
Compact Representation of Large RDF Data Sets for
Publishing and Exchange ⋆

Javier D. Fernández1, Miguel A. Martínez-Prieto1,2, and Claudio Gutierrez2

1 Department of Computer Science, Universidad de Valladolid (Spain)
{jfergar,migumar2}@infor.uva.es

2 Department of Computer Science, Universidad de Chile (Chile)
cgutierr@dcc.uchile.cl

Abstract. Increasingly huge RDF data sets are being published on the Web. Cur-
rently, they use different syntaxes of RDF, contain high levels of redundancy and
have a plain indivisible structure. All this leads to fuzzy publications, inefficient
management, complex processing and lack of scalability. This paper presents a
novel RDF representation (HDT) which takes advantage of the structural proper-
ties of RDF graphs for splitting and representing, efficiently, three components
of RDF data: Header, Dictionary and Triples structure. On-demand management
operations can be implemented on top of HDT representation. Experiments show
that data sets can be compacted in HDT by more than fifteen times the current
naive representation, improving parsing and processing while keeping a consis-
tent publication scheme. For exchanging, specific compression techniques over
HDT improve current compression solutions.

1 Introduction and Related Work

The intended goal of the original RDF/XML representation design was to add small
descriptions (metadata) to documents, to protocols, to mark web pages or to describe
services. Representations like N3, Turtle and RDF/JSON, although having improved,
in several respects, the original format, are still dominated by a document-centric view.
Today, when one of the major trends in the development of the Web is RDF publishing
at large scale, i.e. make RDF data publicly available for unknown purposes and users,
the need to consider RDF under a data-centric view is becoming indispensable.

An analysis of published RDF data sets (the 2000 US Census, DBpedia, GeoNames,
Uniprot, DBLP, etc.) reveals several undesirable features. First, the provenance and
metadata about contents are barely present, and their information is neither complete
nor systematic. Second, the files have neither internal structure nor a summary of their
content. Basic data operations have to deal with the sequentiality of the information
in the file, thus parsing the whole data and in most cases including human operation
because the metadata is outside the file. For mashups of different sources, the situa-
tion is worse. Currently, the effort to prepare the data to be published is so costly, that
⋆ Partially funded by MICINN (TIN2009-14009-C02-02), Millennium Institute for Cell Dy-

namics and Biotechnology (ICDB) (Grant ICM P05-001-F), and Fondecyt 1090565. The first
author is granted by a fellowship from Erasmus Mundus, the Regional Government of Castilla
y Leon (Spain) and the European Social Fund. Special thanks to M. Gagie.



files commonly have no design, no plan and no user in mind. They resemble unwanted
creatures whose owners are keen to be rid of them.

This state of affairs does not scale to a Web where large data sets will soon, increas-
ingly, be produced dynamically and automatically. Furthermore, most data would have
to be machine-understandable in line with the aim of the original Semantic Web project.
Thus, scaling the process of publishing and exchanging large RDF data sets should
comply with some basic features. At the logical level, a large-scale data set should have
standard metadata, like provenance (source, providers, publication date, etc.), editorial
metadata (publisher, date, version, etc.), data set statistics (size, quality, type of data,
basic parameters of the data) and intellectual property (types of copy[left|right]s). At
the physical level, RDF representation at large scale should permit efficient process-
ing, managing and exchanging (between systems and memory-disk movements). At
the format level, desirable features include simple checks for triple existence, redun-
dancy minimization and modular construction. Imagine a user who wants to publish or
exchange a large data set from her preferred RDF data store. She would first need to
dump the data into one RDF format, and then, due to the large size of the data, possibly
compress it with a generic compressor. The resultant file has no structure, no metadata
and it is hardly usable natively, i.e. without an appropriate external tool (another RDF
data store, a visualization software, etc.).

This paper addresses these challenges, and shows that there are feasible and simple
solutions. In particular, we introduce a new representation format (Header-Dictionary-
Triples: HDT) that modularizes the data and uses the skewed structure of big RDF graphs
[10, 19, 21] to achieve large spatial savings. It is based on three main components:

- A header, including logical and physical metadata describing the RDF data set.
This serves as an entrance point to the information on the data set.

- A dictionary, organizing all the identifiers in the RDF graph.This provides a catalog
of the information entities in the RDF graph with high levels of compression.

- A set of triples, which comprises the pure structure of the underlying RDF graph
while avoiding the noise produced by long labels and repetitions.

We make use of succinct data structures and simple compression notions to ap-
proach a practical implementation for HDT. Our design, besides gaining modularity and
compactness, also addresses other important features: 1) it allows on-demand indexed
access to the RDF graph, and 2) it is used to develop a specific technique for RDF com-
pression (referred to as HDT-Compress) able to outperform universal compressors.

Figure 1 shows a step-by-step description of the process to obtain an HDT repre-
sentation of an RDF graph. The first three steps extract basic RDF features necessary
to build the dictionary and the underlying graph, as well as information that will be
included in the header. The fourth step covers some practical decisions in order to have
the HDT concrete implementation for publication and exchange of RDF.

If we go back to the example of the user who wants to publish or exchange large
RDF data, the advantages of HDT can be summarized as follows: 1) More compact
and compressible: uses much less space, thus saving storing space and communication
bandwidth and time; 2) Is clean and modular: it separates dictionary from triples (the
graph structure), includes a header with metadata about the data; 3) Permits basic data
operations by allowing access to parts of the graph without needing to process all of it.



Extraction of 

RDF Features

Dictionary 

Building

Triples

Encoding

RDF

1

3

2

HDT
Practical

HDT

4

Exchange

Publication
Management

RDF stats

Dictionary
…

Compression

Fig. 1. A Step-by-step construction of the HDT format from a set of triples

The paper is organized as follows. Section 2 starts defining the set of metrics to
characterize the structural RDF features used in HDT. Next, the HDT format is presented
by an individual description of each component: Header, Dictionary, and Triples. Sec-
tion 3, firstly details the practical implementation approach for HDT. Then, we detail the
HDT management and compression. This section ends with an empirical study which
analyzes the current HDT features on real-world data sets. Section 4 gives a brief dis-
cussion and addresses some future work. Finally, the appendix provides a study of the
structural features of the data sets used in our experimentation, analyzing their impact
on HDT. Additional resources and examples are available at http://hdt.dcc.uchile.cl.

Related Work. Today there are several representations for RDF data, e.g. RDF/XML
[3], N33,Turtle4, and RDF/JSON [1]. None of these proposals, though, seems to have
considered data volume as a primary goal. RDF/XML, due to its verbosity is good for
exchanging data, but only on a small scale. Turtle (a sub-language of N3) is a more
compact and readable alternative. Although these formats present features to “abbrevi-
ate” constructions like URIs, groups of triples, common datatypes or RDF collections,
the compactness of the representation definitively was not the main concern of their
design. RDF/JSON resembles Turtle, with the advantage of being coded in a language
easier to parse and more widely accepted in the programming world.

Regarding the structure of RDF real-world data, several studies point to the presence
of power-law distribution, in term frequencies [10], resources [19] and schemas [21].

RDF compression capabilities have been studied [11] but have not been applied in
a concrete format or implementation. The situation is not better for splitting RDF into
components. Neither RDF/XML nor N3 (and their subsets Turtle and N-Triples) have
the basic constructors to design modular files. To the best of our knowledge, none of
these results have been applied in the design of RDF data sets. There is little work on
the design of large RDF data sets. There have been projects discussing design issues
of RDF5, and a working group on design issues of translation from relational databases
to RDF6. However, none of these works have touched the problem of RDF publication

3 http://www.w3.org/DesignIssues/Notation3
4 http://www.w3.org/TeamSubmission/turtle/
5 Best Practices Publishing Vocab. W3C WG: http://www.w3.org/2001/sw/BestPractices/, and

the Wordnet case http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html
6 http://www.w3.org/2001/sw/rdb2rdf/



and exchange at large. The project that is currently systematically addressing the issue
of publication of RDF at large, Linked Data, is starting to face some of these issues.

2 Compacting RDF with HDT: The Concepts

2.1 Taking advantage of the skewed structure of real-world RDF data

Although power-law7 distribution validation in RDF data remains an open field, in prac-
tice it is assumed as a common characteristic of RDF real-world data. Ding and Finn
[10] reveal that Semantic Web graphs fit power-law distribution within some metrics
such as the size of documents and term frequency use; most terms are described through
few triples. Regarding the use of an RDF schema (RDFS[5]), the space of instances
is sparsely populated, since most classes and properties have never been instantiated.
By crawling the Web, Oren[19] comes to similar conclusions, showing that resources
(URIs) in different documents fit to a power-law distribution. Theoharis [21] studies
these properties for Semantic Web schemas, RDFS and OWL[16]. Similar distribu-
tion is found in the descendants of a class, as well as other schema features, such as
the existence of few classes interconnecting schemas, or non-balanced hierarchies. The
presence of star and chaining nodes has been also described in data and queries (star-
and chain-shaped join queries) [17, 18]. This schema analysis has contributed to syn-
thetic schema generation for benchmarking [21]. These results motivate the adaptation
to RDF of the well-known Web distribution, where power-law is present in successors
list of a given domain, playing an important role in Web graphs compression [4, 6].

For our purposes, a few indicators of the graph structure will be sufficient. RDF
graph notation will follow [13, 20], with no distinction between URIs, Blank nodes and
Literals. A triple then, (s, p, o), is represented as a labeled graph s

p−→ o. Let G be an
RDF graph, and SG, PG, OG be the sets of subjects, predicates and objects in G.

Definition 1 (out-degrees). Let G be an RDF graph, and let s ∈ SG and p ∈ PG.

1. The out-degree of s, denoted deg−(s), is defined as the number of triples of G in
which s occurs as subject. Formally, deg−(s) = |{(s, y, z)/(s, y, z) ∈ G}|. The
maximum out-degree, deg−(G), and the mean out-degree, deg−(G), are defined
as the maximum and mean out-degrees of all subjects in SG.

2. The partial out-degree of s respect to p, denoted deg−−(s, p), is defined as the
number of triples of G in which s occurs as subject and p as predicate. Formally,
deg−−(s, p) = |{(s, p, z)/(s, p, z) ∈ G}|. The maximum partial out-degree of G,
deg−−(G), and mean partial out-degree, deg−−(G), are defined as the maximum
(resp. the mean) partial out-degrees of all pairs of subject-predicates of G.

3. The labeled out-degree of s, denoted degL−(s), is defined as the number of differ-
ent predicates (labels) of G with which s is related as a subject in a triple of G.
Formally, degL−(s) = |{p/p ∈ PG, (s, p, z) ∈ G}|. The maximum labeled out-
degree of G, degL−(G), and mean labeled out-degree, degL−(G), are defined as
the maximum (resp. the mean) labeled out-degrees of all subjects of G.

7 A power law is a function with scale invariance, which can be drawn as a line in the log-log
scale with a slope equal to a scaling exponent, e.g. f(x) = ax−β , thus f(cx) ∝ f(x), with
a, c, β constants.



<../wikipage1> <../#wikilink>    <../ wikipage2> .

<../wikipage1> <../#wikilink>    <../ wikipage3> .

<../wikipage1> <../#title>       “Title 1” .

<../wikipage2> <../#redirectsTo> <../ wikipage4> .

<../wikipage2> <../#title>       “Title 2” .

RDF

<../wikipage2>

<../wikipage1>

<../wikipage3>

<../wikipage4>

“Title 1”

“Title 2”

<../#redirectsTo>

<../#title>

<../#wikilink>

1

2

2

3

4

5

1

2

3

S-O

S

O

P

Dictionary

2 3 1 .

2 3 2 .

2 2 4 .

1 1 3 .

1 2 4 .

1 1 3; 2 4 .

2 2 4; 3 1 2 .

Predicates:

Objects:

1 2 0 2 3 0

3 0 4 0 4 0 1 2 0

subject 1 subject 2

ID

Dictionary

Building

ID-based

Replacement

Subject

Grouping

Triples

Triples Encoding

Adjacency 

Lists Splitting

Fig. 2. Incremental representation of an RDF data set with HDT

Symmetrically, we define for objects the in-degree, denoted deg+(o), partial in-
degree, deg++(o, p) and labeled in-degree, degL+(o). Their corresponding maximums
and means are denoted as deg+(G), deg++(G), degL+(G), deg+(G), deg++(G) and
degL+(G). An additional property will be needed in what follows:

Definition 2 (subject-object ratio αs−o). It is defined as the proportion of common
subjects and objects in the graph G. Formally, αs−o = |SG∩OG|

|SG∪OG| .

Out-degree indicates the relevance of a subject node. A node with high out-degree,
also called star, will have hundreds, or even thousands, of arcs (labeled edges in RDF).
In conjunction with maximum and mean values, this constitutes good evidence of the
existence of these types of nodes in a given graph. Similar reasoning can be made for
in-degree, where the node is not a source, but is a common destination object node.
Partial and labeled out- and in- degrees are meant to give information on the different
types of edges coming out from (or going into) a node. Partial out-degree provides
a metric of the multi evaluation of pairs (subject-predicate or predicate-object), while
labeled degree refines the star-nodes categorization. Finally, subject-object ratio is a
good measure of the percentage of nodes along which there are incoming and outgoing
edges. These are the key edges to index, because of the different roles they play, either
as subjects which are described elsewhere, or as objects describing other resources. In
the final Appendix we illustrate these parameters for three real-world data sets.

In what follows, we will use these characteristics to provide a compact structure
that represents, succinctly, the information of an RDF data set. Figure 2 outlines the
incremental processing of our proposal. The result splits the RDF data set into three
components that are represented and managed efficiently.

2.2 Header

The Header component is responsible for providing metadata information about the
RDF collection. Although the most used RDF syntaxes consider the possibility of in-
cluding metadata information, they present several drawbacks. Metadata is provided in



the same RDF syntax as the data set, inheriting some of its problems and making diffi-
cult the automatic distinction between data and metadata. The metadata of the collection
remains unclear and its management is inefficient.

We consider the Header as a flexible component in which the provider includes a
desired set of features. We distinguish four types of metadata:

– Source and provider information. This includes all kind of authority information
about the source (or sources) of data and the provider of the data set, which can dif-
fer from the creator of data (e.g. in mashup applications). Note that this information
can be shared between several data sets of a provider.

– Publication data. This collects the metadata about the publication act, such as the
site of publication, dates of creation and modification, version of the data set (which
could be useful for updating notification), language, encoding, namespaces, etc.

– Data set statistics. When managing huge collections, one could consider including
some precomputed statistic about what follows in the data sets. For instance, it
could be useful to include an estimation of the parameters presented in Section 2.1,
or a subset of them used in the concrete design.

– Other information. A provider can take into account other metadata for the under-
standing and management of the data.

2.3 Dictionary

In general terms, a data dictionary is a centralized repository of information about
data such as meaning, relationships to other data, origin, usage, and format [15]. Cur-
rent RDF formats use elementary versions of dictionaries for namespaces and prefixes.
This allows for the abbreviation of long and repeated strings (URIs, Literals, etc.). A
good example is “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” repeated hundreds
to thousands of times in the Billion Triple data set. Note that XML has this functional-
ity in the form of namespaces in conjunction with XML Base, and several RDF formats
allow abbreviations of this kind (@base, @prefix in N3 and Turtle).

Large RDF data sets are supposed to be managed by automatic processes, so that
a more effective replacement can be done. The Dictionary component assigns a unique
ID to each element in the data set. This way, the dictionary contributes to the goal of
compactness, by replacing the long repeated strings in triples by their short IDs. In fact,
the assignment of IDs, named as mapping [7], is usually the first step in RDF indexing.

The sets of subjects, predicates and objects in RDF are not disjoint. In order to
assign shorter IDs, we distinguish between four sets (in an RDF graph G):

– Common subject-objects, denoted as the set SOG, are mapped to [1, |SOG|].
– The non common subjects, SG − SOG, are mapped to [|SOG|+ 1, |SG|].
– The non common objects, OG − SOG, are mapped to [|SOG|+ 1, |OG|].
– Predicates are mapped to [1, |PG|].

Figure 2 shows an example of these four sets within a dictionary building process.
Note that a given ID can belong to different sets, but the disambiguation of the correct
set is trivial when we know if the ID to search is a subject, a predicate or an object. A
similar partitioning is taken in some RDF indexing approaches [2].



The subject-object ratio defined in Section 2.1, αs−o, characterizes the ratio of the
subject-object set in the dictionary, composed of nodes with out-degree and in-degree
greater than 0, deg−(a), deg+(a) > 0. We have noted that, in those data sets with a
noticeable value of αs−o, common subject-object identification has and advantage over
a disjoint assignment, thus reducing the dictionary size. The set of predicates are treated
independently because of their low number and the infrequent overlapping with other
sets. Due to the sequential mapping of each set, the dictionary only has to include the
strings, supposing an implicit order of IDs and some form of distinction between sets.

The Dictionary component allows multiple configurations. The order of the ele-
ments within each set could be random or sorted by some property, e.g the frequency
of use or the alphabetical order. Prefixes and shared strings (specially for URIs) could
be identified and written once and then reference the unshared portions incrementally.
These design decisions should be declared in the Header component.

2.4 Triples

By means of the Dictionary component, an original RDF triple can now be expressed
by three IDs, replacing each element in triples with the reference in the dictionary (ID-
based replacement in Figure 2). As we transform a stream of strings into a stream of
IDs, we can take advantage of some interesting properties.

Adjacency List is a compact data structure that facilitates managing and searching.
For example, the set of triples:

{(s, p1, o11), · · · , (s, p1, o1n1), (s, p2, o21), · · · (s, p2, o2n2), · · · (s, pk, oknk
)}

can be written as the adjacency list:

s → [(p1, (o11, · · · , o1n1), (p2, (o21, · · · , o2n2)), · · · (pk, (oknk
))].

Turtle (and hence N3) allows such generalized adjacency lists for triples. For exam-
ple the set of triples {(s, p, oj)}nj=1 can be abbreviated as (s p o1, · · · , on).

The Triples component performs a subject ordered grouping, that is, triples are re-
organized in adjacency lists, in sequential order of subject IDs. Due to this order, an
immediate saving can be achieved by omitting the subject representation, as we know
the first list corresponds to the first subject, the second list to the following, and so on.

In the notation above, all the data is represented by one stream, in which the list of
objects associated with a subject (s) and a predicate (p) is represented just after the p.
Instead, we decide to split this representation into two coordinated streams of Predi-
cates and Objects. The first stream of Predicates corresponds to the lists of predicates
associated with subjects, maintaining the implicit grouping order. The end of a list of
predicates implies a change of subject, and must be marked with a separator, e.g. the
non-assigned zero ID. The second stream (Objects) groups the lists of objects for each
pair (s, p). These pairs are formed by the subjects (implicit and sequential), and coor-
dinated predicates following the order of the first stream. In this case, the end of a list
of objects (also marked in the stream) implies a change of (s, p) pair, moving forward
in the first stream processing.

Figure 2 exemplifies the subject grouping and the final adjacency lists splitting into
two coordinated streams. For instance, consider the list [1, 2] in Objects stream. This



is the fourth list in the stream, so it refers to the fourth predicate in Predicates: the ID
3. This predicate belongs to the second list in the stream; that is, it is related with the
second subject. Thus, the considered list develops the triples (2, 3, 1) and (2, 3, 2).

The parameters defined in Section 2.1 characterize the streams. Labeled out-degree,
degL−(s), indicates the size of the list of predicates for a given subject s. Therefore, the
maximum size of any list in Predicates is limited by the maximum degL−(G), and the
mean is given by degL−(G). Symmetrically, partial out-degree, deg−−(s, p) delimits
the corresponding list in Objects for a given subject and predicate. Maximum and mean
values, deg−−(G) and deg−−(G) characterize the Objects stream.

This proposal leads to a compact dictionary-based triple representation in which the
classical three-dimensional view of RDF has been reduced into two by the coordinated
streams, considering implicit the third dimension of subjects. In the next section we
introduce appropriate structures to effectively implement the HDT proposal.

3 Compacting RDF with HDT: Practical Aspects

HDT allows RDF data sets to be represented in a compact form, with no restriction
on how it should be implemented. This feature allows HDT to be optimized in specific
applications. In this section, we approach a practical HDT implementation focused on
RDF publication and exchange. The optimization is based on high HDT compressibility
and efficient management processes.

3.1 Implementation

The final HDT comprises the concrete implementation of the three complementary rep-
resentations of the header, the dictionary, and the set of triples.

Header. Header information can include multiple types of metadata, and the selected
configuration can vary between different data sets and different providers. In order to
reach a mutual understanding between providers and consumers, in final implemen-
tation we restrict the Header to be one RDF-valid format and we provide a specific
hdt vocabulary (http://hdt.dcc.uchile.cl/hdt#) to describe the Header through four
top-level statements (containers): (1) hdt:publicationInformation describes publication,
source and provider information, (2) hdt:statisticalInformation includes statistics about
the data, e.g. the parameters defined in Section 2.1, (3) hdt:formatInformation groups
the specification of the location and concrete Dictionary and Triples representation, and
(4) hdt:additionalInformation contains further information given by the provider.

Dictionary. The final Dictionary configuration is encoded on a single stream in which
all strings (ended with a reserved character, e.g ’\2’) are concatenated. Thus, the se-
quence represents the order of the strings in their correspondent vocabulary of subject-
objects (S-O), subjects (S), objects (O), and predicates (P). An empty word (also ended
with the reserved character) is appended to the end of each vocabulary in order to de-
limit its size.



Predicates:

Objects:

1 2 0 2 3 0

3 0 4 0 4 0 1 2 0

subject 1 subject 2

Predicates

Objects

1 2 2 3

3 4 4 1 2

0 0 1 0 0 1

0 1 0 1 0 1 0 0 1

Sp

Bp

So

Bo

Bitsequence-based 

reorganization

Fig. 3. Practical HDT Implementation

Triples. As we have previously explained, two coordinated ID-based streams, Predi-
cates and Objects, draw the RDF graph, representing the triples with an implicit subject-
grouping strategy. Both streams can be seen as sequences of non-negative integers in
which 0-values mark the endings of predicate and object adjacency lists respectively.
This means that positive integers represent predicates and objects, whereas 0’s are aux-
iliary values embed in each stream to represent, implicitly, the graph structure. Our
final implementation splits both parts in order to improve the HDT usability and to en-
hance its compactness. The graph structure is extracted from the original Predicates
and Objects streams, so the 0-values can be deleted from them. The resultant sequences
(respectively called Sp and So) hold the original ordering for the positive integers. In
turn, the graph structure is indexed with two bitsequences (Bp and Bo, for predicates
and objects) in which 0-bits mark IDs in the corresponding Sp or So sequence, whereas
1-bits are used to mark the end of an adjacency list.

Figure 3 shows a simple example of how the current approach reorganizes the
original ID-based streams through the bitsequences. On the one hand, Predicates=
{1, 2, 0, 2, 3, 0} evolves to the sequence Sp = {1, 2, 2, 3} and the bitsequence Bp =
{001001} whereas, on the other hand, Objects= {3, 0, 4, 0, 4, 0, 1, 2, 0} is reorganized
in So = {3, 4, 4, 1, 2} and Bo = {010101001}.

The triples structure can be interpreted as follows. The i-th 1-bit in Bp marks the
end of the predicate adjacency list for the i-th subject (it is referred to as Pi), whereas
the length of the 0-bit sequences between two consecutive 1-bit represents the number
of predicates in the corresponding list. For instance, the second 1-bit in Bp marks the
end of the predicate adjacency list for the second subject (P2). As we can see, a se-
quence of two 0-bit exists in between the previous and the current 1-bit. This means
P2 contains two predicates, which are represented by the third and fourth IDs in Sp by
considering that the third and fourth 0-bit in Bp correspond to P2. Thus, P2 = {2, 3}.

Data in So and Bo are related in the same way. Hence, the j-th 1-bit in Bo marks
the end of the object adjacency list for the j-th predicate. This predicate is represented
by the j-th 0-bit in Bp and it is retrieved from the j-th position of Sp. For example,
the third 1-bit in Bo refers the end of the object adjacency list for the third predicate in
Sp which is related to the second subject as we have previously explained. Thus, this
adjacency list stores all objects o in triples (2, 3, o) ∈ G.

Each element in Sp and So is encoded, respectively, with a fixed-length code of
log(|PG|) and log(|OG|) bits, by considering that the data set comprises |PG| and |OG|
different predicates and objects. The bitsequences used to represent Bp and Bo make



Algorithm 1 Check&Find operation for a triple (s, p, o)

1: begin← select1(Bp, s− 1) + 2;
2: end← select1(Bp, s)− 1;
3: sizePs ← end− begin;
4: Ps ← retrieve(Sp, 1 + rank0(Bp, begin), sizePs);
5:
6: plist← binary_search(Ps, p);
7: pseq ← rank0(Bp, begin) + plist;
8:
9: begin← select1(Bo, pseq − 1) + 2;

10: end← select1(Bo, pseq)− 1;
11: sizeOsp ← end− begin;
12: Osp ← retrieve(So, 1 + rank0(Bo, begin), size);
13:
14: plist← binary_search(Osp, o);

use of succinct structures. They are able to support rank/select operations over a
sequence S of length n drawn from an alphabet Σ = {0, 1}:

- ranka(S,i) counts the occurrences of a symbol a ∈ {0, 1} in S[1, i].
- selecta(S,i) finds the i-th occurrence of symbol a ∈ {0, 1} in S.

This problem has been solved using n + o(n) bits of space while answering the
queries in constant time [8]. We choose the González, et al. [12] approach to implement
our bitsequences. This adds 5% of extra space to the original length of Bp and Bo, and
achieves constant time for the required select/rank operations, which constitutes
the basis for accessing to the structure of the graph.

3.2 HDT Management

A really huge RDF data set contains a volume of triples that becomes unmanageable
when it is finally published. Let us suppose a very large data set has been published
on any of the existing RDF syntaxes. Basic operations, e.g. check a triple existence or
access to a subset of triples, are optimized in RDF storage systems, but this implies,
firstly, configuring the system and then loading the full data set for the triple indexing.
On the one hand, huge amounts of memory are required to render an efficient-time
service when operating on the full data set. On the other hand, simple on-demand access
to subsets of triples does not profit from the internal structure of RDF and suffers the
cost of loading and searching the full data set.

Our current approach proposes an on-demand loading strategy able to take advan-
tage of the structure indexed in Bp and Bo and accessible by fast rank/ select
operations. A functional prototype is implemented in order to test basic operations. An
initial stage loads both the dictionary (in a hash table) and the bitsequences; we consider
that these structures always fit into memory. The sequences Sp and So remain stored in
disk, queried by using the Check&Find operation described in Algorithm 1.



Lines 1-4 describe the steps performed to retrieve the predicate adjacency list for
the subject s (Ps). First, we obtain its size by locating its begin/end positions in Bp.
Next, we retrieve its sequence of predicate IDs from Sp. This operation seeks the
position where Ps begins in Sp (by using the rank0 operation in line 4), and, next,
retrieves the sequence of sizePs predicates that composed it. Once Ps is available in
memory, we need to identify the position (pseq) where s and p are related in Sp. Lines
6-7 describe it. First, p is located in Ps with a binary_search, and, next, this
local position (plist) is used to obtain its global rank in Sp. In this step, we are able to
retrieve the object adjacency list for s, p (Osp), by considering that it is indexed through
the pseq−th predicate. Osp is retrieved (lines 9-12) similarly to Ps, considering Bo

and So. Finally, o is located with a binary_search on Osp.
The cost of the Check&Find operation for a triple (s, p, o) is O(sizePs+sizeOsp),

assuming at most sizePs = degL−(s) and sizeOsp = deg−−(s, p). The distribution of
lists assures an amortized cost in (degL−(G) + deg−−(G)). Note that this operation
does not just find the required triple (s, p, o), but also the triples (s, p, z) ∈ G. Besides,
Ps contains all predicates from s, so the next operations on triples from s begin the
Check&Find operation by identifying the position of p in Sp (from line 6).

Efficient access is obtained through Check&Find. If a triple (s, p, o) /∈ G, it can
be detected in step 6 (the predicate p is not in the predicate adjacency list for s: Sp)
or in step 14 (the object o is not in the object adjacency list for s and p: Osp). On the
contrary, if (s, p, o) ∈ G, once the triple is found, the strings associated with s, p, and o
are retrieved from the dictionary in time O(1).

In addition, the Check&Find operation sets the basis for building efficient inser-
tion and deletion. In both cases, the adjacency lists to be updated are already available
in memory after the Check&Find. Thus, the changes can be performed in an efficient
logarithmic time, and the final performance of the operations will depend on the strat-
egy for writing the updated information on disk. Besides, as we explain, Check&Find
checks the triple existence, i.e the insertion is only performed if the triple does not exist
and the deletion is carried out over the found triple.

We have assumed, in the initial step, that the dictionary fits into memory, a common
assumption in the world of indexing regarding the size of the vocabulary. Our current
development achieves reducing, in one order of magnitude, the original size by simply
applying a prefix extraction. Other optimizations can be applied, such as a hierarchical
treatment of URIs.

3.3 HDT Compression

RDF exchange is a common process in the global Web of data with the aim of sharing
knowledge. The data-centric evolution of the Web will tend to demand even more ex-
haustive exchange processes in which efficiency is highly desirable. The performance
of this task is directly related with the size of the data set, so large RDF data sets can
overhead communication channels causing lengthy transmission delays. The use of uni-
versal compressors can alleviate this problem, although they are not able to detect and
delete all the underlying redundancies of RDF.

We show, in Section 3.4, that our HDT representation (referred to as Plain HDT
henceforth) is able to compact the RDF data set up to 15 times with respect to its



Data set
Triples Size HDT Universal Compressors

(millions) (MB) Plain Compress gzip bzip2 ppmdi

Billion Triples 106.9 15081.74 31.87% 3.91% 9.54% 6.83% 5.32%
Uniprot RDF 79.2 7083.22 14.33% 3.23% 8.71% 5.04% 3.99%

Wikipedia 47 6882.20 6.62% 2.22% 6.97% 5.11% 4.10%

Table 1. Compression results.

original size. This compacting ability proves capable of achieving very large savings
in communication bandwidth and transmission delays. However, Plain HDT is even
more compressible with very little effort. HDT-Compress makes specific decisions
for each component:

Header: we keep this component in plain form as it should always be available to any
receiving agent for processing.

Dictionary: it is compressed by considering that it stores all strings used in the RDF
data set. Thus, we take advantage of repeated prefixes in URIs, specific n-gram
distributions in literals, etc. This class of redundancy is able to be identified with a
predictive high-order compressor. We chose PPM [9] to encode the dictionary.

Triples: the set of triples compression is independently attempted on each structure.
On one hand, Sp comprises an integer sequence drawn from [1, |PG|]. A Huffman
[14] code is used to compress it. On the other hand, the compression of So (drawn
from [1, |OG|]) takes advantage of the power-law distribution of objects (see the
right dispersion graph in Figure 5) through a second Huffman code. Finally, we
hold a plain representation for bitsequences because of the small improvement ob-
tained with specific techniques for bitsequence compression.

We chose shuff8 and ppmdi9 to implement, respectively, the Huffman and PPM-
based encoding.

3.4 Experimental Results

This section shows the experimental results of the practical applications previously de-
scribed for HDT. These tests were performed on a Debian 4.1.1 operating system, run-
ning on a computer with an AMD Opteron(tm) Processor 246 at 2 GHz and 4 GB of
RAM. We used a g++ 4.1.2 compiler with -09 optimization. This experimentation was
run on the data sets described in the final Appendix.

First, we study the HDT performance with incremental size of the Uniprot data set,
from 1 to 40 million triples. This is shown in Figure 4. The left table studies the HDT
effectiveness evolution. As can be seen, it is distributed between 14− 15% for Plain
HDT, and by around 3.5% for HDT-Compress (the percentage is always given with
regard to the original file size). This proves the scalability of the HDT effectiveness by
considering that the results do not directly depend on the size of the data set.

The right graph of Figure 4 shows relevant times for HDT. On the one hand, the
creation time stands for the time required to transform an RDF data set (from plain

8 http://www.cs.mu.oz.au/∼alistair/mr_coder/
9 http://pizzachili.dcc.uchile.cl/experiments.html



Triples Size HDT
(millions) (MB) Plain Compress

1 89.07 15.11% 3.73%
5 444.71 14.54% 3.48%

10 893.39 14.04% 3.27%
20 1790.41 14.43% 3.31%
30 2680.51 14.39% 3.27%
40 3574.59 14.34% 3.26%

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30  35  40

tim
e 

(s
ec

on
ds

)

#triples (millions)

HDT Times

Creation
Loading

Compression
Decompression

Fig. 4. Performance of HDT (Plain and Compress) with incremental size data sets from
Uniprot. The left table shows effectiveness, whereas the right figure draws significative times.

N3) into HDT. This process is only performed once at publishing and shows a sublinear
growth. On the other hand, after the loading time, the minimum information required
for HDTmanagement is in memory and available to be accessed with the Check&Find
mechanism (Algorithm 1). As can be seen, this time is only a very small fraction (≈ 3%)
of the creation one. Additionally, symmetrical compression and decompression times
are achieved with HDT-Compress. This guarantees real time exchange processes by
considering that the receiver is able to start the decompression as soon as the beginning
of the compressed data set starts to arrive. In absolute terms, both compression and
decompression times are slightly worse than the loading ones.

Table 1 compares HDT with respect to four well-known universal compressors. We
choose gzip as a dictionary-based technique on LZ77, bzip2 based on the Burrows-
Wheeler Transform, and ppmdi as a predictive high-order compressor. We consider a
heterogeneous corpora of RDF data sets shown in the final Appendix: Billion Triples,
Uniprot RDF and Wikipedia with 106.9, 79.2, and 47 million of triples respectively.

The most effective universal compressors for all data sets are ppmdi and bzip2
which achieve ratios of around 4% and 5% respectively. A very interesting result shows
that Plain HDT is able to outperform gzip for the Wikipedia data set. This demon-
strates the previously cited ability of HDT to obtain compact representations of RDF.
HDT-Compress achieves the most effective results with ratios between 2 − 4% for
the considered data sets. This supposes reductions between 3− 4 times with respect to
Plain HDT, and consequently proportional improvements on exchanging processes.
In turn, HDT-Compress also outperforms universal compressors by improving the
best results, achieved on ppmdi, of between 20− 45%.

4 Conclusions and Future Work

RDF publication and exchange at large scale are seriously compromised by the scalabil-
ity drawbacks of current RDF formats and the lack of modular structure, internal meta-
data information and native operations over the data. HDT addresses these problems by
approaching a more compact representation format, decomposing an RDF data source



into three main parts: Header, Dictionary, and Triples. Besides, this representation can
be implemented by succinct structures and simple compression notions. This results
in a very compact RDF representation able to support an on-demand Check&Find
mechanism currently used to implement indexed access to the RDF graph. Our experi-
mental results show the scalability of HDT for incremental data set sizes, being able to
compact a data set up to 15 times current naive representations and providing efficient
access to the data. In turn, a specific compression technique for RDF, HDT-Compress,
outperforms universal compressors, which can serve as an essential choice in exchange
processes involving huge data sets.

Current results open some interesting opportunities for future work. HDT compact-
ness and the on-demand operations set the basis for developing an RDF storage system
over HDT. The Check&Find mechanism and its ability to perform indexed access to
the RDF graph will guide the design of efficient insertion and deletion (thus, also updat-
ing) which establish a full set of management operations. Additionally, we are currently
analyzing Sp and So to be reorganized following a wavelet-tree-like strategy. This keeps
the current spatial requirements of HDT but also provides indexed access inside both
sequences, suggesting a full compressed index able to solve basic SPARQL queries
natively. The resolution of a basic SPARQL join query can be performed through a se-
ries of wavelet-tree and bitsequences operations and dictionary accesses. Subject-object
JOINs resolution can also profit from the common naming in the dictionary, as the ele-
ments are correctly and quickly localized in the top IDs.

References

1. K. Alexander. RDF in JSON: A Specification for serialising RDF in JSON. In SFSW
2008, 2008. Available at http://www.semanticscripting.org/SFSW2008. Retrieved Septem-
ber 2010.

2. M. Atre, V. Chaoji, M.J. Zaki, and J.A. Hendler. Matrix "Bit" loaded: a scalable lightweight
join query processor for RDF data. In WWW 2010, pages 41–50, 2010.

3. Dave Beckett. RDF/XML syntax specification (Revised). Technical report, W3C, February
2004.

4. P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In WWW 2004,
pages 595–602, 2004.

5. D. Brickley. RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/, 2004. W3C Recomm. Retrieved September 2010.

6. F. Chierichetti, R. Kumar, and P. Raghavan. Compressed web indexes. In WWW 2009, pages
451–460, 2009.

7. E.I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient sql-based rdf querying scheme.
In VLDB 2005, pages 1216–1227, 2005.

8. D. Clark. Compact PAT trees. PhD thesis, University of Waterloo, 1996.
9. J.G. Cleary and I.H. Witten. Data Compression Using Adaptive Coding and Partial String

Matching. IEEE Transactions on Communications, 32(4):396–402, April 1984.
10. L. Ding and T. Finin. Characterizing the Semantic Web on the Web. In ISWC 2006, pages

242–257, 2006.
11. J.D. Fernández, C. Gutierrez, and M.A. Martínez-Prieto. RDF compression: basic ap-

proaches. In WWW 2010, pages 1091–1092, 2010.
12. R. González, S. Grabowski, V. Makinen, and G. Navarro. Practical implementation of rank

and select queries. In WEA 2005, pages 27–38, 2005.



13. C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of semantic web databases. In
PODS 2004, pages 95–106, 2004.

14. D.A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Proceed-
ings of the IRE, 40(9):1098–1101, 1952.

15. IBM. IBM Dictionary of Computing. McGraw-Hill, 1993.
16. D. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.

http://www.w3.org/TR/owl-features/, 2004. W3C Recommendation. Retrieved September
2010.

17. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. Proceedings of the
VLDB Endowment, 1(1):647–659, 2008.

18. T. Neumann and G. Weikum. Scalable join processing on very large rdf graphs. In COMAD
2009, pages 627–640, 2009.

19. E. Oren and et al. Sindice.com: a document-oriented lookup index for open linked data.
International Journal of Metadata, Semantics and Ontologies, 3(1):37–52, 2008.

20. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. ACM Trans-
actions on Database Systems, 34(3):1–45, 2009.

21. Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides. On Graph Features of Seman-
tic Web Schemas. IEEE Trans. on Know. and Data Engineering, 20(5):692–702, 2008.

Appendix: The data sets used in the study

This appendix comprises an experimental study on real-world data sets in order to char-
acterize RDF structure and redundancy by applying the parameters presented in Section
2.1. We chose three data sets based on the huge amount of triples, different application
domains and previous uses in benchmarking:

– Billion Triples Challenge: One of the largest RDF data sets (∼3.2 billion state-
ments) available at the moment of writing, given as part of the Semantic Web Chal-
lenge10. Data is collected from Sindice, Swoogle, DBpedia and others.

– Uniprot RDF11: huge, freely-accessible RDF data set of protein sequence data, as
part of the Uniprot project (∼0.7 billion statements).

– Wikipedia triple-set12: English Wikipedia in RDF (∼47 million statements).
A preprocessing step is first applied. Billion Triples data was parsed from N-Quads

format13 to NTriples by eliminating context information. We generated an N3 format
from the original RDF/XML of Uniprot by using the tool SemWeb14. For Billion Triples
and Uniprot, we used a random sample of the data, respecting the order of appearance
and eliminating repeated triples.

Table 2 summarizes the statistical data, focusing on the most relevant parameters
for our approach. Several comments are in order. First of all, note the high variability
of values among the data sets. Billion Triple data set is a mashup of diverse sources,
whereas Wikipedia triple-set and Uniprot are designed with one main purpose. The spe-
cial condition of Billion Triple increments the number of different predicates, although

10 http://challenge.semanticweb.org/
11 http://dev.isb-sib.ch/projects/uniprot-rdf/
12 http://labs.systemone.at/wikipedia3
13 http://sw.deri.org/2008/07/n-quads/
14 http://razor.occams.info/code/semweb/semweb-current/doc/index.html



Data Set # triples # pred. deg− deg− deg−− deg−− degL− degL− αs−o

Billion Triple 106.9M 50516 27387 2.74 27386 1.11 3293 2.46 6.54%
Uniprot RDF 79M 99 2030 4.80 2010 1.27 22 3.78 58.49%

Wikipedia 47M 9 7408 21.76 7400 3.95 7 5.51 17.61%

Table 2. Data sets statistic summary.

Fig. 5. Wikipedia triple-set distribution of subjects (left) and objects (right), e.g. a point (X,Y) in
the rightmost graphic says that there are Y different objects each occurring in X triples. Both axis
are logarithmic. The power laws have exponent −2.181 and −2.366 respectively.

they remain proportionally small to the number of triples, as well as decreasing the
subject-object ratio. In this case, out-degrees reveal that subjects are related with few
predicates (a mean of 2.46) and each of these pairs match with a single object (a mean
of 1.11). In turn, the design of Uniprot has more cohesion, with a high subject-object
ratio and a smaller number of very frequent predicates (each subject is related with a
mean of 3.78 predicates over a total of 99). This reveals a star chained design in which
a subject is strongly characterize and interlinked with others. A similar interpretation
could be done for the Wikipedia triple-set, although the number of predicates is ex-
tremely low. In this case, the high partial degree suggests that a pair (subject,predicate)
is repeated within several objects (a mean of 3.95). This affirmation is consistent with
the interlinked design of pages in Wikipedia.

Figure 5 shows the distribution of subjects and objects of the Wikipedia triple-set.
As we expected, a power-law distribution is remarkably present in both cases, suggest-
ing an implicit significant redundancy. The other data sets reveal the same distribution
for subject and object as well as a lack of statistical distribution of predicates.

These results immediately point to possible compact design models of RDF. Our
approach, HDT, exploits the significant correlation and the inherent redundancy in data
and structure. In particular, the Dictionary component takes advantage of subject-object
ratio characterization and groups the references to the same node. The Triples compo-
nent represents the graph compacting the distribution with implicit and coordinated
adjacency lists, parametrized by out-degree means.


