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Indexed inductive types are essential in dependently-typed programming languages, enabling precise and
expressive speci�cations of data structures and properties. Recognizing that programming and proving with
dependent types could bene�t from the smooth integration of static and dynamic checking that gradual typing
o�ers, recent e�orts have studied gradual dependent types. Gradualizing indexed inductive types however
remains mostly unexplored: the standard encodings of indexed inductive types in intensional type theory, e.g.,
using type-level �xpoints or subset types, break in the presence of gradual features; and previous work on
gradual dependent types focus on very speci�c instances of indexed inductive types.

This paper contributes a general framework, named Punk, speci�cally designed for exploring the design
space of gradual indexed inductive types. Punk is a versatile framework, enabling the exploration of the
space between eager and lazy cast reduction semantics that arise from the interaction between casts and the
inductive eliminator, allowing them to coexist and interoperate in a single system.

Our work provides signi�cant insights into the intersection of dependent types and gradual typing, by
proposing a criteria for well-behaved gradual indexed inductive types, systematically addressing the outlined
challenges of integrating these types. The contributions of this paper are a step forward in the quest for
making gradual theorem proving and gradual dependently-typed programming a reality.
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1 Introduction

Indexed inductive types play a pivotal role in dependently-typed programming languages due to
their versatility in expressing complex data structures and logical properties [Chlipala 2013; Pierce
et al. 2015] and are therefore a predominant feature of languages such as Idris [Brady 2013] and
proof assistants such as Coq [The Coq Development Team 2020], Lean [de Moura et al. 2015], and
Agda [Norell 2007]. These types extend the capabilities of traditional inductive types by allowing
constructor types to depend on terms, enabling precise and expressive speci�cations of data and
program behavior. Some canonical examples of indexed inductive types include bounded natural
numbers, length-indexed lists (called vectors), heterogeneous lists, Martin-Löf’s propositional
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equality [Martin-Löf 1971], and lambda calculus terms indexed over names in scope. This expressive
power makes dependently-typed languages invaluable not only for theorem proving but also for
general-purpose programming: programmers can leverage indexed inductive types to encode
intricate invariants and constraints within the type system, leading to safer and more reliable code.
As programming languages, dependently-typed languages empower developers to write certi�ed
software by either including correctness proofs along the code (extrinsic style) or by extending
data structures with invariants and using the type system to enforce correctness (intrinsic style);
the latter approach uses indexed inductive types extensively.
While dependently-typed languages o�er immense power, they are often quite challenging

to use. The intricate type system and the need to express program properties at the type level
creates a steep learning curve for both developers entering the realm of formal veri�cation and
mathematicians looking to mechanize their work.

Gradual typing is a discipline that provides �exibility by enabling the smooth transition between
statically and dynamically typed code and vice versa [Siek and Taha 2006]. Code can be made more
dynamic by using imprecise types, i.e., the unknown type ? or types with unknown components,
such as ?→ N. Conversely, code can be made more static by replacing occurrences of the unknown
type with static types. Imprecision is checked optimistically by the typechecker, and type safety
is ensured by inserting runtime checks—usually called casts—to detect any type error that may
arise during execution. The smooth transition provided by gradual typing is captured by a couple
of properties called the gradual guarantees, which state that typing and reduction are monotone
with respect to precision [Siek et al. 2015b]. Gradual typing has been successfully applied to a wide
range of type systems and programming language features. The impact of gradual typing is not
limited to academia, as its ideas are being adopted by various mainstream programming languages,
such as TypeScript, Flow, and Racket, among others.

There have been several attempts to integrate some degree of dynamic typing into dependently-
typed languages [Dagand et al. 2018; Ou et al. 2004; Tanter and Tabareau 2015]. One remarkable e�ort
to bring gradual typing to dependently-typed languages is the gradual dependently-typed language
GDTL [Eremondi et al. 2019]. GDTL uses the Abstracting Gradual Typing methodology [Garcia et al.
2016] to gradualize the predicative variant of the calculus of constructions (CCl ) with call-by-value
semantics. GDTL has two distinct phases, a compile-time phase that optimistically approximates
type checking (approximate normalization) and a runtime phase that, while being exact, may
fail or diverge. Since GDTL allows for non-termination it is more suited for dependently-typed
programming than for theorem proving.
Another notable e�ort is the Gradual Calculus of Inductive Constructions (GCIC) [Lennon-

Bertrand et al. 2022]. GCIC brings gradual typing to a restricted version of Calculus of Inductive
Constructions (CIC) that supports parametrized inductive types, not indexed inductive types in
general. Lennon-Bertrand et al. [2022] have established that it is impossible for any gradual language
to achieve a conservative extension of CIC, strong normalization, and graduality simultaneously.
Graduality [New and Ahmed 2018], in this context, refers to a semantic formulation of the dynamic
gradual guarantee where losing and then recovering precision yields an equivalent term. GCIC
comes in three di�erent variants, each one dropping one of these properties while maintaining
the other two: GCICN drops graduality, GCICG drops strong normalization, and GCIC↑ drops the
conservative extension with respect to CIC.
GCIC has been recently extended in two separate directions. On the one hand, Eremondi et al.

[2022] extend GCICG with support for propositional equality. Like GDTL, their intention is to
make a gradual dependently-typed language rather than a gradual theorem prover, hence they
choose to sacri�ce strong normalization. On the other hand, GRIP [Maillard et al. 2022] explores

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 255. Publication date: August 2024.



Gradual Indexed Inductive Types 255:3

the space of gradual theorem proving by extending GCICN with an internalized notion of precision.
GRIP features two universe hierarchies, one for gradual types and terms, whose reduction can
raise an exception (either error or the unknown term), and another for pure (non-gradual) strict
propositions [Gilbert et al. 2019]. Since the internalized notion of precision lives in the propositional
universe, it is possible to reason in a logically consistent way about gradual programs. Although
graduality does not hold universally in GRIP, the authors identify a subset of the language, called
the monotone fragment, for which graduality holds and can be internally established. Outside of
the monotone fragment are the Π types that produce terms of a universe and, more relevant to this
work, the catch operator that serves as the eliminator of inductive types in an exceptional type
theory [Pédrot and Tabareau 2018].
Despite the many advances in gradual type theories summarized above, none of these theories

supports gradual indexed inductive types in general. In the gradual setting, handling indexed
inductive types presents distinct challenges. On the one hand, traditional methods for encoding these
types, such as type-level �xpoints and subset types, do not behave as expected when interacting
with the unknown type and casts. On the other hand, direct approaches have either focused in a
speci�c indexed inductive type [Eremondi et al. 2022] or ad-hoc mechanisms restricted to indices
with decidable equality [Lennon-Bertrand et al. 2022]. This lack of support is a serious limitation
considering the importance of indexed inductive types in all kinds of development with proof
assistants such as Coq, Lean and Agda. This work tackles this challenge by extending GRIP with a
general notion of gradual indexed inductive types. Interestingly, we observe that there is no unique
or generally better way to deal with casts on indices at runtime: there are just di�erent possible
semantics for cast reduction, with di�erent tradeo�s, just like there are di�erent possible semantics
for higher-order casts in standard gradually-typed languages [Siek et al. 2009].
Among the many behaviors one may consider for multiple consecutive casts, we concentrate

on three options in this paper: free, meet, and forgetful. These approaches correspond to cast
reduction semantics already studied in the gradual typing literature [Greenberg 2017; Siek and
Wadler 2010] and exhibit di�erent behaviors with respect to the interaction of cast sequences and
elimination. First, the simplest option is to account for every possible cast in the sequence; we
call this the free (F) cast reduction semantics. In particular this means that casts on constructors
do not reduce and simply accumulate. Second, one can choose to accumulate intermediate casts
using a special construct called a meeting (M) to store the accumulated meet (i.e., greatest lower
bound with respect to precision) of the indices of the targets of the casts.1 This technique has the
advantage of ensuring cast space e�ciency, as any cast sequence is represented in a single meeting,
faithfully respecting every cast in the original sequence. A third option, which is also space e�cient,
is to drop intermediate casts and just keep the outermost one. This semantics is called forgetful

(U) [Greenberg 2017] because it forgets (possibly invalid) intermediate casts. Here is an example
of the expected cast reduction rules for the three semantics, where the empty vector nil of type
V� 0 is �rst cast to V� 1 and then to its original type:

̸{ (normal form) (� )

⟨V� 0⇐ V� 1⇐ V� 0⟩ nil { ⟨V� 0⇐ V� errN⇐ V� 0⟩ nil (")

{ ⟨V� 0⇐ V� 0⟩ nil (* )

We observe that these cast reduction semantics can be characterized in terms of precision (⊑)
through the interaction of the eliminator (called catch) and casts. This di�erence in behavior divides
the space of possible semantics for indexed inductive types into three distinct classes depending on

1This construct was previously known in the literature as a threesome [Siek and Wadler 2010]. In cooperation with the
original authors, we choose to rebrand to avoid the double entendre. The new name meeting was suggested by Phil Wadler.
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which property they satisfy. Inductive types satisfy equiprecise elimination when they commute per-
fectly (i.e., moving casts in and out of catch does not a�ect precision), overprecise elimination when
they gain precision when moving casts to the outside of the catch, and underprecise elimination

when they lose precision by doing so. For instance, the forgetful semantics exhibits an overprecise
eliminator: casting a constructor before eliminating it may fail less than casting after eliminating. For
example, let us consider a function 5 :Π(� : □) (= : N),V�= → if (is_err=) then err□ elseN

on forgetful vectors that returns errerr□ when the index = is errN and 0 otherwise. Because
forgetful inductives drop intermediate casts, casting nil before applying it to 5 is less precise than
casting after its application instead. In the following example, the cast through V� errN is ignored
and the reduction proceeds successfully:

5 (⟨V� 0⇐ V� errN⇐ V� 0⟩ nil) { 5 (⟨V� 0⇐ V� 0⟩ nil) { ⟨N⇐ N⟩ (5 nil)

{ ⟨N⇐ N⟩ 0 { 0

However, when casting on the motive after applying 5 , the cast does go through err□ and fails:

⟨N⇐ err□ ⇐ N⟩ (5 nil) { ⟨N⇐ err□ ⇐ N⟩ 0 { errN

To explore these di�erent semantics in a uni�ed way we devise the notion of an index accumulator,
a data structure used to accumulate the indices of the targets when casting terms of an indexed
inductive types. The three examples above can be interpreted using di�erent index accumulators:
the free semantics can be interpreted using a list to accumulate every index, the meet semantics
can be interpreted using a pair holding the accumulated precision meet [Siek and Wadler 2010]
together with the outermost index, and the forgetful semantics can be interpreted using an option
type to record the index of the outermost cast, if any. Rewriting the previous examples using index
accumulators (in blue) we get the following:

{ nil [0, 1] (� )

⟨V� 0⇐ V� 1⇐ V� 0⟩ nil { nil (0, errN) (")

{ nil (some 0) (* )

Apart from the way that indices of casts are accumulated, all semantics share most of their typing
and reduction rules. We abstract indexed inductive de�nitions into a framework, called Punk,
parametrized by an abstract index accumulator. We give a formal de�nition of index accumulators
as a type inhabited by a distinguished term that represents the absence of casts and an action over
indices used to accumulate them. For instance, the free index accumulator is a list of indices, where
the distinguished term is the empty list and the action is appending an index to the head of the list.
Precision on index accumulators must re�ect the fact that they are used to accumulate casts and
therefore should internalize properties of precision such as monotonicity and retraction [Maillard
et al. 2022]. The index accumulator abstraction enables us to prove general properties, such as
subject reduction and graduality, for any concrete semantics of gradual indexed inductive types, as
long as its corresponding index accumulator satis�es certain properties.
As indexed inductive types are widely used in both theorem proving and dependently-typed

programming, this work is an important step in the quest for making gradual theorem provers and
gradual dependently-typed programming languages a reality.

Contributions. This work makes the following contributions:

• We explore the design space of indexed inductive types, identify various semantics and
characterize them in three di�erent classes, based on the interaction between elimination
and casts, in terms of precision (§3).
• We propose the Punk framework, an extension of GRIPwith gradual indexed inductive types,
supporting multiple cast semantics (§5).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 255. Publication date: August 2024.



Gradual Indexed Inductive Types 255:5

• We formally establish the metatheory of Punk and provide instances for the three classes of
inductive families (§6).

2 Background on Gradual Dependent Type Theory

In this section we give an overview on the work that this articles builds upon, its base gradual type
theory and some previous approaches to gradual indexed inductive types.

2.1 The Gradualized Calculus of Inductive Constructions (GCIC)

Lennon-Bertrand et al. [2022] introduced GCIC, an extension of the Calculus of Inductive Construc-
tions (CIC), which incorporates gradual typing to the language. Like in a gradually typed lambda
calculus, GCIC has an unknown type ?□ , optimistically representing any type, and an ascription
operator C :: � that allow to treat a term C as if it had type � regardless of the actual type of C .
This permits the construction of terms like D ≜ (_(G : ?□ ).notG) 0 that, although optimistically
well-typed, informally correspond to a run-time failure that dynamically enforce typing invariants.

In GCIC, the semantics are de�ned by elaboration into a cast calculus named CastCIC. This
calculus extends CIC, introducing two exceptional terms err� and ?� that represent runtime errors
and unknown terms for any given type �, respectively. Additionally, CastCIC introduces a casting
operator ⟨�⇐ �⟩ C coercing a term C of type � to a term of type �. As an example, the previous
GCIC expression D elaborates in CastCIC to (_(G : ?□ ) .(not ⟨B⇐ ?□⟩ t)) (⟨?□ ⇐ N⟩ 0). Casts
in CastCIC then reduce by comparing their source and target type, failing dynamically when
a mismatch is found. In the running example, after V-reducing the top-most redex, we obtain
not ⟨B⇐ ?□⟩ (⟨?□ ⇐ N⟩ 0) that reduces to not errB because 0 is not a canonical form of type
B. A gradual dependent type system introduces a new challenge since computations involving
exceptional terms may appear in types.

CastCIC features a single hierarchy of universes, denoted as Type or □. The calculus supports
simple inductive types likeN or B, as well as parameterized types like list. However, it does not o�er
a generalized support for indexed inductive types. In CastCIC, every type includes exceptional
terms in the form of runtime errors (err) and unknown terms (?), with the following typing rules:

Γ ⊢ � : □ℓ

Γ ⊢ err� : �

Γ ⊢ � : □ℓ

Γ ⊢ ?� : �

These exceptional terms follow a call-by-name semantics [Pédrot and Tabareau 2018], implying
that errors and unknown terms do not propagate unless they are forced in a computation. For
example, (_(G : N).0) errN reduces to 0 rather than propagating errN. Exceptional terms are
considered canonical forms for positive types, while for negative types, they propagate exceptions
when observed. For instance errN→N reduces to (_(G : N). errN).

Furthermore, CastCIC includes the previously mentioned cast operator ⟨�⇐ �⟩ C , allowing
terms of one type to be interpreted as another. The typing rule for casts its the expected one:

Γ ⊢ � :□ℓ Γ ⊢ � :□ℓ Γ ⊢ C :�

Γ ⊢ ⟨�⇐ �⟩ C :�

Throughout this paper we use the notation ⟨� ⇐ �⇐ �⟩ C as a shorthand for two consecutive
casts ⟨� ⇐ �⟩ ⟨�⇐ �⟩ C .

The �re triangle of graduality. Lennon-Bertrand et al. [2022] study three properties, apart from
subject reduction, that can be expected from a gradual type theory: normalization, conservativity
with respect to a theory, and graduality. Normalization ensures the logical consistency of the system
and is a desirable property for any type theory, especially when used as the underlining theory of
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a theorem prover. The other two properties are part of the gradual guarantees [Siek et al. 2015a], a
group of properties expected from every gradually -typed language. Conservativity with respect
to a static system states that the semantics of the gradual and static systems coincide on their
common terms. Finally, graduality [New and Ahmed 2018] ensures that dynamic checks, such as
casts, should only perform type checking: successful casts cannot a�ect the behavior of a program
and invalid ones should fail more. However, the Fire Triangle of Graduality [Lennon-Bertrand
et al. 2022] states that any gradual type theory cannot simultaneously satisfy the three properties.
Consequently, GCIC and CastCIC come in three variants, each one sacri�cing one property.

2.2 Internal Notion of Precision

Maillard et al. [2022] present GRIP, an extension of CastCICN—the normalizing variant that
sacri�ces graduality as a global property—that introduces an internal representation of precision.
This allows the user to reason about precision and graduality of terms within the type theory itself.
To this end, they introduce an additional hierarchy of universes, denoted Prop, beside that of gradual
types. Prop is a proof-irrelevant hierarchy of universes dedicated to pure propositions: propositions
that can be about exceptional terms (err or ?) but cannot be inhabited by these exceptional terms.
Prop hosts two key relations for internal reasoning about precision: term precision and type precision.
Term precision, noted 0 ⊑� � 1, states that the term 0 of type � is more precise than 1 of type
� as terms, with the unknown term ?� as a top element and err� as a bottom element. Term
precision is an heterogeneous relation, i.e., the types � and � are not required to be the same. Type
precision, noted � ⊑ℓ �, states that � is more precise than � as types at universe level ℓ . This
distinction circumvents the Fire Triangle: the unknown type is not a top element for type precision
and term precision for types: � ⊑

□ℓ □ℓ
� only holds when � is more precise than � as a term, and

are bounded by the unknown type ?□ℓ
(i.e., � ⊑ℓ � ∧ � ⊑ℓ ?□ℓ

).
The precision relations live in the pure fragment of GRIP and therefore forbid exceptional proofs.

Precision is a transitive relation, but unlike in more simple type systems, only the gradual terms (i.e.,
terms for which graduality holds) are related to themselves, or self-precise. In particular, functions
are self-precise when they are monotone with respect to precision (i.e., they map related inputs to
related outputs). We write �⊑ when a type � is self-precise at the level of types and 0⊑� when a
term 0 of type � is self-precise as a term. Precision cannot be re�exive in general because it would
break conservativity of the system with respect to CIC, forbidding non-monotone functions, such
as a dependently-typed printf function. Instead, precision is quasi-re�exive, meaning that if two
terms are related by precision, then both are self-precise.
Since GRIP admits non-self-precise terms and can consistently reason about the precision of

programs, the authors consider a general eliminator catch for inductive types that provide branches
for exceptional inhabitants [Pédrot et al. 2019]. These exceptional branches allow the user to handle
exceptions as they see �t. Therefore, catch makes it possible to de�ne non-monotone functions:
e.g., consider 5 : B → B that matches on a boolean, swaps err and ? (i.e., 5 errB { ?B and
5 ?B { errB) and is the identity on pure booleans. However, catch is monotone whenever
each constructor branch falls between the error branch and the unknown branch in terms of
precision [Maillard et al. 2022]. Under mild assumptions on the precision of the motive and branches,
amonotone eliminator elim notmentioning the exceptional cases can then be systematically derived
from catch by forwarding the exceptions.

2.3 Basics of Indexed Inductive Types

Now we turn our focus to the main subject of this paper, namely indexed inductive types. In
simple terms, indexed inductive types are just a shape plus an index. By shape we mean the basic
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Fixpoint Vfix (A : □) (n : N) : □ := catch n with

| O ⇒⊤ | errN⇒ err□

| S m ⇒ A ∗ Vfix A m | unkN⇒ unk□ end.

Definition Veq (A : □) (n : N) : □ :=

{ l : list A | length l = n }

Fig. 1. Encodings of indexed inductive types in Coq

structure of inhabitants of the type, for example, the shape of listN, lists of natural numbers, is
a �nite (thanks to the constructor nil) sequence of numbers (using the constructor cons). The
constructors completely describe the shape of their inductive type, meaning that every closed term
of the inductive must be convertible to one of its constructors. This enables the use of case analysis
to eliminate the terms of an inductive type and more importantly it induces an induction principle
to establish properties of these terms. Indices, on the other hand, constrain the terms inhabiting an
indexed inductive type, encoding properties and invariants of the inductive data. For example, we
can encode sized list of A as a type V A n indexed by a natural number = where constructors are
annotated with their size: the empty list nil has length 0 and cons’ing a new element on top of a
list increases the length of the list by 1. Indices are specially useful to eliminate impossible cases
when reasoning using induction. For instance, we can de�ne the function hd in Coq that extracts
the head of a vector with at least one element like this:

Definition hd (A : □) (n : N) (v : V A (S n )) : A := match v with | cons _ a _ ⇒ a end.

This function is de�ned by case analysis on the vector argument v; if the vector is a cons it returns
its content, but if the vector is empty (i.e., it is nil) there is no content to extract! The latter case
does not need to be considered since the type of the function makes it impossible to apply it to an
empty vector.

Incorporating explicit support for indexed inductive types in a type theory that already accommo-
dates standard inductive types is not strictly essential for their de�nition. This can be achieved by
leveraging the existing features within the system (e.g., see Veq in Figure 1). However, this approach
can result in reduced logical strength, leading to diminished expressiveness and the introduction
of potential inconsistencies. For instance, without the capability for large elimination—namely,
the ability to construct a type depending on the structure of an inductive type—there are certain
types and functions related to these types that cannot be adequately expressed (e.g., see Vfix in
Figure 1). For instance, the absence of large elimination precludes the de�nition of a type family
over booleans that is inhabited exclusively in the true �ber. Furthermore, this limitation extends
to function de�nitions; speci�cally, the hd function cannot be de�ned, as its correct application
necessitates a V with a length strictly greater than zero to ensure subject reduction.

Previous approaches to indexed inductive types in CastCIC. Although Lennon-Bertrand et al. [2022]
presents a way to de�ne non indexed inductive types and indexed inductive types with forceable
indices, they argue that extending CastCIC with a general notion of indexed inductive types is not
trivial. Their approach is to extend indexed inductive type de�nitions with extra constructors that
represent casts to the unknown index. For instance, the de�nition of the type V for lists indexed
by their length is extended with two new constructors nil? representing ⟨V� ?N⇐ V� 0⟩ nil

and cons? representing ⟨V� ?N⇐ V� (S=)⟩ cons= G GB . Cast on constructors to imprecise indices
reduce to their imprecisely indexed counterparts and vice versa on cast from imprecise indices.

⟨V� ?N⇐ V� 0⟩ nil { nil? ⟨V� 0⇐ V� ?N⟩ nil? { nil

This approach does not generalize to arbitrary indices because the reduction rules discriminate the
indices of the cast, here ?N and 0. Indices taken in a function type or an arbitrary type, like in the
case of propositional equality, cannot be discriminated in this fashion.
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Eremondi et al. [2022] solves this problem for propositional equality G =� ~, by extending refl
with a new argument F , more precise than both indices G,~ : �, that serves as a witness of the
casts that have been performed on the equality proof. In this approach, casts on refl are performed
without matching on the target’s index and are instead accumulated in the witness using the meet of
the indices of the casts. For this reason, they de�ne an operator, called composition, that computes
the meet with respect to precision of any two terms. This operation is de�ned for every type, even
dependent products.
The elimination of propositional equality via the J rule performs the substitution as usual and

then casts the result to and from the predicate applied to the witness. If M is a predicate over �, 0
and 1 two terms of type �, C an instance of M 0, and reflF a proof of 0 =� 1 with witness F , the
reduction for J is de�ned as follows:

J(�, G .M G, 0, 1, C, reflF) { ⟨M 1 ⇐ MF⟩ ⟨MF ⇐ M 0⟩ C

Using propositional equality it is possible to de�ne indexed inductive types out of parametrized
inductive types using fording,2 that is, using a proof of equality to enforce that the constructors
have the correct index. For instance, in the de�nition for vectors the index N becomes a parameter
(= : N) and the type of each constructor is now guarded by an equality constraint on =:

Inductive V (A : □) (n : N) : □ :=

| nil : n = 0 → V A n

| cons : ∀ (m : N), n = S m → A→ V A m→ V A n.

Note that this approach requires the de�nition of inductive types with non-uniform parameters

(i.e., parameters that can vary in recursive occurrences of the inductive type). Moreover, this
approach re�ects the cast reduction semantics of propositional equality. In this paper, we explore
multiple cast reduction semantics and provide a direct approach instead of relying on this encoding.

3 Overview of Gradual Indexed Inductive Types and Punk

Since previous approaches to gradual indexed inductive types have shortcomings, we pursue here
a general and proper treatment of these suitable for a gradual proof assistant. In this section we
give a high level presentation of our solution for supporting indexed inductive types in a gradual
type theory. In §3.1, we address the question of encoding gradual indexed inductive types using
features already available in type theory, exhibiting their limitations, and devise well-behavedness
criterion in §3.2. Then, we explore some possible semantics for gradual indexed inductive types
(§3.3) and �nish by giving an overview of our solution (§3.4).

3.1 Encodings Are Not Satisfactory

Fixpoint encoding. Inductive types indexed on inductive indices sometimes admit an encoding as
a type level �xpoint in a non-gradual type theory [Brady et al. 2004]. In that situation, the type
family is de�ned as a Type-valued recursive function by induction on indices. For example, the
�xpoint encoding of vectors Vfix (Figure 1) is de�ned by mapping the index 0 to the unit type ⊤
with a single element for the argument-less constructor nil, and S= to the product�×Vfix�= for
cons, which takes an element of type � and a vector of length = to produce a vector of length S=.
However, in a gradual setting this encoding admits more terms than one would expect on

unknown indices. For instance, the type Vfix� ?N is convertible to the unknown type ?□ : any
term of any type can be cast to a valid vector of unknown index (e.g., ⟨?□ ⇐ N⟩ 0 : Vfix B ?N).
The introduction of these extra inhabitants break the expected shape of the type, since it will be

2This technique was invented by Coquand for his work on the proof assistant ALF in the 1990s, as a way to reduce indexed
inductive types to parametrized inductive types and an equality type. The name fording was �rst coined by McBride [1999].
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inhabited by constructors other than nil and cons. On the other hand, nil and cons are still the
only non exceptional canonical forms with indices 0 and S=, respectively, thus respecting the
constraints enforced by the indices.

Subset type encoding. Subset types {0 : � |M 0} represent elements of a carrier type � satisfying
some predicate M : � → Prop, that is the subset of the inhabitants 0 of � for which M 0 holds.
Terms of a subset type are tuples (0, ?) consisting of a term 0 : � and a proof ? : M 0.

In non-gradual type theories it is possible to encode an indexed inductive type as the subset of a
non-indexed inductive type with the same shape whose elements satisfy the properties represented
by their indices [Caglayan 2021]. For instance, vectors can be encoded as a list together with a
proof that it has the correct size (Veq in Figure 1).
In contrast, subset types do not behave well in a gradual type theory. The core issue lies in

the incompatibility of propositions with gradual operations. Essentially, any gradual proposition
is inhabited by exceptional proofs making the system inconsistent and logically unsound: ⊥ is
trivially provable by ?⊥. Moreover, casts between gradual propositions would need to synthesize
proofs on the �y. Since arbitrary proofs cannot be synthesized in a computable and total fashion,
Maillard et al. [2022] de�ne cast between gradual propositions to always reduce to an exception.
Therefore, gradual subset types cannot enforce properties over terms, and the correspond-

ing encoding of indexed inductive types does not maintain the invariants associated to the in-
dices across casts. For instance, it would be easy to construct an empty vector with index 1 as
(nil, errlength nil=1). Since, using this encoding, the index of an inductive type says nothing about
its inhabitants, indexed inductive types degenerate into regular non-indexed inductive types (e.g.,
vectors become equivalent to lists).

3.2 Requirements for Gradual Indexed Inductive Types

Informally, the encodings presented in the previous section do not provide the invariants expected
from indexed inductive types. We identify two criteria to guarantee that an implementation of
gradual indexed inductive types do not exhibit these issues. These criteria, index relevance and
shape relevance, correspond to the two key characteristics of indexed inductive types, their shape
and index.

De�nition 3.1 (Index relevance). A self-precise type family - :� → □ℓ ′ over � :□ℓ is index
relevant when precision-related instances of - imply relatedness of the indices:

∀(0, 0′ :�). - 0 ⊑ℓ ′ - 0′ → 0 ⊑� � 0′

In categorical language, - is full and faithful, when viewed as a functor from the precision preorder
on the domain � to the type precision preorder.
For instance, the inductive family V of vectors is index relevant if V�< ⊑ℓ V�= implies

< ⊑
N N

=. As we saw in §3.1, encoding indexed inductive types as subset types cannot be index
relevant.

De�nition 3.2 (Shape relevance). A self-precise type family - :� → □ℓ ′ over � :□ℓ is shape
relevant if its image {- 0}0 :� :□ℓ ′ in the universe is both upward and downward closed with
respect to precision:

∀(0 :�). 0⊑� → ) ⊑ℓ - 0 → (∃(0′ :�),) = - 0′) ∨ () = err□ℓ ′
)

∀(0 :�). 0⊑� → - 0 ⊑ℓ ) → (∃(0
′
:�),) = - 0′) ∨ () = ?□ℓ ′

)

Put simply, an inductive is shape relevant if it is only related by precision with the error type
err□ , the unknown type ?□ and itself, possibly applied to di�erent parameters and indices. This
criterion excludes degenerated cases such as N ⊑ℓ V� ?N and ensures that inductive types are
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Inductive vec (A : □) : N→ □ :=

| nil : vec A 0

| cons : ∀ (n : N), A

→ vec A n→ vec A (S n ).

Fixpoint len {A n} (v : vec A (S n )) : N :=

catch v with

| nil ⇒ O | err⇒ errN

| cons _ _ v ⇒ S (len v) | unk⇒ errN end.

Definition f_ty (n : N) : □ :=

catch n with

| 0 ⇒ list N | errN⇒ err□

| S _ ⇒ list B | unkN⇒ err□ end.

Definition f {A n} (v : V A n) : f_ty n :=

catch v with

| nil ⇒ [ 0 ] | err⇒ err

| cons _ _ _ ⇒ [ true ] | unk⇒ unk end.

Fig. 2. Definitions illustrating the behaviors of cast on GIIT in Gallina (Coq).

not inhabited by canonical forms of other types, a condition violated by �xpoint encodings (§3.1).
Conversely, the approaches to gradual indexed inductive types discussed in §2.3 satisfy both criteria.
We consider essential to ensure that the de�nition of well-behaved inductives encompasses the
prior research on gradual indexed inductive types.
Apart from these two criteria, we also need to ensure that the gradual indexed inductive types

satisfy the relevant gradual properties, in particular inductive type constructors must be self-precise.
Following Maillard et al. [2022], self-precision for a type family - : �→ □ mandates that any two
elements 0, 0′ : � related by precision 0 ⊑� � 0′ yield precision-related types - 0 ⊑ℓ - 0′, that in
turn need to preserve graduality [New and Ahmed 2018].

De�nition 3.3 (Graduality). Cast between types related by precision- ⊑ℓ . induce an embedding-

projection pair, meaning a Galois connection ⟨. ⇐ - ⟩ ⊣ ⟨- ⇐ . ⟩ with respect to precision such
that ⟨. ⇐ - ⟩ ◦ ⟨- ⇐ . ⟩ ⊒⊑ id- .

3.3 Possible Semantics for Gradual Indexed Inductive Types

As we saw in §1, there are many valid semantics for gradual indexed inductive types, and it is
not clear if one is better than the other. These di�erent inductive de�nitions can be classi�ed
according to their eliminator’s interaction with casts, up to precision. Since precision is asymmetric,
we identify three primary behaviors: preservation of precision (equiprecise elimination), gain in
precision (underprecise elimination), and loss of precision (overprecise elimination), explicitly
excluding the case when there is no relation. In the following, we explore how inductive types from
each of these classes behave, illustrated with examples. In each example we observe the behavior
of the three semantics for vectors illustrated in the introduction.

3.3.1 Eliminating with a Constant Motive. We start with a simple example: computing the length
of the vector ⟨VB 0⇐ VB 1⇐ VB 0⟩ nil using the function len provided in Figure 2.

Free vectors. Casts on free vectors do not reduce, delegating the task of evaluating casts to the
result of an elimination:

len (⟨VB 0⇐ VB 1⇐ VB 0⟩ nil) { ⟨N⇐ N⇐ N⟩ (len nil) { ⟨N⇐ N⇐ N⟩ 0 { 0

Meet vectors. Casts on meet vectors reduce to a meeting and then propagates the casts:

len (⟨VB 0⇐ VB 1⇐ VB 0⟩ nil) { len (⟨VB 0⇐ VB errN⇐ VB 0⟩ nil)

{ ⟨N⇐ N⇐ N⟩ (len nil) { ⟨N⇐ N⇐ N⟩ 0 { 0
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Forgetful vectors. Forgetful vectors ignore intermediate casts and so maintain at most one cast:

len (⟨VB 0⇐ VB 1⇐ VB 0⟩ nil) { len (⟨VB 0⇐ VB 0⟩ nil)

{ ⟨N⇐ N⟩ (len nil) { ⟨N⇐ N⟩ 0 { 0

It is interesting to note that because the motive of the elimination (__ _.N) does not depend on
the index, the three semantics are equivalent.

3.3.2 Eliminating with a Dependent Motive. Let us examine a more interesting example. The
function f (Figure 2) operates on vectors with a return type f_ty that actually depends on the
vector index. This function maps 0 to listN, S= to listB, and exceptional naturals errN and ?N

to their corresponding exceptional types err□ and ?□ . The function f transforms the empty vector
nil to a singleton list [0], cons vectors to [true], and propagates exceptional terms. Recall that
in exceptional type theory, exceptions are by-name [Pédrot et al. 2019], meaning that terms may
have exceptions as subterms. In particular, this means that [errN] is a normal form and does not
reduce to errlistN. Given that f’s return type is dependent, applying our three vector semantics
to f v reveals varied outcomes.

Free vectors. In the free semantics every cast is taken into account and, after propagating the
casts outside of the eliminator, an intermediate cast through listB remains. Since we only perform
casts between lists, the shape of the list is preserved (i.e., it stays a singleton), but the inner cast
fails because the parameters are incompatible, resulting in a singleton list with an error inside.

f ⟨VB 0⇐ VB 1⇐ VB 0⟩ nil

{ ⟨listN⇐ listB⇐ listN⟩ (f nil) { ⟨listN⇐ listB⇐ listN⟩ [0]

{ ⟨listN⇐ listB⟩ [⟨B⇐ N⟩ 0] { ⟨listN⇐ listB⟩ [errB] { [errN]

Meet vectors. Meet semantics consolidate intermediate casts into one, through the accumulated
meet of their indices, here represented by 0⊓ 1 { errN. After propagating the casts out of the
eliminator, the intermediate cast goes through err□ because f_ty propagates the exception. In
contrast to the free semantics, the structure of the list is not preserved.

f ⟨VB 0⇐ VB 1⇐ VB 0⟩ nil

{ f ⟨VB 0⇐ VB errN⇐ VB 0⟩ nil { ⟨listN⇐ err□ ⇐ listN⟩ (f nil)

{ ⟨listN⇐ err□ ⇐ listN⟩ [0] { ⟨listN⇐ err□⟩ errerr□ { errlistN

Forgetful vectors. In the forgetful semantics the intermediate cast through VB 1 is dropped
allowing the computation to recover from what could have been an invalid state.

f ⟨VB 0⇐ VB 1⇐ VB 0⟩ nil { f ⟨VB 0⇐ VB 0⟩ nil

{ ⟨listN⇐ listN⟩ (f nil) { ⟨listN⇐ listN⟩ [0] { [0]

Interestingly, the outcomes of these semantics are distinguished by their precision levels. Speci�-
cally, meet vectors yield more precise results than free vectors, which in turn are more precise than
those from forgetful semantics: errlist,N ⊑ [errN] ⊑ [0].

This illustrates the fact that each of these semantics belongs to a unique class of inductive types—
free vectors to equiprecise elimination, meet vectors to underprecise elimination, and forgetful
vectors to overprecise elimination. Importantly, this classi�cation extends beyond vectors, applying
to all indexed inductive types and highlighting the nuanced behavior of these three semantic
approaches.
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3.4 Overview of Punk

As we have discussed in the previous sections, introducing indexed inductive types to a gradual
type theory requires us to think very carefully about how casts interact with constructors and the
eliminator. Moreover, there is not a unique, nor best, behavior for cast reduction. To capture this
fact, we present a framework for de�ning indexed inductive types that is parameterized by the way
cast reduction works.

We describe di�erent cast reduction semantics by de�ning a notion of index accumulator, a type
used to accumulate the indices of the casts that have been applied to a constructor. Essentially,
elements of an index accumulator correspond to a sequence of indices. An indexed accumulator is
equipped with a term representing the empty accumulator 1 and an operation i ⊗ acc to extend an
accumulator acc with a new index i. We extend the syntax of constructors with a new argument, the
index accumulator. A constructor that has not been casted yet carries an empty accumulator and
casts on a constructor extend the accumulator with the target index. In contrast to indices, casting
the parameters cannot fail since they are shared by all constructors and require no special treatment:
changes to parameters are propagated inside the constructor and applied to its arguments. For
instance, casting the vectorF ≜ cons 1 true (nil 1), reduces as follows:

⟨VN 2⇐ VB 1⟩ cons 1 true (nil 1) { cons (2 ⊗ 1) (⟨N⇐ B⟩true) (⟨VN 0⇐ VB 0⟩(nil 1))

{ cons (2 ⊗ 1) errN (nil (0 ⊗ 1))

A gradual indexed inductive type I p i, as every other gradual type, has two extra inhabitants—the
exceptional terms errI p i and ?I p i. To handle the elimination of these extra inhabitants, we borrow
the catch eliminator from exceptional type theory [Pédrot et al. 2019]. This eliminator extends the
eliminator from CIC with an extra branch for each exceptional term. In the case of Punk, catch
has two new branches: herr and hunk for err and ?, respectively.

To handle the elimination of constructors using catch, index accumulators provide a representa-
tion of their elements as list of indices. When eliminating a constructor, the accumulated indices
are propagated outside of the eliminator as casts and the elimination proceeds as if the accumulator
was empty. For example, if the accumulator 2 ⊗ 1

p yield the list [2], applying f (Figure 2) on the
example vectorF reduces as follows:

f (cons (2 ⊗ 1) errN (nil (0 ⊗ 1))) { ⟨f_ty 2⇐ f_ty 1⟩ f (cons 1 errN (nil (0 ⊗ 1)))

{ ⟨listB⇐ listB⟩ [true] { [true]

3.4.1 Di�erent Semantics in Punk. Using di�erent accumulators we can construct indexed inductive
types with di�erent cast reduction semantics. We focus on three di�erent semantics: free, meet,
and forgetful inductives.

Free inductives. Free indexed inductives accumulate the indices of every cast using a list. Casting
a constructor extends the accumulator with the target index as its head, keeping all casts into
account.

⟨VB 0⇐ VB 1⇐ VB 0⟩ (nil []) { ⟨VB 0⇐ VB 1⟩ (nil [1]) { nil [0, 1]

Meet inductives. The meet semantics accumulates casts by storing the accumulated meet of the
target indices of the casts applied to a constructor, together with the target index. Meet inductives
accumulate indices using a type inhabited by the empty accumulator zero that represents the
absence of casts and meet two i1 i2 with target index i1 and accumulated meet i2. On elimination,
these constructors are interpreted as a list with 0 or 2 indices, respectively.

⟨VB 0⇐ VB 1⇐ VB 0⟩ (nil zero) { ⟨VB 0⇐ VB 1⟩ (nil (two 1 (0⊓ 1)))

{ nil (two 0 (0⊓ 1⊓ 0))
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Γ ⊢ Δ tele Telescope Δ in context Γ Γ ⊢ f : Δ Substitution f of the telescope Δ over context Γ

Name Description Well-formedness

Param Parameters of the inductive I ⊢ Param tele

Idxp Indices of the inductive I Param ⊢ Idxp tele

#ctors Number of constructors of the inductive I #ctors ∈ N

Arg
p
c Arguments of the constructor c Param ⊢ Arg

p
c tele

#indargs
c

Number of inductive arguments of c #indargs
c
∈ N

IndArg
p

c,:
Arguments of the k-th inductive argument of c Param,Arg

p
c ⊢ IndArg

p

c,:
tele

arg_idx
p

c,:
Indices of the k-th inductive argument of c Param,Arg

p
c, IndArg

p

c,:
⊢ arg_idx

p

c,:
: Idxp

ctr_idx
p
c Indices of the constructor c Param,Arg

p
c ⊢ ctr_idx

p
c : Idxp

Fig. 3. Defining components for an indexed inductive type

ParamV ≜ (� : □ℓ ) Idx�
V
≜ (= : N) #ctorsV ≜ 2 Arg�

V,nil ≜ ()

Arg�
V,cons ≜ (= : N) (0 : �) #indargs

V,nil ≜ 0 #indargs
V,cons ≜ 1 IndArg�

V,cons,1 = 0 ≜ ()

arg_idx�
V,cons,1 = 0 ≜ = ctr_idx�

V,nil ≜ 0 ctr_idx�
V,cons = 0 ≜ S=

Fig. 4. Defining components for the type family of vectors.

Forgetful inductives. Forgetful inductives drop any intermediate cast and their accumulator holds
only the target of the outermost cast if any. To this end, they accumulate indices using an option
type where none stands for the absence of casts and some holds the index of its only cast when
needed. Therefore the expected cast reduction rule for forgetful vectors is encoded as follows.

⟨VB 0⇐ VB 1⇐ VB 0⟩ (nil none) { ⟨VB 0⇐ VB 1⟩ (nil (some 1)) { nil (some 0)

The semantics that we explore in this paper use non-indexed inductive types as their index
accumulators, however our framework is more general and it is not restricted to such types.

Summary. We saw that there is not a unique way to give semantics to gradual indexed inductive
types. There is a degree of freedom regarding how casts commute with the eliminator up to
precision and we have identi�ed three meaningful alternatives. Each of these options gives rise to
a class of indexed inductive types. Punk supports each of these classes with a speci�c instance:
free, forgetful, and meet inductives. The semantic di�erences are captured by di�erent choices of
an index accumulator.

A note on language design. A speci�c gradual proof assistant can decide to either embrace a given
accumulator semantics once and for all, or opt to allow programmers to con�gure this choice, either
globally or on a case-by-case basis. In the latter option, the choice of the accumulator semantics can
be made independently for each gradual indexed inductive type. In theory, one can even support
two implementations of the same inductive family with di�erent accumulator semantics; however,
in that case, the two families are unrelated by precision, so any cast between them fails. As a formal
framework designed to study these semantics, Punk is agnostic with respect to this issue.
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Γ ⊢ C :)

I-Ty
Γ ⊢ p :Param Γ ⊢ i : Idxp

Γ ⊢ I p i : □ℓ

I-Ctor
Γ ⊢ p :Param Γ ⊢ a :Arg

p
c

∀ 9 < #indargs
c
, Γ ⊢ A 9 :Π (G 9 : IndArg

p
c, 9 a), I p (arg_idx

p
c, 9 aG 9 )

Γ ⊢ cpa −→A 9 : I p (ctr_idx
p
c a)

I-Elim
Γ ⊢ p :Param Γ ⊢ M :Π (i : Idxp ), I p i→ □ℓ ′

∀ : < #ctors, Γ ⊢ hck : Branch
p
c:

M Γ ⊢ i : Idxp Γ ⊢ t : I p i

Γ ⊢ elimp M
−→
hck

i t :M i t

C { C canonical C

I-Elim-Ctor: elimp M
−→
hck

i (cpa −→A 9 ) { hc a
−→A 9
−→
C 9 C 9 ≜ _ (G 9 : IndArg

p
c, 9 a), elim

p
M
−→
hck
(arg_idx

p
c, 9 aG 9 ) (A 9 G 9 )

Evaluation Contexts

C ::= . . . | elimp M
−→
hck

i C

Red-Cong
C { C ′

C[C ] { C[C ′ ] canonical c
pa −→A 9

Fig. 5. Typing and reduction rules for static inductive types.

4 Syntax and Semantics of Indexed Inductive Families

General formal accounts of indexed inductive types are notationally demanding. In this section,
we �x notations for indexed inductive types in CIC, and give their static and dynamic semantics.
These notations are employed to present gradual indexed inductive types in subsequent sections.

An inductive de�nition specify a type constructor I, term constructors c that serve as the
canonical inhabitants of the inductive type, and an eliminator elim that consumes inductive terms
of type I via case analysis with one branch for each of the inductive’s term constructors.
The typing rules for static indexed inductive types (Figure 5) use a collection of metafunctions

associated to the inductive de�nition (Figure 3).3 Most metafunctions are parameterized by an
instance p of the telescope of parameters Param. As an illustration, the components for the type
family of vectors is shown in Figure 4.

Introduction. An inductive type family I is introduced as a type I p i using Rule I-Ty with
substitutions p and i for the telescopes of parameters and indices. A term of that type is formed
through a constructor cpp a−→A 9 (Rule I-Ctor) where p is an instantiation of the parameters, a an
instantiation of the non-inductive arguments and each A 9 for 9 ∈ {0, . . . , #indargsc} is an inductive
argument. The indices of the constructor are computed out of a and each inductive argument use
the same instantiation of parameters but possibly di�erent indices. Note that we force the inductive
arguments to be strictly positive.

Elimination. The eliminator elim performs case analysis on a term of an indexed inductive type.
It consist of a motive M : Π(i : Idxp), I p i → □, the return type of the elimination; a method
hck for each constructor c: , that prescribes the behavior of elim on that constructor; and a term
to be eliminated together with its index. Each branch take both the non-inductive and inductive
arguments of the constructor, and then the induction hypotheses induced by these inductive
arguments.

3Inductive de�nitions are typically carried in a typing signature Σ along the typing judgement and queried through the
metafunctions. To simplify the notations we omit these signatures, and often let inductive annotation I implicit.
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Branch
p
cM ≜ Π(a : Arg

p
c) non-inductive arguments

(∀ 9, (A 9 : Π(G 9 : IndArg
p
c, 9 a), I p (arg_idx

p
c, 9 aG 9 ))) inductive arguments

(∀ 9, (Π(G 9 : IndArg
p
c, 9 a),M (arg_idx

p
c, 9 aG 9 ) (A 9 G 9 ))), induction hypotheses

M (ctr_idx
p
c a) (c

pa−→A 9 )

The constructors are the only canonical forms (Figure 5) and there is just one reduction rule: the
elimination of constructors (I-Elim-Ctor) that applies the correct branch and uses recursive calls
to the eliminator as the induction hypotheses.

5 Punk: A Framework for Gradual Inductive Family Definitions

We describe a framework called Punk providing a schema for gradual indexed inductive types.4

The reduction semantics of casts for each gradual indexed inductive type is derived uniformly from
an index accumulator (§5.1). Section §5.2 provides instances of index accumulators to recover the
free, forgetful and meet reduction semantics of casts illustrated in the introduction. The static and
dynamic semantics are then derived in §5.3 for any choice of an index accumulator, as well as the
extension of internal precision for gradual indexed inductive types (§5.4).

5.1 Index Accumulators

De�nition 5.1 (Index Accumulator). An index accumulator (Accp, ⊗? , 1p) over a telescope of
parameters Param and indexing type family Idxpconsist of (1) a gradual type family Accp over
? : Param, (2) a self-precise action ⊗p : Idxp ×Accp → Accp, (3) a distinguished self-precise family
of terms 1p : Accp, satisfying the following precision inequations

i1 ⊗ i3 ⊗ i2 ⊗ acc ⊑ i1 ⊗ i2 ⊗ acc i1 ⊑ i3, i2 ⊑ i3, (i2 ⊗ acc)
⊑ , i1, i2, i3 ∈ Idx

p, acc ∈ Accp (1)

i1 ⊗ i2 ⊗ acc ⊑ i2 ⊗ acc i1 ⊑ i2, (i2 ⊗ acc)
⊑ , i1, i2 ∈ Idx

p, acc ∈ Accp (2)

i1 ⊗ acc ⊑ i2 ⊗ i1 ⊗ acc i1 ⊑ i2, (i1 ⊗ acc)
⊑ , i1, i2 ∈ Idx

p, acc ∈ Accp (3)

Since every component of an index accumulator are systematically parametrized by an instance
p : Param of the telescope of parameters, we will omit it in the rest of the section. In particular,
we identify 1 : Acc with a single term and call it the empty accumulator. The inequalities in
De�nition 5.1 re�ects properties featured by precision on the universe of types in [Maillard et al.
2022]: Equation (1) is the upper-decomposition property, Equation (2) re�ects that downcasts gain
precision, and Equation (3) re�ects that upcasts lose precision. As a gradual family, Acc is also
inhabited by the exceptional terms that play no role in the formalization of indexed inductive types.
We are speci�cally interested in index accumulators whose elements can be interpreted as

sequences of indices. To that end, we observe that list of indices form the underlying type family
of an indexed accumulator Acc� that has an interesting property with respect to other index
accumulators: it is the universal index accumulator with a unique map r to any other index
accumulator. This can be phrased as a categorical property in the category of index accumulators,
with monotone structure-preserving functions – meaning that empty is mapped to empty and
actions to actions – as morphisms.

Lemma 5.2 (Initial Index Accumulator). The initial index accumulator Acc� exists and has

list Idxp as its underlying type. Moreover, precision for the free index accumulator admit an inductive

presentation for self-precise Param, p : Param and Idxp presented in Figure 6.

The unique morphism r from Acc� to any index accumulator Acc is the fold of the action starting

from the empty accumulator: r
p

Acc
acc ≜ fold ⊗Acc 1

p
Acc acc.

4The name Punk comes from our naming convention for the branch for the unknown term for an eliminator with motive % .
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This explicit description of Acc� provides in particular a function hd : Acc�→option Idxp

returning the head of a non-empty list. We can now turn to index accumulators whose elements
can be interpreted as list of indices.

De�nition 5.3 (Listable Index Accumulator). An index accumulator Acc is listable if the unique
map r : Acc� → Acc has a left inverse s : Acc → Acc� that preserves the empty element and
partially preserve the action

s
p
1 {

∗ [] (4)

hd (s (i ⊗ acc)) {∗ some 8 ∀8 : Idx, acc :Acc (5)

A listable index accumulator is a retract of the initial index accumulator Acc� with retraction r

and section s. Equation (4) is required for Punk to be a conservative extension of CIC by ensuring
that uncast terms are well-typed. Equation (5) is required for subject reduction by ensuring that
casting a constructor (Rule GI-Ctor-Cast) has the correct type. Note that s need not preserve the
action. Indeed, s preserves the action if and only if it is an inverse of r, so Acc and Acc� are then
isomorphic. To support other semantics (e.g., forgetful), we weaken this requirement.
A listable index accumulator Acc can be queried for the last element accumulated through a

function get : Idxp→Acc→Acc de�ned as

get i acc ≜ matchhd (s acc) with none⇒ i | some i′ ⇒ i′ end

5.2 Examples of Index Accumulators

We describe three di�erent instances of listable index accumulators (Figure 6) corresponding to the
threes classes of cast reduction behavior identi�ed in the introduction.

The Free accumulator Acc� . The initial index accumulator Acc� faithfully accumulates every
indices without losing any precision. By initiality, the precision on Acc� consist of exactly those
relations derivable from the inequations Eqs. (1) to (3) and the congruence rules given by self-
precision of 1p and ⊗. It is listable with sAcc� = idAcc� .

The Meet accumulator Acc" . Acc" follow the design of meet and combines intermediate casts
using their meet with respect to precision, keeping at most two casts without any loss in precision.
Meet accumulators provide a faithful optimization of the free semantics, meaning that they can
error-approximate it using at most two casts.
The carrier of Acc" has two inhabitants, zero and two carrying the corresponding number of

elements of Idxp, and representing respectively the absence of casts and a meeting. zero is the
empty accumulator and the action accumulates the meet of the indices in the second argument
of two. Here, the meet operation ⊓ is inspired from the composition operator of Eremondi et al.
[2022] that computes the greatest lower bound with respect to precision of any two terms. In the
setting of GRIP, because not every term is self-precise, the speci�cation of ⊓ needs to be relativized
to self-precise types and terms

For) ⊑ , C
⊑
)

1
∧ C
⊑
)

2
→ C1 ⊓ C2 ⊑) ) C1 ∧ C1 ⊓ C2 ⊑) ) C2.

The section s returns all the accumulated indices and ensures that the corresponding list of indices
has length at most two. The precision on Acc" stipulates that the two inhabitants are self-precise
(Acc" -⊑-zero and Acc" -⊑-two).

The Forgetful accumulator Acc* . Acc* discards any intermediate index and only preserves
the last cast index, using the option type with inhabitants none and some as its underlying
representation. The empty accumulator is none while the action always returns some of the newly
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Free accumulator Acc�

Acc
p

�
≜ list Idxp i ⊗� acc ≜ i :: acc 1

p
� ≜ []

Acc� -⊑-nil

[] ⊑ []

Acc� -⊑-cons

i1 ⊑ i2 acc1 ⊑ acc2

i1 :: acc1 ⊑ i2 :: acc2

Acc� -⊑-ret

i1 ⊑ i3 i2 ⊑ i3 acc
⊑

i1 :: i3 :: i2 :: acc ⊑ i1 :: i2 :: acc

Acc� -⊑-down

i1 ⊑ i2 acc
⊑

i1 :: i2 :: acc ⊑ i2 :: acc

Acc� -⊑-up

i1 ⊑ i2 acc
⊑

i1 :: acc ⊑ i2 :: i1 :: acc

Acc� -⊑-trans

acc1 ⊑ acc2 acc2 ⊑ acc3

acc1 ⊑ acc3

Meet accumulator Acc"

Acc
p

"
≜ zero | two Idx

p

"
Idx

p

"
1
p

M
= zero

i ⊗" zero = two i i

i ⊗" (two i
′ i′′) = two i (i⊓ i′′)

s
p

"
zero = []

s
p

"
(two i i′) = [i, i′]

Acc" -⊑-zero

zero ⊑ zero

Acc" -⊑-two

two i1 i2 ⊑ two i′1 i
′
2 { i1 ⊑ i′

1
∧ i2 ⊑ i′

2

Forgetful accumulator Acc*

Acc
p

*
≜ option Idxp 1

p

U
= none i ⊗* acc = some i

s
p

*
none = []

s
p

*
(some i) = [i]

Acc* -⊑-none

none ⊑ none

Acc* -⊑-some

some i ⊑ some i′ { i ⊑ i′

Fig. 6. Instances of index accumulators

accumulated index, irrespective of the previous state of the accumulator. The section sAcc* maps
none to the empty list and some to a singleton list. The precision only needs to make none and
some self-precise (Acc* -⊑-none and Acc* -⊑-some).
The forgetful index accumulator serves as a space optimization of the free index accumulator,

although a really imprecise one. Since intermediate casts are ignored, computations will succeed as
long as the most external cast is valid, allowing a program to recover from invalid states.

5.3 Static and Dynamic Semantics

In the subsequent sections, we detail the semantics of Punk for a �xed inductive family I with
respect to a chosen listable index accumulator Acc. The typing and reduction rules for Punk,
presented in Figure 7, are derived from the rules for indexed inductive types in CIC with a few ad-
justments to account for index accumulators. We reuse the metafunctions from the static semantics
of indexed inductive types (Figure 3).

Typing. Constructors (GI-Ctor) now hold additionally an index accumulator acc of typeAcc and
their indices are computed using get on said accumulator using the original index of the constructor
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Head,Whnf□ , head :Whnf□ → Head

Head ::= . . . | I Whnf□ ::= . . . | I p i head (I p i) := I

Γ ⊢ C :)

GI-Ty
Γ ⊢ p :Param Γ ⊢ i : Idxp

Γ ⊢ I p i : □ℓ

GI-Err
Γ ⊢ p :Param Γ ⊢ i : Idxp

Γ ⊢ errI p i : I p i

GI-Unk
Γ ⊢ p :Param Γ ⊢ i : Idxp

Γ ⊢ ?I p i : I p i

GI-Ctor
Γ ⊢ p :Param Γ ⊢ a :Arg

p
c

Γ ⊢ acc :Accp ∀ 9 < #indargs
c
, Γ ⊢ A 9 :Π (G 9 : IndArg

p
c, 9 a), I p (arg_idx

p
c, 9 aG 9 )

Γ ⊢ cpacc a −→A 9 : I p (get
p (ctr_idx

p
c a) acc)

GI-Catch
Γ ⊢ p :Param Γ ⊢ M :Π (i : Idxp ), I p i→ □ℓ ′ Γ ⊢ i : Idxp Γ ⊢ t : I p i

Γ ⊢ herr :Π (i : Idx
p ),M i errI p i Γ ⊢ hunk :Π (i : Idx

p ),M i ?I p i ∀ : < #ctors, Γ ⊢ hck : Branch
p
c:

M

Γ ⊢ catchp M
−→
hck

herr hunk i t :M i t

C { C

GI-Catch-Ctor: catchp M
−→
hck

herr hunk i (c
p
acc a −→A 9 ) { ⟨M= ⇐ . . .M0 ⟩ hc a

−→A 9
−→
C 9

with [i, . . . , i: , . . . i1 ] ≜ s
p
acc acck ≜ r

p [i: , . . . , i1 ] M: ≜ M i: (c
p
acck a

−→A 9 ) M= ≜ M i (cpacc a −→A 9 )

M0 ≜ M (ctr_idx
p
c a) (c

p
1
p a −→A 9 ) C 9 ≜ _ (G 9 : IndArg

p
c, 9 a), catch

p
M
−→
hck

herr hunk (arg_idx
p
c, 9 aG 9 ) (A 9 G 9 )

GI-Catch-Err: catchp M
−→
hck

herr hunk i errI p i { herr i

GI-Catch-Unk: catchp M
−→
hck

herr hunk i ?I p i { hunk i

GI-Ctor-Cast: ⟨I p′ i′ ⇐ I p i⟩ cpacc a −→A 9 { c
p′ (i′ ⊗p

′
acc
′ ) a′
−→
A ′9

with a′ ≜ ⟨Arg
p′

c ⇐ Arg
p
c ⟩ a acc

′ ≜ ⟨Accp
′
⇐ Accp ⟩ (i ⊗p acc)

A ′9 ≜ ⟨Π (G
′
9 : IndArg

p′

c, 9 a
′ ), I p′ (arg_idx

p′

c, 9 a
′ G ′9 ) ⇐ Π (G 9 : IndArg

p
c, 9 a), I p (arg_idx

p
c, 9 aG 9 ) ⟩ A 9

GI-Err-Cast: ⟨I p
′ i′ ⇐ I p i⟩ errI p i { errI p′ i′ GI-Unk-Cast: ⟨I p

′ i′ ⇐ I p i⟩ ?I p i { ?I p′ i′

GI-Dec-Up: ⟨?□ ⇐ I p i⟩ C { ⟨?□ ⇐ I ?Param i′ ⟩ ⟨I ?Param i′ ⇐ I p i⟩ C with i′ ≜ ⟨Idx?Param ⇐ Idxp ⟩ i

GI-Dec-Down: ⟨I p i⇐ ?□ ⟩ C { ⟨I p i⇐ I ?Param i′ ⟩ ⟨I ?Param i′ ⇐ ?□ ⟩ C

GI-Head-Err: ⟨- ⇐ I p i⟩ C { err- when - ∈ Whnf□ and I ≠ head-

Evaluation contexts

C ::= . . . | ⟨C ⇐ �⟩ C | ⟨�⇐ C⟩ C | ⟨�⇐ �⟩ C | catchp M
−→
hck

herr hunk i C

GRed-Cong
C { C ′

C[C ] { C[C ′ ]

canonical C

canonical errI p i canonical ?I p i canonical c
p
acc a −→A 9

Fig. 7. Typing and reduction rules for Punk.
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as default value. As with any gradual type, the exceptional terms err (GI-Err) and ? (GI-Unk)
inhabit the inductive type for any valid instance of the parameters and indices. The eliminator
catch (GI-Catch) extends elim from CIC with two new branches, one for each exceptional term.
Finally, the typing of indexed inductive types (GI-Ty) remains unchanged.

Reduction. The canonical forms for an inductive family consist of constructors as in CIC, as well
as both exceptional terms ?I p i and errI p i. The crux of the dynamic semantics is concentrated in
two reduction rules that describe how index accumulators are used to accumulate the indices of
casts on constructors and how they are used when eliminating a constructor.
Casting a constructor (GI-Ctor-Cast) to the same inductive type, with possibly di�erent pa-

rameters and indices, is performed as follows: First, the index accumulator acc, the non-inductive
arguments a, and the inductive arguments −→A 9 are cast so they now depend on the target parameter
p′. Then, we add the target index i′ to the previously cast index accumulator using ⊗. Since pa-
rameters are uniform over an indexed inductive de�nition, they need to be processed di�erently
from indices. Treating parameters as indices would lead to a less useful elimination principle where
the motive would have to abstract over parameters as well as indices. Casts propagate exceptional
terms (GI-Err-Cast and GI-Unk-Cast) adapting the indices and parameters on the �y. Casting a
term of an inductive type to and from the unknown type ?□ (GI-Dec-Up and GI-Dec-Down) is
decomposed into two casts, going through I ?Param (⟨Idx

?□ ⇐ Idxp⟩ i), the most general type with
I as the head constructor at the “same” index (cast to the correct type). Although going through
the most general index ?Idx?Param would also work we prefer our system to be as precise as possible,
while preserving graduality (De�nition 3.3), and not lose precision if it is not required. Finally, casts
from an indexed inductive type to a di�erent indexed inductive type (e.g., ⟨0 =� 1 ⇐ V�=⟩ E), a
Π type, or a universe always fail (GI-Head-Err). Following GRIP, we present this reduction rule
using an auxilliary function head computing the head type former of a type in weak head normal
form (e.g., head (V�=) = V). This complete the description of reduction on casts, and we now
focus on the reduction on catch.
Elimination of constructors using catch (GI-Catch-Ctor) is more involved since we need to

describe how to handle the casts accumulated in the index accumulator. At a high level, the rule
propagates casts to the outside of the catch using the list of indices to construct the target of
each cast and applies the corresponding branch as if the accumulator was empty. To facilitate the
comprehension of the rule we present a detailed step-by-step description of how this reduction
rule works:

(1) The branch corresponding to the constructor is applied ignoring the accumulator.
(2) The index accumulator acc is converted into a list of indices s acc from which we compute

a sequence [accn, . . . , acc1] of partial accumulators using ⊗ starting from 1; in particular,
accn ≜ r

p (s acc).
(3) The intermediate cast types are then de�ned asM: ≜ M (getp (ctr_idx

p
c a) acck) (c

p
acck a

−→A 9 ).
(4) Finally, the right hand side of the reduction rule consist of = casts on the result of applying

the correct branch (step 1), passing through each intermediate target M: in order, and ending
with the motive M applied to the eliminated term c

p
acc a A 9 and its index i.

When the index accumulator is empty, this rule is equivalent to the reduction for elim on construc-
tors (I-Elim-Ctor in Figure 5).
The interaction of catch on exceptional terms uses the corresponding premises (respectively

herr in GI-Catch-Err and hunk for GI-Catch-Unk). Finally, we have some congruence rules in
order for terms eliminated using catch reduce until canonical forms.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 255. Publication date: August 2024.



255:20 Mara Malewski, Kenji Maillard, Nicolas Tabareau, and Éric Tanter

I-⊑-Cong-Ty
I p i ⊑ℓ I p

′ i′ { p ⊑
Param Param′

p′ ∧ i ⊑
Idx? Idx?

′ i
′

err-I-⊑-Ty
Γ ⊢ F : I p i⊑ℓ

Γ ⊢ err-min-tyF : err□ ⊑ℓ I p i

?-I-⊑-Ty
Γ ⊢ F : I p i⊑ℓ

Γ ⊢ ?-max-tyF : I p i ⊑ℓ ?□

NoConf-I-Up-Ty
- ∈Whnf□ head- ≠ I, ?□

I p i ⊑ℓ - { ⊥

NoConf-I-Down-Ty
- ∈Whnf□ head- ≠ I, err□

- ⊑ℓ I p i { ⊥

err-I-⊑

Γ ⊢ FI : I p i
⊑ℓ Γ ⊢ F ′

I
: I p′ i′⊑ℓ Γ ⊢ FG :G

⊑
I p′ i′

Γ ⊢ err -minFIF
′
I
FG : errI p i ⊑

I p i I p′ i′ G

I-⊑-c

c
p
acc a A 9 ⊑

I p i I p′ i′ c
p′
acc
′ a′ A ′9 { i ⊗ acc ⊑

Accp Accp
′ i
′ ⊗ acc′ ∧ a ⊑

Arg
p
c Arg

p′

c

a′

∧
∧

9

(A 9 ⊑
Π (G 9 :IndArg

p
c, 9 0),I p (arg_idx

p
c, 9 aG 9 ) Π (G ′9 :IndArg

p′

c, 9 0
′ ),I p′ (arg_idx

p′

c, 9 a
′ G ′9 )

A ′9 )

?-I-⊑

Γ ⊢ FI : I p i
⊑ℓ Γ ⊢ F ′

I
: I p′ i′⊑ℓ Γ ⊢ FG :G

⊑
I p i

Γ ⊢ ?-maxFIF
′
I
FG :G ⊑

I p i I p′ i′ ?I p
′ i′

NoConf-c
9 ≠ :

c
p
9 acc a

−→A 9 ⊑
I p i I p′ i′ c

p′

:
acc
′ a′
−→
A ′9 { ⊥

Fig. 8. Precision for indexed inductive types.

5.4 Precision

Now, we turn our focus to the de�nition of precision for gradual indexed inductive types (Figure 8).
Precision for telescopes is de�ned as pairwise precision. Indexed inductive types and their construc-
tors are monotonous. Therefore, two indexed inductive types are related by precision exactly when
they have the same head and their parameters and indices are also related (I-⊑-Cong-Ty). The ex-
ceptional types err□ and ?□ are the bottom and top elements respectively for self-precise indexed
inductive types (err-I-⊑-Ty and ?-I-⊑-Ty). Indexed inductive types are never related to types with
a di�erent head constructor (NoConf-I-Up-Ty and NoConf-I-Down-Ty). Two constructors are
related by precision exactly when they are the same constructor and their arguments are pairwise
precise (I-⊑-c). As expected, the exceptional terms err and ? serve as the bottom and top elements
respectively for self-precise terms (err-I-⊑ and ?-I-⊑) and self-precise parameters and indices.
Also, for each pair of di�erent constructors c9 and c: where 9 ≠ : there is a no confusion rule
(NoConf-c) stating that di�erent constructors are never related by precision.

6 Metatheory of Punk

This section establishes the main metatheoretical properties of the Punk framework: subject
reduction, conservativity over CIC (§6.1) and graduality (§6.2). These properties hold for any choice
of a listable index accumulator, hence for all the gradual indexed inductive types de�ned using
the instances of §5.2. Section §6.3 then shows that these di�erent instances of index accumulator
exhibit the three possible behavior of eliminators with respect to precision.

6.1 Basic Metatheory of the Punk Framework

As an extension of GRIP [Maillard et al. 2022] with comprehensive support for indexed inductive
types, Punk preserves two important properties as a gradual dependently-typed programming
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language: subject reduction and conservativity with respect to CIC. Throughout the section, we
focus on the fragment speci�c to indexed inductive types and rely on the established metatheory
of GRIP when needed. We center the discussion towards the properties of constructors, sidelining
exceptional terms, as focusing on these properties highlights the nuanced insights that have guided
the design choices of Punk’s formalization (§5). For brevity, this section presents de�nitions and
theorems in an empty context, focusing on a generic inductive family I :Π(p : Param), Idxp→□ℓ ,
for any choice of a listable index accumulator Acc.

Conversion for inductive families. Conversion is de�ned in terms of reduction and syntactic
comparison of terms up to extensionality principles—proof irrelevance for strict propositions and
[-rule for functions. Two terms C and D are convertible, noted C ≡ D, if both eventually reduce to
two terms that are extensionally equal, noted C =[ D.

The notion of conversion is crucial in a dependently typed setting to support computation at the
level of types.

Conv

Γ ⊢ C :) ′ Γ ⊢ ) :□ℓ Γ ⊢ ) ′ ≡ ) :□ℓ

Γ ⊢ C :)

Conversion and the conversion typing rule (Conv) play an important role in the proof of
subject reduction. In particular the proof depends on the injectivity of the type constructor for
indexed inductive types. With the de�nition of conversion based on reduction, injectivity of type
constructors is easy to prove because there is no reduction rules applying to them and extensional
equality is straightforwardly injective on type constructors.
Note that the de�nition of conversion using reduction however has the drawback that it does

not immediately form an equivalence relation, and in particular transitivity is not for free. This
property has been formally proven by Sozeau et al. [2019] for the type theory of the Coq proof
assistant. The crux of the proof lies in the proof of con�uence (Church-Rosser) of reduction together
with a simulation lemma saying that extensional equality commutes with reduction. In Punk,
the reduction rules have been extended to guarantee that the technique used for the proof of
con�uence remains valid. The proof of con�uence makes use of the auxiliary notion of one-step
parallel reduction, noted C ⇛ D, which allows all available reductions to be performed in parallel in
the same step. One-step parallel reduction satis�es the triangle lemma saying that for any term C ,
there exists an optimally reduced term d (C) (that performs all possible reduction in parallel) such
that C ⇛ d (C) and for any C ⇛ D, D ⇛ d (C). Con�uence is then a direct consequence of this triangle
lemma and the fact that parallel reduction entails reduction.

Subject reduction. We �rst prove that typing is preserved by reduction. The main two cases
concern cast reduction on a constructor and elimination via catch.

Lemma 6.1 (Subject reduction for casts on constructors). Consider two indices i1, i2, a

listable index accumulator acc, and arguments a and −→A 9 . If ⊢ ⟨I p2 i2⇐ I p
1
i1⟩ c

p
1acc a−→A 9 : I p2 i2,

then

⊢ cp2 (i2 ⊗ acc
′) a′ (⟨)9 ⇐ � 9 ⟩

−→A 9 ) : I p2 i2

where ∀ 9 .)9 ≜ Π(G 9 : IndArg
p
2

c, 9 a
′), I p (arg_idx

p
2

c, 9 a
′ G 9 ), a

′ ≜ ⟨Arg
p
2

c ⇐ �⟩ a, and acc
′ ≜

⟨Accp2 ⇐ A⟩ (i1 ⊗ acc), for some terms �, �, and ∀ 9 .� 9 .

Proof. By repeated inversion on the typing derivation of ⟨I p
2
i2⇐ I p

1
i1⟩ c

p
1acc a−→A 9 , we know

that i1 : Idx
p
1 and i2 : Idx

p
2 , and c

p
1acc a−→A 9 : I p1 i1. First, we have to show

I p
2
getp2 (ctr_idx

p
2

c a′) (i2 ⊗ acc
′) ≡ I p

2
i2.
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This equation is given by the injectivity of the type constructor I, the de�nition of get, and the
partial preservation of the action by s (Equation (5)). Then, by inversion on the typing derivation
of cp1acc a−→A 9 : I p1 i1, and the rules for conversion (Conv) and typing of constructors (GI-Ctor),
we have acc′ :�, a :�, and ∀ 9 . A 9 :� 9 . Finally, by typing of constructors (GI-Ctor), we have to show

i2 ⊗ acc
′
:Accp2 a′ :Arg

p
2

c ∀ 9 . ⟨)9 ⇐ � 9 ⟩
−→A 9 :)9 .

These typing judgments follow directly from the typing rule of casts (§2.1). □

Lemma 6.2 (Subject reduction for catch on constructors). Consider a parameter p; a motive

M ; branches
−−→
Pck , herr, and hunk; an index i; a listable index accumulator acc; and arguments a and −→A 9 .

If ⊢ catchp M
−→
hc herr hunk i (c

p
acc a−→A 9 ) :M i (cpacc a−→A 9 ), then

⊢ ⟨M i (cpacc a−→A 9 ) ⇐ . . .M (ctr_idx
p
c a) (c

p
1
p a−→A 9 )⟩ hc a

−→A 9
−→
C 9 :M i (cpacc a−→A 9 ).

Proof. By inversion on the typing rule of catch (GI-Catch) we know,

p :Param hc : Branch
p
c M M :Π(i′ : Idxp). I p i′ → □ c

p
acc a−→A 9 : I p i.

Then, we have to show that (a) the outermost target is well-typed and that (b) the method application
is well-typed to the source type. (a) follows directly from the type of M , i, and cpacc a−→A 9 ; (b) by the
conversion rule (Conv) and the typing rule for constructors (GI-Ctor), we have to show, between
some typing premises, that I p (getp (ctr_idxpc a) 1

p) ≡ I p (ctr_idx
p
c a), which is given directly by

the injectivity of the type constructor I, the de�nition of get, and the preservation of the empty
element by s (Eq. (4)). The rest of the premises are given by the inversion of the hypothesis. □

Theorem 6.3 (Subject reduction for Punk). If ⊢ ) :□ℓ ′ , ⊢ C :) and C { C ′ for some C ′, then

⊢ C ′ :) ′ for some ⊢ ) ′ :□ℓ ′ such that ⊢ ) ≡ ) ′.

Proof. The proof proceeds by induction on C { C ′. The cases for casts (GI-Ctor-Cast) and
catch (GI-Catch-Ctor) on constructors follow directly from Lemmas 6.1 and 6.2. Cases for casts
and catch on exceptional terms follow directly from the typing rules. The rest of the cases are
given by the induction hypothesis, the typing rules, and the subject reduction of GRIP. □

Conservativity with respect to CIC. Since Punk extends the syntax of constructors and even uses
a di�erent eliminator than the static language presented in §4, we cannot reuse CastCIC’s static
term de�nition (i.e., a term of CastCIC that it is also a term of CIC) and need to give a speci�c
translation (noted J_K) from CIC to Punk for indexed inductive types, constructors and applications
of catch:

JI p iK ≜ I JpK JiK Jcpa−→A K ≜ c
JpK

1
JpK JaK

−→
JAK

Jelimp M
−→
hc i tK ≜ catchJpK JMK (_i′ . errJMK i′ errIJpK i′

) (_i′ .?JMK i′ ?IJpK i′
)
−−−→
JhcK JiK JtK

Theorem 6.4 (Conservativity of Punk over CIC). For any term C and type) of CIC, if ⊢CIC C :)

then ⊢JCK :J) K.

Proof. By induction on the typing derivation of ⊢CIC C :) . The case for constructors follows from
Equation (4). The case for catch is direct by the translation. □
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6.2 Gradual Properties of Punk

An inductive family designed within the Punk framework adheres to all the characteristics of a
gradual inductive family outlined in §3.2, speci�cally graduality, as well as index relevance and
shape relevance. Similarly to §6.1, we focus on the fragment speci�c to indexed inductive types,
particularly to the case of constructors. We state de�nitions and theorems in the empty context, in
terms of a generic inductive family I, and for any choice of index accumulator Acc.

Graduality for Inductive Families. We now prove graduality for inductive families, i.e., inductive
families are monotone with respect to precision. More precisely, we prove that up-casting and down-
casting the parameters and indices of an indexed inductive type form an embedding-projection pair
with respect to precision [New and Ahmed 2018], i.e., satisfy the three following properties: (1) casts
have to be monotone; (2) casting to a less precise type and back is the identity up to equiprecision
(unit of the Galois connection and retraction condition); (3) casting to a more precise type and
back increases precision (counit of the galois connection). We state these properties for a �xed
parameter p and only on constructors where the most important features of Punk are apparent.

Lemma 6.5 (Graduality for constructors). Let p :Param be a self-precise parameter, i1, i2 : Idx
p,

acc :Accp a self-precise index accumulator, and self-precise arguments a :Arg
p
c and −→A 9 , such that

⊢ cpacc a−→A 9 : I p i1. Then, the following precision relations hold

i1 ⊑
Idxp Idxp

i2 → c
p
acc a−→A 9 ⊒⊑I p i1 ⟨I p i1⇐ I p i2⇐ I p i1⟩ c

p
acc a−→A 9

i2 ⊑
Idxp Idxp

i1 → ⟨I p i1⇐ I p i2⇐ I p i1⟩ c
p
acc a−→A 9 ⊑

I p i1 I p i1
c
p
acc a−→A 9 .

Proof. By reduction of cast on constructors (GI-Ctor-Cast), and removing the identity casts
that appears (which is valid up-to equiprecision), we have

⟨I p i1⇐ I p i2⇐ I p i1⟩ c
p
acc a−→A 9 { c

p (i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc) a
−→A 9

By the de�nition of precision on constructors (I-⊑-c), we have to show (omiting type annotation
of precision for readability)

i1 ⊑ i2 → i1 ⊗ acc ⊑ i1 ⊗ i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc ∧ a ⊒⊑ a
∧

9 A 9 ⊒⊑ A 9 ∧

i1 ⊗ i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc ⊑ i1 ⊗ acc

i2 ⊑ i1 → i1 ⊗ i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc ⊑ i1 ⊗ acc ∧ a ⊑ a
∧

9 A 9 ⊑ A 9 .

Then the �rst precision between accumulators i1 ⊗ acc ⊑ i1 ⊗ i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc follows from re-
peated applications of Equations (2) and (3), using that i1 ⊑ i2, quasi-re�exivity of precision and self-
precision of acc. The second precision between accumulators i1 ⊗ i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc ⊑ i1 ⊗ acc

follows the same pattern but uses Equations (1) and (3) instead. The third precision between accu-
mulators i1 ⊗ i1 ⊗ i2 ⊗ i2 ⊗ i1 ⊗ acc ⊑ i1 ⊗ acc also follows the same pattern but uses Equations (2)
and (3) and i2 ⊑ i1, instead. The other precisions are given by self-precision hypothesis. □

Now we have everything we need to prove graduality for inductive families;

Theorem 6.6 (Graduality for Inductive Families). Consider two indices i1, i2 : Idx
p. If i1 ⊑ i2,

then ⟨I p i2 ⇐ I p i1⟩ ⊣ ⟨I p i1 ⇐ I p i2⟩ form an embedding projection pair.

Proof. It follows from the de�nition of precision on constructors (I-⊑-c), monotonicity of ⊗,
and Lemma 6.5. □

Criteria for gradual indexed families. As we discussed in §3.2, a correct treatment of gradual
indexed inductive types must satisfy two properties: index relevance and shape relevance. These
properties ensure that the index and shape of an inductive family are respected.
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An indexed inductive type is index relevant when precision-related instances of an inductive
imply relatedness of the indices.

Theorem 6.7 (Index relevance for inductive families). Consider a parameter p, and two

indices i1, i2 : Idx
p. If I p i1 ⊑ℓ I p i2, then i1 ⊑

Idxp1 Idxp2
i2.

Proof. By the de�nition of precision for indexed inductive types. □

We establish that Punk’s gradual indexed inductive types are shape relevant, i.e., they are only
related by precision to indexed inductive types of the same family and to the exceptional types.

Theorem 6.8 (Shape relevance for inductive families). Assuming weak-head normalization

of types in Punk. Consider a parameter p :Param, an index i : Idxp, and a type ) :□ℓ .

() ⊑ℓ I p i→ () = err□ ) ∨ ∃(p
′
: Param) (i′ : Idxp

′

).) = I p′ i′)

∧ (I p i ⊑ℓ ) → () = ?□ ) ∨ ∃(p
′
: Param) (i′ : Idxp

′

).) = I p′ i′)

Proof. By the normalization assumption, we have that ) reduces to ) ′ ∈ Whnf□ . Then, the
result is given by analysis on head) ′ and the rules for type precision of inductive families in
Figure 8. □

Having discussed the general properties of Punk, we now turn our focus to properties speci�c
to an index accumulator and indexed inductive types that uses them.

6.3 Characterizing Gradual Inductive Families

As we saw in §3, we can characterize gradual indexed inductive de�nitions by how casts commute
with the catch eliminator up to precision. The asymmetry of the precision relation yield three
cases of interest, each one potentially corresponding to a di�erent class of inductive de�nitions.
We show that each of the three classes arise from an index accumulator instance among those
presented in §5.2.

The de�nitions and theorems in the rest of this section expect a monotone use of catch, therefore,
we explicit all the assumptions here to avoid repeating them every time. Consider an inductive
family I :Π(p : Param), Idxp → □; a parameter p : Param; a motive M : Π(i : Idxp), I p i→ □;

two indices i1, i2 : Idxp; branches
−−→
hck , herr and hunk; and term C : I p i1. All self-precise and if

herr ⊑ hck ⊑ hunk for all : . We do not �x the index accumulator since we will use a di�erent one
for each theorem. You can �nd the full theorems and more detailed proves in the appendix.

De�nition 6.9 (Equiprecise elimination). An inductive family I satis�es equiprecise elimination if
precision is preserved when casts are propagated outside of the eliminator:

⟨M p (⟨I p i2 ⇐ I p i1 ⟩ t) ⇐ M p t⟩ catchp M
−→
hck

herr hunk i1 t ⊒⊑ catchp M
−→
hck

herr hunk i2 (⟨I p i2 ⇐ I p i1 ⟩ t)

An example of an inductive family that satis�es equiprecise elimination is the free inductive
family I� using the initial index accumulator Acc� (§5.1).

Theorem 6.10 (Free inductives satisfy eqiprecise elimination).

⟨M p ⟨I� p i2 ⇐ I� p i1 ⟩ t⇐ M p t⟩ catch
p
I�

M
−→
hck

herr hunk i1 t ⊒⊑ catch
p
I�

M
−→
hck

herr hunk i2 (⟨I� p i2 ⇐ I� p i1 ⟩ t) .

Proof. By induction on the typing derivation of C . The exceptional cases follow from the hy-
pothesis and the reduction of cast on exceptions. The case of constructors is given by reduction of
cast on constructors and the fact that r is the identity for list. □
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De�nition 6.11 (Over-precise elimination). An inductive family I satis�es overprecise elimination
if precision increases when casts are propagated outside of the eliminator.

⟨M p (⟨I p i2 ⇐ I p i1 ⟩ t) ⇐ M p t⟩ catchp M
−→
hck

herr hunk i1 t ⊑ catchp M
−→
hck

herr hunk i2 (⟨I p i2 ⇐ I p i1 ⟩ t)

An example of an inductive family that satis�es underprecise elimination is the forgetful inductive
family I* using the index accumulator Accp

*
from §5.2.

Theorem 6.12 (Forgetful inductives satisfy overprecise elimination).

⟨M p ⟨I* p i2 ⇐ I* p i1 ⟩ t⇐ M p t⟩ catch
p
I*

M
−→
hck

herr hunk i1 t ⊑ catch
p
I*

M
−→
hck

herr hunk i2 (⟨I* p i2 ⇐ I* p i1 ⟩ t) .

Proof. By induction on the typing derivation of C . The exceptional cases follow from the hy-
pothesis and the reduction of cast on exceptions. The case of constructors goes by induction on the
index accumulator acc. If (acc = none), then the result follows from the self-precision hypotheses.
On the other hand, if (acc = some i′), by reduction of catch on constructors, we have to show

⟨M i2 (c
p (some i2) a

−→A 9 ) ⇐ M i1 (c
p (some i1) a

−→A 9 ) ⇐ M (ctr_idx
p
c a) (c

pnone a−→A 9 )⟩ C
′

⊑ ⟨M i2 (c
p (some i2) a

−→A 9 ) ⇐ M (ctr_idx
p
c a) (c

pnone a−→A 9 )⟩ C
′

where C ′ ≜ catch
p

I*
M
−−→
hck herr hunk (ctr_idx

p
c a) (c

pnone a−→A 9 ). Which is given by cast decomposi-
tion, counit, and self-precision of hypotheses. □

De�nition 6.13 (Under-precise elimination). An inductive family I satis�es underprecise elimina-
tion if precision decreases when casts are propagated outside of the eliminator.

⟨M p (⟨I p i2 ⇐ I p i1 ⟩ t) ⇐ M p t⟩ catchp M
−→
hck

herr hunk i1 t ⊒ catchp M
−→
hck

herr hunk i2 (⟨I p i2 ⇐ I p i1 ⟩ t)

An example of an inductive family that satis�es underprecise elimination is the forgetful inductive
family I" using the index accumulator Accp

"
from §5.2.

Theorem 6.14 (Meet inductives satisfy underprecise elimination).

catch
p
I"

M
−→
hck

herr hunk i2 (⟨I" p i2 ⇐ I" p i1 ⟩ t) . ⊑ ⟨M p ⟨I" p i2 ⇐ I" p i1 ⟩ t⇐ M p t⟩ catch
p
I"

M
−→
hck

herr hunk i1 t

Proof. By induction on the typing derivation of C ⊑I p i . The exceptional cases follow from the
hypothesis and the reduction of cast on exceptions. The case for constructors, follows by induction
on the index accumulator acc. For (acc = zero), the result is given by retraction and self-precision
of M . If (acc = two i1 i

′), it is given by precision rule Accp
"
(Acc" -⊑-two) and properties of the

meet index accumulator. □

7 Related Work

Having given a formal presentation of Punk we can now revisit in more detail the comparison
with previous approaches discussed in §2.3. Then, we brie�y discuss the related work regarding
e�ectful and gradual dependent types (§7.2 and §7.3).

7.1 Previous Approaches to Gradual Indexed Inductive Types

GCIC. Lennon-Bertrand et al. [2022] present an implementation of vectors for GCIC where
casts are eagerly reduced and casting constructors to the unknown index is internalized as a new
constructor. In particular, casting a constructor to an incompatible index immediately fails in GCIC:

⟨V� (S=) ⇐ V� 0⟩ nil {GCIC errV� (S=)
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This behavior cannot be encoded in Punk, because cast reduction always preserves the head
constructor, regardless of the choice of index accumulator. For example, the cast reduction rule for
constructors (GI-Ctor-Cast) can be instantiated to the nil constructor for V as

⟨V� =⇐ V�<⟩ nil acc { nil (n ⊗(⟨AccB⇐ AccA⟩m ⊗ acc)) .

Note that the reduction only updates the index accumulator, so casting nil always reduces to nil,
and cannot fail; errors only appear on elimination with catch. This di�erence is justi�ed by the
fact that matching on the index of the target of a cast is not possible in general (e.g., when the index
is a function or a type). Indeed, the authors informally argue that this approach generalizes to other
inductive families as long as their indices are forceable [Brady et al. 2004]. This in particular leaves
out propositional equality, discussed next. As a general framework for the de�nition of indexed
inductive types, Punk’s cast reduction semantics must accommodate indices of any type.

GEq. Eremondi et al. [2022] develop GEq, an extension of GCIC with a type former for proposi-

tional equality (C1 =
GEq
)

C2) inhabited by refl
GEq
CF⊢C1�C2

, which holds a witness terms CF more precise
than both C1 and C2. The typing rule for refl (CastRefl) is de�ned using bidirectional typing,
following Lennon-Bertrand et al. [2022], and the precision judgment Γ |Γ′ ⊢ C ⊑←→ C ′, which states
that C is more precise than C ′ up-to conversion, with C and C ′ well-typed in contexts Γ and Γ

′

respectively:

CastRefl

Γ ⊢ CF⇒) Γ ⊢ C1⇐) Γ ⊢ C2⇐) Γ |Γ ⊢ CF ⊑
←
→ C1 Γ |Γ ⊢ CF ⊑

←
→ C2

Γ ⊢ refl
GEq
CF⊢C1�C2

⇒ C1 =
GEq
)

C2

Instead of a general catch, propositional equality in GEq is equipped with a custom eliminator

J(M, C1, C2, CM1, C) that, given an equality C with type C1 =
GEq
)

C2, transforms a term CM1 of type M C1
into one of type M C2. Similarly to meet indexed inductive types in Punk, casts in GEq accumulate
the meet of the source and target indices (RedCastEq) and elimination propagates the casts to the
outside (RedJ):

RedCastEq: ⟨C
′
1
=
GEq
) ′

C ′
2
⇐ C1 =

GEq
)

C2⟩ refl
GEq
CF⊢C1�C2

{GEq refl
GEq
(⟨) ′ ⇐ ) ⟩ CF ⊓ C

′
1
⊓ C ′

2
)⊢C ′

1
�C ′

2

RedJ: J(M, C1, C2, CM1, refl
GEq
CF⊢C1�C2

) {GEq ⟨M C2⇐ M CF⟩ ⟨M CF ⇐ M C1⟩ CM1

We can encode the J eliminator in Punk as JPunk which satis�es the RedJ reduction rule:

_) .JPunk (M, C1, C2, CM1, C) ≜ catch),C1 M (_C ′
2
.⟨M C ′

2
⇐ M C1⟩ CM1) (_C

′
2
.⟨M C ′

2
⇐ M C1⟩ CM1) C"1 C2 C

But, in contrast to Punk, GEq con�ates exceptions with refl, the only canonical inhabitant of
equality (PropEqUnk and PropEqErr):

PropEqUnk: ?C1=
GEq
)

C2
{GEq refl

GEq
C1 ⊓ C2⊢C1�C2 PropEqErr: errC1=

GEq
)

C2
{GEq refl

GEq
err) ⊢C1�C2

We observe that this construction is speci�c to propositional equality and cannot be generalized to
inductive families with multiple constructors: in order to preserve err and ? as the bottom and
top elements of the precision relation, supporting this behavior in general requires every pair of
constructors to be related with each other.
Furthermore, because there is no notion of empty index accumulator, the embedding of CIC

into GEq translates refl C into refl
GEq
C⊢C�C which introduces extra identity casts. This means that

a conservativity result over CIC (as in Theorem 6.4) would require an extra conversion rule for
identity casts (⟨�⇐ �⟩ 0 ≡ 0); it is unclear how to achieve this in a gradual setting, although Pujet
and Tabareau [2024] achieve this for observational equality.
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Note that, as mentioned in §2.3, it is possible to use propositional equality to de�ne indexed
inductive types via fording. In fact, one can obtain a cast reduction semantics similar to that
induced by a given index accumulator by using fording with a propositional equality with that
index accumulator. A deeper and formal exploration of this connection is future work.

7.2 E�ects in Dependent Type Theory

Gradual type systems rely on e�ects, in particular errors, to enforce dynamic typing invariants,
a challenging aspect within type theory. Indeed, the Fire Triangle of Pédrot and Tabareau [2020]
exhibit a strong tension between the metatheoretic properties of CIC, starting with logical con-
sistency, and observable e�ects. Dependently typed programming languages featuring e�ectful
computations either isolate dependencies to a fragment of pure expressions [Swamy et al. 2016; Xi
and Pfenning 1998] or give up on some metatheoretical properties: Dependent Haskell [Eisenberg
2016], Trellys [Kimmell et al. 2012; Stump et al. 2010] and Zombie [Casinghino et al. 2014] which
allow diverging type-level expressions either admit inconsistencies or undecidable typechecking.
The recent work of Pédrot and Tabareau [2017, 2018] speci�cally consider exceptions in type theory,
building up to RETT, a type theory exploiting universe hierarchies to separate e�ectful, inconsistent
computations from pure, consistent proofs to reason about the e�ectful content [Pédrot et al. 2019].

7.3 Gradual Dependent Types

This work pursue a line of research in combining dependent types and dynamic type checking, as
�rst explored by [Ou et al. 2004], more speci�cally following the gradual typing approach [Siek
and Taha 2006; Siek et al. 2015a], and extending it to a full-blown dependent type theory. Ou et al.
[2004] study a programming language with separate dependently- and simply-typed fragments,
using arbitrary runtime checks at the boundary. The blame calculus of Wadler and Findler [2009]
considers subset types on base types, where the re�nement is an arbitrary term, as in hybrid type
checking [Knowles and Flanagan 2010], but lacks dependent function types. Tanter and Tabareau
[2015] provide casts for subset types with decidable properties in Coq, and Dagand et al. [2018]
support dependent interoperability [Osera et al. 2012] in Coq. All these approaches lack the notion
of precision that is central to gradual typing. Gradual re�nement types [Lehmann and Tanter 2017]
are an extension of liquid types [Rondon et al. 2008] with imprecise logical formulas, based on an
SMT-decidable logic about base types. Eremondi et al. [2019] study the gradualization of CC, and
propose approximate normalization to ensure decidable typechecking. Gradual inductive types
only appear in GCIC [Lennon-Bertrand et al. 2022], and its follow up, GRIP [Maillard et al. 2022],
upon which we build Punk.

8 Conclusion

Punk provides a general framework to de�ne gradual indexed inductive families. As illustrated
in §6.3, Punk is able to explore the space of cast reduction semantics, providing adequate descriptions
for di�erent semantics of indexed inductive types in a uni�ed way. Its expressivity stems from
the use of a simple and algebraic notion of listable indexed accumulators taking, in a gradual
setting, the role that would otherwise be �lled by propositional equality in approaches of indexed
inductive types using Fordism in CIC. This abstraction not only allows to prove the metatheory of
the framework uniformly for all possible semantics of gradual indexed inductive types, but also
open the way for programmers using gradual dependent types to choose the implementation of
gradual indexed inductive types that best �t their need, arbitrating between space e�ciency and
precision of the dynamic typing constraint tracking.
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