function approximates the distance between the straight line

with the four points. If the line is close to the four points, then the cost will be relatively low.

Conversely, if it is far away from the points, the cost will be high. In our case, let’s make the

loss function tell us how off the straight line approximating the four points actually is.

Chapter 4 Theory on Learning

34

35

36

37

38

39

40

41

42

72

A common loss function is the mean squared error (MSE). This function, in this case,

is defined as the J function, as follows:

	
J a b

n
y f x

i

n

i a b i,() = - ()()
=
å1

1

2

, 	

The J function is the mean squared difference between our line and each of the

points. Note that J is always positive. The J function indicates how close the f function

is to the points (xi, yi), for two given values of a and b. Note that the variables x1, ...,

xn, y1, ..., yn represent the data for which we would like to tune our model. In this

case, these variables represent the points (x1, y1), ..., (xn, yn). We can compute the

value of J as follows:

points :={(1 @ 3.0) . (3 @ 5.2) . (2 @ 4.1) . (4 @ 7.5)}.

a := 0.5.

b := 3.

f := [:x | a * x + b].

j := (points collect: [:p | (p y - (f value: p x)) squared]) sum /

 points size.

The script returns 1.75. If we change a to 2 and b to -0.5, J equals 0.67. If you draw

the line with a:=2 and b:=-0.5 , you will see that it is closer to the red dots.

This example highlights an important use of the loss function. Changing parameters

(a and b in this case) may increase or decrease the MSE. A smaller MSE indicates that

our parameters are better since our model makes fewer mistakes.

How does this simple line relate to the learning mechanism of a neural network? The

backpropagation algorithm is directly based on this mechanism, but on a larger scale.

In this example we look for two values (a and b); in a neural network, we could look for

thousands or millions of values, which correspond to the weights and biases.

Let’s come back to the points and lines example. Our original problem was to find

the straight line that is the closest to the points. This problem can therefore be translated

into looking for an a and b that minimize the MSE value. Looking for these two values

manually is rather tedious and laborious. The natural next step is automatically find the

a and b values that minimize the loss function.

Chapter 4 Theory on Learning

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

73

4.2  �Gradient Descent
We know that modifying the a value changes the slope of our line, and modifying the b

value moves the point in which the line intersects the Y axis. Therefore, each of the values

modifies our line in a particular way. We are indeed searching for the best a and b, but

we cannot try all the possibilities, essentially for two reasons: (i) it could be extremely

expensive (trying all the combinations of possible values of a and b is a daunting task), and

(ii) since a and b are continuous values, in theory, there is no finite set of values to try out.

In a general case, we have many parameters to search and it is not clear what each of

them do. To express a small change in this model, we introduce the derivative. Since we

focus on a small change of a single parameter in a multivariable function, we need to use

a partial derivative.

The gradient descent is a general mechanism to look for an optimal model

configuration. Gradient descent is intensively used in the field of mathematical

optimization, including when making a neural network learn.

First, we need to calculate the partial derivative of MSE(a, b) with respect to each

variable’s value. Remember the J function:

	
J a b

n
y f x

i

n

i a b i,() = - ()()
=
å1

1

2

, 	

If we expand the f function in J, we obtain the following:

	
J a b

n
y a x b

i

n

i i,() = - +()()
=
å1

1

2
.

	

We can deduce the following partial derivatives with respect to a and b:

	

¶ ()
¶

=
-

- +()()
¶ ()
¶

=
-

- +()(

å

å

J a b

a n
x y a x b

J a b

a n
y a x b

i
i i i

i
i i

,

,

2

2

. .

.))
	

Applying the derivative functions
¶ ()
¶

J a b

a

,
 and

¶ ()
¶

J a b

b

,
 to a given a and b returns

the direction to move the parameter in order to decrease the overall J(a, b).

Chapter 4 Theory on Learning

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

74

We update a and b as follows:

	

a a
J a b

a
a b

b b
J a b

b
a b

: .

: .

= -
¶ ()
¶

()

= -
¶ ()
¶

()

a

a

,
,

,
, 	

The α value is the learning rate, indicating how fast the a and b should move toward

the direction the derivative indicates.

Repeating the update of a and b will reduce the J loss function, which over time

indicates that the model is improving. The following script demonstrates the whole

process (we call α the learningRate):

points :={(1 @ 3.0) . (3 @ 5.2) . (2 @ 4.1) . (4 @ 7.5)}.

a := 0.5.

b := 3.

f := [:x | x * a + b].

learningRate := 0.01.

1000 timesRepeat: [

 deriMSEa := (2 / points size) * (points collect: [:aPoint | aPoint

 x * (aPoint y - (f value: aPoint x)) negated]) sum.

deriMSEb := (2 / points size) * (points collect: [:aPoint | 1 * (

 aPoint y - (f value: aPoint x)) negated]) sum.

 a := a - (learningRate * deriMSEa).

 b := b - (learningRate * deriMSEb).

].

g := RTGrapher new.

d := RTData new.

d dotShape color: Color red.

d points: points.

d x: #x; y: #y.

g add: d.

Chapter 4 Theory on Learning

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

75

d := RTData new.

d noDot; connectColor: Color blue.

d dotShape color: Color blue.

d points: (0 to: 5).

d x: #yourself.

d y: f.

g add: d.

g

Figure 4-3.  Gradient descent

Figure 4-3 gives the result of the script execution. The script computes the values

of a and b that make the line closer to the four points. Said in other terms, the gradient

descent technique is applied to minimize the J(a, b) cost function. Actually, after 1,000

iterations, we approximate the minimum of J at point (1.42, 1.39).

Chapter 4 Theory on Learning

121

122

123

124

125

126

127

128

76

4.3  �Parameter Update
The previous script may look a bit mysterious. We repeatedly decrease the a and b values

with a little step, the result of multiplying a derivative value by learningRate. For some

reason, the cost function decreases. Why is that? To answer this question, we need to

dive deeper into some essential mathematical concepts.

Assuming a function f and a known value x, we write f(x). Knowing f(x), the Taylor

series is used to approximate the value of f at x + e, where e is a very small value. Back

at the beginning of the 18th Century, it was discovered that, in the case of an infinitely

differentiable function (as neural networks operate with), we can approximate the value

of f(x + e) as follows:

	 f x e f x ef x e f x+() = () + () + () +¼¢¢’ / ! / !1 22 	

Why is computing f(x + e) such a thing? Well, a neural network is about making

predictions/regressions, and learning is about determining which changes in the weights

and biases make the network perform better, which is indirectly expressed as f(x + e).

If f is the loss function, that means we would like to change weights and biases in such a

way that f(x + e) is closer to 0 than f(x).

If we know f(x) and we search for f(x + e) to be less than f(x), we should change

the parameters of the network to follow a descending slope of f . For a linear function,

we can approximate up to the first derivative as f(x + e) = f(x) + ef'(x). Therefore,

to minimize f(x + e), we need ef'(x) to decrease f(x). The only arbitrary value is e, so

we need to find an e that minimizes f . The derivative ef'(x) with respect to e is:

	

d e f x

de
f x

¢
¢

()()
= () 	

We can take e = f'(x). But in this case f maximizes, so we can choose e = −f'(x),

which will minimize f . Replacing in our Taylor series:

	

f x e f x ef x

f x f x f x f x

+() = () + ()
- ()() = () + ()

¢

¢ ¢ 2
	

We can therefore deduce f(x − f'(x)) < f(x) since we know that f'(x)2 is a

positive value (i.e., any value multiplied by itself is always positive). If we update x by

Chapter 4 Theory on Learning

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

77

subtracting the derivative of f, then f(x) is getting closer to 0. We can add the learning

value with e = −αf'(x).

We can write the following expression:

	 x x f x:= - ()¢a 	

This expression reduces the value of f(x), if f ′(x) ≠ 0. Fortunately, we took care of

choosing the cost function J to comply with these requirements. Otherwise, we would

get stuck and stop learning.

Consider the following script:

points := {(1 @ 3.0) . (3 @ 5.2) . (2 @ 4.1) . (4 @ 7.5)}.

a := 0.5.

b := 3.

f := [:x | x * a + b].

learningRate := 0.01.

result := OrderedCollection new.

1000 timesRepeat: [

 deriMSEa := (2 / points size) * (points collect: [:aPoint | aPoint

 x * (aPoint y - (f value: aPoint x)) negated]) sum.

 deriMSEb := (2 / points size) * (points collect: [:aPoint | 1 * (

 aPoint y - (f value: aPoint x)) negated]) sum.

 a := a - (learningRate * deriMSEa).

 b := b - (learningRate * deriMSEb).

 mse := (points collect: [:aPoint | (aPoint y - (f value: aPoint x)

) squared]) sum / points size.

 result add: mse].

g := RTGrapher new.

d := RTData new.

d noDot; connectColor: Color blue.

d points: result.

d y: #yourself.

g add: d.

g

Chapter 4 Theory on Learning

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

78

Figure 4-4 shows the variation of the cost function at each update of the a and b

values. You can see that it gets closer to 0, but still remains far away. The reason is that

since the points we used are not perfectly lined up, there is no a and b that make the cost

value equal to 0. If you pick points that are perfectly lined up, (e.g., {(4@6.5). (2@3.5).

(2@3.5). (2@3.5)}), then the cost function is asymptotic to 0.

4.4  �Gradient Descent in Our Implementation
In Chapter 3, when we presented the activation function, we generalized the way an

artificial neuron learns using the following rules:

	

d s
w w d a

d a

= -()* ()
+() = () + * *
+() = () + *

¢d z z

t t x

b t b t
i i i1

1 	

in which:

•	 δ is the difference between the desired output and the actual output

of the neuron

•	 d is the example output, which is the desired value

•	 z is the actual output of the perceptron

•	 σ is the activation function (either the step or sigmoid function)

Figure 4-4.  Variation of the MSE cost function

Chapter 4 Theory on Learning

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

79

•	 σ' is the derivative function of σ

•	 i is the weight index, which ranges from 1 to N and is the number of

weights contained in the neuron

•	 wi(t) is the weight i at a given time t

•	 b(t) is the bias at a given time t

•	 xi corresponds to the provided input at index i

•	 α is the learning rate, a small positive value close to 0

There is a strong similarity to the update rules we proposed for the a and b values. In

this case, we have:

	

¶
¶

= -()* ()*

¶
¶

= -()* ()

¢

¢

J
d z z x

J

b
d z z

i
iw

s

s
	

These formulas are exposed in the Neuron>>adjustDeltaWith:, NeuronLayer>>

backwardPropagateError:, and NeuronLayer>>backwardPropagateError methods.

4.5  �Stochastic Gradient Descent
The gradient descent computes the gradient of the loss function from the whole dataset.

This is often difficult because minimum local points and saddle points may be found

while searching for the global minimum. Furthermore, gradient descent adjusts the

parameters based on the sum of the accumulated errors over all samples. This means

that parameters are updated only after predicting each point of the whole dataset. This

is becomes impracticable as soon as the dataset is large. You can see this in the previous

section, where we used sum when computing deriMSEa and deriMSEb.

An alternative to gradient descent is stochastic gradient descent (SGD). With SCG, you

first need to shuffle your training examples and divide them into small sets of datasets.

Parameters are updated only after running a whole mini-batch. As a consequence,

training over the whole dataset is faster using SGD. We will illustrate the idea with the

current regression problem.

Chapter 4 Theory on Learning

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

80

Consider the previous script, but slightly updated to take a larger dataset:

nbOfPoints := 100.

r := Random seed: 42.

points := (1 to: nbOfPoints) collect: [:i | (i / nbOfPoints) asFloat @

 ((r next * 40 - 20 + i) / nbOfPoints) asFloat].

a := 0.5.

b := 3.

learningRate := 0.01.

f := [:x | x * a + b].

result := OrderedCollection new.

3000 timesRepeat: [

 deriMSEa := (2 / points size) * (points collect: [:aPoint | aPoint

 x * (aPoint y - (f value: aPoint x)) negated]) sum.

 deriMSEb := (2 / points size) * (points collect: [:aPoint | 1 * (

 aPoint y - (f value: aPoint x)) negated]) sum.

 a := a - (learningRate * deriMSEa).

 b := b - (learningRate * deriMSEb).

 mse := (points collect: [:aPoint | (aPoint y - (f value: aPoint x)

) squared]) sum / points size.

 result add: mse].

g := RTGrapher new.

d := RTData new.

d noDot; connectColor: Color blue.

d points: result.

d y: #yourself.

g add: d.

g.

Chapter 4 Theory on Learning

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

81

The script creates a dataset made up of 100 points. Points are located around the line

y = x (the following script will illustrate this). Figure 4-5 indicates that our model is able

to learn from the dataset using a gradient descent.

We can plot the 100 points and the line we found by appending the following script

to the previous one:

...

g := RTGrapher new.

d := RTData new.

d dotShape color: Color red.

d points: points.

d y: #y.

d x: #x.

g add: d.

Figure 4-5.  Approximating a line passing by 100 points

Chapter 4 Theory on Learning

254

255

256

257

258

259

260

261

262

263

264

265

266

82

d2 := RTData new.

d2 noDot; connectColor: Color blue.

d2 points: (0 to: 1.0 by: 0.01).

d2 x: #yourself.

d2 y: f.

g add: d2.

g

Figure 4-6.  Approximating a line passing by 100 points

Figure 4-6 shows the layout of the dataset. Our model found a relatively good

approximation.

Let’s rewrite this script using a stochastic gradient descent algorithm:

nbOfPoints := 100.

r := Random seed: 42.

points := (1 to: nbOfPoints) collect: [:i | (i / nbOfPoints) asFloat @

((r next * 40 - 20 + i) / nbOfPoints) asFloat].

Chapter 4 Theory on Learning

267

268

269

270

271

272

273

83

currentBatch := OrderedCollection new.

miniBatches := OrderedCollection new.

batchSize := 5.

1 to: points size do: [:index |

 currentBatch add: (points at: index).

 index \\ batchSize = 0

 ifTrue: [miniBatches add: currentBatch copy. currentBatch :=

 OrderedCollection new.]].

miniBatches.

a := 0.5.

b := 3.

learningRate := 0.01.

f := [:x | x * a + b].

result := OrderedCollection new.

1000 timesRepeat: [

 accumulatedMse := 0.

 miniBatches do: [:pointsBatch |

 deriMSEa := (2 / pointsBatch size) * (pointsBatch collect: [:

 aPoint | aPoint x * (aPoint y - (f value: aPoint x)) negated

]) sum.

 deriMSEb := (2 / pointsBatch size) * (pointsBatch collect: [:

 aPoint | 1 * (aPoint y - (f value: aPoint x)) negated]) sum

 .

 a := a - (learningRate * deriMSEa).

 b := b - (learningRate * deriMSEb).

 mse := (pointsBatch collect: [:aPoint | (aPoint y - (f value:

 aPoint x)) squared]) sum / points size.

 accumulatedMse := accumulatedMse + mse

].

 result add: accumulatedMse].

g := RTGrapher new.

d := RTData new.

d noDot; connectColor: Color blue.

Chapter 4 Theory on Learning

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

84

d points: result.

d y: #yourself.

g add: d.

g.

This script is very similar to the version using gradient descent. The only differences are:

•	 The miniBatches variable contains batches of points. Each batch has

a size of batchSize points.

•	 Instead of learning from points, the whole dataset, this script

incrementally updates the a and b parameters after running over the

pointsBatch mini-batch.

The result of the script is very similar to that of the gradient descent, as shown in

Figure 4-7.

Figure 4-7.  Result of the stochastic gradient descent

Chapter 4 Theory on Learning

307

308

309

310

311

312

313

314

315

316

317

318

85

Figure 4-7 shows a very similar shape of the error function. This means this model is

able to comfortably learn from our dataset, just as when we used the gradient descent.

The difference between the stochastic and non-stochastic algorithm is reflected

when measuring performance.

Consider this script, which use the gradient descent algorithm:

[nbOfPoints := 30000.

r := Random seed: 42.

points := (1 to: nbOfPoints) collect: [:i | (i / nbOfPoints) asFloat @

 ((r next * 40 - 20 + i) / nbOfPoints) asFloat].

a := 0.5.

b := 3.

f := [:x | x * a + b].

learningRate := 0.01.

result := OrderedCollection new.

3000 timesRepeat: [

 deriMSEa := (2 / points size) * (points collect: [:aPoint | aPoint

 x * (aPoint y - (f value: aPoint x)) negated]) sum.

 deriMSEb := (2 / points size) * (points collect: [:aPoint | 1 * (

 aPoint y - (f value: aPoint x)) negated]) sum.

 a := a - (learningRate * deriMSEa).

 b := b - (learningRate * deriMSEb).

 mse := (points collect: [:aPoint | (aPoint y - (f value: aPoint x)

) squared]) sum / points size.

 result add: mse].] timeToRun

The previous script returns 0:00:00:27.479 on our computer. Running the script

takes over 27 seconds using 3.2GHz Intel Core i5, with 16GB of RAM.

Consider the stochastic version:

[nbOfPoints := 30000.

r := Random seed: 42.

points := (1 to: nbOfPoints) collect: [:i | (i / nbOfPoints) asFloat @

 ((r next * 40 - 20 + i) / nbOfPoints) asFloat].

currentBatch := OrderedCollection new.

Chapter 4 Theory on Learning

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

86

miniBatches := OrderedCollection new.

batchSize := 5.

1 to: points size do: [:index |

 currentBatch add: (points at: index).

 index \\ batchSize = 0

 ifTrue: [miniBatches add: currentBatch copy. currentBatch :=

 OrderedCollection new.]].

a := 0.5.

b := 3.

f := [:x | x * a + b].

learningRate := 0.01.

result := OrderedCollection new.

1000 timesRepeat: [

 accumulatedMse := 0.

 miniBatches do: [:pointsBatch |

 deriMSEa := (2 / pointsBatch size) * (pointsBatch collect: [:

 �aPoint | aPoint x * (aPoint y - (f value: aPoint x))

negated

]) sum.

 deriMSEb := (2 / pointsBatch size) * (pointsBatch collect: [:

 aPoint | 1 * (aPoint y - (f value: aPoint x)) negated]) sum

 .

 a := a - (learningRate * deriMSEa).

 b := b - (learningRate * deriMSEb).

 mse := (pointsBatch collect: [:aPoint | (aPoint y - (f value:

 aPoint x)) squared]) sum / points size.

 accumulatedMse := accumulatedMse + mse

].

 result add: accumulatedMse].

] timeToRun

The script returns 0:00:00:18.847. This takes almost 10 seconds less than the

previous script, without significantly reducing the quality of the training.

Chapter 4 Theory on Learning

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

87

4.6  �The Derivative of the Sigmoid Function
The SigmoidAF>>derivative: method is defined as follows:

SigmoidAF>>derivative: output

 ^ output * (1 - output)

This section describes why this method is defined that way. As we previously saw, we

have ¶() =
+ -x

e x

1

1
.

Therefore, we also have the following:

	

d

dx
x

d

dx e
d

dx
e

x

x

¶() =
+

= +()

-

- -

1

1

1
1

	

Since the derivative of xn is nxn−1, we have

= −(1 + e−x)−2(−e−x)

By rearranging the terms, we get

	

=
+()

=
+ +

=
+

+()-
+

=
+

-

-

-

-

-

-

-

-

-

e

e

e

e

e

e

e

e

e

x

x

x

x

x

x

x

x

x

1

1

1 1

1

1

1 1

1

1

1

2

.

.

.
11

1

1

1

1

1
1

1

1

1

+
+

-
+

æ

è
ç

ö

ø
÷

=
+

-
+

æ
è
ç

ö
ø
÷

= () - ()

-

- -

- -

e

e e

e e

x x

x

x x

x x
.

.s s(() 	

This result is expressed in the SigmoidAF>>derivative: method, which was shown

in the previous chapters.

Chapter 4 Theory on Learning

383

384

385

386

387

388

389

390

391

392

393

394

395

396

88

4.7  �What Have We Seen in This Chapter?
This chapter presented some of theoretical foundations of the implementation found in

the previous chapters. In particular, we learned about:

•	 The loss function as a measure of the amount of error made by a

particular model, such as a neural network.

•	 The notion of gradient descent and the benefits of stochastic gradient

descent.

•	 Connecting some aspects of our implementation with some

theoretical properties of making a network learn.

4.8  �Further Reading
A number of excellent bibliographical references exist. Deep Learning by Goodfellow,

et al., published by MIT Press, is a reference of the field. Note that this book does

not mention programming and implementation detail. It lays out the theoretical

foundation of deep learning. A free version of the Deep Learning book is available from

www.deeplearningbook.org.

Chapter 4 Theory on Learning

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

53
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_3

CHAPTER 3

Neural Networks
The previous chapter covered the design and implementation of an individual neuron.

This chapter builds upon the effort initiated in previous chapters by connecting

multiple neurons. We provide a complete implementation of a neural network and a

backpropagation algorithm, which brings us to the core of the first part of the book.

3.1  �General Architecture
An artificial neural network is a computing system inspired by the biological neural

networks found in animal brains. An artificial neural network is a collection of

connected artificial neurons. Each connection between artificial neurons can transmit

a signal from one to another. The artificial neuron that receives the signal can process

it, and then signal neurons connected to it. Artificial neural networks are commonly

employed to perform particular tasks, including clustering, classification, prediction,

and pattern recognition. In neural networks, just as with the perceptron and sigmoid

neuron, knowledge is acquired through learning.

Figure 3-1.  Example of a neural network

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

54

Figure 3-1 shows a simple neural network made up of five neurons, three inputs,

and two outputs. The left-most column is called the input layer. The input layer simply

transmits some values to the hidden layer, without doing anything in particular. In

Figure 3-1, the input layer is made up of three inputs—x1, x2, and x3. The middle of the

network contains the hidden layers. This network contains only one hidden layer, made

up of three neurons. However, a network may contain several hidden layers. The right-

most column of the network is called output layer, and it contains two neurons.

All values transmitted between neurons are numerical values. Up to know, we have

mostly been dealing with the numbers 0 and 1. However, sigmoid neurons accept and

produce floating values. The output values, o1 and o2, are numbers ranging between 0

and 1. Since all the neurons we consider have a sigmoid activation function, only values

ranging between 0 and 1 are transmitted between neuron layers.

The depicted neural network is called fully-connected since each neuron of the

hidden layer is connected to all the neurons of the input layer and all the neurons

of the output layer. Such a network corresponds to the simplest architecture. More

sophisticated architecture include recurrent neural networks and convolutional neural

networks, which are not covered in this book.

This chapter provides an implementation of abstraction we informally presented.

The next chapter will uncover some theoretical aspects of the fully-connected network.

3.2  �Neural Layer
We define a layer as a set of neurons. Layers are connected between them, and a set of

layers form a neural network. We will represent a layer with the NeuronLayer class.

Each layer knows about the preceding layer using the previousLayer variable and

the following layer using nextLayer. The learningRate variable refers to the learning

rate of the layer. We define the NeuronLayer class as follows:

Object subclass: #NeuronLayer

 instanceVariableNames: 'previousLayer nextLayer neurons'

 classVariableNames: ''

 package: 'NeuralNetwork'

A layer contains some neurons, kept in the neurons variable. We can set the learning

rate of a layer to 0.1 by default. A neuron layer may be initialized using the following

method:

Chapter 3 Neural Networks

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

55

NeuronLayer>>initializeNbOfNeurons: nbOfNeurons nbOfWeights:

 nbOfWeights using: random

 "Main method to initialize a neuron layer

 nbOfNeurons : number of neurons the layer should be made of

 nbOfWeights : number of weights each neuron should have

 random : a random number generator

 "|

 weights |

 neurons := (1 to: nbOfNeurons) collect: [:i |

 weights := (1 to: nbOfWeights) collect: [:ii | random next * 4

 - 2].

 Neuron new sigmoid; weights: weights; bias: (random next * 4 -

 2)].

 self learningRate: 0.1

The initializeNbOfNeurons:nbOfWeights:using: method accepts three arguments.

The first one, nbOfNeurons, is an integer value and represents the number of neurons the

layer should contain. The second argument, nbOfWeights, is an integer that indicates

the number of weights each neuron should have. This number of weights reflects the

number of input values the layer is accepting. The last argument, random, is a random

number generator. As in the previous chapter, using a random number generator is

useful to make the behavior deterministic. This random number generator is used to

initialize each individual neuron.

The method first creates nbOfNeurons different neurons, each having nbOfWeights

weight values. Each weight is a random number between −2 and +2. These boundaries

are arbitrarily chosen. The expression random next produces a random number within

0 and 1. Multiplying it by four and subtracting two produces a value between -2 and +2.

Each neuron has a sigmoid activation function, thanks to the sigmoid message.

Lastly, the method sets the learning rate of each neuron to 0.1. The learningRate:

method is defined as follows:

NeuronLayer>>learningRate: aLearningRate

 "Set the learning rate for all the neurons

 Note that this method should be called after configuring the

Chapter 3 Neural Networks

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

56

 network, and _not_ before"

 self assert: [neurons notEmpty] description: 'learningRate:

 should be invoked after configuring the layer'.

 neurons do: [: n | n learningRate: aLearningRate]

Forward feeding the layer is an essential operation consisting of feeding each neuron

and forwarding the values to the next layer. We define the feed: method as follows:

NeuronLayer>>feed: someInputValues

 "Feed the neuron layer with some inputs"

 | someOutputs |

 someOutputs := neurons collect: [:n | n feed: someInputValues] as

 : Array.

 ^ self isOutputLayer

 ifTrue: [someOutputs]

 ifFalse: [nextLayer feed: someOutputs]

The method invokes feed: on each of its neurons (the Neuron>>feed: method is

detailed in the previous chapter). The results are then kept as an array. The method then

checks if the layer is an output layer. If this is the case, the result of the method is simply

the results of each neuron. If the layer is not an output (i.e., it is a hidden layer), we feed-

forward the computed values to the next layer.

We need to determine if a neuron layer is the output layer or not. We can easily do

this using the isOutputLayer predicate:

NeuronLayer>>isOutputLayer

 "Return true if the layer is the output layer (i.e., the last layer

 , right-most, in the network)"

 ^ self nextLayer isNil

We will also need a way to hook layers together:

NeuronLayer>>nextLayer: aLayer

 "Set the next layer"

 nextLayer := aLayer

Chapter 3 Neural Networks

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

57

To access the next layer, we need the following method:

NeuronLayer>>nextLayer

 "Return the next layer connected to me"

 ^ nextLayer

Similarly, we need a way to set and access the previous layer:

NeuronLayer>>previousLayer: aLayer

 "Set the previous layer"

 previousLayer := aLayer

Similarly:

NeuronLayer>>previousLayer

 "Return the previous layer connected to me"

 ^ previousLayer

Neurons need to be accessed from a layer:

NeuronLayer>>neurons

 "Return the neurons I am composed of"

 ^ neurons

We also need the size of the layer to be accessible:

NeuronLayer>>numberOfNeurons

 "Return the number of neurons in the layer"

 ^ neurons size

We have now defined most of the NeuronLayer class. We can begin testing the class:

TestCase subclass: #NeuronLayerTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

A simple test may be:

NeuronLayerTest>>testBasic

 | nl result r |

 r := Random seed: 42.

Chapter 3 Neural Networks

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

58

 nl := NeuronLayer new.

 nl initializeNbOfNeurons: 3 nbOfWeights: 4 using: r.

 self assert: nl isOutputLayer.

 result := nl feed: #(1 2 3 4).

 self assert: result size equals: 3.

 result

 with: #(0.03700050130978758 0.9051275824569505

 0.9815269659126287)

 do: [:res :test | self assert: (res closeTo: test precision:

 0.0000000001)]

The testBasic method creates a new neuron layer, composed of three neurons,

each having four weights and one bias. The weights and biases are initialized using the

random number generator, r.

We can also build a chain of layers and see how they perform:

NeuronLayerTest>>testOutputLayer

 | nl1 nl2 result random |

 random := Random seed: 42.

 nl1 := NeuronLayer new.

 nl1 initializeNbOfNeurons: 3 nbOfWeights: 4 using: random.

 nl2 := NeuronLayer new.

 nl2 initializeNbOfNeurons: 4 nbOfWeights: 3 using: random.

 nl1 nextLayer: nl2.

 self deny: nl1 isOutputLayer.

 self assert: nl2 isOutputLayer.

 result := nl1 feed: #(1 2 3 4).

 "Since nl2 has 4 neurons, we will obtain 4 outputs"

 self assert: result size equals: 4.

 result

 with: #(0.03089402289518759 0.9220488835263312

 0.5200462953493654 0.20276557516858304)

 do: [:r :test | self assert: (r closeTo: test precision:

 0.0000000001)]

We can now wrap a chain of layers into a neural network.

Chapter 3 Neural Networks

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

59

3.3  �Modeling a Neural Network
We will represent a neural network as an instance of the NNetwork class:

Object subclass: #NNetwork

 instanceVariableNames: 'layers errors precisions'

 classVariableNames: ''

 package: 'NeuralNetwork'

We define a neural network simply as a container of layers. We also add an errors

instance variable that will be useful for tracing the evolution of error during the

learning phase.

The initialization of a network is done through the initialize method:

NNetwork>>initialize

 super initialize.

 layers := OrderedCollection new.

 errors := OrderedCollection new.

 precisions := OrderedCollection new.

The layers, errors, and precisions instance variables are initialized with an empty

collection. The layers variable will refer to an instance of the NeuronLayer class. The

errors and precisions variables will contain numerical values, representing the errors

and precisions during the training process. We will exploit these variables when we

classify data, in a future chapter.

Adding a layer is simply done through the addLayer: method, which takes a layer as

an argument:

NNetwork>>addLayer: aNeuronLayer

 "Add a neural layer. The added layer is linked to the already added

 layers."

 layers ifNotEmpty: [

 aNeuronLayer previousLayer: layers last.

 layers last nextLayer: aNeuronLayer].

 layers add: aNeuronLayer.

Layers are linked to each other. When a layer is added, it is linked to the previous

layer and that layer is linked to the added layer.

Chapter 3 Neural Networks

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

60

Feeding a neural network involves simply feeding the first hidden layer:

NNetwork>>feed: someInputValues

 "Feed the first layer with the provided inputs"

 ^ layers first feed: someInputValues

We need a way to easily create a neural network. If we want to build a network with

one hidden layer and one output layer, we can define the following method:

NNetwork>>configure: nbOfInputs hidden: nbOfNeurons nbOfOutputs:

 nbOfOutput

 "Configure the network with the given parameters

 The network has only one hidden layer"

 | random |

 random := Random seed: 42.

 self addLayer: (NeuronLayer new initializeNbOfNeurons: nbOfNeurons

 nbOfWeights: nbOfInputs using: random).

 self addLayer: (NeuronLayer new initializeNbOfNeurons: nbOfOutput

 nbOfWeights: nbOfNeurons using: random).

If we want to have two hidden layers and one output layer, we define the following:

NNetwork>>configure: nbOfInputs hidden: nbOfNeurons1 hidden:

 nbOfNeurons2 nbOfOutputs: nbOfOutput

 "Configure the network with the given parameters

 The network has only one hidden layer"

 | random |

 random := Random seed: 42.

 self addLayer: (NeuronLayer new initializeNbOfNeurons: nbOfNeurons1

 nbOfWeights: nbOfInputs using: random).

 self addLayer: (NeuronLayer new initializeNbOfNeurons: nbOfNeurons2

 nbOfWeights: nbOfNeurons1 using: random).

 self addLayer: (NeuronLayer new initializeNbOfNeurons: nbOfOutput

 nbOfWeights: nbOfNeurons2 using: random).

We also need a way to obtain the number of outputs a neural network can have (we

will need this in the chapter about data classification):

Chapter 3 Neural Networks

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

61

NNetwork>>numberOfOutputs

 "Return the number of output of the network"

 ^ layers last numberOfNeurons

The NNetwork class defines the learningRate: method to set the learning rate for

each layer:

NNetwork>>learningRate: aLearningRate

 "Set the learning rate for all the layers"

 layers do: [:l | l learningRate: aLearningRate]

The learningRate: method is useful for setting a unique learning rate for all the

neurons in our network. The basic functionalities are now defined. We can test our

network implementation, as follows:

TestCase subclass: #NNetworkTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

Our first test could be as follows:

NNetworkTest>>testBasic

 | n |

 n := NNetwork new.

 n configure: 2 hidden: 2 nbOfOutputs: 1.

 self assert: ((n feed: #(1 3)) anyOne closeTo: 0.6745388083637036

 precision: 0.0000000001).

 self assert: n numberOfOutputs equals: 1

As you can see, testBasic is rather simplistic. It builds a simple network that expects

two inputs. Furthermore, it is composed of one hidden layer made of two neurons, and

an output layer with only one neuron. The test then runs the forward feeding.

So far, this network is pretty useless, as it can only feed-forward some values along a

set of neurons that are randomly initialized. The output is therefore random values. The

next section covers the learning mechanism for neural networks.

Chapter 3 Neural Networks

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

62

3.4  �Backpropagation
Backpropagation is an algorithm commonly employed to train neural networks. The

purpose of the backpropagation algorithm is to find a set of neuron weights and biases to

reduce the network prediction error.

So far, we built a network as a set of neurons, each being initialized with random

weights and random biases. Conceptually, backpropagation is an algorithm for

supervised learning of gradient descent (the next few chapters will discuss this

terminology). In practice, this algorithm will find adequate weights and biases to

identify patterns from the input values. This section focuses on informally presenting

the algorithm and providing an implementation of it. The next chapter will provide a

theoretical foundation of the algorithm. This chapter covers mostly the implementation

of this theory.

The backpropagation algorithm is composed of three steps:

	 1.	 Forward feeding the inputs. We first activate each neuron of our

network to make the network produce an output. As we have

previously seen, this forward feeding goes from the left-most layer

to the output layer.

	 2.	 Backward propagating the errors through the network. The output

produced in the previous step has to be compared to the actual

training dataset. We can therefore compute the error made by

the network. This error is key to determining how far our network

is from correctly predicting the training set. This backward

propagation goes from the right-most layer (i.e., the output layer)

to the left-most layer (i.e., the first hidden layer).

	 3.	 Updating the neurons weights and biases. From the error

computed in the previous step, we adequately adjust each

neuron weight and bias to hopefully reduce the error made by the

network. In our implementation, we will start from the left-most

layer and go the output layer.

Chapter 3 Neural Networks

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

63

3.4.1  �Step 1: Forward Feeding
The first step is mostly implemented by the NNetwork>>feed: method; however, we

need to slightly improve the Neuron class to remember the produced output. During

the forward feeding (i.e., when the feed: method is called), output is produced by each

neuron. This output has to be compared to the expected output during the second step.

Making the network learn is based on the difference between the actual output of a

neuron and the expected output. Each neuron must to keep a reference of its output.

We add two variables, delta and output, to the Neuron class. Therefore, our new

definition of Neuron is as follows:

Object subclass: #Neuron

 instanceVariableNames: 'weights bias learningRate

 activationFunction delta output'

 classVariableNames: ''

 package: 'NeuralNetwork'

The delta value has to be accessible from the outside, as follows:

Neuron>>delta

 "Return the delta value computed when propagating the error"

 ^ delta

We also need to rewrite the feed: method in the Neuron class to remember the

output value, as follows:

Neuron>>feed: inputs

 | z |

 z := (inputs with: weights collect: [:x :w | x * w]) sum + bias.

 output := activationFunction eval: z.

 ^ output

We also need to access the output value for a given neuron, as follows:

Neuron>>output

 "Return the output value, previous computed when doing a feed:"

 ^ output

Chapter 3 Neural Networks

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

64

At this stage, it is important to run the unit tests we previously defined. In particular,

we need to make sure that the small changes we defined in the Neuron class do not break

any invariant. We are now done with the first phase of the backpropagation.

EXERCISE: Run the unit tests written in the previous chapter. This is important to

verify whether or not a functional invariant is affected by these recent modifications.

3.4.2  �Step 2: Error Backward Propagation
The second step of the backpropagation consists of propagating the errors computed in

the output layer back in the network. We define the following method:

NNetwork>>backwardPropagateError: expectedOutputs

 "expectedOutputs corresponds to the outputs we are training the

 network against"

 self outputLayer backwardPropagateError: expectedOutputs

The argument of backwardPropagateError: corresponds to the expected output

values used during the learning phase.

We also define the following helper method:

NNetwork>>outputLayer

 "Return the output layer, which is also the last layer"

 ^ layers last

We add the backwardPropagateError: method to backpropagate the error from the

output layer:

NeuronLayer>>backwardPropagateError: expected

 "This is a recursive method. The backpropagation begins with

 the output layer (i.e., the last layer)"

 "We are in the output layer"

 neurons with: expected do: [:neuron :exp |

 | theError |

 theError := exp - neuron output.

 neuron adjustDeltaWith: theError].

 "We iterate"

 self previousLayer notNil

 ifTrue: [

 self previousLayer backwardPropagateError].

Chapter 3 Neural Networks

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

65

The backwardPropagateError: method takes as arguments the expected output

values. It computes the error for each neuron in the output layers and calls the

adjustDeltaWith: method. We will soon see this method.

Once the neuron in the output layer has its delta value adjusted, previous layers

have to be recursively updated. The backwardPropagateError method implements this

behavior:

NeuronLayer>>backwardPropagateError

 "This is a recursive method. The backpropagation begins with the

 output layer (i.e., the last layer)"

 "We are in a hidden layer"

 neurons doWithIndex: [:neuron :j |

 | theError |

 theError := 0.0.

 self nextLayer neurons do: [:nextNeuron |

 theError := theError + ((nextNeuron weights at: j) *
 nextNeuron delta)

].

 neuron adjustDeltaWith: theError

].

 self previousLayer notNil

 ifTrue: [

 self previousLayer backwardPropagateError].

The recursion ends on the first hidden layer, which is the layer with no previous

layer. Note that we do not explicitly model the input layer since it has no purpose. We

also need the following helper method on the Neuron class:

Neuron>>adjustDeltaWith: anError

 delta := anError * (activationFunction derivative: output)

We are now done with the second phase. Only the third phase remains to be

implemented in order to create a functional neural network.

Chapter 3 Neural Networks

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

66

3.4.3  �Step 3: Updating Neuron Parameters
Luckily, the third phase is rather simple. We recursively update the weights and biases

based on the delta computed in the previous step. The main method is updateWeight:,

as follows:

NNetwork>>updateWeight: initialInputs

 "Update the weights of the neurons using the initial inputs"

 layers first updateWeight: initialInputs

This method simply invokes updateWeight: on each first hidden layer:

NeuronLayer>>updateWeight: initialInputs

 "Update the weights of the neuron based on the set of initial input

 . This method assumes that the receiver of the message invoking

 that method is the first hidden layer."

 | inputs |

 inputs := initialInputs.

 neurons do: [:n |

 n adjustWeightWithInput: inputs.

 n adjustBias].

 self nextLayer ifNotNil: [

 self nextLayer updateWeight]

The recursion happens in the updateWeight method:

NeuronLayer>>updateWeight

 "Update the weights of the neuron based on the set of initial

 input. This method assumes that the receiver of the

 message invoking that method is the first hidden layer.

 We are now in the second hidden layers or in the output layer"

 | inputs |

 inputs := self previousLayer neurons collect: #output.

 self updateWeight: inputs

Chapter 3 Neural Networks

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

67

We need the following methods to update a neuron’s weights:

Neuron>>adjustWeightWithInput: inputs

 inputs withIndexDo: [:anInput :index |

 weights at: index put: ((weights at: index) + (learningRate *
 delta * anInput))]

We also need to update the bias, as follows:

Neuron>>adjustBias

 bias := bias + (learningRate * delta)

This ends the third and final phase of the backpropagation algorithm. We are now

ready to hook the backpropagation phases together:

NNetwork>>train: someInputs desiredOutputs: desiredOutputs

 "Train the neural network with a set of inputs and some

 expected output"

 self feed: someInputs.

 self backwardPropagateError: desiredOutputs.

 self updateWeight: someInputs

Voila! We have implemented the necessary steps to train a neural network.

We can now test the network with the XOR example:

NNetworkTest>>testXOR

 | n |

 n := NNetwork new.

 n configure: 2 hidden: 3 nbOfOutputs: 1.

 20000 timesRepeat: [

 n train: #(0 0) desiredOutputs: #(0).

 n train: #(0 1) desiredOutputs: #(1).

 n train: #(1 0) desiredOutputs: #(1).

 n train: #(1 1) desiredOutputs: #(0).

].

 self assert: (n feed: #(0 0)) first < 0.1.

 self assert: (n feed: #(0 1)) first > 0.9.

 self assert: (n feed: #(1 0)) first > 0.9.

 self assert: (n feed: #(1 1)) first < 0.1.

Chapter 3 Neural Networks

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

68

If you were to try to decrease 20000 to a low value, 1000 for example, the network

would not receive enough training and the test would ultimately fail.

3.5  �What Have We Seen in This Chapter?
This chapter covered the following topics:

•	 The general architecture of a fully-connected network. This

architecture drove our implementation effort.

•	 Implementation of a neural network library. We built a small API to

build neural networks.

•	 Implementation of the backpropagation algorithm. Making a neural

network learn is a fundamental operation that gives meaning to

a network. A properly trained network can identify patterns. This

chapter ended with a trivial example, the XOR logical gate. The

coming chapters will cover real and representative examples.

Chapter 3 Neural Networks

441

442

443

444

445

446

447

448

449

450

451

452

453

37
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_2

CHAPTER 2

The Artificial Neuron
In the previous chapter, we saw how a perceptron operates and how a simple learning

algorithm can be implemented. However, the perceptron has some serious limitations,

which will motivate us to formulate a more robust artificial neuron, called the sigmoid

neuron.

This chapter uses Roassal to plot values. As seen in the previous chapter, you can

load Roassal into Pharo by executing the following script in a playground:

Metacello new

 baseline: 'Roassal2';

 repository: 'github://ObjectProfile/Roassal2/src';

 load.

A complete description of Roassal may be found in the book Agile Visualization

(http://agilevisualization.com).

2.1  �Limit of the Perceptron
A perceptron works well as an independent small machine. We learned that we

can compose a few perceptrons to express a complex behavior such as the digital

comparator. We also learned that a single perceptron can learn a simple behavior.

However, there are two main restrictions with combining perceptrons:

•	 Only 0 or 1 as output: The fact that a perceptron can have only two

different output values, 0 or 1, seriously limits the kind of problem

it can solve. In particular, when some perceptrons are chained,

using binary values significantly reduces the space we live in. Not

everything can be reduced to a set of 0s and 1s without leading to an

explosion of perceptrons.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

38

•	 A chain of perceptrons cannot learn: We have seen how to combine

perceptrons, and how a single perceptron can learn. But, can a

combination of perceptrons also learn? The answer is no. This is

another consequence of having only two output values. An essential

property of most common learning algorithms is the ability to

express a smooth learning curve, which cannot be expressed using

two different values. How can we tell if a perceptron is learning well,

poorly, or not at all with only two different output values?

We have written that z = w.x + b, for which w is a vector of weights, b a vector of

bias, and x the input vector. We said that the output of the perceptron is 1 if z > 0 and 0

otherwise. One important problem with the formulation of the perceptron is that a small

variation of z can produce a large variation of the output—the output can go from 0 to 1,

or from 1 to 0.

Algorithms that are commonly employed in neural networks require a very

important property: a small variation of z must produce a small variation of the output.

The perceptron does not fulfill this need, since a small variation of z can produce a large

variation of the output.

2.2  �Activation Function
Before discussing a better way to improve the learning, it is important to decouple the

perceptron logic. Let’s introduce a function called σ that takes as a parameter the

 z = w.x + b value. The perceptron behavior can therefore be written as σ(z) = 1 if
z > 0, else σ(z) = 0.

By adding the σ function, we are separating the computation of w.x + b from

the conditional. We call σ the activation function. It describes the activation of the

perceptron (i.e., when it fires 1) according to the value of z.

The activation function used by the perceptron is called the step function and may be

graphically represented, as shown in Figure 2-1.

Chapter 2 The Artificial Neuron

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

39

Figure 2-1 is the result of executing this script:

g := RTGrapher new.

d := RTData new.

d connectColor: Color blue.

d noDot.

d points: (-7.0 to: 7.0 by: 0.01).

d x: #yourself.

d y: [:x | x > 0 ifTrue: [1] ifFalse: [0]].

g add: d.

g

You may recognize the step function provided to the y: instruction. Note that

the function provided to y: refers to the input as x while z is provided to σ. This is an

inoffensive renaming.

Consider a value of z = 0. We therefore have σ(z) = 0. If we add 0.00001, a small

value, to z, we get σ(z) = 1. A small value added to z produces a large change in σ(z),

which goes from 0 to 1. The fact that a small change in z produces a big change in σ(z) is

a serious problem: a chain of perceptron is not able to learn.

The step function is characterized for having a vertical step, which produces two

angles in its curve. These angles make the step function non-derivable, which is quite a

problem, as we will shortly see.

Figure 2-1.  The step function

Chapter 2 The Artificial Neuron

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

40

2.3  �The Sigmoid Neuron
We will express a new kind of artificial neuron, called the sigmoid neuron. The increment

in this case is to use a new activation function, called the sigmoid function. Consider the

function s z
e z() =

+ -

1

1
, plotted in Figure 2-2.

Figure 2-2.  The sigmoid function

Figure 2-2 is the result of executing the script:

g := RTGrapher new.

d := RTData new.

d connectColor: Color blue.

d noDot.

d points: (-7.0 to: 7.0 by: 0.01).

d x: #yourself.

d y: [:x | 1 / (1 + (x negated exp))].

g add: d.

g

This sigmoid function has several advantages:

•	 It is differentiable everywhere on the curve, or in other words, it has no

vertical lines, and even better, no angle. We can easily draw a straight

line for any value z that indicates the slope of σ(z). When plotted, σ(z)

is very smooth by having no angle, which is a very good property.

Chapter 2 The Artificial Neuron

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

41

•	 Its derivative has some interesting properties, as we will see later.

•	 The sigmoid function behaves similarly to the step function for very

small and very large z values.

•	 A small increment in z produces a small variation of σ(z), and as we

have previously said, this is important for learning.

We define a sigmoid neuron as a neuron having the sigmoid function as its activation

function. The sigmoid neuron is widely accepted as a mathematical representation of a

biological neuron behavior.

As we will later see, the training has to be slightly adjusted to take advantage of the

fact that σ(z) is derivable.

2.4  �Implementing the Activation Functions
In the previous chapter, we defined the class called Neuron. We will improve this class

to accept an activation function. First, let’s introduce a small class hierarchy for the

activation functions.

The abstract class called ActivationFunction may be defined as follows:

Object subclass: #ActivationFunction

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

An activation function object has the responsibility of computing two things: (i) the

activation value and (ii) the transfer derivative. This transfer derivative is an essential

piece of the backpropagation learning algorithm. Implementation of the backpropagation

algorithm is given in this chapter, while the theoretical background is covered in Chapter 5.

We define the following two abstract methods. The eval: method computes the

activation value:

ActivationFunction>>eval: z

 ^ self subclassResponsibility

and the method derivative: computes the transfer derivative:

ActivationFunction>>derivative: output

 ^ self subclassResponsibility

Chapter 2 The Artificial Neuron

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

42

The two methods we just defined are abstract methods, which means they

are placeholders for subclasses of ActivationFunction that provide an adequate

implementation of these methods.

We can now define the two activation functions, each being a subclass of

ActivationFunction. The sigmoid function may be defined as follows:

ActivationFunction subclass: #SigmoidAF

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

We first implement the eval: function:

SigmoidAF>>eval: z

 ^ 1 / (1 + z negated exp)

We then implement the derivative: method, which represents the mathematical

derivative of eval::

SigmoidAF>>derivative: output

 ^ output * (1 - output)

Without going into details, we have σ(z)' = σ(z) * (1 − σ(z)). We will come back to

that point in Chapter 5.

Similarly, we can define the step function as follows:

ActivationFunction subclass: #StepAF

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

We implement the eval as follows:

StepAF>>eval: z

 ^ (z > 0) ifTrue: [1] ifFalse: [0]

We also need to implement the derivative:. We will simply make this method return

the following argument:

StepAF>>derivative: output

 ^ 1

Chapter 2 The Artificial Neuron

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

43

The formulation of the derivative: of the step function does not match the

mathematical truth, which is 0 with an undefined value for z = 0. However, returning 1

instead eases the implementation of the revised Neuron, as we will see in the next section.

2.5  �Extending the Neuron with the Activation
Functions

We can now generalize the way an artificial neuron can learn from examples. Assume

an example value (x, d), in which x is example input and d is the example output. At

the beginning, when providing the input x = (x1, ..., xi, ..., xN) to a sigmoid

neuron, the output is likely to be different than d, a number between 0 and 1. This is not

surprising since the weights and bias are randomly chosen. This is exactly why we are

training the neuron with that example, to have the neuron output d if x is provided.

The learning mechanism may be summarized with the following rules:

δ = (d − z) * σ' (z)

wi(t + 1) = wi(t) + δ * xi * α
b(t + 1) = b(t) + δ * α

in which:

•	 δ is the difference between the desired output and the actual output

of the neuron

•	 d is the example output, which is the desired value

•	 z is the output of the perceptron

•	 σ is the activation function (either the step or sigmoid function)

•	 σ' is the derivative function of σ

•	 i is the weight index, which ranges from 1 to N, the number of weights

contained in the neuron

•	 wi(t) is the weight i at a given time t

•	 b(t) is the bias at a given time t

•	 xi corresponds to the provided input at index i

•	 α is the learning rate, a small positive value close to 0

Chapter 2 The Artificial Neuron

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

44

With little or no training, the neuron will output a value z, which is very different

from d. As a consequence, δ will also be large. With an adequate number of trainings, the

δ should get close to 0.

These equations will be explained in Chapter 5. For now, the most important aspect

is that they can be translated into the following pseudocode:

diff = desiredOutput - realOutput

delta = diff * derivative(realOutput)

alpha = 0.1

For all N:

 weightN = weightN + (alpha * inputN * delta)

bias = bias + (alpha * diff)

We are assuming that the neuron has N inputs, and therefore N weights. We can now

extend our definition of neuron to use an activation function. We can do so by adding a

new instance variable called activationFunction to the Neuron class:

Object subclass: #Neuron

 instanceVariableNames: 'weights bias learningRate

 activationFunction'

 classVariableNames: ''

 package: 'NeuralNetwork'

The learningRate variable must be accessed from the outside:

Neuron>>learningRate: aLearningRateAsFloat

 "Set the learning rate of the neuron. The argument should be a

 small floating value. For example, 0.01"

 learningRate := aLearningRateAsFloat

Neuron>> learningRate

 "Return the learning rate of the neuron"

 ^ learningRate

Feeding has to be adapted:

Neuron>>feed: inputs

 | z |

 z := (inputs with: weights collect: [:x :w | x * w]) sum + bias.

 ^ activationFunction eval: z

Chapter 2 The Artificial Neuron

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

45

We are now ready to implement the algorithm to train a sigmoid neuron. Here is the

method:

Neuron>>train: inputs desiredOutput: desiredOutput

 | diff output delta |

 output := self feed: inputs.

 diff := desiredOutput - output.

 delta := diff * (activationFunction derivative: output).

 inputs withIndexDo: [:anInput :index |

 weights at: index put: ((weights at: index) + (learningRate *
 delta * anInput))].

 bias := bias + (learningRate * delta)

The train:desiredOutput: method is very similar to what we have seen with the

perceptron. We introduced a delta local variable, which represents the error multiplied

by the transfer derivative. We use the transfer derivative to formulate a gradient descent.

We will explore that topic in detail in Chapter 5.

We now need to initialize a neuron as being a sigmoid:

Neuron>>initialize

 super initialize.

 learningRate := 0.1.

 self sigmoid

We can also define the two utility methods:

Neuron>>sigmoid

 "Use the sigmoid activation function"

 activationFunction := SigmoidAF new

Neuron>>step

 "Use the step activation function"

 activationFunction := StepAF new

Chapter 2 The Artificial Neuron

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

46

2.6  �Adapting the Existing Tests
If you run PerceptronTest you will see that several test methods fail. The reason is that

a neuron is initialized with a sigmoid activation function. We therefore need to adapt the

PerceptronTest class to produce neurons with a step function. Luckily, we can simply

redefine the newNeuron method:

PerceptronTest>>newNeuron

 "Return a new neuron with the step activation function"

 ^ Neuron new step

All the tests contained in PerceptronTest are now green when they run.

2.7  �Testing the Sigmoid Neuron
Since the behavior of a sigmoid neuron is very similar to a perceptron, we will reuse

some of the tests. Define the NeuronTest class as follows:

TestCase subclass: #NeuronTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

We can then train a neuron to learn some logical gates. The following method is very

similar to what we saw with the perceptron:

NeuronTest>>testTrainingAND

 | p |

 p := Neuron new.

 p weights: #(-1 -1).

 p bias: 2.

 5000

 timesRepeat: [

 p train: #(0 0) desiredOutput: 0.

 p train: #(0 1) desiredOutput: 0.

 p train: #(1 0) desiredOutput: 0.

 p train: #(1 1) desiredOutput: 1].

Chapter 2 The Artificial Neuron

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

47

 self assert: ((p feed: #(0 0)) closeTo: 0 precision: 0.1).

 self assert: ((p feed: #(0 1)) closeTo: 0 precision: 0.1).

 self assert: ((p feed: #(1 0)) closeTo: 0 precision: 0.1).

 self assert: ((p feed: #(1 1)) closeTo: 1 precision: 0.1).

There are two differences:

•	 The number of epochs has significantly increased. The reason is that

the sigmoid neuron learns more slowly than the perceptron.

•	 The result of feeding the neuron is compared using the

closeTo:precision: call. Since the result of the feed: method is

now a floating value and not an integer, we need to adapt our way of

comparing these values. If you are still unsure about what is wrong

with using == between floats, evaluate the expression 0.1 + 0.2 -

0.3. It returns 5.551115123125783e-17 and not 0 as one would

expect. The way that float values are encoded causes this apparently

weird behavior.

Similarly we can train a sigmoid neuron to learn the OR behavior:

NeuronTest>>testTrainingOR

 | p |

 p := Neuron new.

 p weights: #(-1 -1).

 p bias: 2.

 5000

 timesRepeat: [

 p train: #(0 0) desiredOutput: 0.

 p train: #(0 1) desiredOutput: 1.

 p train: #(1 0) desiredOutput: 1.

 p train: #(1 1) desiredOutput: 1].

 self assert: ((p feed: #(0 0)) closeTo: 0 precision: 0.1).

 self assert: ((p feed: #(0 1)) closeTo: 1 precision: 0.1).

 self assert: ((p feed: #(1 0)) closeTo: 1 precision: 0.1).

 self assert: ((p feed: #(1 1)) closeTo: 1 precision: 0.1).

Chapter 2 The Artificial Neuron

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

48

As you can see, using a sigmoid neuron does not mess up our tests. We simply need

(i) to increase the number of epochs to which we train the neuron and (ii) be more

careful when comparing floating values.

EXERCISE: We wrote an adapted version of the OR and AND logical gates for the

sigmoid neuron. Adapt the other logical gates to use the sigmoid neuron.

2.8  �Slower to Learn
This chapter started by pointing out a strong limitation of the perceptron. This has

motivated us to formulate the sigmoid neuron. There is one drawback to the sigmoid

neuron: it is slower at learning than the perceptron. We are making a bet, which is

trading efficiency for flexibility. As you will see in the next chapter, the sigmoid neuron

can be nicely combined.

We can easily compare the learning of the sigmoid neuron and the perceptron.

Consider the following script:

learningCurveNeuron := OrderedCollection new.

0 to: 1000 do: [:nbOfTrained |

 p := Neuron new.

 p weights: #(-1 -1).

 p bias: 2.

 nbOfTrained timesRepeat: [

 p train: #(0 0) desiredOutput: 0.

 p train: #(0 1) desiredOutput: 0.

 p train: #(1 0) desiredOutput: 0.

 p train: #(1 1) desiredOutput: 1].

 res := ((p feed: #(0 0)) - 0) abs +

 ((p feed: #(0 1)) - 0) abs +

 ((p feed: #(1 0)) - 0) abs +

 ((p feed: #(1 1)) - 1) abs.

 learningCurveNeuron add: res / 4.

].

Chapter 2 The Artificial Neuron

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

49

learningCurvePerceptron := OrderedCollection new.

0 to: 1000 do: [:nbOfTrained |

 p := Neuron new.

 p step.

 p weights: #(-1 -1).

 p bias: 2.

 nbOfTrained timesRepeat: [

 p train: #(0 0) desiredOutput: 0.

 p train: #(0 1) desiredOutput: 0.

 p train: #(1 0) desiredOutput: 0.

 p train: #(1 1) desiredOutput: 1].

 res := ((p feed: #(0 0)) - 0) abs +

 ((p feed: #(0 1)) - 0) abs +

 ((p feed: #(1 0)) - 0) abs +

 ((p feed: #(1 1)) - 1) abs.

 learningCurvePerceptron add: res / 4.

].

g := RTGrapher new.

d := RTData new.

d label: 'Sigmoid neuron'.

d noDot.

d connectColor: Color blue.

d points: learningCurveNeuron.

d y: #yourself.

g add: d.

d := RTData new.

d label: 'Perceptron'.

d noDot.

d connectColor: Color green.

d points: learningCurvePerceptron.

d y: #yourself.

g add: d.

Chapter 2 The Artificial Neuron

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

50

g axisY title: 'Error'.

g axisX noDecimal; title: 'Epoch'.

g legend addText: 'Perceptron vs Sigmoid neuron'.

g

Figure 2-3.  Perceptron vs. sigmoid neuron

The script produces the graph shown in Figure 2-3. No matter the learning rate

defined, the perceptron is indeed much faster at learning than the sigmoid neuron.

The next chapter reveals the true power of sigmoid neuron, which will offset the fact

that it is slower at learning.

Chapter 2 The Artificial Neuron

360

361

362

363

364

365

366

367

51

2.9  �What Have We Seen in This Chapter?
This chapter covered the following topics:

•	 Briefly discussed the limitation of the perceptron. The perceptron

cannot learn when combined with other perceptrons. Although

we have not discussed this aspect further, the next chapter we will

develop this further.

•	 Definition of the sigmoid neuron. The sigmoid neuron is an

improvement of the perceptron since it can be combined with other

sigmoid neurons and this combination can learn. In the next chapter,

we will cover the backpropagation algorithm, a central aspect when

making a neural network learn.

•	 Activation functions. We have seen two activation functions, the step

and sigmoid functions. Many other activation functions are around.

The next chapter is about composing sigmoid neurons to build artificial neural

networks.

Chapter 2 The Artificial Neuron

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

89
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_5

CHAPTER 5

Data Classification
Neural networks have an incredibly large range of applications. Classifying data is a

prominent one, and this chapter is devoted to it.

5.1  �Training a Network
In the previous chapter, we saw that we can obtain a trained neural network to express

the XOR logical gate. In particular, we saw the following script:

n := NNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 1.

20000 timesRepeat: [

 n train: #(0 0) desiredOutputs: #(0).

 n train: #(0 1) desiredOutputs: #(1).

 n train: #(1 0) desiredOutputs: #(1).

 n train: #(1 1) desiredOutputs: #(0).

].

After evaluating this script, the expression n feed: #(1 0) evaluates to

#(0.9530556769505442), which is an array having an expected float value close to 1.

If we step back a bit, we see that the script is actually very verbose. For example, why

should we manually handle the repetition? Why is the message train:desiredOutputs:

sent so many times? We can greatly simplify the way networks are trained by providing a

bit of infrastructure.

Consider the following method:

NNetwork>>train: train nbEpochs: nbEpochs

 "Train the network using the train dataset."

 | sumError outputs expectedOutput epochPrecision t |

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

90

 1 to: nbEpochs do: [:epoch |

 sumError := 0.

 epochPrecision := 0.

 train do: [:row |

 outputs := self feed: row allButLast.

 expectedOutput := (1 to: self numberOfOutputs) collect: [:

 notUsed | 0].

 expectedOutput at: (row last) + 1 put: 1.

 (row last = (self predict: row allButLast)) ifTrue: [

 epochPrecision := epochPrecision + 1].

 t := (1 to: expectedOutput size)

 collect: [:i | ((expectedOutput at: i) - (outputs

 at: i)) squared].

 sumError := sumError + t sum.

 self backwardPropagateError: expectedOutput.

 self updateWeight: row allButLast.

].

 errors add: sumError.

 precisions add: (epochPrecision / train size) asFloat.

]

Predicting the output for a given set of input values may be implemented using a

predict: method:

NNetwork>>predict: inputs

 "Make a prediction. This method assumes that the number of

 outputs is the same as the number of different values

 the network can output"

 "The index of a collection begins at 1 in Pharo"

 | outputs |

 outputs := self feed: inputs.

 ^ (outputs indexOf: (outputs max)) - 1

These two methods make the network training significantly less verbose. The script

that trains a network with XOR logical gate may now be written as follows:

n := NNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 2.

Chapter 5 Data Classification

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

91

data := {#(0 0 0) .

 #(0 1 1) .

 #(1 0 1) .

 #(1 1 0) }.

n train: data nbEpochs: 20000

The data variable is an array of arrays of numbers. Each row represents an example

and it contains the input values and the output value. For example, the row #(0 1 1)

represents the line ntrain: #(0 1)desiredOutputs: #(1). Note that the neural

network has two output neurons.

This is the result of using a one-hot encoding for the output. The examples have two

different output values, either 0 or 1. So if we use the one-hot encoding, we have two

output neurons, each neuron for a particular value. Later in this chapter we will detail

this encoding.

Another example of using the syntax we have just introduced follows:

n := NNetwork new.

n configure: 3 hidden: 8 nbOfOutputs: 8.

data := {#(0 0 0 0).

 #(0 0 1 1).

 #(0 1 0 2).

 #(0 1 1 3).

 #(1 0 0 4).

 #(1 0 1 5).

 #(1 1 0 6).

 #(1 1 1 7) }.

n train: data nbEpochs: 1000.

This code builds a neural network trained to convert binary numbers into a decimal

number. The binary number is encoded using three bits, so we need a neural network

with three inputs. Since the decimal value ranges from 0 to 7, we need eight output

neurons of the network. As an example, to convert the binary number, you can evaluate

the following expression after the previous script:

...

n predict: #(0 1 1)

Chapter 5 Data Classification

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

This last expression returns 3, thus indicating a good conversion. The way

train:nbEpochs: and predict: are implemented enforces the training data to follow

some rules. Each element contained in data must be a collection of numbers. All but

the last numbers represent the inputs values. The last value of an example, presented

as an array, is the expected output value. For example, considering the example

#(0 1 1 3), the value 3 is the expected value when #(0 1 1) is provided as input.

The expected output is a positive value ranging from 0 to the number of outputs of the

neural network minus one.

5.2  �Neural Network as a Hashmap
Let’s step back a bit. We spent six chapters to motivate, describe, and incrementally build

neural networks. But we are using a neural network pretty much the way we would use a

regular hashmap. Consider the following example:

data := {#(0 0 0 0).

 #(0 0 1 1).

 #(0 1 0 2).

 #(0 1 1 3).

 #(1 0 0 4).

 #(1 0 1 5).

 #(1 1 0 6).

 #(1 1 1 7) }.

d := Dictionary new.

data do: [:anExample |

 d at: anExample allButLast put: anExample last].

d at: #(0 1 1)

The script produces 3. The d variable is a dictionary filled with the example

data. The values we used as input in the neural network are used as keys in the

dictionary. Indeed, using a dictionary has many benefits here: filling a dictionary is

significantly faster than training a neural network (by several orders of magnitude!),

and getting a value for a particular key is also significantly faster than feed-

forwarding a network.

Chapter 5 Data Classification

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

93

However, a hashmap requires the exact same key (or at least adequately answers to

the message =). A neural network does not require the exact same input values. Consider

the following script:

n := NNetwork new.

n configure: 3 hidden: 8 nbOfOutputs: 8.

data := {#(0 0 0 0).

 #(0 0 1 1).

 #(0 1 0 2).

 #(0 1 1 3).

 #(1 0 0 4).

 #(1 0 1 5).

 #(1 1 0 6).

 #(1 1 1 7) }.

n train: data nbEpochs: 1000.

n predict: #(0.4 0.7 0.6)

By returning the value 3, the network can match the input values #(0.4 0.7 0.6)

to #(0 1 1). A hashmap cannot make such a connection without the programmer

explicitly telling it to do so, and that is the whole point of neural networks: establishing

connections between input data and identifying the most relevant data, without

intervention from the programmer.

5.3  �Visualizing the Error and the Topology
We saw that the first step of the backpropagation is to evaluate the network with the

provided inputs. The output values are then compared with the expected output values.

The difference between the actual output and the expected output is then used to adjust

the weights and biases by backpropagating these differences to the network.

The NNetwork>>train:nbEpochs: method contains the statements errors

add:sumError and precisions add: (epochPrecision / trainsize)asFloat. These

two lines of code have the effect of recording the value of sumError, indicating how well

the network has performed for the provided example, and the value of precision per

epoch. These two collections of numbers can be visualized as a helper to characterize

the overall learning process for a given network and example set.

Chapter 5 Data Classification

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

94

We define the viewLearningCurve method on the NNetwork class:

NNetwork>>viewLearningCurve

 "Draw the error and precision curve"

 | b ds |

 "No need to draw anything if the network has not been run"

 errors ifEmpty: [^ RTView new

 add: (RTLabel elementOn: 'Should first run

 the network');

 yourself].

 b := RTDoubleGrapher new.

 "We define the size of the charting area"

 b extent: 500 @ 300.

 ds := RTData new.

 "A simple optimization that Roassal offers"

 ds samplingIfMoreThan: 2000.

 "No need of dots, simply a curve"

 ds noDot; connectColor: Color blue.

 ds points: (errors collectWithIndex: [:y :i | i -> y]).

 ds x: #key.

 ds y: #value.

 ds dotShape rectangle color: Color blue.

 b add: ds.

 ds := RTData new.

 ds samplingIfMoreThan: 2000.

 ds noDot.

 ds connectColor: Color red.

 ds points: (precisions collectWithIndex: [:y :i | i -> y]).

 ds x: #key.

 ds y: #value.

 ds dotShape rectangle color: Color blue.

 b addRight: ds.

 b axisX noDecimal; title: 'Epoch'.

 b axisY title: 'Error'.

 b axisYRight title: 'Precision'; color: Color red.

 ^ b

Chapter 5 Data Classification

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

95

The following method defines a visualization of the errors and precisions

variables:

NNetwork>>viewLearningCurveIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: 'Learning';

 initializeView: [self viewLearningCurve]

The NNetwork>>viewLearningCurveIn: method uses the GTInspector framework to

add a particular tab in the inspector.

Inspecting the following code snippet displays the error curve (see Figure 5-1):

n := NNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 2.

data := {#(0 0 0) .

 #(0 1 1) .

 #(1 0 1) .

 #(1 1 0) }.

n train: data nbEpochs: 10000.

Figure 5-1.  Visualizing the learning

Chapter 5 Data Classification

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

96

The learning curve indicates the effect of the number of epochs in making the

neural network learn. The fact that the blue line is close to 0 is a strong indicator that

the neural network is properly learning. The red line reaches 1.0, which means that the

network is accurate.

Similarly, we can visualize the topology of the network using the following method:

NNetwork>>viewNetwork

 | b lb |

 b := RTMondrian new.

 b nodes: layers forEach: [:aLayer |

 b shape circle size: 20.

 b nodes: aLayer neurons.

 b layout verticalLine.

].

 b shape arrowedLine; withShorterDistanceAttachPoint.

 b edges connectTo: #nextLayer.

 b layout horizontalLine gapSize: 30; center.

 b build.

 lb := RTLegendBuilder new.

 lb view: b view.

 lb addText: self numberOfNeurons asString, ' neurons'.

 lb addText: self numberOfInputs asString, ' inputs'.

 lb build.

 ^ b view

We need to define the helper method, as follows:

NNetwork>>numberOfInputs

 "Return the number of inputs the network has"

 ^ layers first neurons size

and the method:

NNetwork>>numberOfNeurons

 "Return the total number of neurons the network has"

 ^ (layers collect: #numberOfNeurons) sum

Chapter 5 Data Classification

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

97

Similarly, we need to extend GTInspector to consider the visualization within

GTInspector (see Figure 5-2):

NNetwork>>viewNetworkIn: composite

 <gtInspectorPresentationOrder: -5>

 composite roassal2

 title: 'Network';

 initializeView: [self viewNetwork]

You can click a neuron to reveal its weights and bias.

Figure 5-2.  Visualizing the network topology

Chapter 5 Data Classification

236

237

238

239

240

241

242

243

98

5.4  �Contradictory Data
The blue error curve quantifies the error made by the network during the learning phase.

It may happen that the error has some plateaus. In such a case, increasing the number of

epochs may have the effect of lowering the error curve.

In some cases, if the error curve cannot get close to 0, it may indicate a contradiction

in the data.

Consider the following example:

n := NNetwork new.
n configure: 2 hidden: 3 nbOfOutputs: 2.

data := {#(0 0 0) .
 #(0 0 1) }.

n train: data nbEpochs: 1000.

The script trains a neural network with two contradictory examples. The first

example trains the network to output 0 with the inputs 0 and 0. The second example

trains the network to output 1 for the same input values.

Figure 5-3.  Data contradiction

Chapter 5 Data Classification

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

99

Figure 5-3 illustrates the error and precision curves in presence of contradicting

data. The script makes the neural network learn two different outputs for exactly the

same input values. As a consequence, the network will have to make mistakes during the

learning phase.

In a real and non-trivial dataset it is likely that this situation will happen. If the

contradictory occurrences are not common, the network will then consider this

contradiction as pure noise and will have a tendency to diminish it.

5.5  �Classifying Data and One-Hot Encoding
Classification can be defined as grouping elements based on their features. Elements

sharing similar features are grouped together. The previous XOR dataset may be

considered a (simple) classification model in which each group is made of two elements.

Group 0 is made of the elements [0, 0] and [1, 1], while group 1 is made of [0, 1]

and [1, 0].

Have you noticed that to learn the XOR dataset we used a neural network with two

outputs? The reason is that we encode the output value using the one-hot encoding.

One-hot encoding is a simple mechanism that converts a categorical variable into a

numerical form, eligible to be fed into a neural network. Consider the variable v, which

represents a word within the set { "hello", "bonjour", "Buenos dias" }. Applying

one-hot encoding would assign a unique number to each word. For example, "hello"

is associated with the index 0, "bonjour" associated with index 1, and "Buenos dias"

with 2. The value of v can then be encoded with three different bits, since the dataset has

three different words. We can then encode the words:

•	 "hello" = [1, 0, 0]

•	 "bonjour" = [0, 1, 0]

•	 "Buenos dias" = [0, 0, 1]

If the variable v has to be provided to a neural network, then three neurons can be

used for that purpose.

We have defined the XOR dataset as follows:

n := NNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 2.

Chapter 5 Data Classification

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

100

data := {#(0 0 0) .

 #(0 1 1) .

 #(1 0 1) .

 #(1 1 0) }.

n train: data nbEpochs: 10000

Since there are two different values of the datasets, 0 and 1, we have two output

neurons: the value 0 is encoded [1, 0], and 1 is encoded [0, 1].

Now that we explained the one-hot encoding, we can proceed with a larger dataset.

5.6  �The Iris Dataset
The Iris flower dataset is a popular dataset used by the machine learning community

(see http://archive.ics.uci.edu/ml/datas). This dataset was collected in 1936

by Ronald Fisher and presented in the seminal paper entitled, “The Use of Multiple

Measurements in Taxonomic Problems.” The dataset contains 50 samples of three families

of Iris, called Iris setosa, Iris virginica, and Iris versicolor. We refer to these families as

classes.

We provide a copy of this dataset on https://agileartificialintelligence.

github.io/Datasets/iris.csv. Within Pharo, you can fetch the dataset using the

following expression:

(ZnEasy get: 'https://agileartificialintelligence.github.io/Datasets/

 iris.csv') contents.

The code fetches the iris.csv file and returns its content. The file structure, as given

in the CSV header, is as follows:

sepal_length,sepal_width,petal_length,petal_width,species

However, fetching the file is just the first small step toward making the file able to be

processed by a neural network. For example, we need to convert each row of the file into a

set of numerical values (remember that neural networks can only accept numbers as input).

In order to feed a network with the IRIS dataset, we need to perform the following steps:

	 1.	 Fetch the file from the Internet.

	 2.	 Cut the file content, represented as very long text, into

textual lines.

Chapter 5 Data Classification

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

101

	 3.	 Ignore the first line of the file since it contains the CSV header,

which is not relevant to the network.

	 4.	 Parse the CSV file.

	 5.	 In the table, replace each flower name with a numerical value,

which could be 0, 1, or 2.

The following script performs these five steps:

"The execution of this script initializes the variable irisData.

This variable is used in the subsequent scripts of this chapter"

irisCSV := (ZnEasy get: 'https://agileartificialintelligence.github.io/

 Datasets/iris.csv') contents.

lines := irisCSV lines.

lines := lines allButFirst.

tLines := lines collect: [:l |

 | ss |

 ss := l substrings: ','.

 (ss allButLast collect: [:w | w asNumber]), (Array with: ss

 last)].

irisData := tLines collect: [:row |

 | l |

 row last = 'setosa' ifTrue: [l := #(0)].

 row last = 'versicolor' ifTrue: [l := #(1)].

 row last = 'virginica' ifTrue: [l := #(2)].

 row allButLast, l].

irisData.

To summarize, the script converts a very long string, similar to the following:

'sepal_length,sepal_width,petal_length,petal_width,species

5.1,3.5,1.4,0.2,setosa

4.9,3.0,1.4,0.2,setosa

4.7,3.2,1.3,0.2,setosa

...

'

Chapter 5 Data Classification

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

102

Into a collection of numbers, as follows:

#(#(5.1 3.5 1.4 0.2 0) #(4.9 3.0 1.4 0.2 0) #(4.7 3.2 1.3 0.2 0) ...

The result of the script is the value of the irisData variable. In the remainder of the

chapter, when we will refer to the Iris dataset, we actually mean the irisData value.

5.7  �Training a Network with the Iris Dataset
Training a network is actually easy since we carefully prepared the battlefield. The

remainder of the chapter assumes that the variable irisData is defined as shown in the

previous section. Consider the following code:

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n train: irisData nbEpochs: 1000.

This code builds a network with four input values, one hidden layer with six neurons,

and an output layer with three neurons. The number of inputs represents the size of a

row in the Iris dataset minus one, which is the expected output value, which is not part of

the input. We pick an arbitrary six as the size of the hidden layer. A general rule of thumb

for the hidden layer size is to include 50% more neurons than the number of inputs. We

have three neurons in the output layers since there are three different families of Iris.

Figure 5-4.  Learning the Iris dataset

Chapter 5 Data Classification

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

103

Figure 5-4 represents the error curve of the network. The blue curve is very close

to 0, which indicates that the network is learning and the dataset does not have a

contradiction. The red curve is very close to 1.0, which means that the network has

excellent precision. The network is able to learn and achieve good precision during that

learning process.

The configuration of our network has two parameters: the number of neurons in

the hidden layers, and the number of epochs to consider. There are no general rules on

how to pick these parameters. For now, experiments and ad hoc tries remain the easiest

approach to configure a network. The third part of the book, about neuroevolution, will

cover the search for hyperparameters using genetic algorithms.

5.8  �The Effect of the Learning Curve
When we defined the Neuron class, in Chapter 2, we defined the learningRate: method

to set the learning rate of the neuron. In general, for a single neuron, the higher the

learning rate, the quicker it will learn. We can easily illustrate this effect in the following

example (see Figure 5-5):

g := RTGrapher new.

#(0.001 0.01 0.1 0.2 0.3)

 doWithIndex: [:lr :index |

 learningCurveNeuron := OrderedCollection new.

 0 to: 1000 do: [:nbOfTrained |

 r := Random new seed: 42.

 p := Neuron new.

 p weights: #(-1 -1).

 p bias: 2.

 p learningRate: lr.

 nbOfTrained

 timesRepeat: [p train: #(0 0) desiredOutput: 0.

 p train: #(0 1) desiredOutput: 0.

 p train: #(1 0) desiredOutput: 0.

 p train: #(1 1) desiredOutput: 1].

 res := ((p feed: #(0 0)) - 0) abs + ((p feed: #(0 1)) - 0)

 abs

Chapter 5 Data Classification

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

104

 + ((p feed: #(1 0)) - 0) abs + ((p feed: #(1 1)) - 1)

 abs.

 learningCurveNeuron add: res / 4].

 d := RTData new.

 d label: 'Sigmoid neuron lr = ' , lr asString.

 d noDot.

 d connectColor: (RTPalette c1 at: index).

 d points: learningCurveNeuron.

 d y: #yourself.

 g add: d].

g legend addText: 'Learning rate effect'.

g

Figure 5-5 represents the error curves during the training of five different values of

the learning rate (0.001, 0.01, 0.1, 0.2, and 0.3). The graph indicates that the higher the

learning rate, the quicker it learns.

Figure 5-5.  The effect of the learning rate on a single neuron

Chapter 5 Data Classification

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

105

The effect observed on a single sigmoid neuron cannot be observed on a whole

network. We can train a network for the Iris dataset for different values of the learning

rate. Consider the following script:

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n learningRate: 0.3. " Repeat the script with a different value"

n train: irisData nbEpochs: 1000.

We run the script for the 0.001, 0.01, 0.1, and 0.3 values. The results are presented

in Figure 5-6.

We clearly see that with a low learning rate, the precision and error curves are rather

stable. With a relatively high learning rate, we experience very frequent peaks.

Unfortunately, there is no general methodology to identify the adequate learning

rate or the architecture of the network. Manual tuning is the norm so far. Some

optimization algorithms, such as the Adam optimization algorithm, vary the learning

rate during training.

Figure 5-6.  The effect of the learning rate for a neural network on the Iris dataset

Chapter 5 Data Classification

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

106

5.9  �Testing and Validation
So far, we have built a network trained on the whole Iris dataset: we use all the entries in

the .csv file to train the network. The network seems to properly learn, as the network

makes fewer errors while increasing precision along the epochs (i.e., the error curve is

getting very close to 0).

The error curve indicates how well the network is learning the provided dataset. If

we wish to know how well the network classifies data, it would not make much sense to

test it on data it was trained with. Asking a network how well it performs in the presence

of the very same data used to train it is not much of a challenge. However, an important

question is how well does the network behave in the presence of data that it has never

seen? In other words, how well does the network classify unknown data?

One way to answer this question is to divide the Iris dataset in two distinct parts:

•	 Training dataset: A portion of the .csv file used to train the network.

•	 Test dataset: A second portion of the file is used to see how effective

the trained network is.

Consider the following script:

cut := 0.8.

cutTraining := (irisData size * cut) rounded.

cutTest := (irisData size * (1 - cut)) rounded.

trainingData := irisData first: cutTraining.

testData := irisData last: cutTest.

The cut variable represents the portion of the original Iris dataset used for the

training: 80% of irisData is used for training. The cutTraining variable represents

the number of irisData elements used for the training. Similarly, cutTest represents

the number of elements for the test. The rounded message, when sent to a float value,

returns the integer nearest to the float value (e.g., 4.6 rounded returns 5, 4.3 rounded

returns 4, and 4.5 rounded returns 5).

We can train a network based on the trainingData:

...

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n train: trainingData nbEpochs: 1000.

Chapter 5 Data Classification

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

107

We see that the network can properly learn trainingData, as the error curve is close

to 0, similar to Figure 5-4.

Consider this script (it assumes the existence of the previously seen variable

irisData):

cut := 0.8.

cutTraining := (irisData size * cut) rounded.

cutTest := (irisData size * (1 - cut)) rounded.

trainingData := irisData first: cutTraining.

testData := irisData last: cutTest.

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n train: trainingData nbEpochs: 1000.

(((testData collect: [:d |

 (n predict: d allButLast) = d last

]) select: [:d | d = true]) size / testData size) asFloat round: 2

Evaluating the script returns 0.9, which represents the accuracy of our network: 90%

of the elements contained in testData are correctly predicted.

We will now detail the last part of the script:

(((testData collect: [:d |

 (n predict: d allButLast) = d last

]) select: [:d | d = true]) size / testData size) asFloat round: 2

For all the elements of testData, we predict the classification of the input

(dallButLast) and compare the network result with the expected result (dlast). The result

of the collect: instruction is a list of binary values (true or false). We only select the true

values and count how many there are (size). We then compute the ratio with the size of

the test data (/testDatasize). Finally, we only consider a float value with two decimals.

EXERCISE: Determine the accuracy of the network with a cut of 0.6, 0.5, and 0.4.

Consider a cut of 0.7, as illustrated in the script:

cut := 0.7.

cutTraining := (irisData size * cut) rounded.

cutTest := (irisData size * (1 - cut)) rounded.

trainingData := irisData first: cutTraining.

testData := irisData last: cutTest.

Chapter 5 Data Classification

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

108

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n train: trainingData nbEpochs: 1000.

(((testData collect: [:d |

 (n predict: d allButLast) = d last

]) select: [:d | d = true]) size / testData size) asFloat round: 2

The result is 0.0, indicating that the network cannot make a prediction. Why not?

When we reduce the size of the training data (for example, if the cut equals 0.5), the

accuracy of the network increases. This is an effect of the data organization.

If we inspect the 150 values of irisData, we see that they are actually ordered: the

first 50 entries are Iris setosa (the expected value is 0), the subsequent 50 entries are Iris

versicolor (the expected value is 1), and the last 50 entries are Iris virginica (the expected

value is 2). The fact that the original dataset is ordered has an impact on the accuracy of

the network. Luckily, this problem is easy to solve: a simple shuffling of the original data

will prevent the network from suffering the entry order.

Consider this new script:

shuffledIrisData := irisData shuffleBy: (Random seed: 42).

cut := 0.8.

cutTraining := (shuffledIrisData size * cut) rounded.

cutTest := (shuffledIrisData size * (1 - cut)) rounded.

trainingData := shuffledIrisData first: cutTraining.

testData := shuffledIrisData last: cutTest.

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n train: trainingData nbEpochs: 1000.

(((testData collect: [:d |

 (n predict: d allButLast) = d last

]) select: [:d | d = true]) size / testData size) asFloat round: 2

The script introduces a new variable, called shuffledIrisData. It is initialized with

irisData shuffleBy: (Randomseed: 42), which creates a copy of irisData shuffled

using a random number. If we wish not to use a random number generator and therefore

have a slightly different result at each run, we could simply use shuffled instead of

shuffleBy: (Random seed: 42).

Chapter 5 Data Classification

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

109

5.10  �Normalization
When we presented the perceptron and the sigmoid neuron, we saw that the activation

function was applied to the value z = w.x + b. Applied to a neuron with two inputs, we

have z = x1.w1 + x2.w2 + b. In the examples, all the xi and output values range in the

same interval, from 0 to 1. In the logical gate example, each xi is either 0 or 1. In the Iris

dataset, we can compute the minimum and maximum for each input value:

max := OrderedCollection new.

min := OrderedCollection new.

(1 to: 4) collect: [:i |

 max add: (irisData collect: [:d | d at: i]) max.

 min add: (irisData collect: [:d | d at: i]) min.

].

{ max . min }

The result of this script indicates that overall, the value ranges from 0.1 to 7.9. In

other words, all the input values have a range within the same magnitude.

Why is this important? Consider the example we previously saw when converting

binary numbers to decimals:

n := NNetwork new.

n configure: 3 hidden: 8 nbOfOutputs: 8.

data := {#(0 0 0 0).

 #(0 0 1 1).

 #(0 1 0 2).

 #(0 1 1 3).

 #(1 0 0 4).

 #(1 0 1 5).

 #(1 1 0 6).

 #(1 1 1 7) }.

n train: data nbEpochs: 1000.

Chapter 5 Data Classification

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

110

Figure 5-7 shows the error curve of the network. Each input value is either 0 or 1. We

will produce a different, but equivalent, dataset by changing the scale of each column.

In this revised example, we will make the first input either 0 or 0.1, and the second input

either 0 or 1000. Consider the following:

n := NNetwork new.

n configure: 3 hidden: 8 nbOfOutputs: 8.

data := {#(0 0 0 0).

 #(0 0 1 1).

 #(0 1000 0 2).

 #(0 1000 1 3).

 #(0.1 0 0 4).

 #(0.1 0 1 5).

 #(0.1 1000 0 6).

 #(0.1 1000 1 7) }.

n train: data nbEpochs: 10000.

Figure 5-7.  Learning the Iris dataset

Chapter 5 Data Classification

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

111

Figure 5-8 shows the error curve and the precision along the epochs. The evolution

of the error has reached a plateau and the precision does not go above 0.5. This is

because changing the scale of a particular input value affects the relevance of these

values.

The sigmoid function returns a value between 0 and 1. Having the same range for

the input improves the learning performance. One way to avoid data distortion is to have

each input range between 0 and 1. The process of transforming data from an arbitrary

range to a restricted range is called normalization. Luckily, normalizing data is rather

simple. Consider the function f:

	
f x

x d n n

d d
nL H L

H L
L() =

-() -()
-

+
	

The function f(x) normalizes a value, x. The variable d represents the high and low

values of the data. The variable n represents the desired high and low normalization

range. In most cases, we will have nL = 0 and nH = 1.

We can therefore implement the following utility class:

Object subclass: #Normalization

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

Figure 5-8.  The Iris dataset, oddly scaled

Chapter 5 Data Classification

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

112

We then define the normalizeData: method, which takes as an argument some

training data:

Normalization>>normalizeData:

 aCollectionOfTrainingDataWithExpectedOutput

 "Normalize the data provided as argument"

 | nbOfColumns min max |

 "We exclude the expected output"

 nbOfColumns := aCollectionOfTrainingDataWithExpectedOutput first

 size - 1.

 min := OrderedCollection new.

 max := OrderedCollection new.

 1 to: nbOfColumns do: [:index |

 | column |

 column := aCollectionOfTrainingDataWithExpectedOutput collect:

 [:row | row at: index].

 min add: column min.

 max add: column max].

 ^ self normalizeData: aCollectionOfTrainingDataWithExpectedOutput

 min: min max: max

The real work happens in this second method:

Normalization>>normalizeData:

 aCollectionOfTrainingDataWithExpectedOutput min: minimumValues max:

 maximumValues

 | nbOfColumns result mn mx |

 nbOfColumns := aCollectionOfTrainingDataWithExpectedOutput first

 size - 1.

 result := OrderedCollection new.

 aCollectionOfTrainingDataWithExpectedOutput do: [:row |

 | t v |

 t := OrderedCollection new.

 1 to: nbOfColumns do: [:index |

Chapter 5 Data Classification

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

113

 v := row at: index.

 mn := minimumValues at: index.

 mx := maximumValues at: index.

 t add: ((v - mn) / (mx - mn)) asFloat

].

 t add: row last.

 result add: t asArray].

 ^ result asArray

We can test these methods. First we can create a unit test called NormalizationTest:

TestCase subclass: #NormalizationTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

NormalizationTest>>testSimpleNormalization

 | input expectedNormalizedInput |

 input := #(#(10 5 1) #(2 6 0)).

 expectedNormalizedInput := Normalization new normalizeData: input.

 self assert: expectedNormalizedInput equals: #(#(1.0 0.0 1) #(0.0

 1.0 0))

This small test method illustrates the result of a simple normalization. For example,

the first column of the two entries of input has 10 as the highest value and 2 as the

lowest. The normalization replaces the highest value by 1.0 and the lowest by 0.0.

Note that the normalization makes sense only if two or more entries are provided as

input. We can test erroneous cases:

NormalizationTest>>testError

 self should: [Normalization new normalizeData: #(#(10 5 1))]

 raise: Error.

NormalizationTest>>testEmptyError

 self should: [Normalization new normalizeData: #()] raise: Error.

Chapter 5 Data Classification

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

114

When a neural network is used for regression, returned values are normalized. We

therefore need to denormalize them. Consider the function g:

	
g x

d d x n d d n

n n
L H H L H L

L H

() =
-() - () +

- 	

We give the denormalization function for sake of completeness. We will not use it

since we excluded data regression from this chapter.

5.11  �Integrating Normalization into the
NNetwork Class

The previous section described the normalization functionality. Currently, it is

disconnected from the NNetwork class. Integrating normalization into our neural

network is the natural next step to seamlessly benefit from it. The train:nbEpochs:

method can be redefined as follows:

NNetwork>>train: train nbEpochs: nbEpochs

 "Train the network using the train dataset."

 | sumError outputs expectedOutput epochPrecision t normalizedTrain

 |

 normalizedTrain := Normalization new normalizeData: train.

 1 to: nbEpochs do: [:epoch |

 sumError := 0.

 epochPrecision := 0.

 normalizedTrain do: [:row |

 outputs := self feed: row allButLast.

 �expectedOutput := (1 to: self numberOfOutputs) collect: [:

 notUsed | 0].

 expectedOutput at: (row last) + 1 put: 1.

 (row last = (self predict: row allButLast)) ifTrue: [

 epochPrecision := epochPrecision + 1].

 t := (1 to: expectedOutput size)

 �collect: [:i | ((expectedOutput at: i) -

(outputs

 at: i)) squared].

Chapter 5 Data Classification

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

115

 sumError := sumError + t sum.
 self backwardPropagateError: expectedOutput.
 self updateWeight: row allButLast.
].
 errors add: sumError.
 precisions add: (epochPrecision / train size) asFloat.

]

The revision of the method normalizes the input data with the Normalization new

normalizeData:train expression. The result of this expression is used to train the

network. Running the following script indicates that high precision is quickly reached

(see Figure 5-9):

n := NNetwork new.
n configure: 3 hidden: 8 nbOfOutputs: 8.

data := {#(0 0 0 0).
 #(0 0 1 1).
 #(0 1000 0 2).
 #(0 1000 1 3).
 #(0.1 0 0 4).
 #(0.1 0 1 5).
 #(0.1 1000 0 6).
 #(0.1 1000 1 7) }.
n train: data nbEpochs: 10000.

Figure 5-9.  The Iris dataset, oddly scaled AU1

Chapter 5 Data Classification

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

116

Figure 5-9 shows the precision reaching 1.0. Thanks to the normalization, all the

input values have the same relevance for the network. As a consequence, the network is

able to learn properly. Note that in this example we use a linear normalization. It may be

that a nonlinear transformation would improve the learning, especially in presence of

outlier values in the training data. However, we consider nonlinear data transformation

out of the scope of this book. Keep in mind that you may need it if you have a dataset

with relevant outliers.

5.12  �What Have We Seen in This Chapter?
This chapter was like a long road exploring different aspects of data manipulation. In

particular, it explored:

•	 A simple visualization to monitor network learning

•	 The one-hot encoding technique that makes a network operate on

non-numeric data

•	 The Iris dataset as a complete example of applying a neural network

to classify data

•	 The relevance of normalizing data before processing it

We invite the reader to explore different datasets. The https://datasetsearch.

research.google.com website includes many relevant datasets to be employed with a

neural network or any other machine learning algorithm.

Chapter 5 Data Classification

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

117
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_6

CHAPTER 6

A Matrix Library
In the previous chapters, we presented an implementation of a neural network made of

layers and neurons (i.e., instances of NeuronLayer and Neuron). Although instructive,

that implementation does not reflect classical ways of implementing a neural network.

A layer can be expressed as a matrix of weights and a vector of biases. This is how most

libraries that build neural networks (e.g., TensorFlow and PyTorch) actually operate.

This chapter lays out a small library to build and manipulate matrices. This chapter

is an important foundation for the subsequent chapter, which is about how networks

can be implemented using matrices. Matrices are a particular data structure for which

operations cannot efficiently be implemented in Pharo. We will write these costly

operations in C but make them accessible within Pharo.

In addition to defining a matrix library, this chapter highlights one particular

aspect of Pharo, which is the use of Foreign Function Interface (FFI). This is a relevant

mechanism whenever one wishes to make Pharo use external libraries written using the

C or C++ programming languages. For example, TensorFlow is written in C++, which

may be accessed from Pharo using the very same technique presented in this chapter.

This chapter is long and contains many inter-dependent methods. The chapter

needs to be fully implemented before being functional.

6.1  �Matrix Operations in C
Pharo does not provide built-in features to manipulate matrices. Although we could

implement them in Pharo, it would suffer from very poor performance. Instead, we will

code a small library in C to support the elementary C operations. Create a file named

matrix.c with the following C code:

void dot(double *m1, int m1_nb_rows, int m1_nb_columns, double *m2,

 int m2_nb_rows, int m2_nb_columns, double *res) {

 int col, row, k;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec8

118

 for (col = 0; col < m2_nb_columns; col++) {

 for (row = 0; row < m1_nb_rows; row++) {

 double tmp = 0;

 for (k = 0; k < m2_nb_rows; k++)

 tmp += m1[row * m1_nb_columns + k] * m2[k *
 m2_nb_columns + col];

 res[row * m2_nb_columns + col] = tmp;

} } }

void sub(double *m1, int nb_rows, int nb_columns,

 double *m2, double *res) {

 int col, row;

 for (col = 0; col < nb_columns; col++) {

 for (row = 0; row < nb_rows; row++) {

 res[row * nb_columns + col] =

 m1[row * nb_columns + col] - m2[row * nb_columns +

 col];

} } }

void add(double *m1, int nb_rows, int nb_columns,

 double *m2, double *res) {

 int col, row;

 for (col = 0; col < nb_columns; col++) {

 for (row = 0; row < nb_rows; row++) {

 res[row * nb_columns + col] =

 m1[row * nb_columns + col] + m2[row * nb_columns +

 col];

} } }

This small library is composed of three C functions:

•	 dot performs the multiplication of matrices

•	 sub subtracts one matrix from another

•	 add sums the two matrices

We will not go into details about this C file. It simply applies some basic matrix

operations. Each function takes as an argument a pointer to some matrices along with

their shape. The library has to be compiled, which means that inevitably we have to

Chapter 6 A Matrix Library

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

119

get closer to the operating system. This chapter will cover MacOS and Linux only. Both

platforms offer the gcc standard compiler. Assuming the gcc tool suite is installed and

you’re using MacOS, you should type the following in a terminal:

gcc -dynamiclib -o matrix.dylib matrix.c

On Linux, you need to execute this instead:

gcc -c -Wall -Werror -fpic matrix.c

gcc -shared -o libmatrix.so matrix.o

Our matrix file is compiled as a dynamic library, loadable within Pharo. The

compilation produces a dynamic library. On OSX, the generated file is named matrix.

dylib, and it’s called libmatrix.so on Linux. Either way, this file has to be located next

to the .image file, within the same folder.

6.2  �The Matrix Class
We can now write the Pharo class called MMatrix, which will use our C library. Note

that Pharo 7 contains a deprecated class called Matrix, which is not really useful for

our purposes. That’s why our class is prefixed with an additional M character. In a new

package called Matrix, we define the class:

Object subclass: #MMatrix

 instanceVariableNames: 'nbRows nbColumns array'

 classVariableNames: ''

 package: 'Matrix'

The two first variables describe the shape of the matrix, while the array variable

refers to an array containing the actual values of the matrix, in a linear fashion. This

array will have to be accessible both from Pharo and from our C library.

On the class side of the class MMatrix, we define a number of useful methods to

create matrices. You need to switch the class browser to the class mode to define class

methods. The newFromArrays: method creates a matrix from a collection of arrays:

MMatrix class>>newFromArrays: arrays

 "Create a matrix from an array containing the structured

 values of the matrix. Example of matrix creations:

 MMatrix newFromArrays: #(#(1 2 3) #(4 5 6))

Chapter 6 A Matrix Library

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

120

 MMatrix newFromArrays: #(#(1 2 3))

 MMatrix newFromArrays: #(#(1) #(2) #(3))

 "

 ^ self basicNew

 initializeRows: arrays size columns: arrays first size;

 fromContents: (arrays flatCollect: #yourself);

 yourself

We also need a lower level to create a matrix, simply by providing the shape of the

matrix. This assumes that the matrix content is set later. Consider this new class method:

MMatrix class>>newRows: numRows columns: numColumns

 "Create a matrix with a given shape"

 ^ self basicNew

 initializeRows: numRows columns: numColumns;

 yourself

We then define a method to initialize a matrix:

MMatrix>>initializeRows: numRows columns: numColumns

 self initialize.

 nbRows := numRows.

 nbColumns := numColumns.

 array := self newArray

The array is useful to keep the matrix content and is defined using newArray:

MMatrix>>newArray

 "Create an array used to contains the store the matrix content"

 ^ FFIExternalArray

 newType: 'double'

 size: nbColumns * nbRows

The FFIExternalArray class represents an array for which its elements are values of

some external type. In our case, we will encode matrix values as a double, which is a float

value encoded on 64 bits. The array has to be accessed from other objects:

MMatrix>>array

 "The array containing matrix' values"

 ^ array

Chapter 6 A Matrix Library

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

121

Foreign objects, living within the Pharo memory space, need to be accessible from

our external library. A useful class represents the memory address that is used by the C

library. The FFIExternalArray class offers the getHandle method to access the memory

location:

MMatrix>>getHandle

 "Return the handle of the foreign object.

 This allows the array to be accessed from C"

 ^ array getHandle

The handy asArray method is useful in the test. We will use it when verifying that a

matrix is properly created:

MMatrix>>asArray

 "Return a linear array of the matrix values"

 ^ array asArray

In some situations, a handle has to be provided when a matrix is created. The

following method addresses this:

MMatrix class>>newHandle: aHandle rows: numRows columns: numColumns

 "Create a matrix with a provided content. Useful when creating

 a matrix after an FFI operation"

 ^ self basicNew

 initializeHandle: aHandle rows: numRows columns: numColumns;

 yourself

The initializeHandle:rows:columns: method initializes a matrix with a handle

and a particular shape:

MMatrix>>initializeHandle: aHandle rows: numRows columns: numColumns

 "Initialize the matrix"

 self initialize.

 nbRows := numRows.

 nbColumns := numColumns.

 array := self newArrayFromHandle: aHandle

The following factory method creates an external array using a given handle:

MMatrix>>newArrayFromHandle: aHandle

 "Create an external array using a handle"

Chapter 6 A Matrix Library

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

122

 ^ FFIExternalArray

 fromHandle: aHandle

 type: 'double'

 size: nbColumns * nbRows

We need a few utility methods to access the shape of the matrix:

MMatrix>>nbRows

 "Number of rows defined in the matrix"

 ^ nbRows

and

MMatrix>>nbColumns

 "Number of columns defined in the matrix"

 ^ nbColumns

The number of values of the matrix is accessed using size, as follows:

MMatrix>>size

 "The number of values contained in the matrix"

 ^ nbColumns * nbRows

A matrix may be filled with a linear set of values:

MMatrix>>fromContents: content

 "Initialize the matrix with a linear content"

 self assert: [content size = (nbColumns * nbRows)] description: '

 size mismatch'.

 content doWithIndex: [:v :i | array at: i put: v]

These methods will be properly tested in the following subsections.

6.3  �Creating the Unit Test
We can now write a unit test. The MMatrixTest class will contain all our tests about

MMatrix. Consider the following class:

TestCase subclass: #MMatrixTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'Matrix'

Chapter 6 A Matrix Library

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

123

As a first test, we can vary the proper behavior of the creation method, defined on

MMatrix:

MMatrixTest>>testCreation

 | m |

 m := MMatrix newFromArrays: #(#(1 2) #(3 4)).

 self assert: m asArray equals: #(1.0 2.0 3.0 4.0)

In the remainder of the chapter we will expand the MMatrixTest class.

6.4  �Accessing and Modifying the Content
of a Matrix

Being able to easily update the matrix content is the first step we should consider. The

contents of a matrix can be accessed using the at: message. This method takes as an

argument a point, as follows:

MMatrix>>at: aPoint

 "Access an element of the matrix"

 ^ array at: ((aPoint x - 1) * nbColumns + (aPoint y - 1)) + 1

We can test the at: method as follows:

MMatrixTest>>testAt

 | m |

 m := MMatrix newFromArrays: #(#(1 2) #(3 4)).

 self assert: (m at: 1 @ 1) equals: 1.

 self assert: (m at: 1 @ 2) equals: 2.

 self assert: (m at: 2 @ 1) equals: 3.

 self assert: (m at: 2 @ 2) equals: 4.

Similarly, we need to provide a way to modify the contents of a matrix. The at:put:

method inserts a value at a given position:

MMatrix>>at: aPoint put: aNumber

 "Modify an element of the matrix"

 array at: ((aPoint x - 1) * nbColumns + (aPoint y - 1)) + 1 put:

 aNumber asFloat

Chapter 6 A Matrix Library

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

124

To ease the testing, we add a convenient conversion method:

MMatrix>>asStructuredArray

 "Return a structured array that describe the matrix"

 ^ (1 to: nbRows) collect: [:i | self atRow: i] as: Array

The atRow: method returns the horizontal values for a given index.

MMatrix>>atRow: rowNumber

 "Return a particular row"

 (rowNumber between: 1 and: rowNumber)

 ifFalse: [self error: 'index out of range'].

 ^ (1 to: nbColumns) collect: [:x | self at: rowNumber @ x]

A simple test illustrates the use of at:put::

MMatrixTest>>testAtPut

 | m |

 m := MMatrix newFromArrays: #(#(1 2) #(3 4)).

 m at: 2 @ 1 put: 10.0.

 self assert: (m at: 2 @ 1) equals: 10.0.

 self assert: m asStructuredArray equals: #(#(1 2) #(10 4))

Note that we refer to an element using a coordinate row@column. This way of

accessing a matrix element is close to the mathematical notation traditionally used in

linear algebra.

When we do the prediction in a network, we will need to obtain the maximum value

of a matrix. We can simply define this as follows:

MMatrix>>max

 "Return the maximum value of the matrix"

 ^ self asArray max

The corresponding test is as follows:

MMatrixTest>>testMax

 | m |

 m := MMatrix newFromArrays: #(#(1 2) #(3 4)).

 self assert: m max equals: 4.

We have laid out the necessary infrastructure to define some operations. The

following sections cover the operations we will employ in our neural network.

Chapter 6 A Matrix Library

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

125

6.5  �Summing Matrices
Two matrices may be summed. The operation assumes that the two matrices have

exactly the same dimensions. We can define the sum with the + method. This method

accepts another matrix of the same size as the receiver, or a vertical, vector (i.e., a matrix

with only one column):

MMatrix>>+ matrixOrVector

 "Add either a matrix or a vector to the receiver.

 The argument could either be a matrix of the same size or

 a vector. A new matrix is returned as result"

 | m |

 ((nbRows = matrixOrVector nbRows) and: [nbColumns = matrixOrVector

 nbColumns])

 ifTrue: [^ self add: matrixOrVector].

 matrixOrVector nbColumns ~= 1 ifTrue: [self error: 'not a n * 1

 vector'].

 m := matrixOrVector stretchToColumns: nbColumns.

 ^ self + m

The addition involves several steps due to the complexity of the operation. We define

the add: method:

MMatrix>>add: aMatrix

 "Add two matrices, the receiver and the argument, and produces

 a new matrix"

 | result resultArray |

 nbColumns = aMatrix nbColumns ifFalse: [self error: 'dimensions

 do not conform'].

 nbRows = aMatrix nbRows ifFalse: [self error: 'dimensions do not

 conform'].

 resultArray := ByteArray new: (nbRows * aMatrix nbColumns * 8).

 self assert: [nbRows * nbColumns = array size].

 self assert: [aMatrix nbRows * aMatrix nbColumns = aMatrix size].

 self assert: [nbRows * aMatrix nbColumns * 8 = resultArray size].

 self

Chapter 6 A Matrix Library

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

126

 add: self getHandle with: nbRows with: nbColumns with: aMatrix

 getHandle

 in: resultArray.

 result := MMatrix newHandle: resultArray rows: nbRows columns:

 nbColumns.

 ^ result

The add: method creates a new matrix and invokes the add function from our C

library. On MacOS, you need to define the method as follows:

MMatrix>>add: m1 with: nb_rows with: nb_columns with: m2 in: res

 ^ self

 ffiCall: #(void add(double *m1, int nb_rows, int nb_columns,

 double *m2,

 double *res))

 module: 'matrix.dylib'

Note that on Linux, you need to replace 'matrix.dylib' with 'libmatrix.so'. We

can test this by summing two matrices:

MMatrixTest>>testAddition1

 | m1 m2 |

 m1 := MMatrix newFromArrays: #(#(1 2 3) #(4 5 6)).

 m2 := MMatrix newFromArrays: #(#(4 5 6) #(1 2 3)).

 self assert: (m1 + m2) asStructuredArray equals: #(#(5.0 7.0 9.0)

 #(5.0 7.0 9.0))

We can also try adding a matrix to itself:

MMatrixTest>>testAddition2

 | m |

 m := MMatrix newFromArrays: #(#(1 2 3) #(4 5 6)).

 self assert: (m + m) asStructuredArray equals: #(#(2.0 4.0 6.0)

 #(8.0 10.0 12.0))

Elements of a matrix may be horizontally summed up. As we will see in the next

chapter, this operation is important when we implement the backpropagation algorithm.

Consider the following sumHorizontal method:

Chapter 6 A Matrix Library

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

127

MMatrix>>sumHorizontal

 "Horizontal summing"

 | result sum |

 result := MMatrix newRows: nbRows columns: 1.

 1 to: nbRows do: [:y |

 sum := 0.

 1 to: nbColumns do: [:x |

 sum := sum + (self at: y @ x)].

 result at: y @ 1 put: sum].

 ^ result

An example of sumHorizontal is provided in the following test method:

MMatrixTest>>testSumHorizontal

 | m expectedResult |

 m := MMatrix newFromArrays: #(#(1.0 2.0) #(3.0 4.0) #(5.0 6.0)).

 expectedResult := MMatrix newFromArrays: #(#(3.0) #(7.0) #(11.0)).

 self assert: m sumHorizontal asStructuredArray equals:

 expectedResult asStructuredArray

6.6  �Printing a Matrix
Being able to print a matrix is essential to seeing how the matrix is made. The printOn:

method returns a textual representation of the object that received the corresponding

message. We will therefore redefine it in the MMatrix class:

MMatrix>>printOn: aStream

 "Print the matrix in the stream, with 4 decimal for each value"

 self printOn: aStream round: 4

We will handle matrices with 64-bit float values. To make the printing effective, we

need to limit the number of decimals:

MMatrix>>printOn: aStream round: nbDecimals

 "Print the receiver matrix into a stream. All numerical value are

 truncated to a fixed number of decimals"

 aStream nextPutAll: '('.

 (1 to: nbRows)

Chapter 6 A Matrix Library

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

128

 do: [:r |

 (self atRow: r)

 do: [:each | aStream nextPutAll: (each round:

 nbDecimals) printString]

 separatedBy: [aStream space]]

 separatedBy: [aStream cr].

 aStream nextPutAll: ')'.

We can now test our code in a playground. Consider the following code snippet:

m := MMatrix newFromArrays: #(#(1 2 3) #(4 5 6)).

m + m

Printing this code should produce the following:

(2.0 4.0 6.0

8.0 10.0 12.0)

6.7  �Expressing Vectors
A vector is a matrix with only one column. For example, the expression

MMatrixnewFromArrays: #(#(1)#(2)#(3)) creates a vector of three elements. We

provide a utility method to define a vector:

MMatrix class>>newFromVector: array

 "Create a Nx1 matrix from an array of numbers (N = array size)"

 ^ self basicNew

 initializeRows: array size columns: 1;

 fromContents: array;

 yourself

The newFromVector: method expects a flat Pharo array. Here is an example:

MMatrixTest>>testVectorCreation

 | v |

 v := MMatrix newFromVector: #(1 2 3).

 self assert: v nbColumns equals: 1.

 self assert: v nbRows equals: 3.

 self assert: v asStructuredArray equals: #(#(1) #(2) #(3))

Chapter 6 A Matrix Library

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

129

The backpropagation algorithm must stretch a vector into a matrix. It converts a

vector into a matrix by juxtaposing the vector several times. We define the following

method:

MMatrix>>stretchToColumns: nbOfColumns

 "Stretch a vertical vector in a column."

 | content result |

 content := OrderedCollection new.

 1 to: nbRows do: [:row |

 1 to: nbOfColumns do: [:columns |

 content add: (self at: row @ 1)]].

 result := MMatrix newRows: nbRows columns: nbOfColumns.

 result fromContents: content.

 ^ result

Printing the expression (MMatrixnewFromVector: #(1 2 3 4))stretchToColumns: 5

results in the following:

(1.0 1.0 1.0 1.0 1.0

2.0 2.0 2.0 2.0 2.0

3.0 3.0 3.0 3.0 3.0

4.0 4.0 4.0 4.0 4.0)

A test can be defined as follows:

MMatrixTest>>testStretching

 | m |

 m := (MMatrix newFromVector: #(1 2 3 4)) stretchToColumns: 5.

 self assert: m nbRows equals: 4.

 self assert: m nbColumns equals: 5.

 self assert: (m atRow: 1) equals: #(1 1 1 1 1).

 self assert: (m atRow: 3) equals: #(3 3 3 3 3).

6.8  �Factors
Being able to transform a matrix and multiply matrices is essential during several parts

of the backpropagation algorithm. We will first define a generic way to transform a matrix:

Chapter 6 A Matrix Library

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

130

MMatrix>>collect: aOneArgBlock

 "Return a new matrix, for which each matrix element is

 transformed using the provided block"

 | result |

 result := MMatrix newRows: nbRows columns: nbColumns.

 1 to: nbRows do: [:y |

 1 to: nbColumns do: [:x |

 result at: y @ x put: (aOneArgBlock value: (self at: y @ x)

)

]].

 ^ result

Here’s a simple test that adds a value to each matrix element:

MMatrixTest>>testCollect

 | m expectedMatrix |

 m := MMatrix newFromArrays: #(#(1 2 3) #(4 5 6)).

 expectedMatrix := MMatrix newFromArrays: #(#(2 3 4) #(5 6 7)).

 self assert: (m collect: [:v | v + 1]) asStructuredArray equals:

 expectedMatrix asStructuredArray

Elements of a matrix may be multiplied by a numerical factor. For that purpose, we

define the * method:

MMatrix>>* aFactor

 "Multiply each element of the matrix by a factor"

 ^ self collect: [:v | v * aFactor]

We can test this method when it’s applied to a vector:

MMatrixTest>>testMultiplicationOnVector

 | x |

 x := MMatrix newFromVector: #(1 2 3 4).

 self assert: (x * 5) asStructuredArray equals: #(#(5.0) #(10.0)

 #(15.0) #(20.0))

Chapter 6 A Matrix Library

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

131

Similarly, we can test the multiplication on a matrix:

MMatrixTest>>testMultiplicationOnMatrix

 | x |

 x := MMatrix newFromArrays: #(#(1 2 3 4) #(10 20 30 40)).

 self assert: (x * 5) asStructuredArray

 equals: #(#(5.0 10.0 15.0 20.0) #(50.0 100.0 150.0 200.0))

Another relevant operation is to multiply two matrices element-wise:

MMatrix>>multiplyPerElement: mat

 "Multiply two matrices element-wise"

 | r |

 self assert: [nbRows = mat nbRows].

 self assert: [nbColumns = mat nbColumns].

 r := MMatrix newRows: nbRows columns: nbColumns.

 r fromContents: (self asArray with: mat array asArray collect: [:a

 :b | a * b]).

 ^ r

The method could be tested as follows:

MMatrixTest>>testMultiplicationPerElement

 | v1 v2 expectedVector |

 v1 := MMatrix newFromVector: #(1 2 3).

 v2 := MMatrix newFromVector: #(10 20 30).

 expectedVector := MMatrix newFromVector: #(10 40 90).

 self assert: (v1 multiplyPerElement: v2) asArray

 equals: expectedVector asArray

6.9  �Dividing a Matrix by a Factor
In the same fashion as in the previous section, we can divide a matrix by a factor:

MMatrix>>/ value

 "Divide each element of the matrix by a value"

 ^ self collect: [:v | v / value]

Chapter 6 A Matrix Library

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

132

This method can be tested using the following:

MMatrixTest>>testDivision

 | m |

 m := MMatrix newFromArrays: #(#(1 2 3) #(4 5 6)).

 self assert: (m / 2) asStructuredArray equals: #(#(0.5 1.0 1.5)

 #(2.0 2.5 3.0))

6.10  �Matrix Product
We defined the matrix product using two methods +* and dot:. The first is a shortcut to

the latter:

MMatrix>>+* anotherMatrix

 "Shortcut for the dot operator between matrices"

 ^ self dot: anotherMatrix

The dot: method is defined as follows:

MMatrix>>dot: anotherMatrix

 "Compute the dot product between the receiving matrix and the

 argument"

 | result resultArray |

 nbColumns = anotherMatrix nbRows ifFalse: [self error:

 'dimensions do not conform'].

 self assert: [nbRows * nbColumns = array size].

 self assert: [anotherMatrix nbRows * anotherMatrix nbColumns =

 anotherMatrix size].

 resultArray := ByteArray new: (nbRows * anotherMatrix nbColumns * 8).
 self

 dot: self getHandle with: nbRows with: nbColumns

 with: anotherMatrix getHandle

 with: anotherMatrix nbRows with: anotherMatrix nbColumns in:

 resultArray.

 result := MMatrix

 newHandle: resultArray

 rows: nbRows

Chapter 6 A Matrix Library

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

133

 columns: anotherMatrix nbColumns.

 ^ result

The connection between the Pharo code and the C library is defined in the following

method:

MMatrix>>dot: array1 with: m1_nb_rows with: m1_nb_columns with: array2

 with: m2_nb_rows with: m2_nb_columns in: res

 "Invoke the C library to perform the dot operator"

 ^ self

 ffiCall: #(void dot(

 void *array1, int m1_nb_rows, int m1_nb_columns,

 void *array2, int m2_nb_rows, int m2_nb_columns, void *res)

)

 module: 'matrix.dylib'

On Linux, you need to replace 'matrix.dylib' with 'libmatrix.so'. You can test

this code using the following test method:

MMatrixTest>>testMatrixProduct

 | m1 m2 |

 m1 := MMatrix newFromArrays: #(#(1 2 3 4) #(5 6 7 8)).

 m2 := MMatrix newFromArrays: #(#(1 2) #(3 4) #(5 6) #(7 8)).

 self assert: (m1 +* m2) asStructuredArray equals: #(#(50.0 60.0)

 #(114.0 140.0))

6.11  �Matrix Subtraction
Subtracting matrices is another relevant operation in machine learning in general. We

define the following shortcut:

MMatrix>>- anotherMatrix

 "Subtract a matrix from the receiver matrix"

 ^ self sub: anotherMatrix

This shortcut calls the sub: method:

MMatrix>>sub: anotherMatrix

 | result resultArray |

Chapter 6 A Matrix Library

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

134

 nbColumns = anotherMatrix nbColumns ifFalse: [self error: '

 dimensions do not conform'].

 nbRows = anotherMatrix nbRows ifFalse: [self error: 'dimensions

 do not conform'].

 resultArray := ByteArray new: (nbRows * anotherMatrix nbColumns * 8).

 self assert: [nbRows * nbColumns = array size].

 self assert: [anotherMatrix nbRows * anotherMatrix nbColumns =

 anotherMatrix size].

 self assert: [nbRows * anotherMatrix nbColumns * 8 = resultArray

 size].

 self

 sub: self getHandle with: nbRows with: nbColumns with:

 anotherMatrix getHandle

 in: resultArray.

 result := MMatrix newHandle: resultArray rows: nbRows columns:

 nbColumns.

 ^ result

Our C library is used via the following method:

MMatrix>>sub: m1 with: nb_rows with: nb_columns with: m2 in: res

 ^ self

 ffiCall: #(void sub(double *m1, int nb_rows, int nb_columns,

 double *m2, double *res))

 module: 'matrix.dylib'

Note that on Linux, you need to replace 'matrix.dylib' with 'libmatrix.so'. A

simple test illustrates the behavior of matrix subtraction:

MMatrixTest>>testSub

 | m1 m2 |

 m1 := MMatrix newFromArrays: #(#(1 2 3 4) #(5 6 7 8)).

 m2 := MMatrix newFromArrays: #(#(4 2 1 3) #(7 6 8 5)).

 self assert: (m1 - m2) asStructuredArray equals: #(#(-3 0 2 1) #(-2

 0 -1 3))

Chapter 6 A Matrix Library

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

135

6.12  �Filling the Matrix with Random Numbers
The initial state of a neural network is mostly random. We therefore need a way to

randomly initialize a matrix. Consider this method:

MMatrix>>random

 "Fill the matrix with random numbers"

 ^ self random: Random new

It could be convenient to provide a random generator for the initialization:

MMatrix>>random: randomNumberGenerator

 "Fill the matrix with random numbers. Takes a random number

 generator as argument"

 self fromContents: ((1 to: nbRows * nbColumns) collect: [:vv |

 randomNumberGenerator next])

Executing the expression (MMatrixnewRows: 4columns: 5)random illustrates its use:

(0.2073 0.7154 0.3008 0.06 0.0865

0.3493 0.6396 0.7285 0.4873 0.1947

0.7951 0.3034 0.6066 0.8358 0.1445

0.5454 0.2504 0.2012 0.9086 0.5719)

6.13  �Summing the Matrix Values
Values contained in a matrix may be summed. This is useful for evaluating the cost

function when training a neural network:

MMatrix>>sum

 "Return the sum of the matrix values"

 | sum |

 sum := 0.

 1 to: nbRows do: [:y |

 1 to: nbColumns do: [:x |

 sum := sum + (self at: y @ x)

]

].

 ^ sum

Chapter 6 A Matrix Library

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

136

The use of sum is illustrated in the test:

MMatrixTest>>testSum

 | m |

 m := MMatrix newFromArrays: #(#(1 2 3 4) #(5 6 7 8)).

 self assert: m sum equals: (1 to: 8) sum

6.14  �Transposing a Matrix
Transposing a matrix is an operation that consists of flipping a matrix along its diagonal

axis. We can define the operation as follows:

MMatrix>>transposed

 "Transpose the matrix"

 | result |

 result := MMatrix newRows: nbColumns columns: nbRows.

 1 to: nbRows do: [:row |

 1 to: nbColumns do: [:column |

 result at: column @ row put: (self at: row @ column)

]

].

 ^ result

The following test illustrates the behavior of the transposed method:

MMatrixTest>>testTransposedOnMatrix

 | m expectedResult |

 m := MMatrix newFromArrays: #(#(1 2 3 4) #(5 6 7 8)).

 expectedResult := MMatrix newFromArrays: #(#(1 5) #(2 6) #(3 7) #(4 8)).

 self assert: m transposed asStructuredArray equals: expectedResult

 asStructuredArray

Transposing a vector produces a matrix of one row, as the following test method

illustrates:

MMatrixTest>>testTransposedOnVector

 | m |

 m := MMatrix newFromVector: #(1 2 3).

 self assert: m transposed asStructuredArray equals: #(#(1 2 3))

Chapter 6 A Matrix Library

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

137

6.15  �Example
We can illustrate the use of matrices in a simple backpropagation implementation. The

following script creates two random sets of values and trains a neural network to map

the input values to the output values. It illustrates the “essence” of forward and backward

propagation:

n := 8. "Number of examples"

din := 10. "Number of input values"

h := 20. "Size of the hidden layer"

dout := 5. "Number of output values"

r := Random seed: 42.

x := (MMatrix newRows: n columns: din) random: r.

y := (MMatrix newRows: n columns: dout) random: r.

w1 := (MMatrix newRows: din columns: h) random: r.

w2 := (MMatrix newRows: h columns: dout) random: r.

learningRate := 1e-6.

losses := OrderedCollection new.

1500 timesRepeat: [

 hh := x +* w1.

 hrelu := hh collect: [:v | v max: 0].

 ypred := hrelu +* w2.

 "Compute and print loss"

 loss := ((ypred - y) collect: [:vv | vv * vv]) sum.

 losses add: loss.

 "Backprop to compute gradients of w2 and w2 with respect to loss"

 gradYPred := (ypred - y) * 2.0.

 gradW2 := hrelu transposed +* gradYPred.

 gradHRelu := gradYPred +* w2 transposed.

 gradH := gradHRelu collect: [:v | v max: 0].

 gradW1 := x transposed +* gradH.

 w1 := w1 - (gradW1 * learningRate).

 w2 := w2 - (gradW2 * learningRate)

].

Chapter 6 A Matrix Library

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

138

g := RTGrapher new.

d := RTData new.

d noDot; connectColor: Color blue.

d points: losses.

d y: #yourself.

g add: d.

g axisX title: 'Epoch'.

g axisY title: 'Error'.

g

The last part of the script uses RTGrapher to show the evolution of the loss value

along epochs (see Figure 6-1).

Figure 6-1.  A simple implementation of backpropagation

Chapter 6 A Matrix Library

643

644

645

646

647

648

649

650

651

652

653

139

6.16  �What Have We Seen in This Chapter?
The chapter covered the following topics:

•	 Definition of a minimal C library. Neural networks, and deep learning

in general, employ matrices to perform their computations.

•	 Definition of the MMatrix class. This class models the mathematical

notion of a matrix. Note that we designed our class to offer relevant

operations for neural networks. It is by no means a definitive generic

matrix implementation.

This was a dense chapter. However, the matrix library we created will greatly simplify

the revised version of our neural network in the next chapter.

Modern libraries that build neural networks employ matrices to carry out their

numerical computations. However, the GPU is traditionally used instead of the CPU,

as we are doing here. We could have used CUDA or OpenCL to perform the matrix

operations on the GPU. However, that would have considerably lengthened the amount

of code. This is why we restrict ourselves to computations carried out by the CPU.

In the next chapter, we will rewrite the neural network implementation to use the

matrix.

Chapter 6 A Matrix Library

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

141
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_7

CHAPTER 7

Matrix-Based Neural
Networks
This chapter revises the implementation of our neural network. In this revision,

our network will use matrices to compute the forward and backward propagation

algorithms. Overall, our matrix-based implementation is composed of two classes,

NMLayer and NMNetwork. Since most of the computation is delegated to the matrix library

we defined in the previous chapter, our new version of the neural network is rather light

in terms of code.

7.1  �Defining a Matrix-Based Layer
A neural network is composed of layers. We describe a layer as an instance of the

NMLayer class, defined as follows:

Object subclass: #NMLayer

 instanceVariableNames: 'w b delta output previous next lr

 numberOfExamples'

 classVariableNames: ''

 package: 'NeuralNetwork-Matrix'

The NMLayer class does not contain neurons, as we saw in our first implementation.

Instead, a matrix describing weights is used and kept in the w variable, and another

matrix is used to keep the bias vector, kept in the b variable.

The initialization of a layer simply consists of setting the default learning rate:

NMLayer>>initialize

 super initialize.

 lr := 0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec8

142

The NMLayer class contains many accessors and mutator methods. First, a layer

contains a matrix for the weight. It is set using w::

NMLayer>>w: matrixForWeights

 "Take a MMatrix as argument"

 w := matrixForWeights

The weight matrix is accessible using w, as follows:

NMLayer>>w

 "Return the MMatrix representing the weights"

 ^ w

Similarly, the bias vector is set using b:, as follows:

NMLayer>>b: biasVector

 "Set a vector, instance of MMatrix, as the bias vector"

 b := biasVector

The bias vector is accessible using the following:

NMLayer>>b

 "Return the bias vector"

 ^ b

The delta matrix is stored in the delta variable, as follows:

NMLayer>>delta: deltaMatrix

 delta := deltaMatrix

It is read using an accessor:

NMLayer>>delta

 ^ delta

The learning rate, a very small positive number, is globally set to a layer:

NMLayer>>lr: aLearningRate

 lr := aLearningRate

Chapter 7 Matrix-Based Neural Networks

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

143

Layers are chained to each other. We use the classical representation of layers: the

network is fed from the left-most layer, the input layer. Output is produced from the right-

most layer, the output layer. For a given layer l, the next layer of l is the layer to the right of l,

and the previous is the layer to the left of l. The next layer is set using the following:

NMLayer>>next: aLayer

 "Set the next layer"

 next := aLayer

The next layer is retrieved using the following:

NMLayer>>next

 "Return the next layer"

 ^ next

Similarly, the previous layer is set using the following:

NMLayer>>previous: aLayer

 "Set the previous layer"

 previous := aLayer

The previous layer is obtained using the following:

NMLayer>>previous

 "Return the previous layer"

 ^ previous

The output of the layer is obtained using its accessor, as follows:

NMLayer>>output

 "Return the output matrix, computed during the feed forward phase"

 ^ output

The number of examples needs to be accessible to compute the cost derivative. It is

set using the numberOfExamples: method, which is defined as follows:

NMLayer>>numberOfExamples: aNumber

 numberOfExamples := aNumber

The number of examples is read using the corresponding accessor:

NMLayer>>numberOfExamples

 ^ numberOfExamples

Chapter 7 Matrix-Based Neural Networks

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

144

The layer is initialized by providing the number of neurons it should contain and

the number of outputs. The random number generator is also provided to initialize the

weight and bias matrices. We define the initialization method as follows:

NMLayer>>nbInputs: nbOfInputs nbOutputs: nbOfOutputs random: random

 "Initialize the layer"

 w := MMatrix newRows: nbOfOutputs columns: nbOfInputs.

 w random: random.

 b := MMatrix newRows: nbOfOutputs columns: 1.

 b random: random.

Feed forwarding a layer is carried out using the feed: method:

NMLayer>>feed: inputMatrix

 "Feed the layer with the input matrix"

 output := (w +* inputMatrix + b) collect: [:v | 1 / (1 + v negated exp)].

^ output

Once the error is backpropagated, weights and biases can be updated:

NMLayer>>update

 "Update the weights and biases using the delta value"

 w := w - ((delta +* previous output transposed) * lr /

 numberOfExamples).

 b := b - (delta sumHorizontal * lr / numberOfExamples).

 next ifNotNil: [next update]

The very first layer uses the input vector to update its parameters:

NMLayer>>update: input

 "Update the weights and biases using the input value"

 w := w - ((delta +* input transposed) * lr / numberOfExamples).

 b := b - (delta sumHorizontal * lr / numberOfExamples).

 next update

Our definition of layer is now complete. We can next propose a definition of the

NMNetwork class.

Chapter 7 Matrix-Based Neural Networks

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

145

7.2  �Defining a Matrix-Based Neural Network
We will call NMNetwork the class describing a matrix-based neural network. Here is its

definition:

Object subclass: #NMNetwork

 instanceVariableNames: 'random errors layers'

 classVariableNames: ''

 package: 'NeuralNetwork-Matrix'

The variables are similar to our first version of the neural network. The random

variable contains a random number generator, which is useful to initialize the layers.

The errors variable contains the error values produced during the training. The layers

variable contains instances of NMLayer.

The network is initialized with no layer and a random number generator:

NMNetwork>>initialize

 "Initialize the network with no layer and a proper random generator"

 super initialize.

 layers := OrderedCollection new.

 random := Random seed: 42.

When a layer is added to the network, a chain of layers has to be maintained:

NMNetwork>>addLayer: aLayer

 "Add a layer to the network. Note that layers form a bidirectional

 chain."

 layers ifNotEmpty: [

 layers last next: aLayer.

 aLayer previous: layers last].

 layers add: aLayer

A central method of the learning process is backwardX:y:, which computes the error

and backpropagates it along the layers:

NMNetwork>>backwardX: x y: y

 "Compute and backpropagate the error"

 | lastLayer dz currentLayer |

Chapter 7 Matrix-Based Neural Networks

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

146

 lastLayer := layers last.

 dz := lastLayer output - y.

 lastLayer delta: dz.

 currentLayer := lastLayer previous.

 [currentLayer notNil] whileTrue: [

 dz := (currentLayer next w transposed +* dz)

 �multiplyPerElement: (currentLayer output collect: [:v |

 v * (1 - v)]).

 currentLayer delta: dz.

 currentLayer := currentLayer previous.

].

The cost function is computed for two given vectors:

NMNetwork>>computeCost: v1 and: v2

 "Compute the cost function for two provided vectors"

 ^ ((v1 - v2) collect: [:v | v * v]) sum

The configuration of the network is performed through a number of utility methods.

The following method configures a network with one hidden layer:

NMNetwork>>configure: nbOfInputs hidden: nbOfNeurons nbOfOutputs:

 nbOfOutputs

 "Configure the network with the given parameters

 The network has only one hidden layer"

 self addLayer: (NMLayer new nbInputs: nbOfInputs nbOutputs:

 nbOfNeurons random: random).

 self addLayer: (NMLayer new nbInputs: nbOfNeurons nbOutputs:

 nbOfOutputs random: random).

Similarly, two hidden layers may be configured using the following method:

NMNetwork>>configure: nbOfInputs hidden: nbOfNeurons1 hidden:

 nbOfNeurons2 nbOfOutputs: nbOfOutputs

 �"Configure the network with the given parameters. The network has two

hidden layers"

 self addLayer: (NMLayer new nbInputs: nbOfInputs nbOutputs:

 nbOfNeurons1 random: random).

Chapter 7 Matrix-Based Neural Networks

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

147

 self addLayer: (NMLayer new nbInputs: nbOfNeurons1 nbOutputs:

 nbOfNeurons2 random: random).

 self addLayer: (NMLayer new nbInputs: nbOfNeurons2 nbOutputs:

 nbOfOutputs random: random).

The forward feeding is simply done using the feed: method:

NMNetwork>>feed: inputs

 "Feed the network with the provided inputs vector

 Return the output value as a matrix"

 | mat |

 mat := inputs.

 layers do: [:l | mat := l feed: mat].

 ^ mat

The learning rate of the network is defined using a dedicated method, as follows:

NMNetwork>>lr: aLearningRateAsFloat

 "Globally set the learning rate"

 layers do: [:l | l lr: aLearningRateAsFloat]

The training is performed using the following method:

NMNetwork>>trainX: x y: y nbOfEpochs: nbEpochs

 "Train the network with a set of inputs against the expected values"

 | cost output |

 "We need to tell to each layer the number of examples they have"

 layers do: [:l | l numberOfExamples: y nbColumns].

 errors := OrderedCollection new.

 nbEpochs timesRepeat: [

 output := self feed: x.

 cost := self computeCost: output and: y.

 self backwardX: x y: y.

 self update: x.

 errors add: cost.

].

 ^ cost

Chapter 7 Matrix-Based Neural Networks

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

148

The update of the weights and biases is done using the following method:

NMNetwork>>update: input

 "Update the weights and bias using the provided input vector"

 layers first update: input

Note that the layer performs the job of updating its parameters. Prediction can be

achieved by simply copying the predict: method from our original implementation:

NMNetwork>>predict: inputs

 "Make a prediction. This method assumes that the number of outputs

 is the same as the number of different values the network can

 output"

 "The index of a collection begins at 1 in Pharo,

 which is why we need to substrate 1"

 | outputs |

 outputs := self feed: inputs.

 ^ (outputs asArray indexOf: (outputs max)) - 1

We define the train:nbEpochs: method, which is useful for training a model using a

labeled dataset:

NMNetwork>>train: data nbEpochs: nbEpochs

 "Data is provided as a collection of arrays.

 The example data needs to be labeled using a numerical value"

 | x y labels numberOfOutputs |

 x := (MMatrix newFromArrays: (data collect: #allButLast))

 transposed.

 layers do: [:l | l numberOfExamples: data size].

 labels := data collect: #last.

 numberOfOutputs := labels asSet size.

 labels := labels collect: [:row |

 | expectedOutput |

 expectedOutput := Array new: numberOfOutputs withAll: 0.

 expectedOutput at: row + 1 put: 1.

 expectedOutput

].

 y := (MMatrix newFromArrays: labels) transposed.

 ^ self trainX: x y: y nbOfEpochs: nbEpochs

Chapter 7 Matrix-Based Neural Networks

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

149

At that stage, we have a matrix-based network, which can learn from a labeled

dataset. Consider the following example:

xor := #(#(0 0 0)

 #(0 1 1)

 #(1 0 1)

 #(1 1 0)).

n := NMNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 2.

n train: xor nbEpochs: 5000.

n predict: (MMatrix newFromVector: #(1 0)).

The result of the prediction is 1. Similarly, evaluating the expression npredict:

(MMatrix newFromVector: #(1 1)). returns 0. The following section presents a simple

way to draw the error function.

7.3  �Visualizing the Results
We will extend the NMNetwork class to visualize the evolution of the error along the

epochs. Simply the define this method:

NMNetwork>>viewLearningCurve

 | b ds |

 errors

 ifEmpty: [^ RTView new

 add: (RTLabel elementOn: 'Should first run the network');

 yourself].

b := RTGrapher new.

"We define the size of the charting area"

b extent: 500 @ 300.

ds := RTData new.

ds samplingIfMoreThan: 2000.

ds noDot.

ds connectColor: Color blue.

ds points: (errors collectWithIndex: [:y :i | i -> y]).

ds x: #key.

ds y: #value.

Chapter 7 Matrix-Based Neural Networks

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

150

ds dotShape rectangle color: Color blue.

b add: ds.

b axisX noDecimal; title: 'Epoch'.

b axisY title: 'Error'.

^ b

The hook into the GTInspector framework is done using the following method:

NMNetwork>>viewLearningCurveIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: 'Cost';

 initializeView: [self viewLearningCurve]

Evaluating the training instruction in the previous section should output the error

curve shown in Figure 7-1.

Figure 7-1.  Visualizing the cost function

7.4  �Iris Flower Dataset
We can now adapt the script to train a neural network on the Iris flower dataset.

Consider this script:

Chapter 7 Matrix-Based Neural Networks

269

270

271

272

273

274

275

276

277

278

279

280

281

151

"The execution of this script initializes the variable irisData.

 This variable is used in the subsequent scripts of this chapter"

irisCSV := (ZnEasy get: 'https://agileartificialintelligence.github.io/

 Datasets/iris.csv') contents.

lines := irisCSV lines.

lines := lines allButFirst.

tLines := lines collect: [:l |

 | ss |

 ss := l substrings: ','.

 �(ss allButLast collect: [:w | w asNumber]), (Array with: ss

last)].

irisData := tLines collect: [:row | |l|

 row last = 'setosa' ifTrue: [l := #(0)].

 row last = 'versicolor' ifTrue: [l := #(1)].

 row last = 'virginica' ifTrue: [l := #(2)].

 row allButLast, l].

irisData.

n := NMNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

n train: irisData nbEpochs: 3000.

n

The result is the same one we previously saw.

7.5  �What Have We Seen in This Chapter?
This chapter revised our previous implementation of a neural network. Our revised

implementation employs matrices to model the state of the network, which greatly

simplifies its implementation. However, it raises the level of abstractness since matrices

are not at the core. The chapter explored:

•	 The use of matrices to implement forward and backward propagation.

It uses the matrix library presented in the previous chapter.

•	 Using the Iris classification example to illustrate the new neural

network classes.

Chapter 7 Matrix-Based Neural Networks

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

PART II

Genetic Algorithms

1

2

155
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_8

CHAPTER 8

Genetic Algorithms
The first part of the book is about neural networks, a computational metaphor about

how the brain operates. This chapter, the first of the second part of the book, focuses on

evolution. In particular, it will cover genetic algorithms, a computational metaphor for

how genetic information is recombined and passed through generations. This algorithm

focuses on the pillars of how evolution naturally happens.

This chapter is self-contained: having knowledge of the previous chapters is

therefore not a prerequisite to enjoy this chapter and the following ones in this part.

8.1  �Algorithms Inspired from Natural Evolution
We, as human beings, are the result of thousands of years of evolution. Biological

evolution refers to some alteration of heritable characteristics and attributes of biological

populations over successive generations. Most of the characteristics are the expressions

of genes that are passed on from parent to offspring during reproduction.

Darwinian natural selection stipulates that in order to have natural evolution, it is

necessary to have the following ingredients:

•	 Heredity: A child receives a number of properties from its parents.

In particular, if the parents are robust and can live long enough to

procreate, the child should too.

•	 Variation: Some variations may be introduced in offspring. As such, a

child will not be an identical copy of its parents.

•	 Selection: Some members of a population must have the opportunity

to be parents and have offspring in order to pass on their genetic

information. The selection is typically referred to as “survival of the

fittest.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

156

Computer scientists have a great interest in the way that natural evolution happens.

Why? In very broad terms, consider the following: if humans are on Earth to solve a

problem, then it is surely a very complex problem. And that is exactly the reason why

natural evolution is so appealing to computer scientists, to solve incredibly complex

problems. Following that line, a number of algorithms have been proposed by computer

scientists to simulate evolution. For example:

•	 An ant colony optimization is based on the idea that ants forage by

pheromone communication to form a path. Such an algorithm is

suitable for graph-related problems.

•	 A bee algorithm is based on the honey bee’s foraging behavior. This

algorithm is suitable for scheduling and ordering problems.

•	 A genetic algorithm is a simulation of evolution based on

manipulating genetic information. This chapter is about this

algorithm.

A Genetic Algorithm (GA) is an evolutionary algorithm that simulates the evolution

of DNA information across a population. Genetic algorithms have three important

properties that we will exploit in the book:

•	 GAs are efficient at solving optimization problems.

•	 GAs are easily implemented and do not require a strong theoretical

background.

•	 GAs can be easily combined with neural networks. We will go into

detail about this in the third part of the book when we focus on

neuroevolution.

8.2  �Example of a Genetic Algorithm
The overall idea of genetic algorithms is pretty simple. Imagine that a friend asks you to

solve the following challenge: “You must find the three-letter word I have in mind. For

each try, I will tell you the number of letters correctly positioned.” Assume that the secret

word is cat, for example. At first, we guess any randomly generated words made of three

letters, such as cow, poc, and gaz.

Chapter 8 Genetic Algorithms

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

157

The word cow has exactly one letter in common with cat, the secret word. We

therefore say that cow has a score of 1. The word poc has a score of 0 since it has no

matching letters with the secret word. The word gaz has also a score of 1 since the letter a

matches the second letter of the secret word.

Since we have not found the solution (i.e., cow, poc, nor gaz is the secret word), we

can produce a new generation of words by combing some of the words we already have.

In particular, gaz and cow can be combined into gow (formed with the first letter of gaz

and the last two letters of cow) and caz (first letter of cow and the two last letters of gaz).

From these two new words, the word caz has a score of two and is very close to the secret

word. We say that this second generation of words is better than the previous one since it

is closer to the solution.

A third generation can be formed in which the word caz can produce the word cat,

in which the z is randomly mutated into t. This small example illustrates the overall

idea of a genetic algorithm: each individual in a set of randomly formed individuals is

evaluated to compute a score value. Individuals with a high score, which are the ones

close to solving the problem, are recombined to form new individuals. Before detailing

the algorithm, we will clarify the vocabulary we will use in this chapter.

8.3  �Relevant Vocabulary
We have to introduce a few terms to describe the concepts we will use in this chapter. We

will rephrase the example given using these appropriate concepts.

We refer to an individual as an element that contains genetic information. Such

genetic information is described as a sequential collection of genes. A gene represents a

unit of information and it may represent anything, literally. In the previous example, a

gene is simply a letter. An individual is a three-letter word.

A population is a fixed number of individuals. The population has a constant size,

but its composing individuals are replaced at each generation.

The fitness function indicates how “strong” an individual is. The fitness function is

a simple function that takes as an argument an individual and produces a numerical

value. The whole idea of a genetic algorithm is to build and search for individuals that

maximize the fitness function.

Chapter 8 Genetic Algorithms

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

158

8.4  �Modeling Individuals
This chapter contains the complete implementation of a genetic algorithm in Pharo. All

the presented code is assumed to be part of the package called GeneticAlgorithm.

We will first model individuals. We will therefore model a class called GAIndividual.

We will create the GAIndividual subclass of the custom class GAObject. We define

GAObject as a subclass of Object, which has a random variable.

Almost all elements involved in a genetic algorithm require generating random

numbers. It is therefore convenient to have the variable defined in the root hierarchy

used in our implementation:

Object subclass: #GAObject

 instanceVariableNames: 'random'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

As usual, we define the getter as follows:

GAObject>>random

 "Return the random number generator associated to the object"

 ^ random

And the setter as follows:

GAObject>>random: aRandomNumberGenerator

 "Set the random number generator associated to the object. The

 argument must be an instance of Random."

 random := aRandomNumberGenerator

The random: method expects an instance of the Random class as an argument. We

also define a utility method to generate a number between 0.0 and 1.0:

GAObject>>randomNumber

 "Return a number between 0.0 and 1.0"

 ^ random next

We can define a small utility method used by the subclasses to ensure a random

number generator is set:

GAObject>>checkForRandomNumber

Chapter 8 Genetic Algorithms

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

159

 self

 assert: [random notNil]

 description: 'Need to provide a random number generator'

We are ready to model individuals using the GAIndividual class:

GAObject subclass: #GAIndividual

 instanceVariableNames: 'genes fitness'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

An individual is simply composed of its genes and its fitness value. The fitness

variable acts as a cache value. Computing the fitness of an individual is an essential

piece of the genetic algorithm:

GAIndividual>>computeFitnessUsing: fitnessBlock

 "Compute the fitness of myself if not already computed"

 �self assert: [genes notNil] description: 'Need to have some genes

first'.

 "Simply exit if already computed"

 fitness ifNotNil: [^ self].

 "Compute the fitness score"

 fitness := fitnessBlock value: genes

We will use a one-argument block to compute its fitness, and this block takes as an

argument the genes of the individual. When evaluated, the block returns a numerical

value, which is the fitness, of the provided genes.

The computeFitnessUsing: method sets the fitness variable with that value. We

will see some examples shortly.

Once the fitness value is computed, other parts of the genetic algorithm, including

the selection algorithm, will have to access it. The fitness is accessible via an accessor

method, as follows:

GAIndividual>>fitness

 "Return the fitness value of the individual"

 ^ fitness

Chapter 8 Genetic Algorithms

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

160

Genes from an individual have to be accessible. In particular, a fitness function

requires an individual’s genes to compute the individual fitness. We define an accessor

method to access the genes from an individual:

GAIndividual>>genes

 "Return the individual's genes"

 ^ genes

When a crossover genetic operation is carried out, the new computed genes have to

be set in an individual. We therefore need a dedicated method to allow this:

GAIndividual>>genes: someGenes

 "Set the genes of the individual. Used by the genetic operations."

 genes := someGenes

The number of genes may be obtained using a dedicated method. This will be useful

for the genetic operations:

GAIndividual>>numberOfGenes

 "Return the number of genes the individual has"

 ^ self genes size

An essential ability of the GAIndividual class is to generate genetic information.

For that purpose, we define a gene factory as a Pharo block closure that accepts three

arguments—the random number generator, the index of the gene, and the individual.

We define the set:genesUsing: method for that purpose:

GAIndividual>>set: numberOfGenes genesUsing: geneBlockFactory

 "Public method - Generate the genes of the individual"

 self checkForRandomNumber.

 genes := (1 to: numberOfGenes)

 �collect: [:index | geneBlockFactory cull: random cull: index cull:

self]

The first argument of set:genesUsing: is an integer. The second argument is a block

that expects three arguments:

•	 The random number generator: This is useful for letting the gene

factory randomly choose values.

Chapter 8 Genetic Algorithms

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

161

•	 The index of the genes to be created: This is often useful when not all

the genes have to be the same. In that case, the gene factory block

may choose some values based on the gene index.

•	 The individual itself: It may happen that the individual has to be

accessed when computing a gene.

The set:genesUsing: method is evaluated using cull:. As such, if the block has

missing arguments, then they are simply ignored. For example, we have the following

execution:

[:x :y | x + y] cull: 10 cull: 20 cull: 30. "=> 20"

[:x :y :z | x + y + z] cull: 10 cull: 20 cull: 30. "=> 60"

[42] cull: 10 cull: 20 cull: 30. "=> 42"

We can now create a useful factory method for a group of individuals, as a class

method:

GAIndividual class>>create: numberOfIndividuals

 individualsAndInitialize: numberOfGenes genesWith: geneBlockFactory

 using: randomNumberGeneration

 "Factory method to easily create a population of Individuals.

 numberOfIndividuals : number of individuals to return

 numberOfGenes : number of genes each individual should have

 geneBlockFactory : a one-argument block to generate a gene.

 It takes a random generator as an argument

 randomNumberGeneration : a random generator"

 | someIndividuals ind |

 someIndividuals := OrderedCollection new.

 numberOfIndividuals timesRepeat: [

 ind := self new.

 ind random: randomNumberGeneration.

 ind set: numberOfGenes genesUsing: geneBlockFactory.

 someIndividuals add: ind].

 ^ someIndividuals

This method is designed to create individuals. It therefore acts as a factory of

individuals. The random number generator may be omitted using the factory method:

Chapter 8 Genetic Algorithms

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

162

GAIndividual class>>create: numberOfIndividuals

 individualsAndInitialize: numberOfGenes genesWith: geneBlockFactory

 "Factory method to easily create a number of Individuals.

 numberOfIndividuals : the number of individuals to return

 numberOfGenes : number of genes each individual should have

 geneBlockFactory : is a one-argument block to generate a gene.

 It takes a random generator as an argument"

 ^ self create: numberOfIndividuals individualsAndInitialize:

 numberOfGenes genesWith: geneBlockFactory using: (Random new seed: 42)

This factory method returns a group of initialized individuals. We can now test

the GAIndividual class. We create the GAIndividualTest test, which is a subclass of

TestCase, for that purpose:

TestCase subclass: #GAIndividualTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Tests'

As a simple test, we can create 100 individuals, each having 10 genes:

GAIndividualTest>>testCreationWithCharacters

 | r individuals f ind |

 r := Random seed: 42.

 f := [:random | ($a to: $z) atRandom: random].

 individuals := GAIndividual

 create: 100

 individualsAndInitialize: 10

 genesWith: f

 using: r.

 self assert: individuals size equals: 100.

 self assert: (individuals collect: #numberOfGenes) asSet asArray

 equals: #(10).

 ind := individuals anyOne.

 self assert: (ind genes allSatisfy: [:c | ($a to: $z) includes: c]).

Chapter 8 Genetic Algorithms

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

163

In the example of genetic algorithm we first gave, the algorithm had to guess the

word cat. We can now use some individuals to guess that word.

Consider the following script:

inds := GAIndividual

 create: 1000

 individualsAndInitialize: 3

 genesWith: [:r | ($a to: $z) atRandom: r].

fitnessBlock := [:genes |

 (genes with: 'cat' asArray collect: [:a :b | (a == b)

 ifTrue: [1]

 ifFalse: [0]]) sum].

inds do: [:i | i computeFitnessUsing: fitnessBlock].

The script first creates some individuals, each having three letters as genes. Notice

that the block to create a gene takes as an argument a random number generator.

Evaluating the expression will create the exact same individuals even if random numbers

are employed. The fitness of each individual is then computed. The fitness value returns

a score that describes how close to the solution the individual is.

After executing this short script, each individual has a fitness value. Overall, the

fitness value ranges from 0 to 3. An individual with a fitness of 3 matches the solution,

which means its genes are equal to #(ca$t).

As a simple and intuitive way to estimate the performance of each individual, we can

render a histogram of the fitness of the individuals (see Figure 8-1):

...

data := ((inds collect: #fitness) groupedBy: #yourself) associations

 collect: [: as | as key -> as value size].

g := RTGrapher new.

d := RTData new.

d points: data.

d barChartWithBarTitle: #key.

d y: [:as | as value].

d yLog.

g add: d.

g axisY noDecimal.

g axisX noTick.

g

Chapter 8 Genetic Algorithms

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

164

Using a vertical logarithmic scale, the graphic shows that from the 1000 initial

individuals, 880 individuals have a fitness of 0, 113 individuals have a fitness of 1, and

only seven individuals have a fitness of 2. None have a fitness of 3.

If we step back a bit, we are looking for the word cat, composed of three letters. This

means that we can formulate the space of search as a three-dimensional space in which

each dimension ranges from 1 to 26. The word cat is one single point in that space.

In the previous script, we had only 1,000 words, and therefore it is not a surprise that

we did not find the secret word. Let’s try again with 100,000 individuals this time. The

complete script is as follows (see Figure 8-2):

inds := GAIndividual

 create: 100000

 individualsAndInitialize: 3

 genesWith: [:r | ($a to: $z) atRandom: r].

fitnessBlock := [:genes | (genes with: 'cat' asArray collect: [:a :b

 | (a == b)

 ifTrue: [1]

 ifFalse: [0]]) sum].

inds do: [:i | i computeFitnessUsing: fitnessBlock].

data := ((inds collect: #fitness) groupedBy: #yourself) associations

 collect: [: as | as key -> as value size].

Figure 8-1.  Visualizing the fitness distribution of 1,000 individuals

Chapter 8 Genetic Algorithms

165

g := RTGrapher new.

d := RTData new.

d points: data.

d barChartWithBarTitle: #key.

d y: [:as | as value].

d yLog.

g add: d.

g axisY noDecimal.

g axisX noTick.

g

Figure 8-2.  Visualizing the fitness distribution of 100,000 individuals individuals

Moving the mouse cursor to above bar 3 reveals that four individuals with the secret

words have been created. We will see that by using a genetic algorithm, significantly

fewer individuals have to be created to find the secret word.

8.5  �Crossover Genetic Operations
A genetic algorithm uses genetic operations to produce new individuals. Biology

recognizes two operations: crossover, which combines two individual to form a new one,

and mutation, which produces a new individual with sporadic gene variations.

We will provide an implementation of these two operators, but it is important to have

our implementation open to new genetic operations. Some particular operations may be

crucial to significantly accelerate the convergence toward a solution. In this chapter, we

Chapter 8 Genetic Algorithms

273

274

275

276

277

278

279

280

281

282

166

focus on mutation and crossover. When we cover neuroevolution in Chapters 14 and 15 ,

we will need different mutations and crossover operations.

We can define the GAOperation class as the root class of all operations.

GAObject subclass: #GAOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

We can define a hierarchy of the crossover as follows:

GAOperation subclass: #GAAbstractCrossoverOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

We can now implement the crossover operation with the following method:

GAAbstractCrossoverOperation>>crossover: partnerA with: partnerB

 "Return a new child, which is the result of mixing myself with the argument"

 ^ self crossover: partnerA with: partnerB midpoint: (self

pickCutPointFor: partnerA)

The crossover:with: method takes two individuals as an argument. A new

individual is produced and the genetic information of the parents are mixed. Consider

this method:

GAAbstractCrossoverOperation>>crossover: partnerA with: partnerB

 midpoint: midpoint

 "Return a new child, which is the result of mixing myself with the argument"

 | child crossOverGenes |

 child := GAIndividual new.

 child random: random.

 crossOverGenes := (partnerA genes first: midpoint)

 , (partnerB genes allButFirst: midpoint).

 child genes: crossOverGenes.

 ^ child

Chapter 8 Genetic Algorithms

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

167

The crossover:with:midpoint: method accepts a cutting point as the third argument.

The first:midpoint call returns the first midpoint elements, and the allButFirst:midpoint

call returns the elements after the first midpoint elements. For example, 'abcdefghi'first:

3 returns 'abc' and 'abcdefghi'allButFirst: 3 returns 'defghi'.

We define an abstract method, which will be implemented in subclasses:

GAAbstractCrossoverOperation>>pickCutPointFor: anIndividual

 "Need to be overridden in subclasses"

 self subclassResponsibility

The pickCutPointFor: method has to be overridden in each subclass. We define the

GACrossoverOperation class as follows:

GAAbstractCrossoverOperation subclass: #GACrossoverOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

The GACrossoverOperation class overrides the pickCutPointFor: method:

GACrossoverOperation>>pickCutPointFor: partnerA

 �"Simply returns a random number between 1 and the number of genes of

the individual provided as an argument"

 ^ random nextInt: partnerA numberOfGenes

We can now test our crossover operation:

TestCase subclass: #GACrossoverOperationTest

 instanceVariableNames: 'i1 i2 op'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Tests'

The test defines three variables—i1, i2, and op. These variables define the test

fixture and they are initialized in the setUp method:

GACrossoverOperationTest>>setUp

 super setUp.

 i1 := GAIndividual new genes: 'abcd'.

 i2 := GAIndividual new genes: 'defg'.

 op := GACrossoverOperation new.

Chapter 8 Genetic Algorithms

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

168

We can now test different combinations. In the first scenario, the midpoint is 2,

which means that the resulting genes will have the first two letters of i1 and the last two

letters of i2:

GACrossoverOperationTest>>testCrossover1

 | i3 |

 i3 := op crossover: i1 with: i2 midpoint: 2.

 self assert: i3 genes equals: 'abfg'

In this second scenario, the midpoint is 1:

GACrossoverOperationTest>>testCrossover2

 | i3 |

 i3 := op crossover: i1 with: i2 midpoint: 1.

 self assert: i3 genes equals: 'aefg'

In this third scenario, the midpoint is 0, which means that the resulting individual

has all the letters of i2:

GACrossoverOperationTest>>testCrossover3

 | i3 |

 i3 := op crossover: i1 with: i2 midpoint: 0.

 self assert: i3 genes equals: 'defg'

We can also test the crossover:with: method using the following test:

GACrossoverOperationTest>>testCrossover4

 | i3 |

 op random: (Random seed: 42).

 i3 := op crossover: i1 with: i2.

 self assert: i3 genes equals: 'aefg'

We now have provided a complete implementation of the crossover operation.

The effect of the crossover operation is to make the population converge toward

a specific point in the search space. In a genetic algorithm, exploitation is often

referred to as the ability to lead a population toward good solutions, and hopefully,

to the global optimum.

Chapter 8 Genetic Algorithms

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

169

8.6  �Mutation Genetic Operations
A proper configuration of a genetic algorithm is to have a balance between exploitation

and exploration, two important concepts. Exploitation is the result of applying crossover.

The algorithm is exploiting the genetic information contained in the individuals by

recombining them.

On the other hand, exploration is tied to mutation. Mutation is about exploring new

areas in the search space, which has the effect of avoiding convergence.

Numerous mutations operations may be defined. We will therefore make our

codebase open to new mutation operations. The natural way to do so using an object-

oriented programming language such as Pharo is to express these operations as a

hierarchy of classes. Consider the following abstract class:

GAOperation subclass: #GAAbstractMutationOperation

 instanceVariableNames: 'mutationRate'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

All the mutation operations we will define have at least one common variable, the

mutation rate. We therefore define this rate as an instance variable. Typically, the value

of that variable is a small positive number, close to 0.0 and significantly less than 1.0.

We set it per default:

GAAbstractMutationOperation>>initialize

 super initialize.

 self mutationRate: 0.01

The 0.01 value indicates that 1% of the genes of each individual will be modified.

The mutation rate is a low value that enables exploring some particular area. Rate values

are low, but any particular guideline is closely tied to the problem to be solved. As such,

one has to try different values to find the most adequate rate.

The mutationRate variable may be accessed by using:

GAAbstractMutationOperation>>mutationRate

 "�Return the used mutation rate. Typically, a small positive number,

close to 0.0 and significantly less than 1.0"

 ^ mutationRate

Chapter 8 Genetic Algorithms

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

170

The mutationRate variable may be set by using:

GAAbstractMutationOperation>>mutationRate: aFloat

 "�Set the mutation rate. Typically, a small positive number, close to

0.0 and significantly less than 1.0"

 mutationRate := aFloat

The key method of the mutation operation class is mutate:, which takes as an

argument an individual and produces a new individual, which is the result of mutating

the argument:

GAAbstractMutationOperation>>mutate: individual

 "Return a new individual (different object than the argument),

 result of a mutation from the individual provided as an argument."

 | newIndividual |

 newIndividual := GAIndividual new.

 newIndividual random: random.

 newIndividual genes: individual genes copy.

 self doMutate: newIndividual.

 ^ newIndividual

The mutate: method takes an individual as an argument and produces a new

individual, which is the result of mutating the argument. The method simply copies the

argument and calls the doMutate: method. The doMutate: method is abstract:

GAAbstractMutationOperation>>doMutate: individual

 "To be overridden"

 self subclassResponsibility

Most of the mutation operations require a way to create an individual gene. We add

the empty method, as follows:

GAAbstractMutationOperation>>geneFactoryBlock: oneArgBlock

 "Do nothing. May be overridden if necessary"

The method has to be overridden in subclasses. Note that this method is called

by GAEngine, which we will see later in this chapter. We can now define the standard

mutation operation. Consider this class:

Chapter 8 Genetic Algorithms

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

171

GAAbstractMutationOperation subclass: #GAMutationOperation

 instanceVariableNames: 'geneFactoryBlock'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

The mutation operator requires a way to define a new gene. We will use the same

requirement expressed using the GAIndividual class. The geneFactoryBlock variable

refers to a one-argument block to create a gene. The block receives a random number as

an argument. The geneFactoryBlock: method sets the block to the operation:

GAMutationOperation>>geneFactoryBlock: oneArgBlock

 "The block receives a random number as an argument"

 geneFactoryBlock := oneArgBlock

The block may be accessed by using the following:

GAMutationOperation>>geneFactoryBlock

 "Return the three-arg block used to create a gene, following the

 pattern

 [:rand :index :ind | ...]

 rand is the random number generator,

 index is index of the gene,

 ind is the individual being filled"

 ^ geneFactoryBlock

As we have previously seen, the geneFactoryBlock variable refers to a three-

argument block for which the first argument is the random number, the second is the

index of the gene, and the third is the individual.

For help when using the mutation operation, we define a utility method to raise

an error in case the geneFactoryBlock is not set. Such a method is useful for trapping

common errors:

GAMutationOperation>>checkForGeneFactory

 self

 assert: [geneFactoryBlock notNil]

 description: 'Need to provide a block to create gene'

Chapter 8 Genetic Algorithms

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

172

The core method of GAMutationOperation is doMutate:. We define it as follows:

GAMutationOperation>>doMutate: individual

 "Mutate genes of the argument"

 self checkForRandomNumber.

 self checkForGeneFactory.

 1 to: individual genes size do: [:index |

 self randomNumber <= mutationRate

 ifTrue: [individual genes at: index put: (geneFactoryBlock

 cull: random cull: index cull: individual)]]

The GAMutationOperation class can be properly tested. Consider this class:

TestCase subclass: #GAMutationOperationTest

 instanceVariableNames: 'i op'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Tests'

The setUp method is defined as follows:

GAMutationOperationTest>>setUp

 super setUp.

 i := GAIndividual new genes: 'abcd' asArray.

 op := GAMutationOperation new.

We can test the mutation with the following:

GAMutationOperationTest>>testMutation

 | i2 |

 op random: (Random seed: 7).

 op geneFactoryBlock: [:r | ($a to: $z) atRandom: r].

 op mutationRate: 0.5.

 i2 := op mutate: i.

 self assert: i2 genes equals: 'xfcd' asArray.

 i2 := op mutate: i2.

 self assert: i2 genes equals: 'tfcd' asArray.

 i2 := op mutate: i2.

 self assert: i2 genes equals: 'tfjd' asArray.

Chapter 8 Genetic Algorithms

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

173

The erroneous cases can be tested by using the following:

GAMutationOperationTest>>testRandomAndGeneFactoryMustBeSet

 self should: [op mutate: i] raise: AssertionFailure.

 op random: Random new.

 self should: [op mutate: i] raise: AssertionFailure.

 op geneFactoryBlock: [:r | 42].

 self shouldnt: [op mutate: i] raise: AssertionFailure.

The mutation operator is now implemented. Our next move involves the selection

mechanism.

8.7  �Parent Selection
Being able to select an individual and promote it as a parent is essential. Some

individuals deserve to enter the reproduction phase, and the selection algorithm is

central to it.

Because several selection mechanisms exist, we will define a hierarchy of selection

mechanisms. The GASelection class is a relatively large and complex class. It is closely

tied to the GAEngine class, which we will present later in this chapter.

The GASelection class may be defined as follows:

Object subclass: #GASelection

 instanceVariableNames: 'population fittest initialPopulation

 fitnessBlock populationSize compareFitness engine'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

GASelection references a population of GAIndividual instances. The purpose

of GASelection is to pick the fittest individual based on a strategy, implemented by a

subclass of GASelection. The selection is also aware of the initialPopulation, which is

necessary to deduce a new population of a size populationSize. The fitnessBlock tells

the selection the way the fitness of each individual is computed. The compareFitness

variable references a two-argument block that indicates which of two fitness values is

the best. In some situations, a high fitness value indicates a good individual; in other

situations, a high fitness value may indicate a bad individual. The engine variable

references the genetic algorithm engine.

Chapter 8 Genetic Algorithms

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

174

First, we provide a simple constructor for GASelection, as follows:

GASelection>>initialize

 super initialize.
 population := OrderedCollection new.

We provide some accessors and some mutator methods. Consider the engine

method:

GASelection>>engine

 "Return the GAEngine to which the selection is associated"

 ^ engine

The mutator of engine may be as follows:

GASelection>>engine: theEngine

 "Set the GAEngine to which I have to be associated with"

 engine := theEngine.

 self checkIfEngineSet

We provide a simple guard, defined as follows:

GASelection>>checkIfEngineSet

 self assert: [engine notNil] description: 'Should set the engine'

The population may be accessed using the following:

GASelection>>population

 "Return the new population"

 ^ population

The fitness block may be accessed using fitnessBlock::

GASelection>>fitnessBlock: aOneArgBlock

 "The argument is evaluated on the genes of each individual.

 The block argument has to compute the fitness."

 fitnessBlock := aOneArgBlock

The fitness block may be accessed using fitnessBlock, as follows:

GASelection>>fitnessBlock

 "Return the one-arg block used to compute fitness of each

 individual"

Chapter 8 Genetic Algorithms

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

175

 ^ fitnessBlock

The fittest element is accessible using the fittest method:

GASelection>>fittest

 "Return the fittest individual from the new population"

 ^ fittest

The initial population may be set using a dedicated method:

GASelection>>initialPopulation: aPopulationAsIndividuals

 "Set the initial population. This is used to create the new

 population"

 initialPopulation := aPopulationAsIndividuals.

 self checkIfInitialPopulationSet

We provide a new utility method to catch errors early:

GASelection>>checkIfInitialPopulationSet

 self assert: [initialPopulation notNil]

 description: 'Should set the initial population'.

 self assert: [initialPopulation isCollection]

 description: 'Has to be a collection'.

 self assert: [initialPopulation notEmpty]

 description: 'Cannot be empty'

The checkIfInitialPopulationSet method raises an error if the initial population

is incorrectly set. The way fitness values are compared may be set as follows:

GASelection>>compareFitness: aTwoArgBlock

 "Take as an argument a two-argument block that compares the

 fitness of two individuals"

 compareFitness := aTwoArgBlock

The population size may be read by using the following:

GASelection>>populationSize

 "Return the population size"

 ^ initialPopulation size

Chapter 8 Genetic Algorithms

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

176

The population size is set using the following:

GASelection>>populationSize: anInteger

 "Set the population size"

 populationSize := anInteger

Subsequently, we define a number of essential methods that describe the logic

of the selection. The abstract method createNewPopulation has to be overridden in

subclasses. Its purpose is to create a new population:

GASelection>>createNewPopulation

 "Create a new population"

 self subclassResponsibility

An essential method of the GASelection class is to be able to perform the selection.

This is what the doSelection method does:

GASelection>>doSelection

 "Produce a new population using the selection algorithm"

 self checkIfEngineSet.

 self checkIfInitialPopulationSet.

 populationSize := initialPopulation size.

 fittest := initialPopulation first.

 initialPopulation

 do: [:ind |

 ind computeFitnessUsing: fitnessBlock.

 (self isIndividual: ind betterThan: fittest)

 ifTrue: [fittest := ind]].

 self createNewPopulation.

 initialPopulation := population.

The method first begins by performing some sanity checks. These checks are

intended to help users correctly use the provided code.

We will define a number of utility methods to simplify the way the algorithm logic is

expressed. For example, the crossover operation may be delegated by using:

GASelection>>crossover: partnerA with: partnerB

 "Return one child, result of the crossover over the two arguments"

 ^ engine crossover: partnerA with: partnerB

Chapter 8 Genetic Algorithms

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

177

Comparison between individuals may be defined as follows:

GASelection>>isIndividual: ind betterThan: fittestIndividual

 "Is the first individual better than the second?"

 ^ engine isIndividual: ind betterThan: fittestIndividual

The mutation operation may be invoked by using the following:

GASelection>>mutate: child

 "Perform a mutation on the argument"

 ^ engine mutate: child

To produce a random number within a particular interval, we need to produce

random numbers:

GASelection>>randomNumber: value

 "Return a number between 1 and value"

 ^ engine randomNumber: value

Several selections strategies are available to select an individual from a population

to be a parent. One popular and efficient selection strategy is called tournament, which

operates as follows: it randomly picks a number of individuals from a population and

identifies the individual with the best fitness. This identification acts as a competition

between pairs of individuals. The competition is carried out over a small number of

individuals. Arbitrarily, we will consider each tournament to be five individuals. The

winning individual is returned from the algorithm.

We define the GATournamentSelection class as follows:

GASelection subclass: #GATournamentSelection

 instanceVariableNames: 'tournamentSize'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

In our case, the tournamentSize variable indicates how large the tournament should

be. Per default, the value is set to 5:

GATournamentSelection>>initialize

 super initialize.

 tournamentSize := 5

Chapter 8 Genetic Algorithms

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

178

We implement the algorithm as follows:

GATournamentSelection>>getGoodIndividual

 "Return the best individual from tournamentSize individual randomly

 chosen from the population"

 | best ind |

 best := nil.

 tournamentSize timesRepeat: [

 ind := initialPopulation at: (self randomNumber:

 initialPopulation size).

 (best isNil or: [compareFitness value: ind fitness value: best

 fitness])

 ifTrue: [best := ind]].

 ^ best

Finally, a new population may be created using the following:

GATournamentSelection>>createNewPopulation

 "Return a new population made of newly breed individual"

 | partnerA partnerB child |

 population := (1 to: self populationSize) collect: [:seed |

 engine random: (Random seed: seed).

 partnerA := self getGoodIndividual.

 partnerB := self getGoodIndividual.

 child := self mutate: (self crossover: partnerA with: partnerB).

 child computeFitnessUsing: engine fitnessBlock.

 child.

]

The createNewPopulation method implements the logic of the genetic

algorithm: it picks two elements from the population, does a crossover between

them, mutates the result, and computes the fitness of each new element added to the

new population.

Chapter 8 Genetic Algorithms

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

179

8.8  �Evolution Monitoring
Being able to monitor the execution of the algorithm is essential. For example, it’s

important to have a termination condition to indicate when the algorithm has to stop.

We will produce a dedicated class to monitor progress made by the algorithm. Consider

the GALog class:

Object subclass: #GALog

 instanceVariableNames: 'generationNumber timeToProduceGeneration

 fittestIndividual worseFitness averageFitness'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

An instance of GALog is associated with a generation and contains relevant

information to indicate progresses of the genetic algorithm.

It is highly relevant to identify the best individual from a population:

GALog>>fittestIndividual

 "Return the best individual of the generation I represent"

 ^ fittestIndividual

The best individual will be set by the genetic algorithm engine, which we will soon see:

GALog>>fittestIndividual: anIndividual

 "Set the best individual of the generation I represent"

 fittestIndividual := anIndividual

The fitness method returns the fitness value of the best individual of the

population:

GALog>>bestFitness

 "Return the best fitness value of a generation I am representing"

 ^ fittestIndividual fitness

The average fitness of the population is obtained using the averageFitness method:

GALog>>averageFitness

 "Return the average fitness value of a generation I am representing

 "

 ^ averageFitness

Chapter 8 Genetic Algorithms

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

180

The average fitness may be set by using the following:

GALog>>averageFitness: aNumber

 "Set the average fitness value of a generation I am representing"

 averageFitness := aNumber

Similarly, the lowest fitness score is obtained by using the following:

GALog>>worseFitness

 "Return the worse fitness value of a generation I am representing"

 ^ worseFitness

The worst fitness score is set by the engine by using the following:

GALog>>worseFitness: aNumber

 "Set the worst fitness value of a generation I am representing"

 worseFitness := aNumber

The number of generations also has to be tracked. The generationNumber indicates

the number of the generation the log object is referring to:

GALog>>generationNumber

 "Return the generation number I represent"

 ^ generationNumber

Similar to the fittest individual, the generation number is set by the engine, as we will

soon see:

GALog>>generationNumber: generationNumberAsInteger

 "Set the generation number I am representing"

 generationNumber := generationNumberAsInteger

It’s also wise to monitor the consumed resources in some cases. The time taken to

produce a new generation is important to track:

GALog>>timeToProduceGeneration

 "Time to produce the generation I represent"

 ^ timeToProduceGeneration

Chapter 8 Genetic Algorithms

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

181

Again, the engine will set this value:

GALog>>timeToProduceGeneration: anInteger

 "Set the time to produce the generation I am representing"

 timeToProduceGeneration := anInteger

A simple way of printing the result is useful. The Object class defines the printOn:

method, which is responsible for providing a textual representation of the object. By

overriding this method, we will make the textual representation of a log object more

meaningful:

GALog>>printOn: str

 "Printing the log object"

 super printOn: str.

 str nextPut: $<.

 str nextPutAll: fittestIndividual genes asString.

 str nextPut: $>.

We have now established a solid foundation on which we can implement the algorithm.

8.9  �The Genetic Algorithm Engine
The engine is a central class that uses the genetic algorithm. It offers methods that

configure and run the genetic algorithm. We can define the class as follows:

GAObject subclass: #GAEngine

 instanceVariableNames: 'fitnessBlock createGeneBlock numberOfGenes

 populationSize logs population terminationBlock compareFitness

 mutationOperator crossoverOperator selection

 beforeCreatingInitialIndividual'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

GAEngine is a complex and relatively long class. It has a number of variables:

•	 fitnessBlock is a one-argument block. It takes the genes of each

individual as an argument and returns the fitness of the individual.

•	 createGeneBlock refers to a gene block factory.

Chapter 8 Genetic Algorithms

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

182

•	 numberOfGenes indicates the number of genes each individual has.

•	 populationSize is the size of the population.

•	 logs refers to a collection of instances of GALog. This variable keeps

the evolutionary history of the algorithm.

•	 population refers to the individual population.

•	 terminationBlock is a block that indicates when the algorithm has

to stop. The block represents the termination condition and does not

take an argument.

•	 compareFitness is a two-argument block, taking two fitness values.

The block indicates which fitness is better than the other.

•	 mutationOperator is the mutation operator.

•	 crossoverOperator is the crossover operator.

•	 selection refers to a selection algorithm.

•	 beforeCreatingInitialIndividual contains a one-argument

block that is evaluated before an individual of the initial population

is created. The block takes a random number generator as an

argument.

Some accessors are necessary to let the user configure the algorithm. Note

that an example of using the algorithm is provided at the end of the chapter. The

createGeneBlock: method is used to indicate how a gene has to be created:

GAEngine>>createGeneBlock: threeArgBlock

 "Three arguments must be provided rand, index, and the individual

 being filled"

 createGeneBlock := threeArgBlock.

 mutationOperator geneFactoryBlock: threeArgBlock

The fitnessBlock: method is used to indicate how fitness is computed:

GAEngine>>fitnessBlock: aOneArgBlock

 "The argument is evaluated on the genes of each individual.

 The block argument has to compute the fitness."

 fitnessBlock := aOneArgBlock

Chapter 8 Genetic Algorithms

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

183

The fitnessBlock may be obtained using a method (the selection algorithm uses it):

GAEngine>>fitnessBlock

 "Return the fitness block used by the engine"

 ^ fitnessBlock

We also provide an accessor of the beforeCreatingInitialIndividual: variable

using this method:

GAEngine>>beforeCreatingInitialIndividual: aOneArgBlock

 "Set the behavior to be executed before creating an individual.

 The block takes a random number generator as an argument."

 beforeCreatingInitialIndividual := aOneArgBlock

The mutation rate may be set by using the following:

GAEngine>>mutationRate: aFloat

 "Set the mutation rate used by the engine. The default value is

 0.01"

 mutationOperator mutationRate: aFloat.

The number of genes per individual is set as follows:

GAEngine>>numberOfGenes: anInteger

 "Set the number of genes each individual will have"

 numberOfGenes := anInteger

The crossover operation may be set using the crossoverOperator: method:

GAEngine>>crossoverOperator: aCrossoverOperator

 "Set the crossover operator used in the algorithm"

 crossoverOperator := aCrossoverOperator.

 crossoverOperator random: random

The mutation operation may be set as follows:

GAEngine>>mutationOperator: aMutationOperator

 mutationOperator := aMutationOperator.

 aMutationOperator random: random

Chapter 8 Genetic Algorithms

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

184

The size of the population is configured using the following:

GAEngine>>populationSize: anInteger

 "Set the population size"

 populationSize := anInteger

The selection operator may be set using a dedicated method, as follows:

GAEngine>>selection: aSelection

 "Set the selection method to be used to create a new population"

 selection := aSelection.

 aSelection engine: self.

A tournament object is used as an argument of selection:. The selection variable

may be accessed by using:

GAEngine>>selection

 "Return the selection operator"

 ^ selection

In many situations, a better individual is the one with the highest fitness value:

GAEngine>>maximizeComparator

 "A better individual is the one with the highest fitness value"

 compareFitness := [:f1 :f2 | f1 > f2]

However, it may happen that a better individual is the one with the lowest value:

GAEngine>>minimizeComparator

 "A better individual is the one with the lowest fitness value"

 compareFitness := [:f1 :f2 | f1 < f2]

The constructor of the engine is as follows:

GAEngine>>initialize

 super initialize.

 logs := OrderedCollection new.

 random := Random seed: 42.

 self endForMaxNumberOfGeneration: 10.

 populationSize := 10.

 self maximizeComparator.

Chapter 8 Genetic Algorithms

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

185

 mutationOperator := GAMutationOperation new.

 mutationOperator mutationRate: 0.01.

 mutationOperator random: random.

 crossoverOperator := GACrossoverOperation new.

 crossoverOperator random: random.

 self selection: GATournamentSelection new.

 beforeCreatingInitialIndividual :=

 [:rand | "do nothing per default"]

As you can see, several parameters have a default value. The fitnessBlock is passed

from the engine to the selection:

GAEngine>>beforeRun

 "Method executed before creating the initial population"

 self checkIfReadyToRun.

 selection fitnessBlock: fitnessBlock.

 selection populationSize: populationSize

The checkIfReadyToRun method raises an exception if the algorithm is not properly

set up:

GAEngine>>checkIfReadyToRun

 "Raise an exception if the configuration is not ready to be run"

 self assert: [fitnessBlock notNil]

 description: 'Need to set a fitnessBlock'.

 self assert: [createGeneBlock notNil]

 description: 'Need to set a createGeneBlock'.

 self assert: [numberOfGenes notNil]

 description: 'Need to set how many genes you wish to have,

 using numberOfGenes:'.

 self assert: [logs isEmpty]

 description: 'Already been run'.

In particular, the algorithm can be run if it has a fitnessBlock, a createGeneBlock,

and a numberOfGenes. Moreover, it should not have been previously run (i.e., the logs

variable has to be empty).

Chapter 8 Genetic Algorithms

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

186

When the engine is asked to perform a crossover operation, it simply delegates it to

the operation object:

GAEngine>>crossover: partnerA with: partnerB

 "Perform a crossover operation between the two arguments"

 ^ crossoverOperator crossover: partnerA with: partnerB

Similarly, when the engine is asked to mutate an individual, it simply delegates it to

the corresponding operator:

GAEngine>>mutate: individual

 "Mutate the child provided as an argument"

 ^ mutationOperator mutate: individual

The initial population is defined using the following:

GAEngine>>initializePopulation

 self checkForRandomNumber.

 population := OrderedCollection new.

 populationSize timesRepeat: [

 | ind |

 beforeCreatingInitialIndividual value: random.

 ind := GAIndividual new.

 population add:

 (ind

 random: random;

 set: numberOfGenes genesUsing: createGeneBlock)]

It is essential to determine which of two individuals is better. We use the following

method:

GAEngine>>isIndividual: anIndividual betterThan: aFittestIndividual

 "Compare an individual against the fittest individual of the population"

 ^ compareFitness value: anIndividual fitness value:

 aFittestIndividual fitness

The logs may be obtained using simple variable accessors:

GAEngine>>logs

 "Return the logs of the run"

 ^ logs

Chapter 8 Genetic Algorithms

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

187

Here is the central method of the algorithm. The GAEngine>>run method is the entry

point of the algorithm:

GAEngine>>run

 "Public method -- Run the genetic algorithm"

 | t log |

 self beforeRun.

 self initializePopulation.

 selection initialPopulation: population.

 selection compareFitness: compareFitness.

 UIManager default

 informUserDuring: [:bar |

 | gen |

 gen := 0.

 [self shouldTerminate] whileFalse: [gen := gen + 1.

 bar label: gen asString.

 self microPause.

 t := Time now asSeconds.

 self produceNewPopulation.

 log := GALog new.

 log generationNumber: gen.

 log fittestIndividual: selection fittest.

 log worseFitness: ((population collect: #fitness)

 inject: log bestFitness into: [:wFit :current | (

 compareFitness value: wFit value: current) ifTrue: [

 current] ifFalse: [wFit]]).

 log averageFitness: (population collect: #fitness)

 average asFloat.

 log timeToProduceGeneration: Time now asSeconds - t.

 logs add: log]]

When the algorithm runs, it is essential to let the system broadcast its own progress.

We therefore add the microPause method, which makes it possible for the current

running thread to let the other threads do some work:

Chapter 8 Genetic Algorithms

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

188

GAEngine>>microPause

 "Useful when you wish to log in the Transcript and see progresses"

 (Delay forMilliseconds: 1) wait.

 World doOneCycleNow.

The produceNewPopulation method is central to the engine:

GAEngine>>produceNewPopulation

 "This method

 - produces a new population, set in the variable 'population'

 - select the fittest element of the population"

 selection doSelection.

 population := selection population.

We also employ a small utility method to produce random numbers:

GAEngine>>randomNumber: maxNumber

 "Return a number between 1 and maxNumber"

 ^ random nextInt: maxNumber

The result of the algorithm is accessed using the result method:

GAEngine>>result

 "Return the genes of the fittest individual. This method is

 expected to be executed after #run has completed"

 ^ self logs last fittestIndividual genes

8.10  �Terminating the Algorithm
We are now entering the last batch of methods to complete the implementation of our

algorithm. One important aspect when configuring a genetic algorithm is determining

when the algorithm execution has to stop.

Terminating the algorithm execution is a sensitive aspect that should be carefully

considered. For example, if we can unambiguously say it has found the solution, then

the termination condition is trivial: just stop when we find the solution. However, for

many problems, we have no idea what the optimal solution looks like. In such cases,

we can ask the algorithm to stop after a particular number of generations, or stop if the

fitness does not get better after a few generations. The condition that should be met in

order to stop the algorithm may depend on a number of different factors (e.g., if the exact

solution exists and may be found).

Chapter 8 Genetic Algorithms

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

189

The shouldTerminate method indicates whether the algorithm has to terminate. If

no log has been registered, it means that the algorithm was not run, and in that case, we

evaluate the terminationBlock variable:

GAEngine>>shouldTerminate

 logs ifEmpty: [^ false].

 ^ terminationBlock value

The following method defines the terminationBlock variable according to a

particular strategy. The endForMaxNumberOfGeneration: method defines a termination

condition based on the number of generations. The algorithm stops after a particular

number of created generations:

GAEngine>>endForMaxNumberOfGeneration: nbOfGenerations

 "End the algorithm after a fixed number of generations"

 terminationBlock :=

 [logs last generationNumber >= nbOfGenerations]

It may happen that if the fitness is above a particular value, the fittest individual may

be considered an acceptable solution. In such a case, there is no reason to pursue the

execution of the algorithm:

GAEngine>>endIfFitnessIsAbove: aFitnessValueThreshold

 "End the algorithm if the best fitness value is above a particular

 threshold"

 terminationBlock :=

 [logs last fittestIndividual fitness >= aFitnessValueThreshold

]

Another strategy is to stop the algorithm if no better solution is found for a given

number of generations:

GAEngine>>endIfNoImprovementFor: nbOfGenerations

 "End if no improvement occurred within a given number of

 generations"

 ^ self endIfNoImprovementFor: nbOfGenerations withinRangeOf: 0

Chapter 8 Genetic Algorithms

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

190

Complex strategy may be formulated. For example, endIfNoImprovementFor:withi

nRangeOf: defines a condition based on the number of generations and a range of delta

values:

GAEngine>>endIfNoImprovementFor: nbOfGenerations withinRangeOf: delta

 "End if no improvement occurred (within a delta value) within a

 given number of generations"

 terminationBlock := [

 (logs last generationNumber >= nbOfGenerations) and: [

 | fs |

 fs := (logs last: nbOfGenerations) collect: [:aLog | aLog

 fittestIndividual fitness].

 (fs max - fs min) <= delta

]]

We have implemented the essential features of this algorithm and can now test it.

8.11  �Testing the Algorithm
We will define a unit test that focuses on this algorithm. Consider the GAEngineTest

class:

TestCase subclass: #GAEngineTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Tests'

We can now implement the introductory example we use for searching a secret word:

GAEngineTest>>testExamples01

 | g |

 g := GAEngine new.

 g populationSize: 1000.

 g numberOfGenes: 4.

 g createGeneBlock: [:rand :index :ind | ($a to: $z) atRandom: rand

].

 g fitnessBlock: [:genes |

Chapter 8 Genetic Algorithms

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

191

 (#($g $a $t $o) with: genes collect: [:a :b |

 a = b ifTrue: [1] ifFalse: [0]]) sum].

 g run.

 self assert: g logs first fittestIndividual fitness equals: 2.

 self assert: g logs first fittestIndividual genes equals: #($g $l

 $t $s).

 self assert: g logs fourth fittestIndividual fitness equals: 4.

 self assert: g logs fourth fittestIndividual genes equals: #($g $a

 $t $o).

The testExamples01 test creates an engine, configured with a population size of

1,000. Each individual has four genes. The gene block factory picks a random letter,

and the fitness block is the number of matching letters. In the first generation, the best

individual has a fitness of 2, and in the fourth generation the answer is found.

8.12  �Visualizing Population Evolution
Visualizing the execution of the algorithm is an essential feature. We extend the

GAEngine class to visualize the historical data kept in the log objects.

The visualize method uses Roassal to draw three curves. At each generation, the

best, average, and lowest score is kept. Consider the following method definition:

GAEngine>>visualize

 "Visualize the evolution of the population"

 | g d |

 g := RTGrapher new.

 d := RTData new.

 d label: 'Best fitness'.

 d interaction popupText: [:assoc | assoc value bestFitness].

 d connectColor: Color blue.

 d noDot.

 d points: self logs.

 d y: #bestFitness.

 d x: #generationNumber.

 g add: d.

Chapter 8 Genetic Algorithms

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

192

 d := RTData new.

 d label: 'Worst fitness'.

 d interaction popupText: [:assoc | assoc value worseFitness].

 d connectColor: Color red.

 d noDot.

 d points: self logs.

 d y: #worseFitness.

 d x: #generationNumber.

 g add: d.

 d := RTData new.

 d label: 'Average fitness'.

 d interaction popupText: [:assoc | assoc value averageFitness].

 d connectColor: Color green.

 d noDot.

 d points: self logs.

 d y: #averageFitness.

 d x: #generationNumber.

 g add: d.

 g legend addText: 'Fitness evolution'.

 g axisY title: 'Fitness'.

 g axisX noDecimal; title: 'Generation'.

 ^ g

We bridge the GAEngine class with the GTInspector framework to render the

visualization:

GAEngine>>gtInspectorViewIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: 'View';

 initializeView: [self visualize]

The gtInspectorViewIn: method configures the Pharo inspector to display a

visualization when an engine is inspected. Consider the following script:

Chapter 8 Genetic Algorithms

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

193

g := GAEngine new.

g populationSize: 1000.

g numberOfGenes: 4.

g createGeneBlock: [:rand :index :ind | ($a to: $z) atRandom: rand].

g fitnessBlock: [:genes |

 (#($g $a $t $o) with: genes collect: [:a :b | a = b

 ifTrue: [1] ifFalse: [0]]) sum].

g run.

Figure 8-3.  Example of fitness evolution

This script executes a genetic algorithm to find the word gato (cat in Spanish). It is

configured as follows:

•	 The population is composed of 1,000 individuals.

•	 Each individual has four genes.

•	 Each gene is a random letter, ranging from the letter a and z.

•	 The fitness is a one-argument block that takes the genes of an

individual as an argument. It returns the number of the matching

letter with the word to find.

Chapter 8 Genetic Algorithms

1098

1099

1100

1101

1102

1103

1104

1105

194

Figure 8-3 illustrates the historical evolution of the fitness score. Such a graph is used

as a means to interpret how the algorithm execution went.

We can also easily give the list of log objects:

GAEngine>>gtInspectorLogsIn: composite

 <gtInspectorPresentationOrder: -5>

 composite list

 title: 'Logs';

 display: [self logs]

When inspecting the result of the execution, a Logs tab accompanies the

visualization.

If we step back, we can see that we produced an efficient algorithm. At the beginning

of the chapter, we had to produce 100,000 random three-letter words (cat) to find four

instances of the correct words. Using genetic algorithm, only 4,000 individuals had to be

created to find many instances of a four-letter word (gato). This is a simple scenario that

illustrates how well-designed recombination operations are significantly more powerful

than brute-force searches.

8.13  �What Have We Seen in This Chapter?
That was a long chapter. It provided a full implementation of a genetic algorithm. In

addition, the algorithm is open to new operations, as we will see in the next chapters.

This chapter covered the following topics:

•	 It presented the complete implementation of a genetic algorithm.

•	 It presented a very simple, but representative, example of finding a

word.

The following chapter will build on this chapter by showing some more interesting

problems to solve using a genetic algorithm.

Chapter 8 Genetic Algorithms

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

195
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_9

CHAPTER 9

Genetic Algorithms
in Action
This chapter illustrates the use of genetic algorithms by solving a number of difficult

algorithmic problems. Most of the problems presented in this chapter involve some

arithmetic operations and therefore have a mathematical flavor.

9.1  �Fundamental Theorem of Arithmetic
A prime number is a whole number greater than 1 whose only factors are 1 and itself. For

example, 7 is a prime because it can only be divided by 7 and 1. The number 10 is not a

prime because it can be divided by 2 and 5—two prime numbers.

In number theory, there is a theorem called the fundamental theorem of arithmetic,

which states “any integer greater than 1 is either a prime number itself, or can be written

as a unique product of prime numbers.” Note that this representation is unique, except

for the order of the factors. For example, the number 345 is a multiplication of factors

3*5*23. Finding this list of factors is computationally expensive. We will use genetic

algorithms to identify the prime factors of any given number. As such, a gene will

represent a prime number factor.

It is relevant to note that the number of factors depends on the number to be

factored out. For example, the number 345 has three factors (3, 5, and 23), whereas

the number 788,389 has four factors since 788,389 = 7 * 41 * 41 * 67. In the genetic

algorithm we presented in the previous chapter, all the individuals have the exact same

number of genes. How do we represent an arbitrary number of genes then? One way that

fits well with our situation is to consider 1 as a possible factor. Assuming each individual

has 10 genes, the factors of 345 can be encoded with the values 3, 5, 23, and seven times

the factor 1. The solution will then be the factors contained in an individual for which we

ignore the value 1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

196

The fitness function is simply the absolute difference between the multiplication

of the prime factors and the number we are interested in looking for the factors. If the

fitness is equal to 0, then we found the solution.

Consider the following script:

numberOfIdentifyFactors := 345.

primeNumbers := #(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157

 163 167 173 179 181 191 193 197 199).

candidateFactors := #(1), primeNumbers.

g := GAEngine new.

g endIfNoImprovementFor: 10.

g populationSize: 10000.

g numberOfGenes: 10.

g createGeneBlock:

 [:rand :index :ind | candidateFactors atRandom: rand].

g minimizeComparator.

g

 fitnessBlock: [:genes |

 ((genes inject: 1 into: [:r :v | r * v]) -

 numberOfIdentifyFactors) abs].

g run.

We provided 46 prime numbers from which the algorithm has to pick the relevant

ones. The fitness function contains the genesinject: 1into: [:r:v|r*v] expression,

which returns the multiplication of the numbers contained in the genes temporary

variable. For example, #(3 5 23)inject: 1into: [:r:v|r*v] evaluates to 345.

After the execution of the script, we can verify how it went with this expression:

...

g logs last bestFitness.

If the value is 0, we find the exact prime factors. If we did not find it, we could

increase the population size or increase the argument of endIfNoImprovementFor:.

The prime factors may be obtained using the following expression:

...

g result copyWithout: 1.

Chapter 9 Genetic Algorithms in Action

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

197

Figure 9-1 gives the results of executing the whole script.

For any non-prime number, the sequence of the prime factor is unique. This means

that the number 345 can only be broken into the group of prime factors—3, 5, and 23.

There is no other combination of prime factors that produce 345. The prime factors

therefore constitute an “identity” of the 345 composite number. The fundamental

theorem of arithmetic has a well chosen name. This theorem has many applications, and

one of them is cryptography. If cryptography is as important as it is today, it is essentially

due to this theorem. In cryptography, a prime factor represents a private key, and if the

composite number is large enough, it takes an incredible amount of time to actually find

the prime factors.

9.2  �The Knapsack Problem
The knapsack problem is a well-known problem in combinatorial optimization. It can be

summarized as follows: given a set of items, each having a value and a weight, determine

the number of each item to include in a collection, such that (i) the total weight is less

than or equal a given limit and (ii) the total value is as large as possible.

We will consider two variants of this problem—the unbounded knapsack problem

and the 0-1 knapsack problem.

Figure 9-1.  Identification of prime factors of 345

Chapter 9 Genetic Algorithms in Action

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

198

Figure 9-2 illustrates the knapsack problem. Five boxes are available, each with a

particular value and weight. The bag cannot hold more than 15 kilograms (kg). If we

consider the unbounded variant of the problem, then the solution is three boxes of $10

and three boxes of $2. If we consider the 0-1 variant, the solution is all the boxes except

the $4 one.

9.2.1  �The Unbounded Knapsack Problem Variant
In this variant, a box may be used multiple times. We use the genetic algorithm to search

for the optimal solution. The fitness function reflects the value of a given set of boxes (the

sum of the value) minus a penalty. This penalty is the difference between the total weight

with the knapsack’s capacity. Consider the following script:

knapsackMaxWeight := 15.

"a box = (value, weight)"

boxes := #(#(4 12) #(2 1) #(2 2) #(1 1) #(10 4) #(0 0)).

g := GAEngine new.

g endIfNoImprovementFor: 10.

g populationSize: 20000.

g numberOfGenes: 15.

g createGeneBlock: [:rand :index :ind | boxes atRandom: rand].

g maximizeComparator.

g

Figure 9-2.  The knapsack problem (obtained from Wikipedia, authored by Dake,
under Creative Commons Attribution, Share Alike 2.5 Generic)

Chapter 9 Genetic Algorithms in Action

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

199

 fitnessBlock: [:genes |

 | totalWeight totalValue penalty |

 totalValue := (genes collect: #first) sum.

 totalWeight := (genes collect: #second) sum.

 knapsackMaxWeight < totalWeight

 ifTrue: [penalty := (knapsackMaxWeight - totalWeight) abs

 * 50]

 ifFalse: [penalty := 0].

 totalValue - penalty

].

g run.

g result copyWithout: #(0 0)

The knapsackMaxWeight variable refers to the knapsack’s capacity. The

boxes variable contains all the available boxes. Each box is represented as a tuple

(value,weight).

The capacity of the bag is 15kg and the lightest box weighs 1kg, as illustrated in

Figure 9-2. The fact that the lightest box weighs 1kg sets the number of genes of our

algorithm: each individual does not need to have more than 15 genes. A greater number

of genes would not be meaningful since the sum of 16 or more boxes will weigh more

than 15kg. Conversely, having fewer than 15 genes may exclude some solutions. For

example, if the optimal solution is 15 boxes of 1kg, our algorithm should be able to find

it. To conclude, it seems that each individual should have 15 genes.

However, if we tune our algorithm with 15 genes per individual, how can we

represent a solution with fewer than 15 boxes? In particular, the solution of the

unbounded knapsack problem has six boxes—three boxes of $10 and three boxes of $2—

with a total weight of 15kg. This is not quite what our algorithm will produce since it will

look for solutions made of exactly 15 boxes. As such, enforcing a solution to be made of

15 boxes will make our algorithm miss the solution. We therefore need a way to relax the

fact that a solution must have 15 boxes. In this particular case, simply adding an empty

box with no value to our algorithm, #(0 0), will do the job well: the algorithm can pick

the six boxes (the true solution of the problem) and fill the nine remainder slots of the

individual carrying the solution with empty boxes.

The fitness function contains three variables. The totalValue variable sums the

value of the set of boxes contained in the genes variable. The totalWeight variable is the

boxes’ weight. We defined a penalty variable, which is the absolute difference between

Chapter 9 Genetic Algorithms in Action

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

200

the bag capacity and the totalWeight. We use the 50 factor to make sure that the value

does not take over the penalty.

Figure 9-3 illustrates the execution of the script.

9.2.2  �The 0-1 Knapsack Problem Variant
In this variant, each available box appears at most once. We treat this problem in a

similar way as the previous one; however, the encoding and decoding of the genes has to

reflect the fact that each box can appear at most once in each individual.

The key aspect to consider when solving this variant of the problem is to realize that

this problem is similar to searching for a number written in binary (i.e., made of 0s and

1s). Assuming that the set of boxes is fixed and ordered, as we have specified so far, then

we can assign the value 0 to a box to indicate that the box is absent from the solution

represented by an individual. Similarly, the value 1 indicates that the box is present.

Figure 9-3.  Genetic algorithm applied to the Knapsack problem

Chapter 9 Genetic Algorithms in Action

132

133

134

135

136

137

138

139

140

141

142

143

201

Consider the following script:

knapsackMaxWeight := 15.

"a box = (value, weight)"

boxes := #(#(4 12) #(2 1) #(2 2) #(1 1) #(10 4)).

g := GAEngine new.

g endIfNoImprovementFor: 10.

g populationSize: 20000.

g numberOfGenes: boxes size.

g createGeneBlock: [:rand :index :ind | #(0 1) atRandom: rand].

g maximizeComparator.

g fitnessBlock: [:genes |

 | totalWeight totalValue penalty |

 decodeToBoxes := OrderedCollection new.

 genes doWithIndex: [:b :ind | b = 1 ifTrue: [decodeToBoxes

 add: (boxes at: ind)]].

 decodeToBoxes

 ifEmpty: [totalValue := 0. totalWeight := 0]

 ifNotEmpty: [

 totalValue := (decodeToBoxes collect: #first) sum.

 totalWeight := (decodeToBoxes collect: #second) sum].

 knapsackMaxWeight < totalWeight

 ifTrue: [penalty := (knapsackMaxWeight - totalWeight) abs

 * 50]

 ifFalse: [penalty := 0].

 totalValue - penalty].

g run.

"We now retrieve the solution"

decodeToBoxes := OrderedCollection new.

g result doWithIndex: [:b :ind |

 b = 1 ifTrue: [decodeToBoxes add: (boxes at: ind)]].

decodeToBoxes

Boxes selected by the algorithm are #(2 1)#(2 2)#(1 1)#(10 4). We will now

detail the script. A gene is either a value 0 or 1. The fitness function first selects the boxes

indicated by the set of 0 and 1 contained in the genes variable. Boxes that are part of

Chapter 9 Genetic Algorithms in Action

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

202

the current solution are kept in the decodeToBoxes variable. We need to verify whether

decodeToBoxes is empty or not. It may be empty if the genes variable is only made up of

0s. Once we have the total value and the total weight indicated by the genes variable, we

need to set the penalty to the difference between knapsackMaxWeight and totalWeight,

as we previously did.

9.2.3  �Coding and Encoding
Conceptually, the two variants of the knapsack problem differ in the range of

occurrences each box may appear. As we have seen, this may have an impact on how to

encode a possible solution. In the unbounded variant we have a set of boxes, while in the

0-1 variant we have a set of 0 and 1 as a solution.

Finding adequate encoding is crucial, as we have to reduce the burden of the

algorithm to meet different objectives and constraints. In particular, in the unbounded

version, we have two objectives: maximizing the value of the bag and making sure that

the overall weight of the bag does not exceed the limit. We solved this problem using

a penalty, which is a sufficient approach for the formulation of this problem (with few

boxes and a low weight limit). In the 0-1 version, we have a third objective, which is that

boxes should not repeat themselves. We could have added a second penalty to express

this constraint. However, the algorithm will be suboptimal because it will have to solve

some trade-off involving the three objectives. To alleviate the search, we use an encoding

for the 0-1 variant that implicitly avoids box repetition.

The knapsack problem is an example of a multi-objective problem because the

overall objective may be broken down into smaller sub-objectives. There are multiple

ways to solve multi-objective problems, which are out of the scope of this chapter.

9.3  �Meeting Room Scheduling Problem
Meeting room scheduling is a classical problem that consists of assigning meetings

to different rooms. Meetings should not overlap but we should still use the minimum

number of different rooms. To illustrate this problem, we consider a meeting as a

tuple (start time, end time). The two meetings #(#(1 3)(2 3)) do overlap, so as

a consequence, we need to have each meeting in a different room. Conversely, the

two meetings #(#(1 3)(4 5)) can be held in the same room. Consider the following

meetings: #(#(1 3)#(2 3)#(5 6)#(7 9)#(4 7)). Two rooms are necessary since the

Chapter 9 Genetic Algorithms in Action

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

203

meetings #(2 3) and #(4 7) can be held in a room, and #(1 3),#(5 6), and #(7 9) in

another room.

We can use a genetic algorithm to identify the minimum number of rooms necessary

to hold a set of provided meetings. Consider this script:

"We assume that each meeting is correctly defined"

"a meeting = (start time, end time)"

meetings := #(#(1 3) #(2 3) #(5 6) #(7 9) #(4 7)).

numberOfMeetings := meetings size.

g := GAEngine new.

g endIfNoImprovementFor: 10.

g populationSize: 20000.

g numberOfGenes: numberOfMeetings.

g createGeneBlock: [:rand :index :ind | (1 to: numberOfMeetings)

 atRandom: rand].

g minimizeComparator.

g

 fitnessBlock: [:genes |

 | distribution |

 distribution := OrderedCollection new.

 numberOfMeetings timesRepeat: [distribution add:

 OrderedCollection new].

 genes doWithIndex: [:roomNumber :index | (distribution at:

 roomNumber) add: (meetings at: index)].

 numberOfOverlap := 0.

 distribution do: [:aSetOfMeetings |

 table := OrderedCollection new: 10 withAll: 0.

 aSetOfMeetings do: [:meet |

 meet first to: meet second do: [:v | table at: v put:

 (table at: v) + 1]

].

 numberOfOverlap := numberOfOverlap + (table select: [:v |

 v >= 2]) size.

].

Chapter 9 Genetic Algorithms in Action

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

204

 (distribution select: #notEmpty) size + numberOfOverlap.

].

g run.

g result asSet size

The meetings variable contains the list of meetings. We are assuming that each

meeting is correctly defined (e.g., the end time is greater than the start time). The

numberOfMeetings variable contains the number of meetings we have.

We consider a gene as a room assignation for a particular meeting. If we consider the

set of meetings #(#(1 3)#(2 3)#(5 6)#(7 9)#(4 7)), then a possible solution is #(1

5 1 1 5), which means that the meetings #(1 3), #(5 6), and #(7 9) are held in room

1, while meetings #(2 3) and #(4 7) are held in room 5. The solution is therefore two

rooms.

Since we wish to minimize the number of rooms and the number of overlaps, the

genetic algorithm will look for room assignments that minimize the fitness function. The

fitness function computes the number of different rooms and the number of overlaps.

Finally, the number of different rooms is given by the gresultasSetsize expression.

9.4  �Mini Sodoku
Consider the following set of numbers: 8 4 6 2 10 12 14 16 18. How would you put

these numbers in a 3X3 grid in such a way that each horizontal, vertical, and diagonal

lines equal 30?

Figure 9-4 shows the grid to which the numbers should be located. Check out the

following script:

Figure 9-4.  Mini Sudoku

Chapter 9 Genetic Algorithms in Action

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

205

"The number of locate in the grid"

list := #(2 4 6 8 10 12 14 16 18).

"The different combinations to sum.

E.g., the three first cells could be summed (#(1 2 3))

 the diagonal top-left to bottom-right (#1 5 9))"

sums := {

 "Horizontal sums"

 #(1 2 3).

 #(4 5 6).

 #(7 8 9).

 "Diagonal sums"

 #(1 5 9).

 #(7 5 3).

 "Vertical sums"

 #(1 4 7).

 #(2 5 8).

 #(3 6 9) }.

g := GAEngine new.

g populationSize: 400.

g endIfFitnessIsAbove: 9.

g mutationRate: 0.01.

g numberOfGenes: 9.

g createGeneBlock: [:rand :index | list atRandom: rand.].

g fitnessBlock: [:genes |

 | score penalty |

 score := (sums collect: [:arr |

 (arr collect: [:index | genes at: index]) sum])

 inject: 0 into: [:a :b | a + (b - 30) abs].

 penalty := (genes size - genes asSet size) * 3.

 9 - (score + penalty)].

g run.

Chapter 9 Genetic Algorithms in Action

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

206

"Visualize the grid"

v := RTView new.

label := RTLabel new.

elements := label elementsOn: g result.

v addAll: elements.

RTGridLayout on: elements.

v

The block provided to the fitnessBlock: method iterates over each combination

contained in the sums variable and adds 1 if the sum is 30, or 0 otherwise. The maximum

we can have is 9, so the algorithm ends when it reaches a fitness above 8.

Figure 9-5.  Evolution of the fitness

Chapter 9 Genetic Algorithms in Action

295

296

297

298

299

300

301

302

303

304

207

Figure 9-5 shows the evolution of the fitness and Figure 9-6 shows the result. We

want to thank Milton Mamani for producing this example.

9.5  �What Have We Seen in This Chapter?
The chapter presents three examples of how genetic algorithms can be efficiently

employed to find a solution to apparently complex problems:

•	 The fundamental theorem of arithmetic finds, for a given number N, a

set of prime numbers that when multiplied together, equal N.

•	 Two variants of the knapsack problem, namely the unbounded and

0-1 variants, select boxes without passing an overall limit while

maximizing the value of the selected set.

•	 The room scheduling problem, which assigns meeting to rooms

while avoiding overlapping.

The genetic algorithm is a simple and efficient way to solve these problems.

However, it does not guarantee that the result is the optimal solution. The algorithm can

find a candidate solution, for which we blindly take it as a convenient solution. It may

Figure 9-6.  The result of the mini Sudoku

Chapter 9 Genetic Algorithms in Action

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

208

happen that a genetic algorithm cannot find the best solution in a reasonable amount

of time. In the previous chapter, we used a genetic algorithm to search for the word cat,

which is three-letters long. Asking the algorithm to search for a word with 1000 letters

would take so long that the algorithm would not seem to converge. When such a case

happens, it is wise to specialize the genetic operations, as we will do in the coming

chapters.

The next chapter covers a larger example using a genetic algorithm. It will also

discuss a limitation of the genetic operators we have used so far.

Chapter 9 Genetic Algorithms in Action

320

321

322

323

324

325

326

327

209
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_10

CHAPTER 10

The Traveling Salesman
Problem
The Traveling Salesman Problem (TSP) is a classical algorithm problem. It consists of

identifying the shortest possible route between several connected cities. Not only is

the problem relevant from an algorithmic point of view, but it also has many concrete

applications, like microchip manufacturing, as you will shorty see.

The chapter incrementally builds a non-trivial solution to the problem using a

genetic algorithm. The chapter begins with a naive approach to a robust, practical way of

solving it.

10.1  �Illustration of the Problem

Figure 10-1.  Setup of the Traveling Salesman Problem

Consider the example given in Figure 10-1. The figure shows four cities located in a

horizontal diamond. Each city has a 2D coordinate and is therefore located in a two-

dimensional plane. Assuming the traveler begins their journey at City A, many paths are

possible to visit all the cities.

1

2

3

4

5

6

7

8

9

10

11

210

As illustrated in Figure 10-2, different paths are possible, including ABCD, ACDB,

ABDC, and ADCB. What is the shortest path to visit all the cites? The four cities are

located as a horizontal diamond. As such, City B and City D are closest to each other. The

shortest path to visit all the cities should necessarily contain the segment BD (or DB),

and then favor the segment of the external edge of the diamond. Segment AC (or CA)

cannot belong to the shortest path.

10.2  �Relevance of the Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a relevant problem to focus on, both from

theoretical and practical points of view. The TSP was formulated in the early 1930s and

is among the most studied algorithmic problems. Applications of the TSP are numerous,

ranging from combinatorial optimization (i.e., finding an optimal object from a finite set

of objects) to resource planning, DNA sequencing, and electronic circuit manufacturing.

For example, when building an electronic board, a thin drill has to make holes in the

board. Using the shortest route between the holes may have a significant impact on the

time it takes to produce a board. Even though this problem has been studied for a long

time, no general solution has been discovered yet.

The TSP is apparently a simple problem: you simply connect the cities in an optimal

way. However, the TSP is a very difficult problem and is considered NP-hard. Being NP-

hard means that, for two given candidate solutions, it is very easy to pick the best one

(e.g., given two paths, it is easy to pick which one is shortest), but there is no efficient way

to solve the problem itself. If someone, one day, finds an analytic solution to the TSP, the

world would be profoundly impacted. Analytically solving an NP-hard problem (e.g.,

analytically finding the shortest path) means that any NP-complete problem can also

Figure 10-2.  Illustration of the Traveling Salesman Problem

Chapter 10 The Traveling Salesman Problem

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

211

be analytically solved. Have you heard about P vs. NP problems? This is one of the most

challenging questions that mathematicians and theoretician computer scientists are

facing today. The Clay Mathematics Institute will award a millennium prize of 1,000,000

USD to the person or group who solves a NP-hard problem analytically.

In this chapter we do not pretend to analytically solve this problem. However, using a

genetic algorithm is a pretty solid technique for finding a good path, although it may not

be the optimal path.

10.3  �Naive Approach
How do we encode a path to make it exploitable by a genetic algorithm? For this

problem, computing the fitness is trivial: it is simply the sum of the segment lengths. We

can try the following script:

"We encode distances"

d := { ($A -> $B) -> 10 . ($A -> $D) -> 10 . ($B -> $C) -> 10 . ($C ->

 $D) -> 10 . ($A -> $C) -> 20 . ($B -> $D) -> 8 } asDictionary.

g := GAEngine new.

g endIfNoImprovementFor: 10.

g populationSize: 100.

g numberOfGenes: 4.

g createGeneBlock: [:rand :index :ind | 'ABCD' atRandom: rand].

g minimizeComparator.

g fitnessBlock: [:genes |

 | currentCity length |

 currentCity := genes first.

 length := 0.

 genes allButFirst do: [:nextCity |

 length := length + (d at: (currentCity -> nextCity) ifAbsent: [

 d at: (nextCity -> currentCity) ifAbsent: [0]]).

 currentCity := nextCity].

 length

].

g run

Chapter 10 The Traveling Salesman Problem

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

212

We encode the map into a dictionary kept in the variable d. Each entry of the

dictionary is a path between two cities. The gene is simply a city from the four possible

cities. Since there are four different cities, and our algorithm has to go through these

four cities, each individual has four genes. The fitness is computed as the length of the

routes joining these four cities. We have two temporary variables—currentCity and

length. For each city contained in the genes, the fitness function retrieves its distance

from the current city. The segment to compute is given by the entry d at: (currentCity

->nextCity) or the opposite direction dat: (nextCity->currentCity).

Figure 10-3 shows the result of the run. The best fitness is 0, which is clearly not what

we expect. A route that visits the four cities cannot have a length of 0. Clicking the Logs

tab reveals that all the individuals are ($B $B $B $B). The genetic algorithm is telling us

that the smallest amount of traveled distance is to not travel at all!

How can we force the algorithm to avoid visiting the same cities? A path, in order

to be valid, should pass through all the cities only once. The easiest way to enforce this

is to incur a penalty when this happens, in a similar fashion that we did in the previous

chapter. Consider this revised version of the script:

"We encode distances"

d := { ($A -> $B) -> 10 . ($A -> $D) -> 10 . ($B -> $C) -> 10 . ($C ->

 $D) -> 10 . ($A -> $C) -> 20 . ($B -> $D) -> 8 } asDictionary.

Figure 10-3.  Result of the naive approach

Chapter 10 The Traveling Salesman Problem

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

213

g := GAEngine new.

g endIfNoImprovementFor: 10.

g populationSize: 1000.

g numberOfGenes: 4.

g createGeneBlock: [:rand :index :ind | 'ABCD' atRandom: rand].

g minimizeComparator.

g fitnessBlock: [:genes |

 | currentCity length |

 currentCity := genes first.

 length := 0.

 genes allButFirst do: [:nextCity |

 length := length + (d at: (currentCity -> nextCity) ifAbsent: [

 d at: (nextCity -> currentCity) ifAbsent: [0]]).

 currentCity := nextCity].

 length + ((4 - genes asSet size) * 100)

].

g run.

Figure 10-4.  Improving the naive approach

Chapter 10 The Traveling Salesman Problem

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

214

Figure 10-4 now presents an acceptable result. The best path has a fitness of 28. The

blue curve did not evolve over time, which means that the algorithm found the solution

from the very beginning. Clicking the Logs tab reveals the solutions. For example, we

see that ABDC and ABCD are solutions, which can be easily verified. At a first glance, it

seems that our penalty seems to do its job. Well... not quite, as we will see.

Let’s pick a more complex example. The following script replaces our list of cities

with a list of points:

"We encode distances"

points := {(100@160). (20@40). (60@20). (180@100). (200@40). (60@200).

 (80@180). (40@120). (140@180). (140@140). (20@160). (200@160). (180

 @60). (100@120). (120@80). (100@40). (20@20). (60@80). (180@200).

 (160@20)}.

g := GAEngine new.

g endIfNoImprovementFor: 60.

g populationSize: 1000.

g numberOfGenes: points size.

g createGeneBlock: [:rand :index :ind | points atRandom: rand].

g minimizeComparator.

g fitnessBlock: [:genes |

 | distance d |

 distance := 0.

 2 to: genes size do: [:pointIndex |

 d := (genes at: pointIndex) dist: (genes at: pointIndex -

 1).

 distance := distance + d].

 distance + ((points size - genes asSet size) * 1000)].

g run.

Chapter 10 The Traveling Salesman Problem

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

215

The distance is computed using the dist: method, defined in the Point class.

The result of the script is shown in Figure 10-5. It seems that the algorithm found a

compelling solution since it reaches a plateau. We can append the following script to the

previous script:

...

result := g result.

v := RTView new.

elements := RTEllipse new size: 10; color: Color red trans; elementsOn:

 result.

elements @ RTPopup.

v addAll: elements.

elements do: [:e | e translateTo: e model].

2 to: result size do: [:index |

 | l |

 l := RTArrowedLine new color: Color blue; headOffset: 0.8.

 v add: (l edgeFrom: (v elementFromModel: (result at: index - 1)) to

 : (v elementFromModel: (result at: index)))].

v

Figure 10-5.  Improving the naive approach

Chapter 10 The Traveling Salesman Problem

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

216

Figure 10-6 shows the result of the algorithm. Obviously, the blue arrowed line does

not indicate the shortest path that connects all the cities. For example, there are two

very close cities in the top-left portion of the figure that are not connected. An optimal

solution should surely contain a segment between these two cities, but the result of the

algorithm does not take advantage of this. So, the result given by our algorithm is likely to

be very far from the optimal solution.

Figure 10-6.  Visualizing the result of the naive approach

Chapter 10 The Traveling Salesman Problem

147

148

149

150

151

152

217

What if we increase the population size? Figure 10-7 shows the result of the same

algorithm with a population of 10,000 individuals. The result is now apparently closer to

the solution.

Such a problem should be easy to solve. So, why does the genetic algorithm

struggling to solve it? The reason is that the algorithm is fighting hard to avoid redundant

cities. Instead of exploring the set of possible valid candidates, the algorithm is

struggling at identifying the valid candidates. This is why we label our solution as naive.

Introducing a penalty as a way to guide the algorithm has a very negative side effect,

which is that it looks for individuals that do not suffer from this penalty, thus leaving little

room for exploring valid paths.

The moral of the story is that we should use the algorithm to explore valid paths,

and not use it to struggle looking for any valid path. Remember Murphy’s Law? If

the algorithm generates random paths, it will surely have to deal with the randomly-

generated mess. Instead of using a penalty for an invalid path, we should tune the

algorithm in such a way that only valid paths can be generated, both in the initial

population and as a result of the genetic operations.

Figure 10-7.  Result of a 10K population using the naive approach

Chapter 10 The Traveling Salesman Problem

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

218

10.4  �Adequate Genetic Operations
Using our four-city example, consider the paths ABCD and DCBA. Any genetic

operation, either a crossover between these two paths or a genetic mutation of any of it,

will generate an invalid path.

Can we design genetic operations that do not produce an invalid path? The answer is

yes. The remainder of the chapter will present two-the swap mutation operation and the

ordered crossover operation.

10.5  �The Swap Mutation Operation
Instead of replacing a gene value with any another one, as implemented by the

GAMutationOperation class, we will swap two gene values in an individual. For example, if

we have ABCD, a swap mutation could produce CBAD by swapping A and C. This mutation

could never produce AACD, as that cannot be the result of swapping two elements.

Luckily, we prepared the ground to implement a new mutation operation. We can

define the GASwapMutationOperation class:

GAAbstractMutationOperation subclass: #GASwapMutationOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

We can override the doMutate: method to swap genes, as follows:

GASwapMutationOperation>>doMutate: individual

 "Mutate genes of the argument by swapping two gene values"

 | i2 tmp |

 self checkForRandomNumber.

 1 to: individual genes size do: [:i1 |

 self randomNumber <= mutationRate

 ifTrue: [

 i2 := random nextInt: individual genes size.

 tmp := individual genes at: i1.

Chapter 10 The Traveling Salesman Problem

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

219

 individual genes at: i1 put: (individual genes at: i2).

 individual genes at: i2 put: tmp]]

The method randomly picks two gene indexes and swaps their values. This new

GASwapMutationOperation operator ensures that a mutation does not produce an

invalid result (i.e., a path with repeated cities).

10.6  �The Ordered Crossover Operation
The ordered crossover operation is slightly more complex. It combines two paths and

ensures that the resulting combination does not have repeated cities.

We will use a simple example to illustrate it. Consider the paths iA=ABCDE and

iB=AEDBC. The new operation will consider a swath of genes, delimited by two indexes, 3

and 4, for example. The iC children will have the genes obtained from iA from index 3 to

index 4. We have iC= **CD*. The three missing gene values (marked with *) will have to

be obtained from iB. The C and D cities are removed from the gene values of iB because

they are already obtained from iA. As a result, we have iC=AECDB.

We create the GAOrderedCrossoverOperation class, as follows:

GAAbstractCrossoverOperation subclass: #GAOrderedCrossoverOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

The crossover randomly chooses the two extremities of the swath, as follows:

GAOrderedCrossoverOperation>>crossover: individualA with: individualB

 "Return a new child, which is the result of mixing the two

 individuals"

 | i1 i2 |

 i1 := self pickCutPointFor: individualA.

 i2 := self pickCutPointFor: individualA.

 "Make sure that i1 is smaller than i2"

 (i1 > i2) ifTrue: [| t | t := i1. i1 := i2. i2 := t].

 ^ self crossover: individualA with: individualB from: i1 to: i2

Chapter 10 The Traveling Salesman Problem

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

220

The core of the ordered crossover operation is this method:

GAOrderedCrossoverOperation>>crossover: individualA with: individualB

 from: i1 to: i2

 "Return a new child, which is the result of mixing myself the two

 individuals. The method assumes that i1 <= i2."

 | child crossOverGenes runningIndex swath |

 child := GAIndividual new.

 child random: random.

 swath := individualA genes copyFrom: i1 to: i2.

 crossOverGenes := Array new: individualA genes size.

 crossOverGenes := crossOverGenes copyReplaceFrom: i1 to: i2 with:

 swath.

 runningIndex := 1.

 (individualB genes copyWithoutAll: swath)

 do: [:v | (crossOverGenes includes: v) ifFalse: [

 [(crossOverGenes at: runningIndex) notNil] whileTrue: [

 runningIndex := runningIndex + 1].

 crossOverGenes at: runningIndex put: v]].

 child genes: crossOverGenes.

 ^ child

We then use the following utility method:

GAOrderedCrossoverOperation>>pickCutPointFor: partner

 "Simply return a random number between 1 and the number of genes of

 the individual provided as argument"

 ^ random nextInt: partner genes size

And voila! We can now test the new operator:

TestCase subclass: #GAOrderedCrossoverOperationTest

 instanceVariableNames: 'i1 i2 op'

Chapter 10 The Traveling Salesman Problem

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

221

 classVariableNames: ''

 package: 'GeneticAlgorithm-Tests'

We define a setUp method as follows:

GAOrderedCrossoverOperationTest>>setUp

 super setUp.

 i1 := GAIndividual new genes: #(8 4 7 3 6 2 5 1 9 0).

 i2 := GAIndividual new genes: #(0 1 2 3 4 5 6 7 8 9).

 op := GAOrderedCrossoverOperation new.

A first test could be the following:

GAOrderedCrossoverOperationTest>>testCrossover1

 | i3 |

 i3 := op crossover: i1 with: i2 from: 4 to: 8.

 self assert: i3 genes equals: #(0 4 7 3 6 2 5 1 8 9).

We take the first gene at an extremity:

GAOrderedCrossoverOperationTest>>testCrossover2

 | i3 |

 i3 := op crossover: i1 with: i2 from: 1 to: 4.

 self assert: i3 genes equals: #(8 4 7 3 0 1 2 5 6 9).

We consider the last two genes as the swath:

GAOrderedCrossoverOperationTest>>testCrossover3

 | i3 |

 i3 := op crossover: i1 with: i2 from: 9 to: 10.

 self assert: i3 genes equals: #(1 2 3 4 5 6 7 8 9 0).

This section concludes the implementation of a crossover operation that ensures

that a produced path does not have repeated cities (i.e., gene values) in it. We have now

implemented all the ingredients to run the algorithm on a larger example.

Chapter 10 The Traveling Salesman Problem

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

222

10.7  �Revisiting Our Large Example
At the beginning of the chapter, we presented a configuration for which our naive

approach could not find the shortest path. Now that we have defined our two new

genetic operations, we can hook them up with the very same city map, as follows:

"We define the points"

points := {(100@160). (20@40). (60@20). (180@100). (200@40). (60@200).

 (80@180). (40@120). (140@180). (140@140). (20@160). (200@160). (180

 @60). (100@120). (120@80). (100@40). (20@20). (60@80). (180@200).

 (160@20)}.

g := GAEngine new.

g endIfNoImprovementFor: 5.

g populationSize: 1000.

g numberOfGenes: points size.

g crossoverOperator: GAOrderedCrossoverOperation new.

g beforeCreatingInitialIndividual:

 [:rand | points copy shuffleBy: rand].

g mutationOperator: GASwapMutationOperation new.

g createGeneBlock: [:rand :index :ind | points at: index].

g minimizeComparator.

g fitnessBlock: [:genes |

 | distance d |

 distance := 0.

 2 to: genes size do: [:pointIndex |

 d := (genes at: pointIndex) dist: (genes at: pointIndex - 1).

 distance := distance + d].

 distance].

g run.

Chapter 10 The Traveling Salesman Problem

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

223

Figure 10-8 illustrates the evolution of the fitness along the generations. We

configured the algorithm to stop if it does not find an improvement in five generations,

using the endIfNoImprovementFor: 5 message.

We can now visualize the result by appending the following code to the previous script:

...

result := g result.

v := RTView new.

elements := RTEllipse new size: 10; color: Color red trans; elementsOn:

 result.

elements @ RTPopup.

v addAll: elements.

elements do: [:e | e translateTo: e model].

2 to: result size do: [:index |

 | l city1 city2 |

 l := RTArrowedLine new color: Color blue; headOffset: 0.8.

 city1 := v elementFromModel: (result at: index - 1).

 city2 := v elementFromModel: (result at: index).

 v add: (l edgeFrom: city1 to: city2)].

v

Figure 10-8.  The result of using the two new genetic operators

Chapter 10 The Traveling Salesman Problem

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

224

Figure 10-9.  The result of using the two new genetic operators

Figure 10-9 shows the result of the algorithm. With only a population of 1,000

individuals, our algorithm was able to solve the TSP. Remember that with our first naive

approach, we could not solve it with a population that was ten times larger! To address a

complex problem, it can be relevant to consider adequate generation operators.

10.8  �What Have We Seen in This Chapter?
This chapter presented a compelling way to solve a complex problem by using dedicated

genetic operations. In particular, the chapter covered the following:

•	 The Traveling Salesman Problem, a classical algorithmic problem

•	 An illustration of the consequences of naively applying the genetic

algorithm

•	 A motivation for introducing two new genetic operations—the swap

mutation operation and the ordered crossover operation

The next chapter will leave the world of algorithms to focus on a robotic simulations.

Chapter 10 The Traveling Salesman Problem

225
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_11

CHAPTER 11

Exiting a Maze
Genetic algorithms are often presented as a way to solve a difficult algorithmic problem.

This chapter applies a genetic algorithm to help a small robot find an exit. It formulates

a simple situation (a robot looking for the exit) as an optimization problem (minimizing

the distance between the robot and the exit). This chapter builds a small robot that lives

in a randomly generated maze. The robot’s objective is to exit the maze.

11.1  �Encoding the Robot’s Behavior
We will model the maze as a two-dimensional map, in which the maze entrance and exit

are fixed positions. The entrance is located at the top-left corner of the map, and the exit

at the bottom-right corner.

Our robot will follow a sequence of simple orders, and then can move one step to the

north, south, west, or east. A path will be a linear sequence of orders.

Applied to our genetic algorithm, an individual will represent the path, beginning

at the maze entrance. The fitness function will make (i) the robot follows the orders

encoded in the genes, and subsequently (ii) return the distance of the robot from the

exit. The genetic algorithm should therefore reduce the fitness, indicating that the robot

is getting closer to the exit.

11.2  �Robot Definition
The very first step is to model a robot. For that purpose, we define a GARobot class that

knows its position and the map our robot lives in:

Object subclass: #GARobot

 instanceVariableNames: 'position map'

 classVariableNames: ''

 package: 'Robot'

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

226

The position of the robot may be set using this method:

GARobot>>position: aPoint

 "Set the position of the robot"

 position := aPoint

The position of the robot may be obtained using:

GARobot>>position

 "Return the position of the robot"

 ^ position

Knowing the position is useful in the fitness function we will later implement. The

initialization of the map is performed using this method:

GARobot>>map: aMap

 "Set the map where the robot lives in"

 map := aMap

A map is an instance of the GARobotMap class, which we will see later. A map will also

encode the initial position of the robot.

A robot has the ability to follow a set of step orders, given as a collection of characters

$N, $S, $W, and $E. The robot will move accordingly, if no wall prevents it. Our robot

cannot go through a wall. The followOrders: method is defined as follows:

GARobot>>followOrders: orders

 "Make the robot follow the orders.

 Return the path taken by the robot"

 | delta possiblePosition path |

 delta := { $N -> (0 @ -1) . $S -> (0 @ 1) .

 $W -> (-1 @ 0) . $E -> (1 @ 0) } asDictionary.

 path := OrderedCollection new.

 path add: map initialPosition.

 self position: map initialPosition.

 orders

 do: [:direction |

 possiblePosition := position + (delta at: direction).

Chapter 11 Exiting a Maze

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

227

 "If we found the exit, then we return and

 make no further progresses"

 possiblePosition == map exitPosition ifTrue: [^ path].

 "If there is no wall, then we effectively do the move"

 (map gridAt: possiblePosition) ~= #wall ifTrue: [

 position := possiblePosition.

 path add: position]].

 ^ path

The following section describes the map in which the robot can live.

11.3  �Map Definition
The GARobotMap class is made of four variables:

•	 size represents the size of the map. A map is a squared space, and

size is the number of units on a size.

•	 content is an array of arrays which contains the map itself.

•	 path contains the path taken by the robot after it follows some order.

•	 random, as always, is a random number generator.

The GARobotMap class is defined as follows:

Object subclass: #GARobotMap

 nstanceVariableNames: 'size content path random'

 classVariableNames: ''

 package: 'Robot'

The map is initialized with the following:

GARobotMap>>initialize

 super initialize.

 random := Random seed: 42.

 self size: 30.

Chapter 11 Exiting a Maze

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

228

The map has a default size of 30 units. Its content may be modified using the

gridAt:put: method, defined as follows:

GARobotMap>>gridAt: aPoint put: value

 "Modify the map content.

 value is a symbol: #empty, #wall, #start, #exit, #robot"

 (self includesPoint: aPoint)

 ifFalse: [^ self].

 ^ (content at: aPoint y) at: aPoint x put: value

Reading the content of a position is achieved with this method:

GARobotMap>>gridAt: aPoint

 "Return the content of a map at a given location.

 Everything outside the map is empty."

 (self includesPoint: aPoint) ifFalse: [^ #empty].

 ^ (content at: aPoint y) at: aPoint x

Initialize the map with a given size. The map is filled with the #empty symbol. The

size: method achieves this behavior:

GARobotMap>>size: aSize

 "Create a map of a given size and fills it with #empty"

 size := aSize.

 content := Array new: aSize.

 1 to: size do: [:i |

 content at: i put: (Array new: aSize withAll: #empty)].

 self fillEntranceAndExitPoints

We can fill the maze entrance point and then exit using a dedicated method:

GARobotMap>>fillEntranceAndExitPoints

 self gridAt: self initialPosition put: #start.

 self gridAt: self exitPosition put: #exit

A method that generates a random number is as follows:

GARobotMap>>rand: anInteger

 "Return a new random number"

 ^ random nextInt: anInteger

Chapter 11 Exiting a Maze

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

229

Another utility method checks whether a particular point is within the map:

GARobotMap>>includesPoint: aPoint

 "Answer whether a point is within the map"

 ^ (1 @ 1 extent: size @ size) containsPoint: aPoint

The exit is located at the bottom-right side of the map:

GARobotMap>>exitPosition

 "The exit position, as a fixed position,

 at the bottom right of the map"

 ^ (size - 1) @ (size - 1)

The initial position is located at the top-left side of the map:

GARobotMap>>initialPosition

 "The starting position is at the top left of the map"

 ^ 2 @ 2

Note that initialPosition and exitPosition consider the enclosing wall of the

map, as such, the position 1@1 and size@size contain a wall. This is a simple way to

ensure that the robot will not wander outside the physical map. Walls are added to the

map using the fillWithWalls: method. This method takes an integer as a parameter,

indicating the number of walls to be added. Each wall block is three units long, and a

wall block is either horizontal or vertical. The fillWithWalls: method is as follows:

GARobotMap>>fillWithWalls: numberOfWalls

 "Fill the map with a given number of walls"

 | offsets |

 numberOfWalls timesRepeat: [

 | x y |

 x := self rand: size.

 y := self rand: size.

 offsets := (self rand: 2) = 1

 ifTrue: [{ 1 @ 0 . -1 @ 0 }]

 ifFalse: [{ 0 @ -1 . 0 @ -1 }].

 self gridAt: x @ y put: #wall.

 self gridAt: (x @ y) + offsets first put: #wall.

Chapter 11 Exiting a Maze

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

230

 self gridAt: (x @ y) + offsets second put: #wall.

].

 self fillEntranceAndExitPoints.

 "Fill the map border"

 1 to: size do: [:i |

 self gridAt: i @ 1 put: #wall.

 self gridAt: 1 @ i put: #wall.

 self gridAt: size @ i put: #wall.

 self gridAt: i @ size put: #wall]

Once a robot has found its way to the exit, it is convenient to draw the path taken by

the robot. The following method achieves this:

GARobotMap>>drawRobotPath: aPath

 "Draw the robot path"

 path := aPath.

 aPath do: [:pos | self gridAt: pos put: #robot]

We are almost done. The last thing to implement is open, which is in charge of visually

rendering the map. It uses Roassal to build the visual scene. Consider the open method:

GARobotMap>>open

 "Build and open the visual representation of the map"

 | v colors shape |

 colors := { #empty -> Color white . #wall -> Color brown .

 #start -> Color red . #exit -> Color green .

 #robot -> Color yellow } asDictionary.

 v := RTView new.

 shape := RTBox new size: 10; color: [:c | colors at: c].

 content do: [:line |

 v addAll: (shape elementsOn: line) @ RTPopup

].

 RTGridLayout new gapSize: 0; lineItemsCount: size; on: v elements.

 v add: (RTLabel elementOn: path size asString, ' steps').

 TRConstraint move: v elements last below: v elements allButLast.

 ^ v open

Chapter 11 Exiting a Maze

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

231

The open method builds a visual map made of small color squares. The number of

steps performed by the robot is indicated below the map. It is an indicator of how the

search for the exit went.

11.4  �Example
We are now ready to evolve our robot to find the exit. Consider the following script:

"We build a map with 80 wall blocks"

map := GARobotMap new fillWithWalls: 80.

"We build the robot"

robot := GARobot new.

"Make the robot lives in the map"

robot map: map.

g := GAEngine new.

g endIfNoImprovementFor: 5.

g numberOfGenes: 100.

g populationSize: 250.

"A gene value is a cardinal direction"

g createGeneBlock: [:rand :index :ind | #($N $S $W $E) atRandom: rand

].

"We want to minimize the distance between the robot and the exit"

g minimizeComparator.

g

 fitnessBlock: [:genes |

 robot followOrders: genes.

 robot position dist: map exitPosition].

g run.

Chapter 11 Exiting a Maze

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

232

Figure 11-1 shows the evolution of the population along the generation. We can see

the path by appending the following script:

...

map drawRobotPath: (robot followOrders: g result).

map open

Figure 11-1.  Evolution of the robot fitness

Chapter 11 Exiting a Maze

201

202

203

204

205

233

Figure 11-2 shows the path taken by our robot. We see that the robot made 81 steps

to reach the exit. This path, taken by our robot, is absolutely not the shortest. The robot

made some unnecessary steps.

The situation could be improved by adding a penalty reflecting the path length. The

penalty is a numerical value that is added to the distance between the robot and the

exit. This penalty should be small for a short path, and high for a long path. How do we

define this penalty? One way to define the penalty is to make the penalty equal to the

path length. In such a case, the penalty is a value ranging from 56 to 100: 56 being the

shortest path from initialPosition and exitPosition, and 100 being the number of

genes an individual has. On the other hand, the distance between between the robot to

the exit ranges from 0 to 39: 0 indicates that the robot has reached the exit and 39 is the

result of the expression map initialPosition dist: map exitPosition. The distance

and the penalty have different ranges of values, and as such, our penalty will always

be greater than the distance. As a consequence, the penalty will have more relevance

to the algorithm than the algorithm. If the penalty is equal to the path length, then the

algorithm will try to minimize the distance path without caring much whether the robot

has reached the exit. Consider the new revision of the script:

Figure 11-2.  Robot footprint

Chapter 11 Exiting a Maze

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

234

map := GARobotMap new fillWithWalls: 80.

robot := GARobot new.

robot map: map.

g := GAEngine new.

g endIfNoImprovementFor: 5.

g numberOfGenes: 100.

g populationSize: 250.

g createGeneBlock: [:rand :index :ind | #($N $S $W $E) atRandom: rand].

g minimizeComparator.

g

 fitnessBlock: [:genes |

 | path penalty |

 path := robot followOrders: genes.

 penalty := path size / 2.

 (robot position dist: map exitPosition) + penalty].

g run.

map drawRobotPath: (robot followOrders: g result).

map open

Figure 11-3.  Short robot footprint

Chapter 11 Exiting a Maze

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

235

The followOrders: method, defined in the GARobot class, returns the path taken by

the robots until it reaches the exit. We use this feature to compute the penalty.

Figure 11-3 gives the result of the new revision of the script and highlights a better

path. Only 57 steps are necessary to reach the exit. Without the penalty, the path was 81

steps long.

We divide the path length by 2, an arbitrary value. Removing the division

(penalty:=pathsize.) would prevent the robot from looking for the exit. In this case, the

reward for producing a short path is more attractive than reaching the exit. The value 2 is

completely arbitrary. It is an ad hoc way to reduce the weight of the penalty compared to

the distance. A proper solution would to have a multi-objective fitness function. However,

this is out of the scope of this chapter.

11.5  �What Have We Seen in This Chapter?
We have seen a compelling application of the genetic algorithm to help a robot to exit a

maze. In particular, we covered:

•	 The robot and map modeling

•	 Modeling a robot path as a sequence of orders

•	 A simple way to significantly improve the solution by adding a small

penalty

The robot scenario can be easily improved by adding new items in the map, such as

a key, doors, and monsters. The algorithm can be employed to let the robot find the key,

survive monsters, open doors, and find the exit.

Chapter 11 Exiting a Maze

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

237
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_12

CHAPTER 12

Building Zoomorphic
Creatures
Genetic algorithms are often used to simulate aspects of how biological individuals

behave. This chapter is about artificial life. It defines and creates what we call

zoomorphic creatures. We refer to zoomorphic creatures as virtual beings that own

particular traits of biological creatures. As such, a zoomorphic creature can be

considered a small digital animal.

Figure 12-1.  Example of a creature

Figure 12-1 shows the example of such a creature standing on a platform. A creature

is made of join points and muscles. Each muscle has two extremities and each extremity

is connected to a join point. Our creatures are boneless and join points connect muscles.

A join point hosts the muscle extremities.

A muscle is a complex element in our model. Each muscle oscillates and has

a strength, which makes it able to resist external forces (e.g., gravity or a reaction from a

platform). Muscle oscillation is regulated by an internal clock, proper to each muscle.

A creature is subject to (i) gravity and (ii) the reaction force from the platform on which

the creature stands. Muscles have no weight, but a join point has a weight.

1

2

3

4

5

6

7

8

https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_2#Sec9
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_3#Sec8
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec1
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec2
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec3
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec4
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec5
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec6
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec7
https://doi.org/10.1007/978-1-4842-5384-7_4#Sec8

238

A creature, at its inception, cannot do much. However, we will make it evolve to solve

a particular task. The task we will consider is moving itself toward a direction. Watching

any toddler helps us remember how complex walking can be and how difficult it is to

learn.

The chapter lays out the infrastructure to model a complex simulation in which

zoomorphic creatures will live. Note that this chapter is not directly related to genetic

algorithms, as it only provides the necessary infrastructure to make creatures behave.

n particular, it covers the implementation of a simple physics engine to simulate a

physical environment. This chapter is about building zoomorphic creatures and the

next chapter is about evolving such creatures so they can move around.

12.1  �Modeling Join Points
Each element in our simulation has a visual representation. We will therefore define the

CVisualElement class, which will be the root of the class hierarchy we will build in this

chapter:

Object subclass: #CVisualElement

 instanceVariableNames: 'element'

 classVariableNames: ''

 package: 'Creature'

The CVisualElement class has a element variable, which will contain a Roassal visual

element. The visual aspect of the creature and platform comes from dedicated Roassal

elements. Each visual element will have to be created in subclasses of CVisualElement

by overriding the createElement method, as follows:

CVisualElement>>createElement

 "Should be overridden in subclasses.

 The method initializes the element variable"

 self subclassResponsibility

The Roassal element may be accessed by using the following:

CVisualElement>>element

 "Return the Roassal element"

 ^ element

Chapter 12 Building Zoomorphic Creatures

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

239

A join point is a point where several muscles are connected. Join points are

represented as instances of the CNode class, which is defined as follows:

CVisualElement subclass: #CNode

 instanceVariableNames: 'speedVector force isOnPlatform'

 classVariableNames: ''

 package: 'Creature'

A node has three variables:

•	 force represents the sum of the external forces. This vector impacts

the speed and therefore the movement of the node.

•	 speedVector represents the speed of the node. The speed is affected

by the friction caused from the environment.

•	 isOnPlatform indicates whether a node is on a platform. Knowing

this is important because it may introduce a friction with the

platform.

The initialization of a node is defined as follows:

CNode>>initialize

 super initialize.

 isOnPlatform := false.

 self resetSpeed.

 self resetForce

When created, a node has no speed, is not on a platform, and has no external force

exercised on it. The external force may be reset using this method:

CNode>>resetForce

 "Reset the force exercising on the node"

 force := 0 @ 0

Similarly, the speed is reset using this method:

CNode>>resetSpeed

 "Make the node stop by canceling its speed"

 speedVector := 0 @ 0

Chapter 12 Building Zoomorphic Creatures

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

240

We decide to make a node visually represented by a small gray circle. We therefore

override the createElement method defined in the CVisualElement class to give the

visual aspect of a node:

CNode>>createElement

 element := RTEllipse new size: 10;

 color: Color gray trans; element.

 element @ RTDraggable

A node is subject to external forces. We define the addForce: method, which simply

adds a force, expressed as a point, to the forces already exercising on the node. The

method is as follows:

CNode>>addForce: aForceAsPoint

 "Make the node subject of an external force"

 force := force + aForceAsPoint

Overall, our simulation is driven by a beat, which is globally triggered, as we will later

see when we model the physical world. A beat corresponds to a discrete unit of time and

the beat method is defined as follows:

CNode>>beat

 �"Make the node act according to the force and speed applied to the

node"

 speedVector := (speedVector + self gravityForce + force) * 0.9.

 isOnPlatform ifTrue: [

 speedVector := speedVector x * 0.3 @ speedVector y].

 self translateBy: speedVector

The beat method is at the heart of our physics engine. At each beat, the gravity and

the external forces are summed to the speed. We arbitrarily set a friction, which is the

effect of the air friction on the physical environment. This friction with the air, expressed

with the value 0.9, is applied to each beat. If the node is in contact with a platform,

the X component of speedVector is reduced by 70% (i.e., multiplied by 0.3). The beat

method ends by translating the node by the computed amount of speedVector. Gravity

is represented by an arbitrary point:

CNode>>gravityForce

 "A fixed force representing a gravity"

 ^ 0 @ 0.3

Chapter 12 Building Zoomorphic Creatures

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

241

Creatures will live in a world made of platforms. A platform is an instance of the

CPlatform class, which we will see later. However, a node has to respond to a collision

with platforms. We define the checkForCollision: method on the CNode class as

follows:

CNode>>checkForCollision: platforms

 "Verify if the node is on a platform. If it is the case,

 the variable isOnPlatform is set to true"

 isOnPlatform := false.

 platforms

 do: [:p |

 (p collide: self)

 ifTrue: [

 speedVector := speedVector x @ 0.

 p adjustNodeIfNecessary: self.

 isOnPlatform := true.

 ^ self]]

First the isOnPlatform variable is set to false. If the node collides with at least one

platform, then the Y component of the speed is set to 0 and the isOnPlatform variable

is set to true. Due to some imprecisions of our model, we need to let the platform make

some adjustments to the node. In particular, it ensures that a node is not located inside a

platform as it may happen since the node movement is the result of a discrete increment

and not a continuous one. The isOnPlatform variable may be accessed using the

following accessor:

CNode>>isOnPlatform

 "Is the node on a platform?"

 ^ isOnPlatform

The position of the node is given by the position method. It simply asks the Roassal

element for its position. A newly created node is at the position 0@0. Accessing the node

position is simply defined as follows:

Node>>position

 "Return the position of the node"

 ^ element position

Chapter 12 Building Zoomorphic Creatures

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

242

A node needs to be translated to reflect the effect of the environment. We define a

method to translate the node by an incremental step, as follows:

CNode>>translateBy: aPoint

 "Translate the node by an incremental point"

 element translateBy: aPoint.

A new position may be set to a node using this method:

CNode>>translateTo: aPoint

 "Translate the node to a new position"

 element translateTo: aPoint.

This last method concludes the definition of a node. As you have seen, many

operations, such as translation and maintaining the node position, are delegated to the

Roassal visualization engine.

12.2  �Modeling Platforms
In addition to the gravity that we have described previously, the environment may affect

the nodes (and therefore the creatures) with platforms. We define the CPlatform class as

a subclass of CVisualElement:

CVisualElement subclass: #CPlatform

 instanceVariableNames: 'width height'

 classVariableNames: ''

 package: 'Creature'

A platform is defined as a visual rectangle, having a width and height component.

We initialize a platform with a default width of 100 pixels and a default height of 10

pixels:

CPlatform>>initialize

 super initialize.

 self width: 100.

 self height: 10

As usual, we need dedicated methods to change the values of these variables. The

width of a platform is set using the following:

Chapter 12 Building Zoomorphic Creatures

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

243

CPlatform>>width: aWidthAsNumber

 "Set the width of the platform"

 width := aWidthAsNumber

The height of a platform is set using the following:

CPlatform>>height: aHeightAsNumber

 "Set the height of the platform"

 height := aHeightAsNumber

A platform is visually represented as a gray rectangle. The createElement method

has to be adequately defined:

CPlatform>>createElement

 "Create the visual representation of a platform"

 element ifNotNil: ["already created" ^ self].

 �element := RTBox new width: width; height: height; color: Color gray;

element.

A platform may be translated to a particular position using the following:

CPlatform>>translateTo: aPosition

 "Translate the platform to a particular position"

 self createElement.

 element translateTo: aPosition

Before carrying out the translation, the translateTo: method ensures that the visual

element is created. The primitive that handles the effect of the platform is the collision

detection. We define the collide: method, which tests whether a platform collides with

a node:

CPlatform>>collide: node

 "Answer whether the platform collides with the node argument"

 � node element encompassingRectangle intersects: self element

encompassingRectangle

Note that the encompassingRectangle call refers to methods provided by Roassal.

An encompassing rectangle is an instance of the Rectangle class, provided by Pharo,

that encompasses the visual element. The collide: method returns true or false,

indicating whether the provided node is above a platform. The collision is identified if the

Chapter 12 Building Zoomorphic Creatures

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

244

two encompassing rectangles overlap. If a collision happens, it is important to adjust the

position of a node if necessary:

CPlatform>>adjustNodeIfNecessary: node

 "Answer whether the platform collides with the node"

 | bottomNode topPlatform |

 bottomNode := node element encompassingRectangle bottomCenter y.

 topPlatform := self element encompassingRectangle topCenter y.

 topPlatform < bottomNode

 ifTrue: [node translateBy: 0 @ (topPlatform - bottomNode)]

Such an adjustment is necessary because the node translation is discrete and not

continuous. As a consequence, a falling node could be within a platform and should

therefore be translated to be above it.

12.3  �Defining Muscles
A muscle, which is at the core of this simulation, is a complex data structure. A muscle is

an oscillating edge with a strength. It connects two join points (i.e., nodes). We will first

define the CConnection class to represent the connection between the two nodes. We

define the CConnection class as follows:

CVisualElement subclass: #CConnection

 instanceVariableNames: 'node1 node2'

 classVariableNames: ''

 package: 'Creature'

We define node1 and node2 as the two extremities represented by an instance of the

CNode class. The first extremity is obtained using the following:

CConnection>>node1

 ^ node1

The first extremity is set using this method:

CConnection>>node1: aNode

 node1 := aNode

Chapter 12 Building Zoomorphic Creatures

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

245

The second extremity is obtained with this method:

CConnection>>node2

 ^ node2

It is set using the following:

CConnection>>node2: aNode

 node2 := aNode

A muscle has an internal timer that drives the oscillation. We define the CMuscle

class as follows:

CConnection subclass: #CMuscle

 �instanceVariableNames: 'time time1 time2 length1 length2 strength

color'

 classVariableNames: ''

 package: 'Creature'

The CMuscle class has the following variables:

•	 An internal clock represented by the variable time.

•	 time1 and time2 are two thresholds used by the internal clock to

determine the length of the muscle.

•	 The length of a muscle oscillates between two values—length1 and

length2.

•	 The strength represents how much resistance a muscle has when it

is subject to external forces, such as the weights of the connected join

points.

•	 The color variable indicates the muscle’s color.

A muscle length oscillates along its internal clock. The way the oscillation is modeled

is simply by making the beat method increase the variable time by 1:

CMuscle>>beat

 "Beating a muscle increases its timer"

 time := time + 1.

 time = self maxTime ifTrue: [time := 0].

Chapter 12 Building Zoomorphic Creatures

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

246

If the time reaches a maximum, it is reset to 0. The internal timer is therefore cyclic.

When a muscle is created, it has a timer set to 0. We initialize a muscle as follows:

CMuscle>>initialize

 super initialize.

 time := 0.

 color := Color red.

The visual representation of a muscle is given by the createElement method. A

muscle is a straight line joining node1 and node2. The createElement method is defined

as follows:

CMuscle>>createElement

 "A muscle is a transparent line between the two nodes"

 element := RTLine new color: (color alpha: 0.3); width: 5;

 edgeFrom: node1 element to: node2 element

The color of a muscle is set by the following:

CMuscle>>color: aColor

 "Set the color of the muscle"

 color := aColor

Note that the createElement method makes the color translucent. This is useful,

as muscles do overlap. Having translucent muscles makes a creature, made up of many

muscles, pleasant to see.

A muscle has a variable length. The actual length of a muscle is either length1

or length2. If the muscle timer is below a lower threshold (i.e., has a value of self

minTime), then the muscle length is length1; otherwise, it is length2. We define the

length method as follows:

CMuscle>>length

 "Maybe rename it to ideal length"

 ^ time < self minTime

 ifTrue: [length1]

 ifFalse: [length2]

If the time variable has a value lower than the lower threshold, then we say we are

at the beginning of a cycle. We refer to the end of the muscle cycle if time is greater

Chapter 12 Building Zoomorphic Creatures

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

247

than self minTime. We define some accessing methods for the length1 and length2

variables:

CMuscle>>length1

 "Length of a muscle at the beginning of a cycle"

 ^ length1

The value is set using the following:

CMuscle>>length1: aLengthAsInteger

 "Set the muscle length at the beginning of a cycle"

 length1 := aLengthAsInteger

Similarly, length2 is accessed using the following:

CMuscle>>length2

 "Length of a muscle at the end of a cycle"

 ^ length2

The second length is set using the following:

CMuscle>>length2: aLengthAsInteger

 "Set the muscle length at the end of a cycle"

 length2 := aLengthAsInteger

The cycle length is given by the value of maxTime, which is defined as the maximum

value between time1 and time2:

CMuscle>>maxTime

 "Return the cycle length"

 ^ time1 max: time2

Similarly, the threshold is given by the minTime method:

CMuscle>>minTime

 �"Return the timer threshold between to switch between length1 and

length2"

 ^ time1 min: time2

Chapter 12 Building Zoomorphic Creatures

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

248

A muscle has a strength, which is accessible using the following:

CMuscle>>strength

 "Return the strength of the muscle"

 ^ strength

The strength of a muscle is used to compute the forces that will be applied to the

extremity’s nodes by the muscle. The strength is set using the following:

CMuscle>>strength: strengthAsFloat

 "Set the strength that is applied to the extremities"

 strength := strengthAsFloat

The muscle’s internal timer is increased at each beat, as defined. The first timer

threshold is set using the following:

CMuscle>>time1: anInteger

 time1 := anInteger

The time1 value is obtained with:

CMuscle>>time1

 ^ time1

As we will later see, muscle attributes have to be serialized in order to be encoded

and decoded from individuals in the genetic algorithm. We therefore need to access

these values. The second time threshold is set using the following:

CMuscle>>time2: anInteger

 time2 := anInteger

It is accessed using the following:

CMuscle>>time2

 ^ time2

Each creature is randomly generated. Generating a creature is not trivial since a well-

formed creature must have all the nodes connected to some muscles, and two nodes

cannot have more than one muscle. As a consequence, we will have to monitor how

nodes are used by the muscles during the generation process. A simple method will be

useful to test whether a muscle connects two indicated nodes:

Chapter 12 Building Zoomorphic Creatures

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

249

CMuscle>>usesNodes: twoNodes

 "The method accepts an array of two nodes as an argument.

 Return true if the muscle connects the two nodes."

 ^ (node1 == twoNodes first and: [node2 == twoNodes second]) or:

 [node1 == twoNodes second and: [node2 == twoNodes first]]

The definition of a muscle is now complete. Our creature will be randomly

generated, which means that the muscle will also be randomly generated. The next

section defines a generator of muscles as a way to encapsulate the complexity of

generating muscles.

12.4  �Generating Muscles
When a muscle is randomly generated, attributes defining the muscle (i.e., time1,

time2, length1, length2, and strength) also have to be randomly generated. The

CMuscleGenerator class has the responsibility of generating random muscles. A muscle

generator is parameterized with a value range for each attribute, expressed with a

minimum value and a delta value. We define the CMuscleGenerator class as follows:

Object subclass: #CMuscleGenerator

 �instanceVariableNames: 'random minStrength deltaStrength minLength

deltaLength minTime deltaTime'

 classVariableNames: ''

 package: 'Creature'

The initialization of a generator is made by assigning some values that are

convenient in most of the examples we will later see:

CMuscleGenerator>>initialize

 super initialize.

 self resetSeed.

 minLength := 10.

 deltaLength := 30.

 minTime := 4.

 deltaTime := 200.

 minStrength := 1.

 deltaStrength := 3

Chapter 12 Building Zoomorphic Creatures

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

250

The random number generator is created using resetSeed:

CMuscleGenerator>>resetSeed

 random := Random seed: 42.

The delta of a value corresponds to an interval from which values will be randomly

picked. The delta length is set using the following:

CMuscleGenerator>>deltaLength: anInteger

 deltaLength := anInteger

The delta strength is set using the following:

CMuscleGenerator>>deltaStrength: anInteger

 deltaStrength := anInteger

The delta time is set using the following:

CMuscleGenerator>>deltaTime: anInteger

 deltaTime := anInteger

The minimum value a length can have is set using the following:

CMuscleGenerator>>minLength: anInteger

 "Set the minimum value a muscle length may have"

 minLength := anInteger

Similarly, the minimum strength is set using the following:

CMuscleGenerator>>minStrength: anInteger

 "Set the minimum value a muscle strength can have"

 minStrength := anInteger

The minimum time threshold is set using the following:

CMuscleGenerator>>minTime: anInteger

 "Set the minimum value a muscle time threshold can be"

 minTime := anInteger

A length is generated using a dedicated method:

CMuscleGenerator>>generateLength

 "Return a length within the specified range"

 ^ minLength + (random nextInt: deltaLength)

Chapter 12 Building Zoomorphic Creatures

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

251

Similarly, the strength is generated with the following:

CMuscleGenerator>>generateStrength

 "Return a strength within the specified range"

 ^ random next * deltaStrength + minStrength

A time threshold is generated with the following:

CMuscleGenerator>>generateTime

 "Return a time within the specified range"

 ^ (random nextInt: deltaTime) + minTime

A central method of the generator is createMuscleFrom:to:. This method is used to

produce a muscle between two nodes, as follows:

CMuscleGenerator>>createMuscleFrom: aNode to: anotherNode

 "Return a new muscle connecting two nodes"

 | m |

 m := CMuscle new.

 m node1: aNode.

 m node2: anotherNode.

 m length1: self generateLength.

 m length2: self generateLength.

 m time1: self generateTime.

 m time2: self generateTime.

 m strength: self generateStrength.

 ^ m

A central aspect of applying a genetic algorithm to search for the optimal muscle

configuration is to adequately manage the mapping between a set of values and a

muscle definition. A muscle can be serialized into a set of values, and a set of values can

be materialized into a muscle. These operations are necessary to produce a creature

from a given individual in our genetic algorithm.

CMuscleGenerator>>serializeMuscle: aMuscle

 "Return an array describing the muscle provided as an argument"

 ^ Array

 with: aMuscle length1

 with: aMuscle length2

Chapter 12 Building Zoomorphic Creatures

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

252

 with: aMuscle strength

 with: aMuscle time1

 with: aMuscle time2

The materialization configures a muscle with an array of values:

CMuscleGenerator>>materialize: values inMuscle: aMuscle

 "Configure the provided muscle with some values"

 aMuscle length1: values first.

 aMuscle length2: values second.

 aMuscle strength: values third.

 aMuscle time1: values fourth.

 aMuscle time2: values fifth

An individual within our genetic algorithm contains the attributes of all the muscles

within a creature. The genetic algorithm needs to produce a gene, and as such, we need

a way to produce a particular value for a given gene position in the individual genetic

information. The following method addresses this requirement:

CMuscleGenerator>>valueForIndex: anIndex

 "Produce a value for a given index of an individual chromosome.

 This method is used to generate a gene in the genetic algorithm"

 | i |

 i := (anIndex - 1) % 5. "% refers to modulo"

 i = 0 ifTrue: [^ self generateLength].

 i = 1 ifTrue: [^ self generateLength].

 i = 2 ifTrue: [^ self generateStrength].

 i = 3 ifTrue: [^ self generateTime].

 i = 4 ifTrue: [^ self generateTime].

 self error: 'Should not be here'

It is important to note that the three methods—serializeMuscle:,

materialize:inMuscle:, and valueForIndex:—heavily rely on the order of the

attributes. If you want to add new attributes related to muscles weight, delay to act on the

muscle), then these three methods must be modified accordingly. Our muscle generator

is now complete. We are now able to model a zoomorphic creature.

Chapter 12 Building Zoomorphic Creatures

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

253

12.5  �Defining the Creature
We define a creature as an instance of the CCreature class, as follows:

Object subclass: #CCreature

 instanceVariableNames: 'nodes muscles random muscleGenerator color'

 classVariableNames: ''

 package: 'Creature'

A creature is essentially made of a set of nodes and a set of muscles, kept in the nodes

and muscles variables, respectively. We will run our genetic algorithm to optimize the

configuration of the muscles. The initial configuration of our muscle is random, which

is why we need a random number generator. A muscle is a complex structure. As such,

a creature requires a particular and dedicated object to create muscles, kept in the

muscleGenerator variable. Each creature also has a color, which is useful to distinguish

creatures when more than one are present onscreen.

A creature is initialized as follows:

CCreature>>initialize

 super initialize.

 nodes := OrderedCollection new.

 muscles := OrderedCollection new.

 random := Random seed: 42.

 muscleGenerator := CMuscleGenerator new.

 color := Color red.

A muscle is red per default. Its color may be changed with this method:

CCreature>>color: aColor

 "Set the color of the creature"

 color := aColor

A muscle can be generated and added to a creature using this method:

CCreature>>addMuscleFrom: aNode to: anotherNode

 "Generate and add a muscle between two nodes"

 muscles add: (muscleGenerator createMuscleFrom: aNode to: anotherNode)

Chapter 12 Building Zoomorphic Creatures

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

254

To run the genetic algorithm, it is relevant to know the number of muscles a creature

has. The number of muscles is obtained with the following:

CCreature>>numberOfMuscles

 "Return the number of muscles defining the creature"

 ^ muscles size

Each beat on a creature triggers a beat for each node and each muscle. Afterward,

the physics rules have to be applied between the muscles and the nodes. The beat

method is defined as follows:

CCreature>>beat

 "Execute a unit of behavior"

 nodes do: #beat.

 muscles do: #beat.

 self reachStable

The reachStable method, which we will describe later, acts on the creature by

using the physics rules for a given unit of time. Whether a collision happens between

a creature and the platforms is determined using the checkForCollision: method,

defined as follows:

CCreature>>checkForCollision: platforms

 "Check if a creature is on a platform.

 If this is the case, then the variable isOnPlatform of each node

 is set to true"

 nodes do: [:n | n checkForCollision: platforms].

 self simulateNoise.

The physics engine we are implementing is minimal and is far from complete. We

need to add some noise in the way that the physics is simulated. For example, random

noise, which is an important property of a real physical world, also has to be modeled.

This noise is necessary to avoid singular situations, for example, when all the nodes are

exactly at the same X or Y coordinates. We simply add some noise by moving a node

randomly:

CCreature>>simulateNoise

 "Produce noise in our simulation"

 | direction |

Chapter 12 Building Zoomorphic Creatures

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

255

 direction := ((random nextInt: 3) - 2) @ ((random nextInt: 3) - 2).

 (nodes atRandom: random) translateBy: direction

All the necessary code to model the creature is now in place. The next section

focuses on creating the creature.

12.6  �Creating Creatures
Even if we will produce creatures with simple shapes, manually creating creatures is

tedious. We can define some dedicated methods. Adding nodes to a creature is achieved

with the configureNodes: method, which is defined as follows:

CCreature>>configureNodes: nbNodes

 "Add a number of nodes in our creature"

 nbNodes timesRepeat: [nodes add: CNode new createElement]

A ball-like shape is created using the following:

CCreature>>configureBall: numberOfNodes

 "Produce a ball-like creature"

 | existingMuscles |

 muscleGenerator := CMuscleGenerator new

 minStrength: 0.01;

 deltaStrength: 0.5;

 minLength: 10;

 deltaLength: 80;

 deltaTime: 200;

 minTime: 20.

 "Add some nodes"

 self configureNodes: numberOfNodes.

 "Connect each node with all the other nodes"

 existingMuscles := OrderedCollection new.

 nodes do: [:n1 |

 (nodes copyWithout: n1) do: [:n2 |

 (existingMuscles includes: n1 -> n2) ifFalse: [

Chapter 12 Building Zoomorphic Creatures

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

256

 self addMuscleFrom: n1 to: n2.

 existingMuscles add: n1 -> n2; add: n2 -> n1]]].

"Create the visual elements"

self createElements.

self randomlyLocateNodes

configureBall: takes as an argument the number of nodes that will compose the

ball. All the nodes are connected to all the other nodes. As a consequence, a ball creature

will contain many muscles, which means that muscles should have a low strength to

have a stable system. We use the existingMuscles variable to keep track of the muscles

we create in our algorithm. This is necessary to prevent two muscles from being added

between two nodes.

The graphical elements are created using the createElements method:

CCreature>>createElements

 "Force the creation of all graphical elements for nodes and muscles"

 nodes do: #createElement.

 muscles do: [:m | m color: color].

 muscles do: #createElement.

Nodes and muscles are subject to Newtonian physical laws, which are defined using

this method:

CCreature>>reachStable

 "Apply the physical law on a creature"

 | n1 n2 delta actualLength unit force |

 nodes do: #resetForce.

 muscles do: [:m |

 n1 := m node1.

 n2 := m node2.

 delta := n2 position - n1 position.

 actualLength := delta r max: 1.

 unit := delta / actualLength.

 force := 0.1 * m strength * (actualLength - m length) * unit.

 n1 addForce: force.

 n2 addForce: force negated].

Chapter 12 Building Zoomorphic Creatures

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

257

External forces on nodes are first canceled. We then compute the force from the

strength of a muscle. Note that this force is applied to a node, and the opposite force is

applied to the second extremity node.

The core of our physics engine and a model for the creature have now both been

defined. We need to hook all the components together and prepare the model to be

processed by the genetic algorithm.

12.6.1  �Serialization and Materialization of a Creature
When we hook our genetic algorithm, it is crucial to transform the individual genetic

information into an array of numbers. These numbers will represent the attributes of the

creature’s muscles. A creature is serialized using the following method:

CCreature>>serialize

 "Serialize the creature into an array of numbers"

 ^ (muscles

 flatCollect: [:m |

 muscleGenerator serializeMuscle: m]) asArray

The opposite operation, the materialization of a creature from a set of numerical

values, is carried out by this method:

CCreature>>materialize: anArrayOfValues

 "Materialize a array of numbers into a creature"

 | valuesPerMuscles |

 valuesPerMuscles :=

 anArrayOfValues groupsOf: 5 atATimeCollect: [:v | v].

 muscles with: valuesPerMuscles do: [:m :values |

 muscleGenerator materialize: values inMuscle: m]

As we have seen, each muscle is defined with five attributes. For this reason, the

materialize: method groups values given in anArrayOfValues into array of size 5.

Chapter 12 Building Zoomorphic Creatures

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

258

12.6.2  �Accessors and Utility Methods
The largest part of the creature’s definition has already been presented. The muscles of a

creature are accessed using the following:

CCreature>>muscles

 "The muscles composing the creature"

 ^ muscles

The nodes composing a creature are accessed using the following:

CCreature>>nodes

 "The nodes composing the creature"

 ^ nodes

The position of the creature is computed as the average position of the nodes

composing the creature.

Knowing the position of the creature is necessary when we apply the genetic

algorithm, since the fitness will be based on the distance walked by the creature. The

position method is defined as follows:

Creature>>position

 �"Return the position of the creature, as the average position of the

nodes"

 ^ (self nodes collect: #position) sum / self nodes size

At the beginning of a simulation, the creature has to be located above the main

platform, at position 0@0:

CCreature>>resetPosition

 "Locate the creature at the initial position"

 self translateTo: 0 @ 0

Before applying the physical rules, it is important that the nodes are not all at the

same position. We randomly assign a position to each node using randomlyLocateNodes:

CCreature>>randomlyLocateNodes

 "Assign each node to a random position"

 nodes

 do: [:n | n translateBy: (random nextInt: 50) @ (random

 nextInt: 50)]

Chapter 12 Building Zoomorphic Creatures

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

259

Translating the creature to a given position is achieved using this method:

CCreature>>translateTo: aPoint

 "Translate a creature to a specified position"

 | averageCenter delta |

 averageCenter := self position.

 delta := aPoint - averageCenter.

 self nodes do: [:n | n translateBy: delta]

This section concludes the definition of the creature. Creatures will have to live in a

world, so we define one in the coming section.

12.7  �Defining the World
A world is defined as a set of creatures, a set of platforms, and a global timer. A world, in

our case, is defined as a host of a race. We define the CWorld class as follows:

CVisualElement subclass: #CWorld

 instanceVariableNames: 'creatures time platforms'

 classVariableNames: ''

 package: 'Creature'

When created, a world is initialized as empty. The initialize method is defined as

follows:

CWorld>>initialize

 super initialize.

 creatures := OrderedCollection new.

 platforms := OrderedCollection new.

 time := 0.

 self createElement.

 self addGround

A world is associated with a Roassal view, as defined in:

CWorld>>createElement

 "The visual representation of a world is a Roassal view"

 element := RTView new.

Chapter 12 Building Zoomorphic Creatures

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

260

The ground is represented as a large platform:

World>>addGround

 "Define the ground of the world"

 | platform |

 platform := CPlatform new width: self groundLength + 500.

 �"We give an extra distance of 500 to make sure there is no issue with

the border"

 self addPlatform: platform.

 �"The platform is located below where creatures will be initially

located"

 platform translateTo: self groundLength / 2 @ 100

The length of the ground is set by the groundLength method:

CWorld>>groundLength

 "Set the length of the ground platform"

 ^ 5000

Adding a creature to a world is achieved using this method:

CWorld>>addCreature: aCreature

 "Add a creature to the world"

 creatures add: aCreature.

 "Add all the graphical elements of the creature in the view"

 element addAll: (aCreature nodes collect: #element).

 element addAll: (aCreature muscles collect: #element).

 "Move the creature at the initial position"

 aCreature resetPosition.

When a creature is added to the world, all the graphical elements stemming from

muscles and nodes are added to the view. Similarly, a platform is added to a world using

the following:

CWorld>>addPlatform: aPlatform

 "Add a platform to the world"

 platforms add: aPlatform.

 aPlatform createElement.

 element add: aPlatform element.

Chapter 12 Building Zoomorphic Creatures

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

261

A world has a global timer. The timer increases at each beat, occurring at each

window refresh, dictated by the operating system. The beat method is defined as follows:

CWorld>>beat

 "Trigger a global beat"

 time := time + 1.

 creatures do: [:c | c beat; checkForCollision: platforms]

At each beat, physics rules must be applied on each creature. Note that creatures

cannot interact with each other.

Decoration is important in order to make the world appealing. We add some pylons

to a world using the following method:

CWorld>>addPylons

 "Add pylons to the world as decorating elements"

 (0 to: self groundLength by: 100)

 do: [:flagPosition |

 | pylon |

 pylon := RTBox new

 color: Color green darker;

 width: 3;

 height: 100;

 elementOn: flagPosition.

 element add: pylon.

 pylon @ RTLabeled.

 pylon translateTo: flagPosition @ 50.

 pylon pushBack]

The open method creates the visual representation of the world, adds some

decorations (label for the timer and the pylons), triggers the animation, and opens the

window:

CWorld>>open

 "Build the visual representation of the world"

 | lbl animation |

 creatures do: #resetPosition.

 lbl := (RTLabel new elementOn: time) setAsFixed; yourself.

 element add: lbl.

Chapter 12 Building Zoomorphic Creatures

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

262

 lbl translateBy: 80 @ 30.

 animation := RTActiveAnimation new

 intervalInMilliseconds: 10;

 blockToExecute: [| p |

 self beat.

 lbl trachelShape text: time asString.

 p := creatures first position x @ 0.

 element canvas camera translateTo: p.

 element signalUpdate.

 p x > self groundLength

 ifTrue: [element removeAnimation: animation]].

 element addAnimation: animation.

 self addPylons.

 element canvas camera scale: 2.2.

 ^ element open

The world may have more than one creature. The progress of the first creature is

monitored during the simulation. The animation ends if the first creature reaches the

end of the ground platform.

12.8  �Cold Run
We have now defined all the relevant components to make a creature “live.” We can now

open a world and add a creature to it (see Figure 12-2):

creature := CCreature new configureBall: 10.

c := CWorld new.

c addCreature: creature.

c open

Chapter 12 Building Zoomorphic Creatures

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

263

Figure 12-3 shows the result of the script. Several creatures may be added to a world,

each having a particular location, number of nodes, and color:

redCreature := CCreature new configureBall: 7.

blueCreature := CCreature new color: Color blue; configureBall: 10.

yellowCreature := CCreature new color: Color yellow; configureBall: 15.

c := CWorld new.

c addCreature: redCreature.

c addCreature: blueCreature.

c addCreature: yellowCreature.

c open.

blueCreature translateTo: 100 @ -50.

yellowCreature translateTo: 200 @ -50.

Figure 12-2.  Untrained creature

Chapter 12 Building Zoomorphic Creatures

758

759

760

761

762

763

764

765

766

767

768

769

264

At this stage, the creatures move without a particular objective. The next chapter

covers how to make a creature evolve.

12.9  �What Have We Seen in This Chapter?
This chapter focused on defining the infrastructure to model and build zoomorphic

creatures. It was a long chapter. We had to provide enough code to build up an

interesting codebase with which we can experiment in the next chapter.

The chapter covered:

•	 A simple physical engine, supporting muscles and nodes.

•	 The definition of a creature and a world in which it can live.

Note that we could have added bones when we modeled the creature. Once we have

the notion of a bone, we could build skeletons. Although it’s appealing, it would have

significantly increased the amount of source code, which is the reason we left it out.

Figure 12-3.  Several untrained creatures

Chapter 12 Building Zoomorphic Creatures

770

771

772

773

774

775

776

777

778

779

780

781

265
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_13

CHAPTER 13

Evolving Zoomorphic
Creatures
The previous chapter presented the infrastructure that models and builds zoomorphic

creatures. However, so far, the creature cannot do much: it stands where it was originally

located, and we are lucky when it does not fall on its side. This chapter makes the

creatures evolve to accomplish a displacement task, such as moving toward a particular

direction or passing through some obstacles.

13.1  �Interrupting a Process
Before jumping in and running the genetic algorithm, it is important to highlight an

aspect of the Pharo programming language and environment.

Making creatures evolve is a very costly operation. Depending on your hardware

configuration, you may have to let your computer evolve the creatures for hours. As such,

most of the scripts in this chapter require a long time to complete. You should be familiar

with the way that Pharo can be interrupted by pressing the Cmd and . (period) keys on

MacOSX. On Windows or Linux, you use the Alt and . keys.

Interrupting Pharo opens up a Pharo debugger. When this happens, the execution

has been interrupted. You may then do either of the following:

•	 Evaluate the code (e.g., to accurately monitor the computation

progresses), which would happen in the debugger itself or in the

playground

•	 Simply resume the computation by clicking Proceed

Closing a debugger will end the ongoing computation. Keeping the debugger open

means you can always resume the execution you interrupted by clicking Proceed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

266

Being able to interrupt Pharo means you have control over what is being executed.

We also recommend that you regularly save your image. The top menu of Pharo provides

relevant menu items for saving the environment.

13.2  �Monitoring the Execution Time
Running a genetic algorithm on the creature is time consuming. We will extend our

framework to keep track of the passing time. Elapsed time will be kept in a log entry, as

modeled by the GALog class. So, we add a new variable to this class, as follows:

Object subclass: #GALog

 instanceVariableNames: 'generationNumber timeToProduceGeneration

 fittestIndividual worseFitness averageFitness time'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

Note that the GALog class was defined in a previous chapter. We revised its definition

by adding a way to log time. The new variable, time, is set in a constructor:

GALog>>initialize

 super initialize.

 time := DateAndTime now

The DateAndTime class represents a point in time. When a log object is created, we

keep the creation time in the time variable:

GALog>>time

 "Return the time the log was created"

 ^ time

We can now exploit this to determine the whole computation time. We define the

timeTaken method:

GAEngine>>timeTaken

 "Return the time taken to compute all the generations"

 | lastLog |

 lastLog := self logs last.

 ^ lastLog time - self logs first time

We will illustrate the use of timeTaken later in this chapter.

Chapter 13 Evolving Zoomorphic Creatures

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

267

13.3  �The Competing Conventions Problem
The previous chapters presented two crossover operations:

•	 GACrossoverOperation performs a simple crossover, without

enforcing any characteristics

•	 GAOrderedCrossoverOperation prevents repetitions of particular genes

These operations have proven to be useful in addressing various problems, as we have

seen. However, they will be of little help in making our creature evolve, because of the

competing conventions problem. This problem is associated with using default and standard

genetic operations. To understand why exactly this is a problem, consider the robot example

we saw in a previous chapter. The robot follows a list of orders, and each order is a step

toward a direction. We used the genetic algorithm to find the sequence of orders to reach a

particular point in the map. Figure 13-1 illustrates the competing conventions problem.

Figure 13-1.  Competing conventions problem

Chapter 13 Evolving Zoomorphic Creatures

55

56

57

58

59

60

61

62

63

64

65

66

268

We are assuming that the genetic information encodes a path, as we saw in the

chapter about exiting a maze. The top part of the figure shows two relatively good paths,

colored in green and blue. These two paths are different, but both lead the robot to a

position very close to the exit. We can reasonably assume that a selection algorithm can

designate these two paths to be combined, as they are very good. Once selected, these

two paths have to be combined using the genetic algorithm. In the way we saw it, a

random index is designated as the cutting point. The dashed red line indicates a possible

cutting point.

The bottom part of the figure shows one result of the recombination. The new path

leads the robot far from the exit. This small example illustrates the following situation:

two relatively good individuals are combined into a poorly-performing individual. This

situation is named the competing conventions problem and it is often considered a

serious obstacle to evolving a non-trivial data structure.

If we blindly apply the GACrossoverOperation operation to evolve our creatures, we

will immediately bump into the competing conventions problem, essentially because

combining two good muscles is very unlikely to produce a better muscle. There is no

general way to address the competing conventions problem. However, the way it is

usually tackled is to define particular genetic operations that consider the structure to be

recombined. This is exactly the strategy we will use in this chapter and in the part of the

book about neuroevolution.

13.4  �The Constrained Crossover Operation
One way to avoid the competing conventions problem is to restrict the

crossover to happen at any point. Instead, we will permit a crossover to happen

only at a muscle extremity. As such, a crossover cannot “cut” the genetic

information of a muscle. We now define a new operator for that purpose, called

GAConstrainedCrossoverOperation:

GAAbstractCrossoverOperation subclass: #GAConstrainedCrossoverOperation

 instanceVariableNames: 'possibleCutpoints'

 classVariableNames: ''

 package: 'GeneticAlgorithm-Core'

Chapter 13 Evolving Zoomorphic Creatures

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

269

This new crossover operator considers a set of possible cutpoints with the variable

possibleCutpoints. This variable contains a set of possible indices where a crossover

can occur. The variable is set by using the following:

GAConstrainedCrossoverOperation>>possibleCutpoints: indexes

 "Set the possible pointcuts considered by the operator"

 possibleCutpoints := indexes

We also add a utility method that hooks it into our framework, as follows:

GAConstrainedCrossoverOperation>>pickCutPointFor: partnerA

 "Return a cutpoint"

 self assert: [possibleCutpoints notNil] description:

 'Need to provide the possible cut points, using #

 possibleCutpoints:'.

 ^ possibleCutpoints at: (random nextInt: possibleCutpoints size)

This new operator is the only increment we need to make to our framework and

evolve the zoomorphic creatures.

13.5  �Moving Forward
We will consider the task of moving to the right. Remember that evolving creatures take

a significant amount of time. The following script takes approximately 31 minutes to run

on an Intel Core i5, 3.7GHz:

numberOfNodes := 10.

numberOfMuscles := (CCreature new configureBall: numberOfNodes)

 numberOfMuscles.

mg := CMuscleGenerator new

 minStrength: 0.01;

 deltaStrength: 1;

 minLength: 10;

 deltaLength: 80;

 deltaTime: 200;

 minTime: 20.

Chapter 13 Evolving Zoomorphic Creatures

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

270

g := GAEngine new.

g crossoverOperator: (GAConstrainedCrossoverOperation new

 possibleCutpoints: (1 to: numberOfMuscles*5 by: 5)).

g selection: (GATournamentSelection new).

g mutationRate: 0.02.

g endForMaxNumberOfGeneration: 128.

g populationSize: 100.

g numberOfGenes: numberOfMuscles * 5.

g createGeneBlock: [:r :index | mg valueForIndex: index].

g fitnessBlock: [:genes |

 creature := CCreature new configureBall: numberOfNodes.

 creature materialize: genes.

 c := CWorld new.

 c addCreature: creature.

 3000 timesRepeat: [c beat].

 creature position x

].

g run.

The script considers a creature made of ten nodes, as indicated by the

numberOfNodes variable. The physics engine will locate these nodes in a circular fashion

as a result of the physical rules. The number of muscles is obtained by evaluating the

(CCreature new configureBall: numberOfNodes)numberOfMuscles expression. It

simply creates a dummy creature and counts the number of muscles. A ball creature

made of ten nodes has 45 muscles. We then define a muscle generator useful for building

the initial population and mutating a creature.

Each muscle is defined by five attributes. A crossover operation may happen

only at the extremity of a muscle definition in the linear genetic information. The

fitness function simulates the behavior of the creature in a new world. We took an

arbitrary number of beats, 3000, to simulate the behavior. After these 3000 beats, the

X coordinate of the creature is the result of the fitness function. Consequently, a fit

creature will move forward to the right. The evolution happens over 128 generations

(an arbitrary value).

Chapter 13 Evolving Zoomorphic Creatures

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

271

Figure 13-2 shows the fitness evolution. The fitness indicates that the creature is able

to move.

We can see the result using the script by appending the following instruction to the

previous script:

...

creature := CCreature new configureBall: 10.

creature materialize: g result.

c := CWorld new.

c addCreature: creature.

c open

Figure 13-2.  Evolving a creature with 45 muscles

Figure 13-3.  A creature in its environment

Chapter 13 Evolving Zoomorphic Creatures

158

159

160

161

162

163

164

165

166

167

272

Figure 13-3 illustrates a creature living in its environment. We can monitor the

evolution of a creature at particular points in time since the logs contain the historical

information (see Figure 13-4). For example, consider this script:

...

c := CWorld new.

creature := CCreature new color: Color red; configureBall: 10.

creature materialize: g logs last fittestIndividual genes.

c addCreature: creature.

creature := CCreature new color: Color yellow darker darker;

 configureBall: 10.

creature materialize: (g logs at: 50) fittestIndividual genes.

c addCreature: creature.

creature := CCreature new color: Color blue darker darker;

 configureBall: 10.

creature materialize: (g logs at: 100) fittestIndividual genes.

c addCreature: creature.

creature := CCreature new color: Color green darker darker;

 configureBall: 10.

creature materialize: (g logs at: 120) fittestIndividual genes.

c addCreature: creature.

c open

Figure 13-4.  Creature at different stages of its evolution (yellow = generation 50,
blue = generation 100, green = generation 120, red = generation 128)

Chapter 13 Evolving Zoomorphic Creatures

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

273

If you watch these competing creatures, it is interesting to see that the red creature is

not always in the first position. The green creature overtakes the red one multiple times.

Ultimately, the red one reaches the final pylon.

13.6  �Serializing the Muscle Attributes
The g result expression returns a large array containing the attributes of the muscles

used in the creature. You can keep the computed result in case you do not want to

run the genetic algorithm all the time. It would indeed be cumbersome to have to run

the whole algorithm each time you want to see a creature moving! For example, if you

evaluate the g result expression, you obtain the following:

creature := CCreature new configureBall: 10.

creature materialize: #(24 34 0.46040109215788594 216 145 75 50

 0.522318108469396 127 33 33 39 0.9105445367193523 70 93 30 88

 0.5458242390378492 55 104 32 78 0.9326984656055917 36 74 20 38

 0.23007194683890417 169 77 25 31 0.6407352956527543 219 147 28 14

 0.5132012814205146 70 67 41 32 0.4101663086936652 116 21 30 53

 0.4132064962215752 140 69 26 16 0.67239310366213 174 81 90 40

 0.9493843137376868 77 82 90 24 0.9472498080773512 72 76 77 15

 0.8207815849644977 51 46 63 21 0.23135899086546108 29 170 33 24

 0.8508932494190025 70 94 34 32 0.85425589900662 192 99 83 84

 0.8219266167338596 153 144 74 57 0.18008196523882541 38 136 76 82

 0.4098378945513805 108 122 73 25 0.13200707016606214 72 102 11 24

 0.525760215705149 60 33 34 53 0.47843877270279395 207 167 53 53

 0.06064744597796698 47 203 90 90 0.3480303188869871 101 204 77 42

 0.05166656036007524 143 155 67 89 0.5535930274164271 146 23 35 39

 0.8390450097196945 136 143 78 87 0.955747404799679 153 71 15 84

 0.9765097738460218 34 26 36 14 0.13894161191253998 78 51 38 41

 0.1316714140594338 114 205 74 74 0.7760572821116342 191 32 67 61

 0.08824125377379416 219 149 18 70 0.1469941007052521 169 175 39 43

 0.2866080141424239 133 71 90 42 0.8735930218098653 90 85 53 21

 0.18471918099313936 39 146 60 44 0.3135163908747567 120 38 57 43

 0.32777994628892276 187 148 34 23 0.3158802803540045 35 102 75 42

Chapter 13 Evolving Zoomorphic Creatures

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

274

 0.1347404502354285 109 125 28 76 0.12238997760805766 64 23 68 70

 0.9608936917180632 179 175 28 24 0.06067319378753807 116 196).

c := CWorld new.

c addCreature: creature.

c open

This long array of numbers constitutes the “DNA” of the creature. The objective of

the genetic algorithm is to evolve the DNA to make the creature move to the right as

much as possible.

13.7  �Passing Obstacles
So far, our creature has evolved to move right. It is easy to model a new environment, in

particular with some obstacles. The script used previously can be adapted with obstacles

(see Figure 13-5). This revision takes about 48 minutes to run (more than 60% slower):

numberOfNodes := 10.

numberOfMuscles := (CCreature new configureBall: numberOfNodes)

 numberOfMuscles.

mg := CMuscleGenerator new

 minStrength: 0.01;

 deltaStrength: 1;

 minLength: 10;

 deltaLength: 80;

 deltaTime: 200;

 minTime: 20.

g := GAEngine new.

g crossoverOperator: (GAConstrainedCrossoverOperation new

 possibleCutpoints: (1 to: numberOfMuscles * 5 by: 5)).

g selection: (GATournamentSelection new).

g mutationRate: 0.02.

g endForMaxNumberOfGeneration: 128.

g populationSize: 100.

g numberOfGenes: numberOfMuscles * 5.

g createGeneBlock: [:r :index | mg valueForIndex: index].

Chapter 13 Evolving Zoomorphic Creatures

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

275

g fitnessBlock: [:genes |

 creature := CCreature new configureBall: numberOfNodes.

 creature materialize: genes.

 creature resetPosition.

 c := CWorld new.

 c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 100 @ 90).

 c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 400 @ 90).

 c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 700 @ 90).

 c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 1000 @ 90).

 c addCreature: creature.

 3000 timesRepeat: [c beat].

 creature position x

].

g run.

Figure 13-5.  Evolving a zoomorphic creature in the presence of obstacles

Chapter 13 Evolving Zoomorphic Creatures

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

276

The result can be rendered using the following script:

...

c := CWorld new.

creature := CCreature new color: Color red; configureBall: 10.

creature materialize: g logs last fittestIndividual genes.

c addCreature: creature.

creature := CCreature new color: Color yellow darker darker;

 configureBall: 10.

creature materialize: (g logs at: 50) fittestIndividual genes.

c addCreature: creature.

creature := CCreature new color: Color blue darker darker;

 configureBall: 10.

creature materialize: (g logs at: 100) fittestIndividual genes.

c addCreature: creature.

creature := CCreature new color: Color green darker darker;

 configureBall: 10.

creature materialize: (g logs at: 90) fittestIndividual genes.

c addCreature: creature.

c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 100 @ 90).

c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 400 @ 90).

c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 700 @ 90).

c addPlatform:

 (CPlatform new height: 20; width: 80; translateTo: 1000 @ 90).

c open

Chapter 13 Evolving Zoomorphic Creatures

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

277

Figure 13-6 illustrates different stages of an evolved creature.

13.8  �Climbing Stairs
The creature can also evolve to climb stairs. Consider this script, which takes around six

hours to run:

numberOfNodes := 10.

numberOfMuscles := (CCreature new configureBall: numberOfNodes)

 numberOfMuscles.

mg := CMuscleGenerator new

 minStrength: 0.01;

 deltaStrength: 1;

 minLength: 10;

 deltaLength: 80;

 deltaTime: 200;

 minTime: 20.

g := GAEngine new.

g crossoverOperator: (GAConstrainedCrossoverOperation new

 possibleCutpoints: (1 to: numberOfMuscles*5 by: 5)).

g selection: (GATournamentSelection new).

g mutationRate: 0.02.

g endForMaxNumberOfGeneration: 128.

g populationSize: 100.

g numberOfGenes: numberOfMuscles * 5.

g createGeneBlock: [:r :index | mg valueForIndex: index].

g fitnessBlock: [:genes |

 creature := CCreature new configureBall: numberOfNodes.

 creature materialize: genes.

Figure 13-6.  Different stages of the evolution

Chapter 13 Evolving Zoomorphic Creatures

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

278

 creature resetPosition.

 c := CWorld new.

 c addCreature: creature.

 1 to: 25 by: 3 do: [:x |

 c addPlatform: (CPlatform new height: 20; width: 80;

 translateTo: x * 100 @ 90).

 c addPlatform: (CPlatform new height: 20; width: 80;

 translateTo: x * 100 + 50 @ 70).

 c addPlatform: (CPlatform new height: 20; width: 80;

 translateTo: x * 100 + 100 @ 50).

 c addPlatform: (CPlatform new height: 20; width: 80;

 translateTo: x * 100 + 150 @ 30).

].

 c addCreature: creature.

 3000 timesRepeat: [c beat].

 creature position x

].

g run.

This script is very similar to the previous ones. The difference is in the way the

fitness function is evaluated. This script adds platforms, considered obstacles, along the

creature’s way. This new script is slower than the previous one. The presence of these

platforms significantly affects how the creature evolves. The script checks for collisions

between the nodes and the platforms, which is time-consuming. At each movement

of a node, the node encompassing box is intersected with the encompassing box of

each platform. We implemented the minimum needed to support this simulation. A

more robust implementation would probably use a more sophisticated technique to

determine collisions between elements (e.g., quadtree).

This script simply uses some well-positioned platforms to form the stairs. The

following script shows the results (see Figure 13-7):

...

creature := CCreature new configureBall: 10.

creature materialize: g result.

c := CWorld new.

"We build couple of stairs"

Chapter 13 Evolving Zoomorphic Creatures

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

279

1 to: 25 by: 3 do: [:x |

 c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x

 * 100 @ 90).

 c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x

 * 100 + 50 @ 70).

 c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x

 * 100 + 100 @ 50).

 c addPlatform: (CPlatform new height: 20; width: 80; translateTo: x

 * 100 + 150 @ 30).

].

c addCreature: creature.

c open

A zoomorphic creature can indeed evolve to climb stairs.

Figure 13-7.  Climbing the stairs

Chapter 13 Evolving Zoomorphic Creatures

356

357

358

359

360

361

362

363

364

365

366

367

368

280

13.9  �What Have We Seen in This Chapter?
This chapter illustrated how creatures, which we call zoomorphic due to their organic

way of moving, evolve to solve some walking tasks. In particular, the chapter covered the

following:

•	 A basic technique to interrupt long-running processes. This is a

central aspect of this chapter as the evolution we deal with takes

several minutes, and being able to interrupt a running execution is

important.

•	 The evolution of a creature in three different scenarios: without any

obstacles, with some simple obstacles, and with stairs.

This chapter closes the second part of the book.

Chapter 13 Evolving Zoomorphic Creatures

PART III

Neuroevolution

1

2

283
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_14

CHAPTER 14

Neuroevolution
This chapter covers the third and last part of the book. The book started with the

topic of neural networks, which are computational metaphors for the biological

brain. Subsequently, the book covered genetic algorithms, computational

simulations of species evolution. After these two parts, the question that may

naturally be asked is: Is it possible to evolve neural networks in a fashion similar

to how our biological brains went through evolution over thousands of years? The

answer is yes, and this evolution mechanism is the topic of this third and last part

of the book. Neuroevolution is a form of artificial intelligence that combines neural

networks and genetic algorithms.

After giving some theoretical background on different learning mechanisms, this

chapter explores a simple neuroevolution mechanism, called NeuroGenetic.

14.1  �Supervised, Unsupervised Learning, and
Reinforcement Learning

When we discussed how a neural network operates, we learned that a neural network

requires examples. In order for a neural network to learn classification patterns in a

dataset (as with the Iris dataset), the dataset has to be labeled for the neural network

to identify those patterns. In the case of the Iris dataset, each flower description

accompanied the name of the flower. We referred to the flower name as the label of an

example. Learning from a dataset that contains labels is called supervised learning: the

machine learning algorithm learns patterns from labeled data. Supervised learning is

characterized by operating on labeled data.

In many situations, obtaining a labeled dataset is not problematic. For example,

Facebook has a large dataset of labeled pictures. Each time you label a friend in a picture,

you provide an example that Facebook can use to improve its models. Supervised

learning finds patterns in datasets for which we have the right answer, the label.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

284

Unsupervised learning is about finding patterns without having the right answers, the

labels. Patterns are then extracted without telling the algorithm what these patterns are

about. The machine learning scientific community produced numerous unsupervised

learning techniques. Common techniques include k-means (clustering techniques based

on element similarities) and autoencoder (particular architecture of a neural network to

learn encoding of a set of data).

Reinforcement learning is a third form of learning in which software agents learn

from the environment and make proper decisions. Neuroevolution is a technique that

is associated with reinforcement learning in some ways. Autonomous vehicle, robots,

and games are among the prominent domains for which having good quality examples

is difficult. We use the term reinforcement learning in a broad sense here: this is an

agent that is getting better by exploring a space and accumulating rewards. As such,

neuroevolution may fall into this category since a population or a species may be

considered an agent that is trying to maximize a fitness value, a kind of reward for its

composing individuals.

The remainder of the chapter will explore this third way of learning with

neuroevolution.

14.2  �Neuroevolution
Neuroevolution consists of evolving a neural network. Along generations, the network

becomes better at recognizing patterns. Wikipedia states that “Neuroevolution is a form

of artificial intelligence that uses evolutionary algorithms to generate artificial neural

networks.”

Neuroevolution has many benefits over classical deep learning approaches. Since

there is no training involved, there is no need to have examples. As such, neuroevolution

is adequate for solving problems in which examples are either of a bad quality or difficult

to obtain. A second benefit of neuroevolution is that it can evolve the architecture itself.

In deep learning, the network architecture, defined in terms of layers, the layer size, and

the activation functions all need to be specified. Neuroevolution frees the engineer from

having to make arbitrary decisions.

Chapter 14 Neuroevolution

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

285

14.3  �Two Neuroevolution Techniques
This chapter and the following ones cover two neuroevolution techniques, NeuroGenetic

and NEAT:

•	 NeuroGenetic is a direct application of a genetic algorithm to

find weights and biases of a neural network. This technique was

pioneered by Edmund Ronald and Marc Schoenauer in 1994. Note

that with this technique, the architecture of the network is fixed,

while the weights and biases are subject to the evolution.

•	 NEAT stands for NeuroEvolution of Augmenting Topologies and was

proposed by Kenneth O. Stanley and Risto Miikkulainen in 2002.

The key ingredients of NEAT is to make the neural network evolve,

considering both the network’s weights and its architecture.

The remainder of this chapter covers the NeuroGenetic approach, while NEAT is

detailed in Chapter 15.

14.4  �The NeuroGenetic Approach
In the NeuroGenetic technique, the number of layers, the number of neurons, and the

activation functions are fixed and are therefore not subject to searching by the genetic

algorithm. Instead, we only employ the genetic algorithm to find the weights and biases

of each neuron.

When we discussed the zoomorphic creature, we presented the competing

convention problem. This situation arises when two relatively good individuals

are combined to form a poorly-performing individual. The child is worse than the

parents. With the zoomorphic creature, we addressed this problem by making sure

that a crossover operation considers a muscle as a whole. We will apply the very same

technique here: the crossover operations will consider a neuron as a whole. As such,

the operation cannot recombine two neurons to form a new one. Instead, crossover can

recombine two sequences of neurons to form a new sequence made of neurons obtained

from the parents.

Chapter 14 Neuroevolution

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

286

14.5  �Extending the Neural Network
Our implementation of the neural network needs a few extensions to be able to

perform the constrained crossover operation. First, neurons from the network have

to be accessible. This is necessary to be able to serialize a network into an individual

chromosome. We define the neurons method as follows:

NNetwork>>neurons

 "Return the list of neurons contains in the network"

 ^ layers flatCollect: #neurons

To compute the size of the individual chromosome, we need to sum up the number

of parameters of each neuron. We define the following method:

Neuron>>numberOfWeights

 "Return the number of weights contained in the neuron"

 ^ weights size

The number of parameters of a network is simply the sum of the number of weights

of each neuron, added to the sum of the biases. Since each neuron has one bias, the

number of biases in a network equals the number of neurons contained in the network.

We therefore define this method:

NNetwork>>numberOfParameters

 "Return the number of weights and biases contained in the network"

 ^ (self neurons collect: #numberOfWeights) sum + self neurons size

As we saw with the zoomorphic creature, the constrained crossover operation has

to be configured with a list of index cutpoints. We define the getPossibleCutpoints

method to obtain the indexes corresponding to the limits of the neuron when

parameters are linearly serialized:

NNetwork>>getPossibleCutpoints

 "Return the indexes of each neurons values.

 �This method is useful when applying genetic algorithm to neural

network"

 | result index |

 result := OrderedCollection new.

 index := 1.

Chapter 14 Neuroevolution

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

287

 self neurons do: [:n |

 result add: index.

 index := index + n weights size + 1.].

 ^ result asArray

During the evolution, we need to be able to reconstruct a network from a list of

parameters. We therefore define the setWeightsAndBias: method, whose purpose is to

fill a network with the provided weights and bias:

NNetwork>>setWeightsAndBias: weightsAndBias

 "Set the weights and bias of each neuron.

 This method is useful when applying genetic algorithm to neural network"

 | index |

 self assert: [self numberOfParameters = weightsAndBias size].

 self assert: [weightsAndBias allSatisfy: #isNumber].

 index := 1.

 self neurons do: [:n |

 n weights: (weightsAndBias copyFrom: index to: n

 numberOfWeights + index - 1).

 index := index + n numberOfWeights.

 n bias: (weightsAndBias at: index).

 index := index + 1]

We now have all the pieces to try our first neuroevolution example.

14.6  �NeuroGenetic by Example
A classical example of using neuroevolution is to produce a neural network that can

express the XOR logical gate. Consider the following script:

data := {

 {0 . 0 . 0} .

 {0 . 1 . 1} .

 {1 . 0 . 1} .

 {1 . 1 . 0} }.

n := NNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 2.

Chapter 14 Neuroevolution

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

288

g := GAEngine new.

g populationSize: 500.

g mutationRate: 0.01.

g endForMaxNumberOfGeneration: 30.

g crossoverOperator: (GAConstrainedCrossoverOperation new

 possibleCutpoints: n getPossibleCutpoints).

g numberOfGenes: n numberOfParameters.

g createGeneBlock: [:rand :index :ind | rand next * 10 - 5].

g fitnessBlock: [:genes |

 | r |

 n setWeightsAndBias: genes.

 r := (data collect: [:row |

 (n predict: row allButLast) = row last]) select: #

 yourself.

 (r size / 4) round: 4.

].

g run.

Figure 14-1.  Expressing the XOR logical gate using NeuroGenetic

Chapter 14 Neuroevolution

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

289

Executing the script produces the output given in Figure 14-1. The fitness is defined

as the precision of the network on the small XOR dataset. As shown in the figure, the

fitness quickly reaches 1.0, which means that the network can recognize the patterns

contained in the dataset.

Similar to the scripts given in the first part of the book, the data variable contains

the data we wish the algorithm to produce a neural network for. The n variable refers to

a neural network made of two inputs, three hidden neurons, and two outputs, as defined

by the variable n.

A genetic algorithm engine is defined with a population of 500 individuals and

a mutation rate of 0.01. The algorithm has to run for 30 generations. The crossover

is constrained to happen at any neuron indices provided by the result of the

getPossibleCutpoints method. The number of genes is the number of parameters

contained in the network. The value for a gene is simply a random number, ranging

from -5 to 5.

As you can see in the code, there is no training of the network. The fitness is used

to pick the best networks and combine them. As we saw in the chapter about genetic

algorithms, the fitness block is computed for each individual of the population and

takes as an argument the genes of that individual. We configure the network n with the

parameters contained in the genes variable, using the setWeightsAndBias: method. The

fitness then returns the number of predictions that are correct.

Figure 14-1 indicates that that best fitness across generations quickly reaches the

value of 1, which means a perfect precision of the predictions. We can verify this by

building a neural network, initializing it with the result of the genetic algorithm, and

performing a prediction (see Figure 14-2):

...

n := NNetwork new.

n configure: 2 hidden: 3 nbOfOutputs: 2.

n setWeightsAndBias: g result.

n predict: #(1 0).

Chapter 14 Neuroevolution

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

290

As expected, the script returns 1. In the same spirit, we can try a slightly more

complex example. The following script builds a network that converts a binary number

to its decimal representation:

data := {

 { 0 . 0 . 0 . 0 } .

 { 0 . 0 . 1 . 1 } .

 { 0 . 1 . 0 . 2 } .

 { 0 . 1 . 1 . 3 } .

 { 1 . 0 . 0 . 4 } .

 { 1 . 0 . 1 . 5 } .

 { 1 . 1 . 0 . 6 } .

 { 1 . 1 . 1 . 7 } }.

n := NNetwork new.

n configure: 3 hidden: 5 nbOfOutputs: 8.

Figure 14-2.  Using NeuroGenetic to perform 1 XOR 0

Chapter 14 Neuroevolution

193

194

195

196

197

198

199

200

201

202

203

204

205

206

291

g := GAEngine new.

g populationSize: 500.

g endForMaxNumberOfGeneration: 100.

g crossoverOperator: (GAConstrainedCrossoverOperation new

 possibleCutpoints: n getPossibleCutpoints).

g numberOfGenes: n numberOfParameters.

g createGeneBlock: [:rand :index :ind | rand next * 10 - 5].

g fitnessBlock: [:genes |

 | r |

 n setWeightsAndBias: genes.

 r := (data collect: [:row |

 (n predict: row allButLast) = row last]) select: #

 yourself.

 (r size / data size) round: 4.

].

g run.

Figure 14-3.  Converting a number from binary to decimal

Chapter 14 Neuroevolution

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

292

Figure 14-3 shows the result of the script. The fitness reaches 1.0, which means that

the perfect conversion is achieved. We can verify this with the following example:

...

n := NNetwork new.

n configure: 3 hidden: 5 nbOfOutputs: 8.

n setWeightsAndBias: g result.

n predict: #(1 1 0).

The result of converting the binary number 1 1 0 into decimal is 6.

14.7  �The Iris Dataset
We can apply NeuroGenetic to process the Iris dataset introduced earlier. Consider this

script:

irisCSV := (ZnEasy get: 'https://agileartificialintelligence.github.io/

 Datasets/iris.csv') contents.

lines := irisCSV lines allButFirst collect: [:l |

 | ss |

 ss := l substrings: ','.

 (ss allButLast collect: [:w | w asNumber]), { ss last }].

irisData := lines collect: [:row |

 | l |

 row last = 'setosa' ifTrue: [l := #(0)].

 row last = 'versicolor' ifTrue: [l := #(1)].

 row last = 'virginica' ifTrue: [l := #(2)].

 row allButLast, l].

"The variable irisData contains the Iris dataset"

n := NNetwork new.

n configure: 4 hidden: 6 nbOfOutputs: 3.

g := GAEngine new.

g populationSize: 500.

g endForMaxNumberOfGeneration: 30.

Chapter 14 Neuroevolution

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

293

g crossoverOperator: (GAConstrainedCrossoverOperation new

 possibleCutpoints: n getPossibleCutpoints).

g numberOfGenes: n numberOfParameters.

g createGeneBlock: [:rand :index :ind | rand next * 10 - 5].

g fitnessBlock: [:genes |

 | r |

 n setWeightsAndBias: genes.

 r := (irisData collect: [:row |

 (n predict: row allButLast) = row last]) select: #

 yourself.

 (r size / irisData size) asFloat round: 4].

g run.

Figure 14-4 indicates that the fitness reaches 97% in the last generations. This small

example illustrates that the evolved neural network competes equally well with a trained

neural network using backpropagation.

Figure 14-4.  NeuroGenetic and the Iris dataset

Chapter 14 Neuroevolution

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

294

14.8  �Further Reading About NeuroGenetic
NeuroGenetic, which is presented in this chapter, is the simplest way to use

neuroevolution. The techniques only used weights and biases. It was first presented

by Edmund Ronald and Marc Schoenauer in 1994, in their publication titled, “Genetic

Lander: An Experiment in Accurate Neuro-Genetic Control.” The article is available at

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.3139. It shows a

small example of a lunar lander.

14.9  �What Have We Seen in This Chapter?
This chapter combined the results of the first two parts of the book. In particular:

•	 It presented how genetic algorithms can be used to search for a

relevant combination of weights and biases to solve a particular

problem.

•	 It demonstrated that NeuroGenetic, a simple neuroevolution

technique, can provide results similar to backpropagation on a

simple dataset.

The next chapter covers NEAT, a sophisticated algorithm used with neuroevolution.

Chapter 14 Neuroevolution

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

295
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_15

CHAPTER 15

Neuroevolution with NEAT
NEAT is an algorithm that builds neural networks following an incremental and

evolutionary process. It uses a genetic algorithm to evolve networks. In the very

early generations, neural networks are very simple, composed of a few nodes and

connections. However, complexity is added in each generation. NEAT supports a

number of mutations, and these mutations may add new nodes or new connections. As

such, networks can only become more complex over time.

NEAT was proposed in 2002 by Kenneth O. Stanley and Risto Miikkulainen in their

article titled, “Evolving Neural Networks Through Augmenting Topologies,” published

by MIT Press. Readers who wish to know more about the design decisions of the

algorithm are welcome to read the article. The article is accessible, and it can be easily

found on the web.

This chapter focuses on the implementation of the NEAT algorithm. NEAT builds

neural networks made of nodes and connections. This chapter is self-contained. All the

code provided in this chapter is meant to be kept in a package called NEAT and each

class is prefixed with the two letters, NE.

Note that we slightly simplify the original NEAT algorithm to keep the chapter size

under control. In particular, we use a simplified strategy to create species and evaluate

similarities between individuals.

This chapter begins with some theoretical background before diving into the NEAT

implementation.

15.1  �Vocabulary
This chapter is about using a genetic algorithm to evolve neural networks. Although

we have detailed these two concepts in previous chapters, the NEAT algorithm, as

originally formulated by Kenneth and Risto in 2002, comes with its own terminology.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

296

We use it in this chapter to avoid a necessary gap between our implementation and the

original description of the NEAT algorithm given by “Evolving Neural Networks Through

Augmenting Topologies.” In this chapter we use the following definitions:

•	 Node: A node is a representation of a neuron. A node may accept

input values and produce output values.

•	 Input node: In NEAT, input values of a neural network are provided

to an input node. The number of input nodes is fixed during the

evolution since it depends on the problem the algorithm is trying to

solve.

•	 Output node: Output nodes are nodes from which the network output

are obtained.

•	 Hidden node: Hidden nodes are nodes that are neither input nor

output. When values are provided to the input nodes, computed

values are flown through hidden nodes in order to reach the output

nodes.

•	 Connection: Nodes are connected via explicit connections. Each

connection has a weight value.

•	 Connection cache: A node keeps the connections using a connection

cache, which is simply a collection of associations.

•	 Innovation number: Each connection, when added to an individual,

receives a historical marker, which we call the innovation number.

This number is incremented by 1 at each new connection.

•	 Individual: An individual is a set of nodes and connections, a

reference to the species in which it belongs to, and a connection

cache.

•	 Species: Individuals who have similar structures are likely to belong to

the same species. A species is a group of similar individuals.

•	 Speciation: The action of splitting a population into species is called

speciation. Speciation occurs in each generation.

•	 Log: Monitoring the evolution of the NEAT algorithm is supported

using log objects. Each log object contains relevant information.

Chapter 15 Neuroevolution with NEAT

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

297

15.2  �The Node Class
A node represents a neuron in a network. We will use the word “node” over “neuron”

because it is fairly distant to what we saw when we discussed neural networks. Nodes

may be connected using connections that we will see later. We define the class as follows:

Object subclass: #NENode

 instanceVariableNames: 'id kind connectionsCache innovationNumber

 numberOfInputs zValue numberOfReceivedValues result'

 classVariableNames: ''

 package: 'NEAT'

The NENode class defines the following variables:

•	 id is a numerical identifier of each node. As we will later see, each

connection is defined between two IDs. An ID uniquely refers to a

node.

•	 kind represents the kind of node. The kind of the node may be

#input, to represent a network in the input layer, #output, to

represent a neuron located in the output layer, or #hidden, to

represent a node that is neither input nor output.

•	 connectionsCache is used to cache the connections between nodes

when a network is produced from an individual. The cache has to be

reset when an individual is mutated.

•	 innovationNumber is a number that represents a historical marker. It

is an identifier value of the performed mutation.

•	 numberOfInputs represents the number of inputs the node has.

•	 zValue represents the accumulated z value. As we have seen in the

first part of the book, the z value is the sum of the weighted inputs.

This value is used to compute the output of the node.

•	 numberOfReceivedValues is a counter indicating how many inputs

have flown in the node. At each received input value, the zValue is

adjusted and the numberOfReceivedValues variable is increased by

1. When numberOfReceivedValues equals numberOfInputs, then the

node is read to produce an output value.

Chapter 15 Neuroevolution with NEAT

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

298

•	 result keeps the result of the node. This variable acts as a cache and

it is useful to propagate the result of an evaluation to the connected

nodes.

15.3  �Different Kinds of Nodes
A neural network is composed of nodes. Each node, representing a neuron, may be an

input node, an output node, or an hidden node. It is important to make the distinction

between these kinds of nodes. We use the kind variable for that purpose. The variable

may hold one of the following values: #input, #hidden, or #output.

We define setAsInput to set a node as an input node:

NENode>>setAsInput

 "Set the node as input"

 kind := #input

The setAsOutput method sets a node as output:

NENode>>setAsOutput

 "Set the node as output"

 kind := #output

Similarly, a hidden node is defined using setAsHidden:

NENode>>setAsHidden

 "Set the node as hidden, which means it is placed in the

 network between the input and output"

 kind := #hidden

The value of the kind variable may be checked using some testing methods. The

isInput method returns true if the node is an input node:

NENode>>isInput

 "Return true if the node is an input node"

 ^ kind == #input

Chapter 15 Neuroevolution with NEAT

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

299

The isOutput method returns true if the node is an output node:

NENode>>isOutput

 "Return true if the node is an output node"

 ^ kind == #output

The kind method returns the kind of node:

NENode>>kind

 "Return the kind of node"

 ^ kind

The kind method is relevant to copying a node, as we will soon see. The kind:

method assigns a value to the corresponding variable:

NENode>>kind: aSymbol

 "The argument aSymbol should be #input, #output, or #hidden"

 kind := aSymbol

Each node has a numerical identifier, which is kept in the variable id. This identifier

corresponds to the index of the node in an individual.

NENode>>id

 "Return the numerical identifier of the node"

 ^ id

As we will later see, the bias node’s identifier is always equal to 1. Similarly, the node

identifier may be set using the following:

NENode>>id: anInteger

 "Set the node identifier, useful when an individual structure

 is modified"

 id := anInteger

To form a neural network, each input or hidden node may be connected to a number

of other nodes. Establishing the connections will ordered by the NEIndividual class,

when the network has to be built up. The connectionsCache variable will keep the

connections within an appropriate data structure.

Chapter 15 Neuroevolution with NEAT

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

300

A connection between two nodes is set using the connect:weight: method, defined

as follows:

NENode>>connect: anotherNode weight: aWeight

 "Establish a connection between two nodes (the receiver and

 the argument)

 The method is executed by NEIndividual>>buildNetwork"

 connectionsCache add: aWeight -> anotherNode

The list of the connected nodes may be obtained for a given node:

NENode>>connectedNodes

 "Return the nodes that are connected to the node receiver"

 ^ connectionsCache collect: #value as: Array

The weight between two connected nodes may be obtained using this method:

NENode>>weightOfConnectionWith: anotherNode

 "Return the weight of the connection with another node"

 ^ (connectionsCache detect: [:assoc | assoc value == anotherNode

]) key

The weightOfConnectionWith: method is not essential to the logic of

NEAT. However, it will be used in the visualization by mapping a connection weight to a

line width, as we will later see.

With the NEAT algorithm, the individuals on which the genetic operations are

applied should not be modified. Instead, new individuals are produced, leaving the

original ones intact. To obtained this preservation, it is central to be able to copy

individuals. As a consequence, we should be able to copy a node. We define the copy

method for this purpose:

NENode>>copy

 "Return a copy of the node"

 | newNode |

 newNode := NENode new.

 newNode id: self id.

 newNode kind: self kind.

 newNode innovationNumber: self innovationNumber.

 ^ newNode

Chapter 15 Neuroevolution with NEAT

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

301

During the evaluation of a neural network, values flow in a node. We define the

evaluate: method to make values flow in. The evaluate: method on a node will be

called when a network is being evaluated:

NENode>>evaluate: aValue

 "Provide an input value to the node and contribute to the

 intermediate zValue"

 "We just received a value. We add it to zValue."

 zValue := zValue + aValue.

 "We say we received a new value"

 numberOfReceivedValues := numberOfReceivedValues + 1.

 "If we received an adequate number of zValues,

 then we can compute the sigmoid and keep it."

 numberOfReceivedValues = numberOfInputs ifFalse: [^ self].

 �result := self isInput ifTrue: [zValue] ifFalse: [self

sigmoid:

 zValue].

 "We go here only if not output"

 connectionsCache do: [:assoc | assoc value evaluate: result ∗
 assoc key]

NEAT favors an incremental process for building neural networks. During the

evolution, networks get more complex in each generation. As such, new connections

to hidden and outputs nodes are typically made. We therefore need a way to increase

the number of inputs a node may take. We simply define the increaseNumberOfInputs

method for that very purpose:

NENode>>increaseNumberOfInputs

 "Increase the number of input values the node accepts"

 numberOfInputs := numberOfInputs + 1

One purpose of the NEAT algorithm is to keep track of the individuals’ histories. This

is at the very root of the algorithm: by efficiently keeping track of the individual’s history,

individuals with a common history are likely to be structurally similar.

Chapter 15 Neuroevolution with NEAT

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

302

The global population is divided into species based on similarities between individuals.

The innovation number is accessible from a node using the following:

NENode>>innovationNumber

 �"Return the innovation number, the historical marker, an

integer"

 ^ innovationNumber

The innovation number is set using the following:

NENode>>innovationNumber: anInteger

 "Set the node innovation number"

 innovationNumber := anInteger

When we visualize a neural network, we paint the bias node with a different color.

We therefore need a way to discriminate among nodes:

NENode>>isBias

 "Return true if the node is the bias node,

 i.e., if its ID equals 1"

 ^ self isInput and: [id = 1]

The number of inputs of a node is accessible using the following:

NENode>>numberOfInputs

 "Return the number of inputs the node accepts"

 ^ numberOfInputs

It is relevant to obtain a textual representation of a node. This is useful when

visualizing the network. We define the printOn: method for that purpose:

NENode>>printOn: stream

 "Return a textual representation of a node. For example, a

 node may be printed

 a NENode<3,1,input>

 or

 a NENode<5,205167,hidden>

 The values 3 and 5 are the node id. 1 and 205167 are

 innovation number.

Chapter 15 Neuroevolution with NEAT

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

303

 The third component indicates the kind of node

 "

 super printOn: stream.

 stream nextPut: $<.

 id ifNotNil: [stream nextPutAll: id asString].

 stream nextPut: $,.

 innovationNumber ifNotNil: [stream nextPutAll: innovationNumber

 asString].

 stream nextPut: $,.

 kind ifNotNil: [stream nextPutAll: kind asString].

 stream nextPut: $>.

When an individual is modified by a genetic operation, the network associated with

the individual needs to be invalidated. We therefore provide the resetConnections

method, which removes all connections between the network nodes:

NENode>>resetConnections

 "Remove connections associated with a node"

 connectionsCache := OrderedCollection new.

 zValue := 0.

 numberOfInputs := 0.

 numberOfReceivedValues := 0.

 result := 0.

 self isInput ifTrue: [numberOfInputs := 1]

In our implementation of NEAT, each node evaluates its weighted inputs using the

sigmoid activation function. We therefore define the sigmoid: function as follows:

NENode>>sigmoid: z

 "Apply the sigmoid function to the argument"

 ^ 1 / (1 + z negated exp)

The result of the evaluation is kept in the result variable. We define an accessor

for it:

NENode>>result

 "Return the computed result"

 ^ result

Chapter 15 Neuroevolution with NEAT

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

304

As we will later see, the result method is executed to obtained the output values

from a neural network evaluation. This last method concludes the definition of a node.

15.4  �Connections
As we have seen, a neural network is an acyclic graph. Nodes need to be connected and

each connection has a weight. In addition, NEAT encodes an activation state (a boolean

value) and an innovation number. We define the following class:

Object subclass: #NEConnection

 instanceVariableNames: 'in out weight enabled innovationNumber'

 classVariableNames: ''

 package: 'NEAT'

The NEConnection class has the following variables:

•	 An individual, as we will later see, defines an ordered collection

of nodes. The in variable represents the index of the node in the

individual to be used as input. Values accepted by in are therefore

positive integers.

•	 Similarly, out represents the index of the the node used as output.

•	 weight is the weight of the connection. This is typically a small

positive or negative float value.

•	 enabled is a boolean flag indicating whether the connection is active

or not.

•	 innovationNumber is the historical marker used by NEAT. The value

of this variable is a positive integer.

NEConnection>>in

 "Return the index of the input node in the individual"

 ^ in

The setter method of the input node is as follows:

NEConnection>>in: anInteger

 "Set the in node index"

 in := anInteger

Chapter 15 Neuroevolution with NEAT

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

305

Similar to the in method, the out method returns the index of the output node:

NEConnection>>out

 "Return the index of the output node in the individual"

 ^ out

The value for out is set using its corresponding method:

NEConnection>>out: anInteger

 "Set the out node index"

 out := anInteger

When a connection is created, it receives a historical maker (innovation number),

which is set using the following:

NEConnection>>innovationNumber: anInteger

 "Set the innovation number"

 innovationNumber := anInteger

The innovation number is obtained using the following:

NEConnection>>innovationNumber

 "Return the historical marker of the connection, the innovation

 number"

 ^ innovationNumber

A connection may be enabled or disabled. A disable connection does not let the

values flow. A connection is enabled using the following:

NEConnection>>makeEnabled

 "Enable the connection"

 enabled := true

A connection is disabled using the following:

NEConnection>>makeDisabled

 "Disable the connection"

 enabled := false

Chapter 15 Neuroevolution with NEAT

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

306

Only enabled connections are considered when the neural network is built. As such,

a check method is necessary, as follows:

NEConnection>>isEnabled

 "Return true if the connection is enabled"

 ^ enabled

Connections let values flow through nodes. As we saw in the first part of the book,

values are weighted when transmitted to nodes. The weight of a connection is set using

the following:

NEConnection>>weight: aNumber

 "Set the weight for the connection"

 weight := aNumber

Conversely, the weight is obtained using the following:

NEConnection>>weight

 "Return the weight of the connection"

 ^ weight

15.5  �The Individual Class
In NEAT, an individual is significantly more complex than in the standard genetic

algorithm, as we have seen. In NEAT, an individual is not a simple, linear sequence of

gene values. Instead, it is a complex abstraction. We define the NEIndividual class as

follows:

Object subclass: #NEIndividual

 instanceVariableNames: 'nodes connections random fitness species'

 classVariableNames: ''

 package: 'NEAT'

We summarize its variables as follows:

•	 nodes is a collection of NENode objects. The collection is an instance

of OrderedCollection. The nodes variable contains the neurons that

are used to build a neural network.

Chapter 15 Neuroevolution with NEAT

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

307

•	 connections is a collection of NEConnection objects. These

connections are used when the network has to be built.

•	 random is a random number generator that is used by the genetic

operators.

•	 fitness is the fitness value of the individual. This value is computed

during the population generation, as we will later see.

•	 species refers to the species to which the individual belongs.

The initialization of an individual is performed as follows:

NEIndividual>>initialize

 super initialize.

 nodes := OrderedCollection new.

 connections := OrderedCollection new.

 "This first node is the bias node"

 self addInputNode

Nodes may be added to an individual. We define the corresponding addNode:

method as follows:

NEIndividual>>addNode: aNode

 "Add a node to the individual. Note that the connections must

 be invalided and are therefore reset."

 self resetNetwork.

 nodes add: aNode.

 aNode id: nodes size.

 ^ aNode

A hidden node is added using the following:

NEIndividual>>addHiddenNode

 "Add a hidden node"

 ^ self addNode: (NENode new setAsHidden)

Chapter 15 Neuroevolution with NEAT

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

308

An input node is added using the following:

NEIndividual>>addInputNode

 "Add an input node"

 self addNode: (NENode new setAsInput; innovationNumber: 1).

An output node is added as follows:

NEIndividual>>addOutputNode

 "Add an output node"

 self addNode: (NENode new setAsOutput; innovationNumber: 1).

Nodes must be accessible from an individual. We define the method as follows:

NEIndividual>>nodes

 "Return the nodes contained by the individual"

 ^ nodes

Nodes may be set, in particular when an individual is copied, as follows:

NEIndividual>>nodes: someNodes

 "Set the nodes"

 nodes := someNodes

The input nodes must be accessible from an individual as we will shortly see. We

define the method as follows:

NEIndividual>>inputNodes

 "Return the input nodes"

 ^ nodes select: #isInput

Similarly, the output nodes are accessible using the following:

NEIndividual>>outputNodes

 "Return the output nodes"

 ^ nodes select: #isOutput

The number of input nodes is relevant to determine that the represented network is

correctly built and determine when we visualize a neural network. We define the method

as follows:

Chapter 15 Neuroevolution with NEAT

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

309

NEIndividual>>numberOfInputs

 "We substrate one for the bias"

 ^ self inputNodes size - 1

The total number of nodes may be obtained using this method:

NEIndividual>>numberOfNodesWithBias

 "Return the total number of nodes contained in the individual"

 ^ self nodes size

A connection is added using the following:

NEIndividual>>addConnection: aConnection

 "Add a connection to the individual"

 connections add: aConnection.

 self resetNetwork.

Similar to node addition, when we add a connection, the represented network and

its associated caches must be reset and invalidated.

Each individual unambiguously refers to a neural network. This network is built

using the following method:

NEIndividual>>buildNetwork

 "Build the neural network represented by the individual"

 self resetNetwork.

 (connections select: #isEnabled) do: [:c |

 �(nodes at: c in) connect: (nodes at: c out) weight: c

weight.

 (nodes at: c out) increaseNumberOfInputs]

The buildNetwork method first invalidates the network. Afterward, enabled

connection objects are used to establish the connections between the nodes. For each

connection between a node in and a node out, the number of inputs of out is increased.

NEIndividual>>computeFitness: oneArgBlock

 "Compute the fitness of an individual"

 "If already computed, then there is nothing to do"

 fitness ifNotNil: [^ self].

 fitness := oneArgBlock value: self.

Chapter 15 Neuroevolution with NEAT

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

310

The fitness function is defined as a block with one argument. If the fitness has

already been computed, then there is nothing to do.

The list of connections is available using the following:

NEIndividual>>connections

 "Return the list of connections"

 ^ connections

This list is necessary to compute the innovation number by the genetic operators.

During the crossover, a new set of connections is determined, and it has to be set to a

new individual. We therefore define this method:

NEIndividual>>connections: someConnections

 "Set some connections.

 This method is used when performing the crossover."

 connections := someConnections

An individual is copied using the following:

NEIndividual>>copy

 "Return a copy of the individual"

 | newInd |

 newInd := NEIndividual new.

 newInd random: self random.

 newInd nodes: (self nodes collect: #copy).

 newInd connections: (self connections collect: #copy).

 ^ newInd

The fitness will be set by the NEAT logic, so we define the following method:

NEIndividual>>fitness: aFitnessValue

 "Set the fitness value, useful when copying an individual"

 fitness := aFitnessValue

The neural network associated with an individual may be evaluated using the

evaluate: method, which is defined as follows:

NEIndividual>>evaluate: anArray

 "Evaluate the network using some input values.

 The method returns the resulting outputs of the network"

Chapter 15 Neuroevolution with NEAT

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

311

 self assert: [anArray size = self numberOfInputs] description: '

 Wrong number of arguments'.

 self buildNetwork.

 "We provide 1 to the first node, which is considered the

 bias node"

 self inputNodes with: #(1), anArray do: [:n :aValue | n evaluate:

 aValue].

 ^ self outputNodes collect: [:n | n result] as: Array

The evaluate: method first checks whether the number of provided values

corresponds with the number of input nodes. Since this is a common error when

evaluating an individual, we provide an assertion to catch the error early.

After it’s computed, the fitness of an individual may be returned using the following:

NEIndividual>>fitness

 "Return the fitness of the individual"

 self assert: [fitness notNil] description: 'Need to compute

 fitness first'.

 ^ fitness

Each connection has an innovation number. The sequence of innovation numbers

may be used to determine the similarities between individuals. Later on, we will cover

the way we define and identify species within a population. In the meantime, we need

to obtain the sequence of innovation numbers in the same order as the connections. We

define the following method:

NEIndividual>>innovationNumberSequence

 "Return the list of innovation number"

 self connections ifEmpty: [^ #(0)].

 ^ self connections collect: #innovationNumber as: Array

At the beginning of the NEAT algorithm, individuals are created without any

connections. NEAT evolves the simplest form of individuals, which are individuals with

no connections and no hidden nodes. Although these extremely simple individuals have

no connection, they still need to belong to a species. As such, if there is no connection,

the innovation number sequence is simply #(0). The speciation algorithm will use this

innovation number sequence.

Chapter 15 Neuroevolution with NEAT

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

312

When performing the crossover operation, it is important to know the number of

connections an individual has:

NEIndividual>>numberOfConnections

 "Return the number of connections"

 ^ connections size

In the first part of the book, we defined the predict: method on the class describing

a neural network. We will now define the same method on the NEIndividual class:

NEIndividual>>predict: inputs

 "Make a prediction. This method assumes that the number of

 outputs is the same as the number of different values

 the network can output"

 | outputs |

 outputs := self evaluate: inputs.

 "The index of a collection begins at 1 in Pharo"

 ^ (outputs indexOf: (outputs max)) - 1

The predict: method is used to make prediction for a given set of input values,

exactly the same way as when we discussed neural networks.

An individual has a random number generator, which is used when genetic

operations have to be performed. This generator is provided by the NEAT algorithm

itself, as we will later see. The random is set using the following:

NEIndividual>>random: aRandomNumberGenerator

 "Set the random number used by the genetic operations"

 random := aRandomNumberGenerator

The random number is accessed using the following:

NEIndividual>>random

 "Return the random number used by the genetic operations"

 ^ random

When a genetic operation is applied to an individual, the fitness has to be

invalidated. We define this method:

NEIndividual>>resetFitness

 "Invalidated the fitness"

 fitness := nil

Chapter 15 Neuroevolution with NEAT

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

313

If the structure of an individual is modified, the network has to be reset. We define

this method:

NEIndividual>>resetNetwork

 "Reset the network, which invalidates the network and the

 fitness value"

 nodes do: #resetConnections

The resetNetwork method is called by addConnection:, addNode:, and

buildNetwork.

Each individual belongs to a species. The association between individuals and

species is made by a dedicated class, NESpeciation, which we will later see. An individual

must be able to return the species it belongs to, which is what this method does:

NEIndividual>>species

 "Return the species to which the individual belongs"

 ^ species

The species may be set using the following:

NEIndividual>>species: aSpecies

 species := aSpecies

This last method concludes the definition of the NEIndividual class. We are halfway

through the implementation of the NEAT algorithm.

15.6  �Species
We now need to define what exactly a species is. In our implementation, a species is

simply a group of individuals. The species has a numerical identifier, which is used to

keep track of the evolution of the species.

We define the NESpecies class as follows:

Object subclass: #NESpecies

 instanceVariableNames: 'individuals id'

 classVariableNames: ''

 package: 'NEAT'

Chapter 15 Neuroevolution with NEAT

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

314

The class has two instance variables:

•	 individuals is a collection of individuals. These individuals are a

fraction of the whole population. In NEAT and the standard genetic

algorithm, the size of the population is fixed. A species therefore

corresponds to part of the population. An individual belongs to only

one species, which means that all the species are disjoint.

•	 id is a numerical identifier. As we saw with NESpeciation>>process:,

this identifier is simply the innovation number used to discriminate

individuals.

The identifier may be obtained from the following:

NESpecies>>id

 "Return the identifier of the species"

 ^ id

The species identifier is set by the process: method, as described earlier. The

corresponding method is:

NESpecies>>id: anInteger

 "Set the species identifier"

 id := anInteger

The individuals of a species are accessed using the following:

NESpecies>>individuals

 "Return the individuals composing the species"

 ^ individuals

The species may be initialized with some individuals by the speciation object:

NESpecies>>individuals: someIndividuals

 "Set the individuals of the species"

 individuals := someIndividuals

It is important to have some metrics to characterize a particular species and compare

species. We define three simple metrics—the average fitness, the maximum fitness, and

the number of individuals.

Chapter 15 Neuroevolution with NEAT

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

315

The average fitness is given using the following:

NESpecies>>averageFitness

 "Return the average fitness of the species"

 ^ (self individuals collect: #fitness) average

The maximum (and therefore best) fitness of a species is given by this method:

NESpecies>>maxFitness

 "Return the max fitness of the species individuals"

 ^ (self individuals collect: #fitness) max

The number of individuals composing a species is accessed using this method:

NESpecies>>numberOfIndividuals

 "Return the size of the species"

 ^ individuals size

This last method concludes the definition of the species, and therefore completes the

whole speciation mechanism of our implementation.

15.7  �Speciation
So far, we have defined individuals, nodes, connections, and species. We define the

notion of speciation as the action of dividing the population and groups of similar

individuals into species. A species is made of individuals that are structurally similar.

This is where the innovation number comes into place: if two individuals have two

similar sequence of innovation numbers, then we conclude they are structurally

similar.

Earlier we defined the innovationNumberSequence method, which returns

the innovation number for all the individual’s connections. We illustrate how our

speciation algorithm operates. Consider three individuals—i1, i2, and i3—and their

expressions:

•	 i1 innovationNumberSequence returns #(1 2 4 6),

•	 i2 innovationNumberSequence returns #(1 2 4 7),

•	 i3 innovationNumberSequence returns #(1 2 4 6 8 9)

Chapter 15 Neuroevolution with NEAT

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

316

Our algorithm will consider the earliest historical marker within a frame of size k. If

we have k = 2, then the kth values before the end of individuals are: 4 for i1, 4 for i2,

and 8 for i3. Given these three individuals and the value k = 2, we have two species. - i1

and i2 are the same species, while - i3 is a different species.

Note that the window frame size is a new hyperparameter that we need to consider

when tuning the NEAT algorithm. We can now define the speciation algorithm with the

NESpeciation class. The class is defined as follows:

Object subclass: #NESpeciation

 instanceVariableNames: 'frameSize groups'

 classVariableNames: ''

 package: 'NEAT'

The class defines two variables:

•	 frameSize is an integer representing the size of the window frame to

pick the relevant innovation number.

•	 groups is a collection of instances of the NESpecies class. As we will

see, the NESpecies class is a group of individuals.

Per the default, we pick a frame size of 3:

NESpeciation>>initialize

 super initialize.

 frameSize := 3.

The window frame size may be set using this method:

NESpeciation>>frameSize: anInteger

 "Set the window frame size hyperparameter"

 frameSize := anInteger

The process: method contains the algorithm used in the speciation. It implements

the strategy just described and is defined as follows:

NESpeciation>>process: someIndividuals

 "Run the speciation algorithm for a given collection of

 individuals.

Chapter 15 Neuroevolution with NEAT

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

317

 This method takes as an argument a collection of

 innovation numbers"

 | g |

 g := someIndividuals groupedBy: [:individual |

 | seq |

 seq := individual innovationNumberSequence.

 seq size < 2

 ifTrue: [seq first]

 �ifFalse: [(seq last: (frameSize min:

seq size - 1)) first

]].

 "Bind each species to its corresponding individuals"

 groups := g associations collect: [:assoc | NESpecies new

 individuals: assoc value; id: assoc key].

 groups do: [:aSpecies |

 aSpecies individuals do: [:i | i species: aSpecies]]

The process: method initializes the groups variable with a collection of NESpecies

objects. The groups are obtained using the following:

NESpeciation>>groups

 "Return the groups of species. Each group being an instance

 of NESpecies"

 ^ groups

Each speciation results in a number of species, which varies during evolution.

Accessing the number of produced species is a good metric to track. Consider this

method:

NESpeciation>>numberOfSpecies

 "Return the number of species produced by the speciation"

 ^ groups size

The end of this chapter covers the visualization of the evolution and we will use

this metric.

Chapter 15 Neuroevolution with NEAT

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

318

15.8  �Crossover Operations
Due to the complex representation of individuals, NEAT employs a dedicated set

of genetic operations. This section covers the crossover. The crossover operation is

performed between individuals that belong to the same species. This is an important

aspect of NEAT. We define the NECrossoverOperation class as follows:

Object subclass: #NECrossoverOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NEAT'

The original publication about NEAT very informally describes the crossover

operation. To keep this implementation simple, short, and easy to explain, we propose a

crossover that deviates slightly from the original definition of the crossover.

The crossover algorithm we consider may be described as follows. Assume

two individuals, i1 and i2. i1 has a better fitness level than i2. If i1 or i2 have no

connection, which is likely to happen in a very early generation, then the child individual

has the node of i1 and no connections. This seems to be a rather arbitrary decision, but

in fact, it shows a conservative decision by preserving the genetic information from the

fittest individual.

If i1 or i2 have at least one connection, then we iterate along the common sequence

of historical markers. As mentioned earlier, individuals within the same species have

a common sequence of markers. The children have connections that are randomly

picked from either i1 or i2. Once we iterated over the common markers, we complete

the connections for the child with the remainder connections of i1, which are the best

individuals.

As we said, this algorithm is a simplified version of the original description of

NEAT. Although it’s simplified, it performs a good job.

We define the performOn:and: method as follows:

NECrossoverOperation>>performOn: i1 and: i2

 "Return a child individual that is the result of a crossover

 between individuals i1 and i2"

 "The method ASSUMES that the fitness of i1 is higher than

 the one of i2"

Chapter 15 Neuroevolution with NEAT

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

319

 | newConnections indexI1 indexI2 shouldIterate newNodes |

 "newNodes are the nodes of the child individual.

 It is simply a copy of the nodes of the best individual, i1."

 newNodes := i1 nodes collect: #copy.

 "newConnections are the connections of the child individual"

 newConnections := OrderedCollection new.

 "If any individuals has no connection, then we create a new

 individual with no connection"

 (i1 connections notEmpty and: [i2 connections notEmpty])

 ifFalse: [^ NEIndividual new nodes: newNodes; connections:

 newConnections; random: i1 random].

 "We initialize some temporary variables"

 indexI1 := 1.

 indexI2 := 1.

 shouldIterate := true.

 "The iteration loop"

 [shouldIterate] whileTrue: [

 | c1 c2 |

 indexI1 := indexI1 min: i1 numberOfConnections.

 indexI2 := indexI2 min: i2 numberOfConnections.

 c1 := i1 connections at: indexI1.

 c2 := i2 connections at: indexI2.

 c1 innovationNumber = c2 innovationNumber

 ifTrue: [

 �newConnections add: (i1 random next > 0.5

ifTrue: [c1

] ifFalse: [c2]) copy.

 indexI1 := indexI1 + 1.

 indexI2 := indexI2 + 1.]

 ifFalse: [shouldIterate := false].

Chapter 15 Neuroevolution with NEAT

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

320

 (indexI1 >= i1 numberOfConnections and: [indexI2 >= i2

 numberOfConnections])

 ifTrue: [shouldIterate := false]

].

 "We consider the remainder connection from the best individual"

 newConnections addAll: ((i1 connections allButFirst: indexI1 - 1)

 collect: #copy).

 "A new individual is returned"

 ^ NEIndividual new nodes: newNodes; connections: newConnections;

 random: i1 random

Different variants of the crossover may be envisaged, and our implementation of

NEAT may be easily extended with new ways to perform the crossover.

15.9  �Abstract Definition of Mutation
Since several mutation operations will be implemented, we will define a class hierarchy

in which the superclass will define the functionalities used by the subclasses.

The NEAbstractMutationOperation class is defined as follows:

Object subclass: #NEAbstractMutationOperation

 instanceVariableNames: 'random'

 classVariableNames: ''

 package: 'NEAT'

Mutation operations require generating random number. The

NEAbstractMutationOperation class defines the random variable. The random number

is set using the following method:

NEAbstractMutationOperation>>random: aRandomNumberGenerator

 random := aRandomNumberGenerator

We define the randomWeight method as a utility method that returns a random value

that can be used as a connection weight. We define the method as follows:

NEAbstractMutationOperation>>randomWeight

 "Return a random number within -5 and 5"

 ^ random next ∗ 10 - 5

Chapter 15 Neuroevolution with NEAT

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

321

The main entry method of a mutation operation is performOn:, defined as follows:

NEAbstractMutationOperation>>performOn: anIndividual

 "Public method that performs a mutation on the argument

 the method modifies an Individual"

 random := anIndividual random.

 anIndividual resetFitness.

 self on: anIndividual

The performOn: method takes an individual as an argument and modifies it.

Before we call this method, it is important to make a copy of the individual. This

is because, when building a new population, individuals should not be modified.

The method invokes the on: method. The NEAbstractMutationOperation>>on:

method is abstract, meaning that it must be overridden in subclasses. It is defined

as follows:

NEAbstractMutationOperation>>on: anIndividual

 "Override this method to perform the mutation"

 self subclassResponsibility

15.10  �Structural Mutation Operations
Our implementation of NEAT supports two mutation operations that modify the

structure of an individual:

•	 NEAddConnectionMutationOperation adds a connection between

two nodes.

•	 NEAddNodeMutationOperation adds a hidden node.

These two operations need to access a global counter, the innovation number. We

define the NEAbstractStructuralMutationOperation class as follows:

NEAbstractMutationOperation subclass: #

 NEAbstractStructuralMutationOperation

 instanceVariableNames: ''

 classVariableNames: 'InnovationNumber'

 package: 'NEAT'

Chapter 15 Neuroevolution with NEAT

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

322

The NEAbstractStructuralMutationOperation class defines the class variable

InnovationNumber. This variable is shared among all subclasses. Each time the

operation is applied, the innovation number is increased by one. We therefore override

the performOn: method as follows:

NEAbstractStructuralMutationOperation>>performOn: anIndividual

 InnovationNumber isNil ifTrue: [InnovationNumber := 1].

 InnovationNumber := InnovationNumber + 1.

 super performOn: anIndividual.

The InnovationNumber variable is lazily initialized: it is set to 1 the first time

performOn: is executed.

15.10.1  �Adding a Connection
The NEAddConnectionMutationOperation class is defined as follows:

NEAbstractStructuralMutationOperation subclass: #

 NEAddConnectionMutationOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NEAT'

The on: method is overridden to provide the behavior of adding a connection:

NEAddConnectionMutationOperation>>on: anIndividual

 "Add a connection between two nodes to an individual"

 | array |

 "Find two nodes in which we can add a connection. No more

 than 5 tries are made"

 array := self findMissingConnectionIn: anIndividual nbTry: 5.

 "We did not find a solution, so we merely exit. There is not

 much we can do"

 array ifNil: [^ self].

 "Else, we add the connection"

 anIndividual

Chapter 15 Neuroevolution with NEAT

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

323

 addConnection:

 (NEConnection new

 in: array first;

 out: array second;

 weight: self randomWeight;

 makeEnabled;

 innovationNumber: InnovationNumber)

The added connection has a random weight, it is enabled, and it has an innovation

number. The array variable is the reference of two nodes, for which we can safely

add a connection going from arrayfirst to arraysecond. By “safely,” we mean that

the connection does not add a cycle within the individual and there is no existing

connection.

The findMissingConnectionIn:nbTry: method returns the nodes for which a

connection may be added. The method is rather complex. It takes as an argument an

individual and the number of tries the algorithm can do before giving up. It is defined

as follows:

NEAddConnectionMutationOperation>>findMissingConnectionIn: anIndividual

 nbTry: nbTry

 "Return an array containing two nodes.

 Only a finite number of tries are made to find those nodes."

 | node1 node2 |

 "If we made our tries, then we return nil meaning that no

 connections can be made"

 nbTry = 0 ifTrue: [^ nil].

 "The connection goes from node1 to node2. node1 cannot be

 an output node therefore"

 node1 := (anIndividual nodes reject: #isOutput) atRandom: random.

 "Similarly, node2 cannot be an input node."

 node2 := (anIndividual nodes reject: #isInput) atRandom: random.

 "Is there already a connection from node1 to node2?"

 (anIndividual connections anySatisfy: [:c |

 (c in = node1 id and: [c out = node2 id])]) ifTrue: [

Chapter 15 Neuroevolution with NEAT

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

324

 "If yes, then we iterate once more"

 � self findMissingConnectionIn: anIndividual

nbTry: (nbTry

 - 1)].

 "We check if there is no path going from node2 to node1.

 Adding a connection should not introduce a cycle"

 (self is: node1 accessibleFrom: node2 in: anIndividual)

 �ifTrue: [^ self findMissingConnectionIn: anIndividual

nbTry: (

 nbTry - 1)].

 ^ { node1 id . node2 id }

If no connection is found when nbTry= 0, then it returns nil, leading to the

mutation operator having no effect. The is:accessibleFrom:in: method verifies

whether there is an existing path going from node2 to node1. In such a case, adding a

path going from node1 to node2 will introduce a cycle. We therefore forbid this. The result

of the method is two node identifiers.

NEAddConnectionMutationOperation>>is: node1 accessibleFrom: node2 in:

 anIndividual

 "Is there a path going from node2 to node1?"

 anIndividual buildNetwork.

 ^ self privateIs: node1 accessibleFrom: node2

We use the following utility method to perform the recursion:

NEAddConnectionMutationOperation>>privateIs: node1 accessibleFrom:

 node2

 "Recursively look for a path from node2 to node1"

 node1 == node2 ifTrue: [^ true].

 node2 connectedNodes do: [:n |

 node1 == n ifTrue: [^ true].

 �(self privateIs: node1 accessibleFrom: n) ifTrue: [^

true]].

 ^ false

Chapter 15 Neuroevolution with NEAT

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

325

15.10.2  �Adding a Node
The mutation operation that adds a node is defined with the

NEAddNodeMutationOperation class:

NEAbstractStructuralMutationOperation subclass: #

 NEAddNodeMutationOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NEAT'

The on: method defines the behavior of this mutation operation:

NEAddNodeMutationOperation>>on: anIndividual

 "Add a hidden node and two connections in the individual"

 | relevantConnections c |

 �relevantConnections := anIndividual connections select: #isEnabled.

 relevantConnections ifEmpty: [^self].

 "We pick a random connection and disable it"

 c := relevantConnections atRandom: anIndividual random.

 c makeDisabled.

 "We add a hidden node ..."

 anIndividual addHiddenNode innovationNumber: InnovationNumber.

 "... and two connections"

 anIndividual addConnection:

 (NEConnection new in: c in; out: anIndividual

 numberOfNodesWithBias; weight: 1; makeEnabled;

 innovationNumber: InnovationNumber).

 anIndividual addConnection:

 �(NEConnection new in: anIndividual

numberOfNodesWithBias; out:

 �c out; weight: c weight; makeEnabled;

innovationNumber:

 InnovationNumber).

This last method concludes the definition of the operations that modify the

individual structure.

Chapter 15 Neuroevolution with NEAT

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

326

15.11  �Non-Structural Mutation Operation
We define the empty class NEAbstractNonStructuralMutationOperation as follows:

NEAbstractMutationOperation subclass: #

 NEAbstractNonStructuralMutationOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NEAT'

The mutation operation that consists of modifying a connection weight is defined

with NEConnectionWeightMutationOperation:

NEAbstractNonStructuralMutationOperation subclass: #

 NEConnectionWeightMutationOperation

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NEAT'

The core of the mutation is defined as follows:

NEConnectionWeightMutationOperation>>on: anIndividual

 "Modify the weight of a connection"

 | c |

 anIndividual connections ifEmpty: [^ self].

 c := (anIndividual connections atRandom: random).

 c weight: self randomWeight + c weight

The on: method simply adds a random value to a connection weight. This operations

close the genetic operation supported by our implementation of NEAT.

15.12  �Logging
Being able to monitor the execution of the NEAT algorithm is an essential ability our

implementation should support. Without it, we would not be able to measure whether

we are converging toward a solution or not.

Chapter 15 Neuroevolution with NEAT

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

327

We will summarize the population at each generation in an instance of the NELog

class. We define that class as follows:

Object subclass: #NELog

 instanceVariableNames: 'generation speciation minFitness maxFitness

 averageFitness bestIndividual'

 classVariableNames: ''

 package: 'NEAT'

NELog defines the following instance variables:

•	 generation is the number of the represented generation.

•	 speciation refers to the current speciation.

•	 minFitness is the minimum fitness of the population.

•	 maxFitness is the maximum fitness of the population.

•	 averageFitness is the average fitness of the population.

•	 bestIndividual refers to the best individual of the population.

There is one NELog object at each generation. Each log refers to the speciation

object of the current generation. This is a useful way to analyze the generation at a fine

grain. For example, we could monitor the evolution of each species along the algorithm

execution.

The class has a number of accessor methods. The average population fitness is

accessible using the following:

NELog>>averageFitness

 "Return the average population fitness"

 ^ averageFitness

The average fitness is set by the NEAT class, which we will present later. We define the

method as follows:

NELog>>averageFitness: aNumber

 "Set the average population fitness"

 averageFitness := aNumber

Chapter 15 Neuroevolution with NEAT

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

328

The maximum fitness is accessible with the following:

NELog>>maxFitness

 "Return the maximum fitness"

 ^ maxFitness

The maximum fitness is set using the following:

NELog>>maxFitness: aNumber

 "Set the maximum fitness"

 maxFitness := aNumber

The minimum fitness is obtained using the following:

NELog>>minFitness

 "Return the minimum fitness"

 ^ minFitness

The minimum fitness is set using the following:

NELog>>minFitness: aNumber

 "Set the minimum fitness"

 minFitness := aNumber

The best individual of the population is accessed using the following:

NELog>>bestIndividual

 "Return the best individual of the population"

 ^ bestIndividual

The best individual is set using the following:

NELog>>bestIndividual: anIndividual

 "Set the best individual of the population"

 bestIndividual := anIndividual

The generation number is accessible using the following:

NELog>>generation

 "Return the generation number represented by the log"

 ^ generation

Chapter 15 Neuroevolution with NEAT

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

329

The generation number is set using the following:

NELog>>generation: anInteger

 "Set the generation number"

 generation := anInteger

The speciation is obtained from a log object using the following:

NELog>>speciation

 "Return the speciation of the generation represented by the log"

 ^ speciation

The speciation is set using the following:

NELog>>speciation: aSpeciation

 "Set the speciation"

 speciation := aSpeciation

The number of species in which the population is split may be accessed using the

following:

NELog>>numberOfSpecies

 "Return the number of species in the speciation"

 speciation ifNil: [^ 0].

 ^ speciation numberOfSpecies

As we will see later, the number of species in a log is useful for visualizing the

execution of the algorithm.

A log object refers to the speciation. Although convenient for looking at the

algorithm execution, keeping a reference of the speciation could be very costly,

especially with a large population over a large number of generations. The following

method enables us to release the memory when necessary:

NELog>>release

 "Release the specification, and thus reduce the amount of

 consumed memory"

 speciation := nil.

 bestIndividual := nil

Chapter 15 Neuroevolution with NEAT

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

330

15.13  �NEAT
We have defined all the relevant components of the NEAT algorithm. An essential step

is to connect the different components. The NEAT class is the main entry point to use

NEAT. We define the NEAT class as follows:

Object subclass: #NEAT

 instanceVariableNames: 'configuration populationSize population

 numberOfInputs numberOfOutputs logs fitness random speciation

 numberOfGenerations shouldUseElitism'

 classVariableNames: ''

 package: 'NEAT'

The NEAT class is long and contain many variables:

•	 configuration contains all the relevant information to configure

the algorithm. In particular, it refers to a collection of a association

following operation->probability, which represents the probability

(a float between 0.0 and 1.0) of applying a genetic operation on an

individual.

•	 populationSize represents the size of the population. As in a genetic

algorithm, this size is constant over time.

•	 population is a collection of NEIndividual objects.

•	 numberOfInputs is the number of inputs each individual should have.

This is a fixed constant, common to all individuals.

•	 numberOfOutputs is the number of outputs each individual has.

•	 logs is a collection of NELog, describing the execution of the

algorithm.

•	 fitness is a one-argument block that computes the fitness. The block

returns a numerical value for a provided individual.

•	 random is the random number used by the algorithm.

•	 speciation represents the current speciation. This variable points to

a new speciation at each generation.

Chapter 15 Neuroevolution with NEAT

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

331

•	 numberOfGenerations is the maximum number of generations. This

is the main mechanism to end the algorithm execution.

•	 shouldUseElitism is a boolean that determines whether we should

use elitism or not. As explained later, elitism is a simple technique

that ensures that the overall maximum fitness does not decrease over

the generation.

The algorithm is initialized as follows:

NEAT>>initialize

 super initialize.

 self defaultConfiguration.

 "We have two inputs and one bias per default"

 numberOfInputs := 2.

 numberOfOutputs := 1.

 populationSize := 150.

 random := Random seed: 42.

 logs := OrderedCollection new.

 numberOfGenerations := 10.

 self doUseElitism

Per the default, the algorithm is tuned to produce individuals with two inputs and

one output. The population size is 150, which is adequate in various situations. The

algorithms ends after ten generations.

The NEAT class requires a number of method accessors to support the configuration

and accessing information. The number of generations is set using the following:

NEAT>>numberOfGenerations: anInteger

 "Set the maximum number of generations to run before

 stopping the algorithm"

 numberOfGenerations := anInteger

The number of inputs each individual has is set using the following:

NEAT>>numberOfInputs: anInteger

 "Set the number of inputs each individual has"

 numberOfInputs := anInteger

Chapter 15 Neuroevolution with NEAT

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

332

The number of outputs is set using the following:

NEAT>>numberOfOutputs: anInteger

 "Set the number of outputs each individual has"

 numberOfOutputs := anInteger

The population size is set using the following:

NEAT>>populationSize: anInteger

 "Set the population size"

 populationSize := anInteger

The fitness function is set by providing a block accepting one argument, the

individual for which the fitness is being computed:

NEAT>>fitness: aOneArgumentBlock

 "Set a one-argument block as the fitness function.

 The block must return a numerical value, higher the value,

 better the individual"

 fitness := aOneArgumentBlock

To keep our implementation of NEAT small, we only support one way to compare

individuals: an individual is better than another if its fitness is higher. A high fitness

therefore represents a good individual.

Elitism is a simple technique that consists of passing on the best element from the

previous generation. When building a new population of size N, only N − 1 have to be

created from the genetic operation since the best individual automatically survives

through generations. One consequence of elitism is that we do not have decreasing

maximum fitness values. Using Elitism, the fitness value can only go up or be constant.

At a first glance, this is very appealing. However, it slightly reduces the possibility of

creating a new individual, which could have been better than the best individual of the

previous generation. In general, elitism gives very good results, which is the reason we

enable it by default.

Elitism is enabled using the following:

NEAT>>doUseElitism

 "Use elitism when generating a new population"

 shouldUseElitism := true

Chapter 15 Neuroevolution with NEAT

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

333

Elitism can be disabled using the following:

NEAT>>doNotUseElitism

 "Do not use elitism when generating a new population"

 shouldUseElitism := false

In our implementation, a configuration is defined as a set of probabilities for each

genetic operation. The configuration is reset using the following:

NEAT>>resetConfiguration

 "Reset the configuration of the algorithm"

 configuration := OrderedCollection new

The configuration variable contains all the parameters defining the

configuration of the algorithm. It is a collection of associations, as we will shortly

see. We define the defaultConfiguration method, invoked by the initialize

method, as follows:

NEAT>>defaultConfiguration

 "Make the algorithm use a default configuration"

 self resetConfiguration.

 self for: NEConnectionWeightMutationOperation prob: 0.2.

 self for: NEAddConnectionMutationOperation prob: 0.2.

 self for: NEAddNodeMutationOperation prob: 0.01.

 self for: NECrossoverOperation prob: 0.2

So far, we defined four genetic operations. The defaultConfiguration method

gives a probability for each of the operations. The value provided to the prob: keyword

indicates the probability of an individual to be mutated or applied a crossover. As

such, 20% of each generation (except the very first one) is made up of new individual

obtained from crossover. These values are arbitrary and may be easily changed, using

the following method:

NEAT>>for: anOperationClass prob: prob

 "Set the probability to apply a genetic operation"

 "Check if we have an existing configuration for the operation"

 �configuration do: [:assoc | (assoc key isKindOf:

anOperationClass)

Chapter 15 Neuroevolution with NEAT

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

334

 �ifTrue: [

assoc value:

prob. ^ self

]].

 "If no, then we simply add it"

 configuration add: anOperationClass new -> prob

The crossover between two individuals, ind1 and ind2, is performed using this

method:

NEAT>>crossoverBetween: ind1 and: ind2

 "Perform a crossover between two individuals

 The method returns a new individual"

 ^ ind1 fitness > ind2 fitness

 �ifTrue: [NECrossoverOperation new performOn: ind1 and: ind2]

 �ifFalse: [NECrossoverOperation new performOn: ind2 and:

ind1]

An individual is mutated using this method:

NEAT>>doMutate: individual

 "Perform a mutation on the individual.

 You provide a copy of an individual as an argument"

 configuration

 do: [:cAssoc |

 �(cAssoc key isKindOf: NEAbstractMutationOperation)

ifTrue:

 [

 random next <= cAssoc value

 �ifTrue: [cAssoc key random: random;

performOn:

 individual]]]

The doMutate: method takes an individual as an argument. This individual should

be a copy of an existing individual since, when we’re building a new generation,

the previous generation must remain unmodified. The method simply performs the

mutation as defined in defaultConfiguration or by the user with for:prob:.

Chapter 15 Neuroevolution with NEAT

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

335

We can now see the run method, which is used to run the NEAT algorithm. We define

run as follows:

NEAT>>run

 "Run the algorithm"

 self buildInitialPopulation.

 self doSpeciation.

 self computeFitnesses.

 self doLog.

 self runFor: numberOfGenerations

The run method first builds the initial population. It then performs the speciation as

seen earlier. The fitness is computed for each individual. A log is performed to describe

the initial population. Iterations are then run using runFor:. We will sequentially explain

each of these methods.

When starting the algorithm, the initial population is built before the evolution

process. We define the buildInitialPopulation method, which initializes the very first

population:

NEAT>>buildInitialPopulation

 "Randomly build the initial population"

 population := OrderedCollection new.

 populationSize timesRepeat: [

 | i |

 i := NEIndividual new.

 i random: random.

 numberOfInputs timesRepeat: [i addInputNode].

 numberOfOutputs timesRepeat: [i addOutputNode].

 population add: i]

Each individual contained in population has some input and output nodes, which

are preserved during the evolution. As we have seen, none of the genetic operations we

defined modify them. The individuals are now ready to have their fitness computed. The

fitness value for each individual is computed using computeFitnesses.

NEAT>>computeFitnesses

 "Compute the fitness value for each individual"

 population do: [:i | i computeFitness: fitness]

Chapter 15 Neuroevolution with NEAT

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

336

A log has to be created to describe the current generation. Logs created during the

evolution process are kept in the logs variable. The doLog method creates a snapshot of

the execution and is defined as follows:

NEAT>>doLog

 "Create a log object that summarizes the actual generation"

 | log |

 log := NELog new.

 log generation: logs size.

 log speciation: speciation.

 log minFitness: (population collect: #fitness) min.

 log maxFitness: (population collect: #fitness) max.

 log averageFitness: ((population collect: #fitness) average asFloat

 round: 3).

 log bestIndividual: self result.

 logs add: log.

The runFor: method executes the algorithm for a particular number of generations,

which is provided as an argument:

NEAT>>runFor: nbOfGenerations

 "Run the algorithm for a given number of generations"

 'Running the NEAT algorithm'

 displayProgressFrom: 1 to: nbOfGenerations

 during: [:bar |

 1 to: nbOfGenerations do: [:x |

 bar value: x.

 self runOneGeneration.]].

The runFor: method uses a progress bar as a visual indicator to monitor the number

of generations left to be run before obtaining a result. The NEAT algorithm is often time

consuming, so having a progress bar is helpful.

The main logic of the algorithm is implemented in the runOneGeneration method.

This method evolves a population into a new one:

NEAT>>runOneGeneration

 "Run the evolution algorithm for one generation"

 | newPopulation ind1 ind2 newInd numberOfIndividualToCreate |

Chapter 15 Neuroevolution with NEAT

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

337

 "Create the species"

 self doSpeciation.

 "We have an empty new population"

 newPopulation := OrderedCollection new.

 "The number of individual to create is populationSize, or

 populationSize - 1"

 numberOfIndividualToCreate :=

 (shouldUseElitism and: [self currentGeneration > 1])

 ifTrue: [

 | eli best |

 �best := self

result.

 �eli := best

copy.

 �eli fitness:

best

fitness.

 �new

Population

add: eli.

 �population

Size - 1]

 �ifFalse: [

populationSize].

 "The new population is built"

 numberOfIndividualToCreate

 timesRepeat: [

 "Should we do a crossover or not?"

 random next <= self crossoverRate

 ifTrue: [

 �s"If yes, two picked elements are

combined"

 ind1 := self selectIndividual.

Chapter 15 Neuroevolution with NEAT

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

338

 �ind2 := self selectIndividual:

ind1 species

 individuals.

 �newInd := self crossoverBetween:

ind1 and: ind2]

 ifFalse: [

 �"If no, then we simply copy a

selected individual"

 �newInd := self selectIndividual

copy].

 "We perform the mutation on the new individual"

 self doMutate: newInd.

 "Add it to the population"

 newPopulation add: newInd.

 "Compute its fitness value"

 newInd computeFitness: fitness].

 "The old population is replaced by the new population"

 population := newPopulation.

 self doLog

The first step of runOneGeneration is to do the speciation of the population. This

action helps perform a crossover between individuals since only individuals that belong

to the same species can be combined. We define the doSpeciation method as follows:

NEAT>>doSpeciation

 "Perform the speciation algorithm"

 speciation := NESpeciation new.

 speciation process: population.

The crossover rate is obtained from the configuration variable:

NEAT>>crossoverRate

 "Return the crossover rate"

 | t |

 t := configuration detect: [:assoc | assoc key isKindOf:

Chapter 15 Neuroevolution with NEAT

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

339

 NECrossoverOperation] ifNone: [^ 0].

 ^ t value

The current generation is useful for checking whether we have passed the first

generation or not in runOneGeneration. This is important since elitism cannot be done

in the first generation. We can determine the current number of generations with the

following:

NEAT>>currentGeneration

 "Return the current generation"

 ^ logs size

An individual can be selected from the population using the following:

NEAT>>selectIndividual

 "Select an individual from the population using the tournament

 selection algorithm"

 ^ self selectIndividual: population

The tournament selection algorithm is implemented in the selectIndividual:

method, which is defined in NEAT. This method simply picks five individuals from the

provided set of individuals and returns the one with the highest fitness value. The

method is implemented as follows:

NEAT>>selectIndividual: someIndividuals

 "Use the tournament selection algorithm to pick the best

 individual "

 | i k winner |

 winner := someIndividuals atRandom: random.

 "We have already picked the winner, we need 4 more individuals"

 k := 4.

 k timesRepeat: [

 i := winner species individuals atRandom: random.

 winner fitness < i fitness ifTrue: [winner := i]].

 "The winner of the tournament is returned"

 ^ winner

Chapter 15 Neuroevolution with NEAT

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

340

The NEAT algorithm may run for long period of times (e.g., minutes, hours, days,

or even weeks). Being able to release unnecessary resources, such as memory, may be

essential in some cases. We define the releaseHistory method, which helps reduce the

amount of used memory:

NEAT>>releaseHistory

 "Release the memory kept in the historical logs"

 logs allButLast do: #release

This method may be invoked within the fitness block function. When doing so,

the speciation of each log will be discarded, thus significantly reducing the memory

consumption. When performing a non-trivial execution (as we will do with the platform

game in the next chapter), it is important to monitor the memory consumption using

a dedicated tool of the operating system. For example, on MacOS, the Activity Monitor

system tool does an excellent job at estimating the memory consumed by Pharo.

Finally, the result of the algorithm may be obtained as the individual with the highest

fitness value.

NEAT>>result

 "Return the result of the algorithm, i.e., the fittest neural

 network"

 | winner |

 winner := population first.

 population do: [:i | winner fitness < i fitness ifTrue: [winner

 := i]].

 ^ winner

The logic and structure of the NEAT algorithm is now complete, and it can be run.

However, the implementation at this stage only produces a result, without telling us

much about how the evolution went. So, there is one last step before seeing the first

example, which is the visualization part.

15.14  �Visualization
Being able to visualize the evolution of the execution is not essential to using it. However,

it is a crucial source of relevant information that helps us decide whether one should

stop or pursue the algorithm execution. As we did in some previous chapters, we will use

Chapter 15 Neuroevolution with NEAT

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

341

Roassal and GTInspector to visualize some objects. These two important tools are not

described in this book. Instead, we recommend the reader search for additional sources

of documentation (any web search engine will do a remarkable job).

Probably the most relevant piece of information to visualize are the fitness values.

Understanding how the fitness has evolved over the generations is central to knowing

whether the algorithm is converging toward what is expected to be a solution. We define

the visualizeFitness method as follows:

NEAT>>visualizeFitness

 "Visualizing the max, min, and average fitness for each generation"

 | g d |

 g := RTGrapher new.

 "Min fitness"

 d := RTData new.

 d label: 'Minimum fitness'.

 d noDot; connectColor: Color red.

 d points: logs.

 d y: #minFitness.

 g add: d.

 "Max fitness"

 d := RTData new.

 d label: 'Maximum fitness'.

 d noDot; connectColor: Color blue.

 d points: logs.

 d y: #maxFitness.

 g add: d.

 "Average fitness"

 d := RTData new.

 d label: 'Average fitness'.

 d noDot; connectColor: Color green.

 d points: logs.

 d y: #averageFitness.

 g add: d.

Chapter 15 Neuroevolution with NEAT

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

342

 g axisX noDecimal; title: 'Generation'.

 g axisY title: 'Fitness'.

 g legend addText: 'Fitness evolution'.

 ^ g

When visualizing the fitness, the red curves give the worst fitness (i.e., the smallest

one) along the generation, the blue curves give the best fitness (i.e., the highest one), and

the green curves represent the average fitness. The visualizeFitness method is hooked

into the GTInspector framework using the following code:

NEAT>>gtInspectorViewIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: 'Fitness';

 initializeView: [self visualizeFitness]

By being hooked into GTInspector, one simply has to “inspect” the code to see its

results in the Pharo playground tool.

Another great source of data is the evolution of species. For example, it helps to

assess whether the population has enough diversity. Again, a diverse population has a

better chance of converging toward a solution. But it should not be too diverse, because

convergence is likely to slow down too much. The visualizeNumberOfSpecies method

is defined as follows:

NEAT>>visualizeNumberOfSpecies

 "Visualize the evolution of the number of species"

 | g d |

 g := RTGrapher new.

 d := RTData new.

 d points: logs.

 d y: #numberOfSpecies.

 g add: d.

 g axisX title: 'Generation'; noDecimal.

 g axisY title: '# species'.

 ^ g

Chapter 15 Neuroevolution with NEAT

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

343

The method we just defined is hooked into the GTInspector as follows:

NEAT>>gtInspectorNumberOfSpeciesIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: '#Species';

 initializeView: [self visualizeNumberOfSpecies]

NEAT produces neural networks, and we need a way to visualize these networks.

The speciation object has access to the whole population. Visualizing the speciation is

therefore appealing in that respect. The species are visualized using the following method:

NESpeciation>>visualize

 "Visualize groups of individuals"

 | b legendBuilder |

 b := RTMondrian new.

 b shape box size: [:s | s individuals size].

 b nodes: (self groups reverseSortedAs: #maxFitness).

 b layout grid.

 b normalizer normalizeColor: #maxFitness.

 b build.

 legendBuilder := RTLegendBuilder new.

 legendBuilder view: b view.

 legendBuilder addText: 'Species visualization'.

 legendBuilder addText: 'Box size = Species size'.

 legendBuilder addColorFadingFrom: Color gray to: Color red text: '

 Max fitness'.

 legendBuilder build.

 ^ b view

This method is hooked into the GTInspector using this method:

NELog>>gtInspectorViewIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: 'View';

 initializeView: [speciation visualize]

Chapter 15 Neuroevolution with NEAT

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

344

The visualization of the species is accessible by clicking a dot within the #Species

visualization that we defined earlier. When we click an individual species, the list of

individuals composing the species is given:

NESpecies>>gtInspectorListOfIndividualIn: composite

 <gtInspectorPresentationOrder: -10>

 composite list

 title: 'Individuals';

 display: individuals

When selecting an individual, the neural network is visualized using this method:

NEIndividual>>visualize

 "Visualization of the associated neural network"

 | b legendBuilder |

 self buildNetwork.

 b := RTMondrian new.

 b shape label text: #id;

 color: Color gray;

 if: #isInput color: Color blue;

 if: #isOutput color: Color red;

 if: #isBias color: Color yellow.

 b nodes: self nodes.

 b shape line color: (Color gray alpha: 0.8).

 b edges connectToAll: #connectedNodes.

 b layout tree; ifNotConnectedThen: RTGridLayout new.

 "The line width reflects the weight of the connection"

 b normalizer

 �normalizeLineWidth: [:from :to | from

weightOfConnectionWith:

 to] min: 0.5 max: 4.

 b build.

Chapter 15 Neuroevolution with NEAT

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

345

 "Render a legend on demand, accessible from the ? top left icon"

 legendBuilder := RTLegendBuilder new.

 legendBuilder onDemand.

 legendBuilder view: b view.

 legendBuilder addText: 'Individual visualization'.

 legendBuilder addColor: Color blue text: 'Input node'.

 legendBuilder addColor: Color red text: 'Output node'.

 legendBuilder addColor: Color yellow text: 'Bias node'.

 legendBuilder addColor: Color gray text: 'Hidden node'.

 legendBuilder build.

 ^ b view

The neural network is visualized as follows:

•	 Each node is represented by a number, indicating its identifier.

•	 Input nodes are blue numbers.

•	 Output nodes are red numbers.

•	 The bias node is yellow.

•	 Hidden nodes are gray.

•	 Connections between nodes are straight lines.

•	 Connection width indicates the connection weight, in which a thin

line is a negative weight while a thick line is positive.

The method is hooked with GTInspector using the following:

NEIndividual>>gtInspectorViewIn: composite

 <gtInspectorPresentationOrder: -10>

 composite roassal2

 title: 'View';

 initializeView: [self visualize]

One could design more sophisticated visualizations, but this is a very good base

to experiment with NEAT. Our implementation is now complete, and we can see the

first example.

Chapter 15 Neuroevolution with NEAT

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

346

15.15  �The XOR Example
In the chapter about neural networks, expressing the XOR logical gate was among the

first examples we saw. We can also produce a neural network to model this logical gate

using the following:

dataset := #(#(0 0 0) #(0 1 1) #(1 0 1) #(1 1 0)).

neat := NEAT new.

neat numberOfInputs: 2.

neat numberOfOutputs: 1.

neat fitness: [:ind |

 | score |

 score := 0.

 dataset do: [:tuple |

 �diff := (ind evaluate: tuple allButLast) first - tuple

last

 .

 score := score + (diff ∗ diff)].
 (score / -4) asFloat].

 neat numberOfGenerations: 180.

 neat run.

First the script defines the dataset variable, which contains the behavior of the

XOR gate. We use the same convention as before. The last value of each example is the

expected value, while all the other values are input values.

We need a neural network with two inputs and one output to express the XOR gate.

We therefore configure the NEAT algorithm accordingly.

The fitness function is expressed as a block, taking into account an individual. We

compute the score of each individual by trying out each of the examples of the dataset.

The score is divided by a negated value. This is important since our algorithm is only

able to maximize the fitness value. If the fitness value reaches 0, then it means the

evolution produced a perfect network. After the algorithm execution, we can obtain the

result from the produced network using the following:

neat result evaluate: #(1 1).

Chapter 15 Neuroevolution with NEAT

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

347

This expression evaluates to #(0.007300764789699831), which is a value close to 0,

which is the result of 1XOR1.

We next provide a number of visual interactions to explore the evolution process.

The execution of this script is shown in Figure 15-1.

The right side of the figure shows that the maximum fitness reaches 0, thus

indicating that NEAT has produced a perfect neural network. The figure also shows

that the average fitness is increasing, which is expected since overall, the population is

getting better. The minimum fitness value is relatively low, which is also a good thing

because it indicates that the population is diverse.

Figure 15-1.  Fitness evolution using NEAT

Chapter 15 Neuroevolution with NEAT

1562

1563

1564

1565

1566

1567

1568

1569

1570

348

The #Species tab shows a representation of the number of different species during

the execution, as shown in Figure 15-2.

The graph indicates that the algorithm began its execution with only one species,

which is not surprising since the algorithm generates connectionless individuals in

the first generation, and as such, all these individuals are identical. All the individuals

of the first generation belong to the same species. Quickly, we see that the number of

species reaches 70, indicating that the population is getting diverse. Along the execution,

the number of species falls to stay at a level of 16 different species. The right-most dot

represents the population that contains the result of the algorithm. Clicking it reveals

how the population is structured, as shown in Figure 15-3.

Figure 15-2.  The number of species during the evolution

Chapter 15 Neuroevolution with NEAT

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

349

Species are ordered along their maximum fitness. The species that has the maximum

fitness are located in the top-left part of the figure. While the species with the lowest

fitness is in the bottom right. Clicking the small top-left box reveals the individual with

the best fitness, as shown in Figure 15-4.

Figure 15-3.  Population structure

Chapter 15 Neuroevolution with NEAT

1581

1582

1583

1584

350

Clicking one individual from the list shows the visual representation of its neural

network, as shown in Figure 15-5.

Figure 15-4.  Getting individuals from best performing species

Chapter 15 Neuroevolution with NEAT

1585

1586

351

The visualization shows the input nodes in blue, the bias node in yellow, the output

node in read, and the hidden nodes in gray. The width of the lines indicates the weight. A

low negative weight is represented by a very thin line, while a high weight is represented

as a thick line.

15.16  �The Iris Example
In the chapter about neural networks, we used the Iris dataset to illustrate the

backpropagation mechanism. We can easily adapt the Iris dataset script to use NEAT:

"We prepare the data"

irisCSV := (ZnEasy get: 'https://agileartificialintelligence.github.io/

 Datasets/iris.csv') contents.

lines := irisCSV lines.

lines := lines allButFirst.

tLines := lines collect: [:l |

Figure 15-5.  Visualizing a neural network

Chapter 15 Neuroevolution with NEAT

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

352

 | ss |

 ss := l substrings: ','.

 (ss allButLast collect: [:w | w asNumber]), (Array with: ss

 last)].

irisData := tLines collect: [:row |

 | l |

 row last = 'setosa' ifTrue: [l := #(0)].

 row last = 'versicolor' ifTrue: [l := #(1)].

 row last = 'virginica' ifTrue: [l := #(2)].

 row allButLast, l].

"We run the NEAT algorithm"

neat := NEAT new.

neat numberOfInputs: 4.

neat numberOfOutputs: 3.

neat fitness: [:ind |

 | score |

 score := 0.

 irisData do: [:tuple |

 diff := (ind predict: tuple allButLast) - tuple last.

 score := score + (diff ∗ diff)].
 (score / -4) asFloat].

neat numberOfGenerations: 180.

neat run.

Chapter 15 Neuroevolution with NEAT

353

The result of running the Iris example is given in Figure 15-6.

The fitness function clearly indicates that NEAT can produce, through evolution, a

perfect neural network. In the chapter about neural networks, we trained the network

to learn the patterns present in the dataset. Using NEAT, we evolve a network up to the

point where it can correctly identify these patterns. Although the result is comparable in

this case, obtaining the result is completely different—in the previous chapter we used

backpropagation, whereas this chapter uses evolution.

15.17  �What Have We Seen in This Chapter?
This chapter focused on the NEAT algorithm. The chapter provided a complete

implementation of NEAT, which follows the original paper that describes NEAT (with

some minor simplifications). The chapter covered:

•	 An incremental implementation of the NEAT algorithm.

•	 The implementation of a number of visualizations to explore the

algorithm execution.

•	 Two small examples.

Figure 15-6.  NEAT and the Iris dataset

Chapter 15 Neuroevolution with NEAT

354

We provided a simplified version of the NEAT algorithm. In particular, for sake of

keeping the chapter short, we took a number of convenient decisions:

•	 The activation function is not subject to the searching carried out by

the genetic algorithm, i.e., our nodes only use the sigmoid function

activation.

•	 We restrict our algorithm to increase the fitness only. One could

easily adapt the implementation to offer the expressiveness we had

with the genetic algorithm.

•	 We use a rather simple definition of species. One could easily come

up with a more sophisticated definition.

Nevertheless, we provided a complete implementation of the algorithm. The

next chapter implements a small Mario-like game and runs NEAT on it to produce an

artificial player.

Chapter 15 Neuroevolution with NEAT

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

355
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_16

CHAPTER 16

The MiniMario
Video Game
This chapter builds a small video game inspired by Nintendo’s Mario Bros. Our version

of the game is a simplification of the real Mario Bros game. The purpose of this chapter

is to provide a solid and realistic base on which we can build an intelligent artificial

player. The goal of this chapter is not to provide a wonderful gaming experience. Instead,

the game is about providing a challenging scenario for exercising the NEAT algorithm

covered in the previous chapter. Our game, which we call MiniMario, has the following

characteristics:

•	 The game has one hero, Mario, located at the center of the screen.

•	 Mario can be controlled by using the keyboard or by an artificial

player.

•	 Mario can move left, right, and jump.

•	 The map is composed of bricks and tubes, which Mario cannot go

through.

•	 The map is populated by monsters and Mario must avoid them or the

game ends.

•	 Monsters walk in one direction until they bump into a brick or a tube,

in which case, the walking direction changes to the opposite.

•	 The goal of the game is to bring Mario to the right-most location of

the map.

This game is driven by a global pulse, which we call a beat. A beat represents an

indivisible time unit. At each beat, Mario and the monster may move by one cell. Note

that for the sake of simplicity, a monster cannot jump.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

356

Figure 16-1 shows a screenshot of a game. The graphical aspect is reduced to its

minimum, we simplified the goal of the game, and the physical engine is only briefly

sketched. Mario is located at the center and is painted in red. Platforms are brown, the

sky is blue, tubes are green, and monsters are orange. The figure shows Mario on top of a

tube, next to a platform. A monster is at the bottom of the tube. The figure illustrates the

drastic simplification we made to the visual aspect of the game.

16.1  �Character Definition
We begin the implementation of our game by defining characters. Two kinds of

characters are part of the MiniMario world: Mario and the monsters that Mario

should avoid. Mario and the monsters have commonalities, expressed by the

MNAbstractCharacter class:

Object subclass: #MNAbstractCharacter

 instanceVariableNames: 'position jumpNbSteps phase game isFalling

 isJumping'

 classVariableNames: ''

 package: 'MiniMario'

The MNAbstractCharacter class has the following variables:

•	 position refers to a point that indicates where in the map the

character is located.

Figure 16-1.  The MiniMario game

Chapter 16 The MiniMario Video Game

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

357

•	 jumpNbSteps counts the number of beats that occurred while the

character was jumping. This is a necessary piece of information to

express a jump without having a physical engine.

•	 phase indicates the phase of a jump. The phase can be #goingUp or

#goingDown.

•	 game refers to the game, an instance of the MNWorld class, which we

define later.

•	 isFalling is a boolean indicating whether the character is falling.

•	 isJumping is a boolean indicating whether the character is jumping.

When it’s first created, a character is not jumping or falling and is set to the 0 @ 0

position. We therefore define the initialize method as follows:

MNAbstractCharacter>>initialize

 super initialize.

 isJumping := false.

 position := 0 @ 0.

 isFalling := true.

As mentioned, the MiniMario game is driven by a global beat. We define the beat

method as follows:

MNAbstractCharacter>>beat

 "Execute a unit of behavior"

 isJumping ifTrue: [

 phase == #goingUp ifTrue: [self translateBy: 0 @ -1].

 phase == #doingDown ifTrue: [self translateBy: 0 @ 1].

 jumpNbSteps := jumpNbSteps + 1.

 jumpNbSteps = 5 ifTrue: [phase := #doingDown].

 jumpNbSteps = 10 ifTrue: [isJumping := false]].

 isJumping ifFalse: [

 self isThereAPlatformBelowMe

 ifTrue: [

 self setAsFalling.

 self translateBy: 0 @ 1]

 ifFalse: [self setAsNotFalling]].

Chapter 16 The MiniMario Video Game

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

358

The beat method executes a unit of behavior of the character. If the character is

jumping, the phase indicates the direction of the vertical translation: the character goes

up or down. The time of a jump is 10, and the direction changes at the fifth beat. If the

character is not jumping, it is set as falling if it is not above a platform.

The isThereAPlatformBelowMe helper method is useful for checking if there is a

platform below the character. This method is useful for deciding if the character must fall

or not. It is defined as follows:

MNAbstractCharacter>>isThereAPlatformBelowMe

 "Return true if there is no platform below the character"

 ^ (game getCellAt: self position + (0 @ 1)) = 0

If there is no platform below the character and it is not jumping, it is marked as falling:

MNAbstractCharacter>>setAsFalling

 "Set the character as falling"

 isFalling := true

If there is a platform below the character, then it is not falling:

MNAbstractCharacter>>setAsNotFalling

 "Set the character as not falling"

 isFalling := false

A character lives in a world, which is set using the following:

MNAbstractCharacter>>game: aWorldGame

 "Set the world in which I live"

 game := aWorldGame

The action of jumping is defined using the following method:

MNAbstractCharacter>>jump

 "Make the character jump"

 "Do nothing if it is jumping or falling"

 isJumping ifTrue: [^ self].

 isFalling ifTrue: [^ self].

 isJumping := true.

 phase := #goingUp.

Chapter 16 The MiniMario Video Game

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

359

If the character is falling or already jumping, then there is nothing to do. When it’s

jumping, the phase is set to #goingUp and no jump step is recorded (jumpNbSteps:= 0).

We define the action of moving left as follows:

MNAbstractCharacter>>moveLeft

 "Make the character move left"

 self translateBy: -1 @ 0

Similarly, the action of moving right is defined as follows:

MNAbstractCharacter>>moveRight

 "Make the character move right"

 self translateBy: 1 @ 0

The position of the character is used by the game itself. We therefore define an

accessor that will be used by the MNWorld class, which will define later:

MNAbstractCharacter>>position

 "Return the position of the character"

 ^ position

A character may be translated by a given distance, expressed as a point:

MNAbstractCharacter>>translateBy: aDeltaPosition

 "Translate the character by a delta, if possible"

 (self canGoToward: aDeltaPosition) ifFalse: [^ self].

 position := position + aDeltaPosition

Note that the translation is done only if there is room in that direction.

The canGoToward: utility method is useful for checking if a character can move in a

particular direction:

MNAbstractCharacter>>canGoToward: aDeltaPosition

 "Return true if the character can go toward a direction"

 ^ (game getCellAt: position + aDeltaPosition) = 0

When built, the world game sets the position of the character using the following method:

MNAbstractCharacter>>translateTo: aPosition

 "Set a position of the character"

 position := aPosition

We can now define some concrete character implementations.

Chapter 16 The MiniMario Video Game

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

360

16.2  �Modeling Mario
We define the MNMario class as follows:

MNAbstractCharacter subclass: #MNMario

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'MiniMario'

We override the beat method as follows:

MNMario>>beat

 super beat.

 "The game ends if Mario reaches the

 right-most position of the game"

 self position x = (game size x - 1) ifTrue: [game gameOver].

 "The game also ends if Mario bumps into a monster"

 game monsters do: [:m |

 (m position = self position) ifTrue: [game gameOver]]

There are two possible ways to end the game. Either (i) Mario reaches the right-most

extremity of the map or (ii) Mario bumps into a monster. As you can see, the definition of

Mario is relatively short since most of the logic is defined in MNAbstractCharacter.

16.3  �Modeling an Artificial Mario Player
After defining the Mario player, which is meant to be controlled by a human, we can set

up Mario to be steered by a neural network. We define the MNAIMario class as follows:

MNMario subclass: #MNAIMario

 instanceVariableNames: 'network'

 classVariableNames: ''

 package: 'MiniMario'

Chapter 16 The MiniMario Video Game

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

361

The unique variable defined by MNAIMario is network, which refers to a neural

network, which acts as Mario’s brain. This network is provided by the NEAT algorithm.

The beat method should now adequately use the network:

MNAIMario>>beat

 | actionToPerform |

 super beat.

 actionToPerform := network predict: game whatMarioSees.

 actionToPerform = 0 ifTrue: [self moveLeft].

 actionToPerform = 1 ifTrue: [self moveRight].

 actionToPerform = 2 ifTrue: [self jump].

Mario has three possible actions: move left, move right, or jump. As such, the neural

network must have three outputs. We use the predict: method seen in the previous

chapter to determine the most appropriate action. The input of the network is a

representation of what Mario sees.

A network may be provided to the artificial player using this:

MNAIMario>>network: aNeuralNetwork

 "Set the neural network meant to be used by Mario"

 network := aNeuralNetwork

16.4  �Modeling Monsters
A monster is modeled as a character in our game. We define the MNMonster class as a

subclass of MNAbstractCharacter:

MNAbstractCharacter subclass: #MNMonster

 instanceVariableNames: 'movingLeft pauseCounter'

 classVariableNames: ''

 package: 'MiniMario'

The class defines two variables:

•	 movingLeft indicates whether the monster moves to the left or to

the right.

•	 pauseCounter slows down the behavior of a monster.

Chapter 16 The MiniMario Video Game

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

362

Based on the definition of these two variables, a monster is initialized as follows:

MNMonster>>initialize

 super initialize.

 movingLeft := true.

 pauseCounter := 0

When created, a monster moves to the left. When it bumps into a platform,

then the monster turns in the opposite direction and moves to the right until it

bumps into something again. This behavior is implemented in the MNMonster>>beat

method:

MNMonster>>beat

 "A monster can go to the left or to the right"

 super beat.

 pauseCounter := pauseCounter + 1.

 pauseCounter < 10 ifTrue: [^ self].

 pauseCounter := 0.

 movingLeft

 �ifTrue: [(self canGoToward: -1 @ 0) ifFalse: [

movingLeft :=

 false]]

 �ifFalse: [(self canGoToward: 1 @ 0) ifFalse: [

movingLeft :=

 true]].

 movingLeft ifTrue: [self moveLeft] ifFalse: [self moveRight].

We use the pauseCounter variable to slow down the execution of the monster

behavior by a factor of ten. This factor helps make the MiniMario game playable by a

human.

Chapter 16 The MiniMario Video Game

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

363

16.5  �Modeling the MiniMario World
After having defined the characters, we now need to define the world. The MNWorld class

is rather long, but it is also rather simple. We define the MNWorld class as follows:

Object subclass: #MNWorld

 instanceVariableNames: 'map mario view monsters isGameRunning

 random'

 classVariableNames: ''

 package: 'MiniMario'

The class defines these variables:

•	 map is a large 2D array that contains numerical values describing the

map. In particular, the value 0 indicates an empty cell, 1 indicates a

brick, and 2 indicates a tube.

•	 mario refers to the Mario object.

•	 view is the Roassal view in which elements will be added.

•	 monsters is the collection of monsters living in the game.

•	 isGameRunning is a boolean indicating whether the game is running

or not.

•	 random is a random number generator, useful for generating the map.

The world is initialized using the following:

MNWorld>>initialize

 super initialize.

 self initializeMario.

 self seed: 42.

 self initializeMonsters.

 isGameRunning := true

Chapter 16 The MiniMario Video Game

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

364

The world is initialized by first initializing Mario, generating the map with the

arbitrary seed of 42. Subsequently, monsters are initialized and the game is set as

runnable. The map of the world is a long horizontal map, and its size is given by the

following:

MNWorld>>size

 "Return the size of the map"

 ^ 300 @ 10

The size of the map is expressed in the number of cells. The random number

generator is triggered with the seed: method, which is defined as follows:

MNWorld>>seed: aNumber

 "Create a random number generator with a particular seed"

 random := Random seed: aNumber.

 self generateMap.

The generateMap method generates a map for the world, as we will see later. Mario is

created using the following:

MNWorld>>initializeMario

 "Create a Mario object"

 mario := MNMario new.

 mario translateTo: 2 @ 2.

 mario game: self.

The initial position of Mario is in the top-left corner, at the position 2 @ 2. The

monsters are created as follows:

MNWorld>>initializeMonsters

 "Add a number of monsters"

 monsters := OrderedCollection new.

 10 timesRepeat: [

 | m |

 �m := MNMonster new translateTo: (random nextInt:

self size x) @

 2.

 self addMonster: m]

Chapter 16 The MiniMario Video Game

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

365

Monsters are randomly located in the map. Mario and the monsters have an initial

location with a Y component of 2. At the beginning of the game, the monsters will fall

since they are initially located in the upper part of the map and the platforms are below.

A monster is added to the world using the following:

MNWorld>>addMonster: aMonster

 "Add a monster to the world"

 monsters add: aMonster.

 aMonster game: self.

A brick is added to the world using this method:

MNWorld>>addBrick: position

 "Add a brick to a position"

 (self isInMap: position)

 ifTrue: [self cellAt: position put: 1]

A platform is simply five bricks that are lined up. The addPlatform: method adds a

platform located at a particular position to the world:

MNWorld>>addPlatform: position

 "A platform is horizontal and made of 5 bricks"

 -2 to: 2 do: [:i |

 self addBrick: position + (i @ 0)]

In Mario’s world, bricks and tubes are the two kinds of elements that Mario cannot

go through, forcing him to jump around them. We define a tube as follows:

MNWorld>>addTube: positionX

 "Add a tube at a given position in the map"

 | indexY |

 indexY := self size y - 1.

 3 timesRepeat: [

 self addTubeCell: positionX @ indexY.

 indexY := indexY - 1].

Chapter 16 The MiniMario Video Game

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

366

A tube cell is added using this method:

MNWorld>>addTubeCell: position

 "Add a cell representing a tube at a given position"

 (self isInMap: position)

 ifTrue: [self cellAt: position put: 2]

The overall map used in the world is defined using the generateMap method:

MNWorld>>generateMap

 "Randomly generate the map used in the world"

 �map := Array2D rows: self size y columns: self size x

element: 0.

 1 to: self size x do: [:x | self addBrick: (x @ self size y);

 addBrick: (x @ 1)].

 �1 to: self size y do: [:y | self addBrick: (1 @ y);

addBrick: (

 self size x @ y)].

 "The map has 80 platforms..."

 80 timesRepeat: [

 self addPlatform: (random nextInt: self size x) @ (random

 nextInt: self size y)].

 "... and 30 tubes"

 30 timesRepeat: [self addTube: (random nextInt: self size x)]

The generateMap method relies on the random number generator. At each

new generation, a new world is built. First, the map content is filled with the value 0,

representing an empty cell. The map is surrounded by bricks to prevent Mario from

reaching a place where the map is not defined. We then generate 80 platforms and 30

tubes. Note that this way of building a playable world is very simplistic. For example, the

code does not verify whether the exit is reachable. In practice, it appears that only a few

maps cannot be played until the end.

The value of a cell may be retrieved using the following method:

MNWorld>>getCellAt: aPoint

 "Return the value of a particular cell"

 ^ map at: aPoint y at: aPoint x

Chapter 16 The MiniMario Video Game

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

367

MNWorld>>cellAt: aPoint put: value

 "Set the value of a particular cell"

 ^ map at: aPoint y at: aPoint x put: value

This is relevant to whether a character should fall or not, depending on if it is

standing on a platform. Determining whether a position is within the map is useful to

prevent accessing a cell outside the map:

MNWorld>>isInMap: position

 "Return true if the position is within the map"

 ^ (1 @ 1 extent: self size) containsPoint: position

We can now focus on the logic of the game itself. The first aspect to focus on is the

beat. The global beat of the game is defined as follows:

MNWorld>>beat

 "The world beat performs a beat on each monster and on Mario"

 isGameRunning ifFalse: [^ self].

 monsters do: #beat.

 mario beat.

 self refreshView

The game is over if Mario reaches the right-most wall or if he bumps into a monster.

The gameOver method displays a message and ends the game:

MNWorld>>gameOver

 "End the game"

 isGameRunning := false.

 view ifNil: [^ self].

 view add: ((RTLabel new color: Color red; text: 'GAME OVER')

 element translateBy: 0 @ -100)

A new Mario character may be inserted in a world using the following:

MNWorld>>mario: aMario

 "Set Mario in the game"

 mario := aMario.

 mario game: self.

 mario translateTo: 2 @ 2

Chapter 16 The MiniMario Video Game

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

368

When added to the game, a Mario character is moved to the top-left corner of the map,

at the coordinate 2@2. The Mario character is accessed from the world using this method:

MNWorld>>mario

 "Return the Mario character"

 ^ mario

As we will see, accessing Mario is useful in the fitness function, because we can

obtain the position of Mario after having performed a particular number of beats.

Monsters must be accessible from the outside, because the Mario character needs to

know when he bumps into a monster. Monsters are accessible using the following:

MNWorld>>monsters

 "Return the list of monsters living in the world"

 ^ monsters

This last method concludes the definition of the game model. We can now focus on

the visual aspects of the game.

16.6  �Building the Game’s Visuals
The model of the game is now ready, and we “simply” need to hook it into Roassal to

create a visual representation. The map is a long horizontal matrix containing cells.

When presented to a human or an artificial player, only a small portion of the game

is visible. The visible portion is a square portion of visible game cells. The size of this

portion is determined by the following:

MNWorld>>windowSize

 "Number of pixels of a window frame side"

 ^ 11

As such, a square of 11 ∗ 11 cells will be shown when playing. In total, 121 cells are

visible. This number of cells is important when we tune the NEAT algorithm. The game’s

user interface is built using the generateUI method:

MNWorld>>generateUI

 "Build the game user interface"

 | e upperBounds lowerBounds cellSizeInPixel |

Chapter 16 The MiniMario Video Game

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

369

 "Size of each cell"

 cellSizeInPixel := 25.

 "Create the visual representation of cells"

 view := RTView new.

 upperBounds := self windowSize // 2.

 lowerBounds := upperBounds negated.

 lowerBounds to: upperBounds do: [:x |

 lowerBounds to: upperBounds do: [:y |

 �e := RTBox new size: cellSizeInPixel + 1;

elementOn: x @ y.

 view add: e.

 e translateTo: (x @ y) ∗ cellSizeInPixel]].

 "Define the actions to be taken when keys are pressed"

 view when: TRKeyDown do: [:evt |

 "Key D"

 evt keyValue = 100 ifTrue: [mario moveRight].

 "Key A"

 evt keyValue = 97 ifTrue: [mario moveLeft].

 "Key W"

 evt keyValue = 119 ifTrue: [mario jump]].

 "A beat is performed at each update of the UI"

 view addAnimation: (RTActiveAnimation new intervalInMilliseconds:

 30; blockToExecute: [self beat]).

 self refreshView.

The generateUI method begins with defining the cellSizeInPixel variable,

which corresponds to the size of the visual representation of each cell. Reducing the

cellSizeInPixel value has the effect of making the window smaller. A Roassal element

is created for each cell of the visible map portion.

Chapter 16 The MiniMario Video Game

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

370

Three actions are bound to keystrokes made by pressing the D, A, and W keys. A beat

of the game is performed every 30 milliseconds and is accompanied by updating the

UI. The refreshView method implements this behavior:

MNWorld>>refreshView

 "Research the UI"

 | p t color |

 view isNil ifTrue: [^ self].

 isGameRunning ifFalse: [^ self].

 p := mario position.

 view elements doWithIndex: [:e :index |

 t := p + e model.

 "Empty cells are blue

 Platform cells are brown

 Tube cells are green

 Cells outside the map are black"

 (self isInMap: t)

 ifTrue: [

 �(self getCellAt: t) = 0 ifTrue: [color :=

Color blue

].

 �(self getCellAt: t) = 1 ifTrue: [color

:= Color brown

].

 �(self getCellAt: t) = 2 ifTrue: [color

:= Color green

]]

 ifFalse: [color := Color black].

 "Mario is red"

 e model = (0 @ 0) ifTrue: [color := Color red].

 e trachelShape color: color].

 monsters do: [:m |

 t := m position - p.

 �"Only monsters that are within the window frame are

rendered"

Chapter 16 The MiniMario Video Game

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

371

 t x abs < self windowSize ifTrue: [

 | cell |

 cell := view elements elementFromModel: t.

 "Monsters are orange"

 �cell notNil ifTrue: [cell trachelShape color:

Color orange

]].

].

 view signalUpdate.

The refreshView method defines the color encoding of the various graphical

elements. The UI is open using this method:

MNWorld>>open

 "Open the UI"

 self inspect.

 self generateUI.

 ^ view open

The open method displays the UI of the game and opens an inspector on the game

itself. This is convenient in order to tweak the game. The NEAT algorithm will need to

provide some inputs to the neural work. These inputs correspond to the values of the

visible cells. For that purpose, we define the following method:

MNWorld>>whatMarioSees

 "Return the values of the visible cells"

 | result p t upperBounds lowerBounds |

 result := OrderedCollection new.

 p := mario position.

 upperBounds := self windowSize // 2.

 lowerBounds := upperBounds negated.

 lowerBounds to: upperBounds do: [:x |

 lowerBounds to: upperBounds do: [:y |

 t := p + (x @ y).

 (self isInMap: t)

 ifTrue: [result add: (self getCellAt: t)]

 ifFalse: [result add: 1]]].

 ^ result

Chapter 16 The MiniMario Video Game

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

372

The whatMarioSees method returns a collection of 0, 1, and 2, which corresponds to

what Mario sees. These values will be fed into the neural network when we use NEAT.

We will now define a method to provide an overview of the game. Note that this

method is not necessary to play the game or train an AI. Consider the following method:

MNWorld>>showCompleteMap

 "Show the complete map"

 | v cellSizeInPixel color e |

 v := RTView new.

 v @ RTDraggableView.

 cellSizeInPixel := 4.

 1 to: self size x do: [:x |

 1 to: self size y do: [:y |

 color := Color black.

 �(self getCellAt: x @ y) = 0 ifTrue:

[color := Color blue

].

 �(self getCellAt: x @ y) = 1 ifTrue:

[color := Color brown

].

 �(self getCellAt: x @ y) = 2 ifTrue:

[color := Color green

].

 �e := RTBox new size: cellSizeInPixel + 1;

color: color;

 elementOn: x @ y.

 v add: e.

 e translateTo: (x @ y) ∗ cellSizeInPixel]].
 v open

The showCompleteMap method shows an overview of the level.

16.7  �Running MiniMario
The game is now complete. A human can play it by simply executing this expression:

MNWorld new open

Chapter 16 The MiniMario Video Game

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

373

Mario is controlled using the A and D keys to move left and right, respectively. The W

key makes Mario jump. Thanks to the way we generated the levels, you can easily create

a new level using the seed: method. For example:

MNWorld new seed: 7; open

The number provided to seed: is associated with a particular level. The default map

is shown using this expression:

MNWorld new showCompleteMap

When a seed is provided, the expression becomes:

MNWorld new seed: 7; showCompleteMap

The results of the two maps are shown in Figure 16-2.

16.8  �NEAT and MiniMario
The UI of MiniMario is a squared portion of the map made of colored cells. As defined

in the MNWorld>>windowSize method, each side of the visual frame has 11 cells. The

number of displayed cells is 11 times 11, which is 121. Mario is controlled using three

different commands—move left, move right, and jump. This information gives some

hints to what the network should look like: 121 input neurons and three output neurons.

Consider the following script:

neat := NEAT new.

 neat numberOfInputs: 121.

 neat numberOfOutputs: 3.

 neat populationSize: 200.

 neat fitness: [:ind |

 w := MNWorld new.

Figure 16-2.  Example of generated maps for MiniMario

Chapter 16 The MiniMario Video Game

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

374

 w mario: (MNAIMario new network: ind).

 450 timesRepeat: [w beat.].

 w mario position x].

 neat numberOfGenerations: 160.

 neat run.

The algorithm maintains a population of 200 individuals, each representing a neural

network. The fitness score is computed as the distance of Mario from the end of the level.

The block provided to fitness: has the following sequence of instructions:

	 1.	 Create a MiniMario world.

	 2.	 Define Mario as a MNAIMario with the network represented by the

individual.

	 3.	 Perform 450 world beats.

	 4.	 Return the x position of Mario.

As such, two individual scripts (neural networks) can easily be compared: the one

that can bring Mario farther to the right is considered better. The previous script takes

time: approximately 13 minutes on a Dual-Core Intel Core i5, 1.6GHz, with 8GB.

Figure 16-3.  MiniMario and NEAT

Chapter 16 The MiniMario Video Game

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

375

Figure 16-3 shows the result of the evolution.

The neat result expression returns the best individual of the evolution, the one that

can bring Mario farthest to the right of the map. MiniMario can be run using an artificial

intelligence player, with this script:

...

w := MNWorld new.

w mario: (MNAIMario new network: neat result).

w open

As you can see, the AI we defined can lead Mario to the end of the level while

avoiding the monsters. We have therefore built an artificial player!

16.9  �What Have We Seen in This Chapter?
This chapter is not directly on the topic of artificial intelligence. However, it provides

a small implementation of a simplified version of the famous Mario Bros game. In

particular, the chapter covered:

•	 The design of a small game tuned to be plugged into the NEAT

algorithm.

•	 A skeleton of an artificial player with the MNAIMario class.

•	 The application of NEAT on MiniMario.

NEAT can evolve a neural network to complete the MiniMario game. This therefore

concludes this third and last part of the book.

Chapter 16 The MiniMario Video Game

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

377
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7

AFTERWORD

Last Words
It has been a long journey through three long parts. The first part of the book presented

neural networks and the way such networks can learn using backpropagation. The

second part covered genetic algorithms and presented several application of them.

The third part combined the result of the first two parts to make neural networks

evolve. The result of this combination culminates by building an artificial player for a

Mario Bros-like game.

The book provides a shallow overview of three fascinating topics. Most of the

chapters could be expanded in many different ways. We truly hope the book contributed

to awakening your interest in these topics. We invite you to make contributions and

share them, which you can do in the following ways:

•	 Open an issue on the accompanying GitHub repository at

https://github.com/Apress/agile-ai-in-pharo

•	 Send an email to the book’s author at alexandre.bergel@me.com

•	 Send a tweet to @AlexBergel

Notifications about typos and code improvements are very welcome. If you feel the

book can be improved in some way, please share your opinion.

Thank you.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

379
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7

Index

A
Activation functions, 39, 41, 42, 44

extending neuron, 43–45
implementation, 41–43
step function, 38, 39, 42

addForce: method, 240
addLayer: method, 59
add: method, 125, 126
addPlatform: method, 365
adjustDeltaWith: method, 65
Ant colony optimization algorithm, 156
Artificial Mario player, 360
Artificial neuron

activation function (see Activation
functions)

drawbacks, 48
limitation of perceptron, 37, 38
sigmoid neuron, 40

testing, 46–48
vs. perceptron, 48–50

tests, 46
asArray method, 121
at: method, 123
atRow: method, 124
Autoencoder, 284

B
Backpropagation, 377

definition, 62
error backward, 64, 65

forward feeding, 63, 64
steps, 62
updating neuron parameters, 66–68

backwardPropagateError: method, 64, 65
beat method, 240, 254, 261, 357, 358
Bee algorithm, 156
buildNetwork method, 309

C
canGoToward: utility method, 359
CConnection class, 244
CCreature class, 253
cellSizeInPixel variable, 369
C functions, 118
checkForCollision: method, 241, 254
checkIfInitialPopulationSet

method, 175
checkIfReadyToRun method, 185
CMuscle class, 245
CMuscleGenerator class, 259

delta value, 250
gene position, 252
initialization, 249
materialization, 252
random number, 250
serialization, 251
time threshold, 251

CNode class, 239, 241, 244
collide: method, 243
Competing convention problem, 285

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

380

computeFitnessUsing: method, 159
configureNodes: method, 255
Connection cache, 296
connectionsCache variable, 299
Constrained crossover operation, 270–271
CPlatform class, 241, 242
createElement method, 238, 240, 243, 246
createGeneBlock: method, 182
createNewPopulation method, 176, 178
Crossover genetic operations, 318, 320

implementation, 166
test, 167, 168

crossoverOperator: method, 183
crossover:with: method, 166, 168
crossover:with:midpoint: method, 167
CVisualElement class, 238, 240
CWorld class, 259

D
Data classification

contradiction, 98, 99
errors, 93, 95
hashmap, 92, 93
Iris flower dataset, 100–102
learning curve, 103–105
network training, 89–92
normalization, 109, 112
one-hot encoding, 99, 100
testing/validation, 106–108
visualize the topology, 96, 97

decodeToBoxes variable, 202
defaultConfiguration method, 333
derivative: method, 42
digitalComparator: method, 17, 18
doLog method, 336
doMutate: method, 170, 218, 334

doSelection method, 176, 338
dot: method, 132

E
engine method, 174
Error backward propagation, 62, 64, 65
eval: method, 41
evaluate: method, 301, 310, 311

F
feed: method, 9, 56, 63, 146, 149
FFIExternalArray class, 120, 121
fillWithWalls: method, 229
fitnessBlock: method, 182, 206
Fitness function, 157, 196
followOrders: method, 226, 235
Foreign Function Interface (FFI), 117
Forward feeding backpropagation, 62–64
Fundamental theorem of arithmetic

definition, 195
fitness function, 196
identification, 197
prime factors, 195

G
GACrossoverOperation class, 167
GAEngine

constructor, 184
crossover operation, 186
initial population, 186
mutation rate, 183
number of genes, 183
population size, 184
result, 188

Index

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

381

selection operator, 184
variables, 181, 182

GAEngine>>run method, 187
GAIndividual model, 158
GAIndividualTest, 162
GAMutationOperation class, 172
GAOperation class, 166
GARobot class, 225
GASelection class, 173
GATournamentSelection class, 177
geneFactoryBlock: method, 171
generateMap method, 364, 366
generateUI method, 369
Genetic algorithms (GA)

Darwinian natural selection, 155
definition, 156
engine (see GAEngine)
evolution monitoring, 179–181
exploitation, 169
exploration, 169
knapsack problem, 197–200
mutant operations (see Mutation

genetic operations)
operations (see Crossover genetic

operations)
parent selection (see Parent selection)
termination, 188–190
testing, 190, 191

getPossibleCutpoints
method, 286, 289

Gradient descent, 73–75
gridAt:put: method, 228
GTInspector framework, 152, 192

neural network, 345
speciation object, 343
visualizeNumberOfSpecies method, 342

gtInspectorViewIn: method, 192

H
Helper method, 96

I, J
increaseNumberOfInputs method, 301
initializeHandle:rows:columns:

method, 121
initialize method, 59, 259, 357
initializeNbOfNeurons:nbOfWeights:us

ing: method, 55
InnovationNumber variable, 304, 322
Iris flower dataset, 100, 152, 153

backpropagation mechanism, 351
learning, 110
NEAT algorithm, 353
network training, 102, 103
parts, 106
script, 101, 102

is:accessibleFrom:in: method, 324
isThereAPlatformBelowMe helper

method, 358

K
k-means clustering techniques, 284
knapsackMaxWeight variable, 199
0-1 Knapsack problem variant, 200–202

L
Learning algorithm

gradient descent, 73–75, 78, 79
loss function (see Loss function)
parameter updation, 76–78

learningRate: method, 55, 61
length method, 246, 260

INDEX

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

382

Linear normalization, 116
Loss function

definition, 69, 71
J function, 72
plotting points, 69, 70
points/line, 70, 71

M
Matricessumming, 125, 126
Matrix

backward propagation, 137, 138
random numbers, 135
subtraction, 133, 134
summing values, 135, 136
transpose, 136

Matrix-based layer
bias vector, 144
classical representation, 145
delta matrix, 144
initialization, 143
learning rate, 144
parameters updation, 146
random number generator, 146

Matrix-based neural network
central method, 147
chain of layers, 147
configuration, 148
cost function, 148
definition, 147
initialization, 147
learning rate, 149
parameter updation, 150
result visualization, 151, 152
training, 149

Matrix class, 119
content, 123
divide by factor, 131

factors, 129, 131
initialize, 120
print, 127, 128
size, 122
unit test, 122
values, 122

Matrix product, 132, 133
Mean squared error (MSE), 72
Meeting room scheduling problem,

202–204
microPause method, 187
miniBatches variable, 84
MiniMario video game

characteristics, 355
characters definition, 356–359
expression, 372, 373
instruction, 374
NEAT, 373, 375
screenshot, 356

Mini Sodoku, 204, 205
fitnessBlock

fitness evolution, 206, 207
method, 206

result, 207
MMatrix, 119
MMatrixTest class, 122
MNAbstractCharacter class, 356
MNAIMario class, 360
MNWorld class, 359, 363, 365
Modeling individuals

arguments, 160, 161
crossover genetic operation, 160
exact same individuals, 163
factory method, 161, 162
fitness variable, 159
fitness, 163–165
script, 164
test, 162

INDEX

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

383

Modeling join points, 238–242
Monster modeling, 361, 362
Muscles

color, 246
definition, 237
generating muscle (see

CMuscleGenerator class)
internal timer, 248
length, 246
nodes, 248, 249
strength, 248
threshold, 247
variables, 245

mutate: method, 170, 218
Mutation genetic operations

abstract class, 169
erroneous cases, 173
geneFactoryBlock variable, 171
mutation rate, 169, 170
test, 172

Mutation operations
adding connections, 322–324
functionalities, 320
node, 325
non-structural, 326
random number, 320
structure, 321, 322

N
NEAddConnectionMutationOperation

class, 322, 323
NEAT algorithm

activation function, 354
buildInitialPopulation method, 335
classical deep learning

approaches, 284
configuration variable, 333

definitions, 296
fitness function, 332
implementation, 353
initialization, 331
input values, 296
kind variable, 298–301
logging, 326, 328, 329
log objects, 296
mutation (see Mutation operation)
NEConnection class, 304–306
NEIndividual class, 306–313
NESpecies class, 313–315
node, 297, 298
output nodes, 296
speciation, 315–317
techniques, 285
variables, 330

neat result expression, 375
NENode class, 297
Neural network

architecture, 53, 54
fuly-connected, 54
layer (see Neural layer)
modeling, 59–61

NeuroEvolution of Augmenting
Topologies (NEAT), 285

NeuroGenetic approach, 283, 285
Neuron class, 5, 63, 744
Neuron layer

arguments, 55
chain of layers, 58
determination, 56
initialization, 54
isOutputLayer predicate, 56
nbOfNeurons, 55
random number generator, 58
sigmoid message, 55

NeuronLayer class, 54, 57

INDEX

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

384

Neuron parameters
backpropagationupdating, 62,
66–68

NeuronTest class, 46
newFromVector: method, 128
newNeuron method, 46
NMLayer class, 143
NNetwork class, 59
Normalization, 111
NP-hard, 210
numberOfExamples: method, 145
numberOfMeetings variable, 204
numberOfNodes variable., 272

O
One-hot encoding, 91, 99
Ordered crossover operation, 219
out method, 305

P, Q
Parent selection

comparison, 177
fitness block, 174
population size, 175
tournamentSize variable, 177

pauseCounter variable, 362
Perceptron

Announcement package, 5
bias variable, 9
boolean logical gates, 13, 15
definition, 3
digital comparator circuit, 16–18
drawing graphs, 24, 25
errors handling, 15, 16
evaluation, 9, 10
image-recognition task, 4

measurement, 31, 33
NeuralNetwork package, 6
prediction/2D points (see

Prediction/2D points)
representation, 3
system browser, 5, 6
testing, 10–12
training, 19–23
weights, method, 7, 8

PerceptronTest class, 46
performOn: method, 321
Pharo programming language, 5, 9, 34, 267
pickCutPointFor: method, 167
position method, 241, 258
possibleCutpoints variable, 271
Prediction/2D points, 25

adding line, 27, 28
classification dots, 26
color prediction, 28, 30
random number generator, 30, 31

predict: method, 150, 312, 361
previousLayer variable, 54
printOn: method, 127
produceNewPopulation method, 188

R
randomlyLocateNodes: method, 258
reachStable method, 254
refreshView method, 370, 371
Reinforcement learning, 284
releaseHistory method, 340
resetConnections method, 303
Robot

definition, 225, 227
encoding behavior, 225
evolution, 231, 232
footprint, 233, 234

INDEX

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

385

GARobotMap class
definition, 227
entrance point, 228
exit, 229
initialization, 227
initial position, 229
open method, 230
varibales, 227

penalty, 233
runFor: method, 335, 336

S
seed: method, 364
selectIndividual: method, 339
set:genesUsing: method, 160, 161
setUp method, 172, 221
setWeightsAndBias: method, 287
showCompleteMap method, 372
Sigmoid activation function, 303
SigmoidAF>>derivative: method, 87
sigmoid function, 40, 42
Sigmoid neuron, 40
size: method, 228
Stochastic gradient descent (SGD), 79–86
sub: method, 133
sumHorizontal method, 126
Supervised learning, 283
Swap mutation operation, 218

T
testBasic method, 58
testSmallExample method, 11, 12
testTrainingOR method, 22, 23
timeTaken method, 268
totalValue variable, 199

totalWeight variable, 199
Tournament selection

algorithm, 339
train:desiredOutput: method, 20, 21, 45
train:nbEpochs: method, 114, 150
translateTo: method, 243
transposed method, 136
Traveling Salesman Problem (TSP)

definition, 209
illustration, 210
Naive approach

acceptable result, 214
example, 214
genetic algorithm, 211, 217
genetic operations, 218, 222–224
ordered crossover operation,

219–221
Point class, 215
result, 212, 216, 217
revised version, script, 212
swap mutation operation, 218, 219

NP-hard, 210
setup, 209

U
Unsupervised learning, 284
updateWeight: method, 66

V
Vector, 128
viewLearningCurve method, 94
visualize method, 191
visualizeFitness method, 342
Visualizing population

evolution, 191–194

INDEX

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

386

W
weightOfConnectionWith: method, 300
whatMarioSees method, 372

X, Y
XOR logical gate

dataset variable, 346
fitness evolution, 347
neural network, 346
population structure, 349
#Species tab, 348
visual representation, 350, 351

Z
Zoomorphic creatures, 237

accessors/utility methods, 258, 259
climb stairs, 279–281
competing conventions

problem, 269, 270

constrained crossover operation, 270
creation, 255–257
definition, 253, 254
environment, 274
fitness function, 273
GALog class, 268
g result expression, 275, 276
Intel Core i5, 3.7GHz, 271
interrupting Pharo, 267
join point, 239
linear genetic information, 272
materialization, 257
modeling join points, 238–242
muscles (see Muscles)
obstacles, 277
platforms, 242, 243
script, 274
serialization, 257
stages, 274
untrained, 262–264
world definition, 259–262

INDEX

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

