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Abstract  Loosely-coupled mobile work is characterized 

by nomadic workers collaborating in sporadically and on-

demand ways. Supporting nomadic workers’ interactions 

requires knowing the location of the potential 

collaborator; therefore, indoor/outdoor positioning 

systems play a key role. Locating persons in outdoor 

environments is well addressed by Global Positioning 

Systems (GPS); however for the indoor scenario the 

solution is not so clear. Although several proposals for 

indoor positioning have been reported in the literature, 

most of them demand important setup efforts. This article 

presents the Easy to Deploy Indoor Positioning System 

(EDIPS), a WiFi-based system able to support the typical 

location requirements involved in loosely-coupled mobile 

work. EDIPS is aimed for fast deployment and real-time 

operations rather than for location accuracy. The system 

was preliminary evaluated as a support for locating 

medical interns’ in a simulated hospital. The results 

obtained indicate the solution is able to locate nomadic 

workers in an indoor scenario, with enough accuracy to 

support loosely-coupled mobile work, while requiring 

minimal setup effort. 

 

Keywords Indoor Positioning System, User Location 

Estimation, Loosely-Coupled Mobile Work, Nomadic 

Users.  

1 Introduction 

During the last years we have witnessed a revolution on 

mobile computing solutions. Advances in wireless 

communication technologies and mobile computing 

devices (from cellular phones to laptops) have allowed 

organizations, professionals, and individuals transfer part 

of their activities from desktop computers to these mobile 

devices [13]. Technological advances are also changing 

the work scenario and the human behavior and needs. 

Now, many persons are becoming “mobile workers” who 

want to be able to use any available time to continue 

working, independently of the place where they are 

located (e.g. at the office, a coffee shop, a plane or just 

walking) [5, 22].  

Several researchers have shown that the computer-

supported mobile work can improve the productivity of 

nomadic users in particular scenarios, such as healthcare 

[33], education [34], productive processes [28], mobile 

commerce [41] and emergency response processes [1]. 

Computer-supported mobile work includes various styles 

of work: uncoupled work (e.g. work done by mobile 

workers using only local resources), loosely-coupled work 

(e.g. a mobile worker interacting on-demand with servers 

and/or mobile workers during short periods of time) and 

tightly-coupled work (e.g. nomadic users working 

connected to servers/other mobile users) [17]. However, 

the most common mobile work style is loosely-coupled 

[29]. Since interactions between nomadic users doing 

loosely-coupled work are on-demand, positioning 

potential collaborators is a key issue for many activities; 

e.g., a nurse needing to find a physician to report changes 

in the health condition of a patient.  

During the last years, positioning techniques and 

technologies have been strongly researched and 

developed. In particular, real-time positioning systems 

have generated strong attention given the high impact 

they might have on the broad spectrum of applications 

where ubiquitous information and services are 

predominant. Global Positioning System (GPS) is one of 

the most common and accepted technologies for outdoor 

positioning. Nevertheless, for indoors, GPS technology 

becomes infertile given its highly degraded or blocked 

satellite signal inside of buildings.  

There are also several research works aimed at 

supporting mobile users’ positioning in indoors. However, 

most of them require an important setup effort, which 

sometimes jeopardizes the feasibility of deploying a users 

positioning solution. 

Key challenges for this type of indoor positioning 

systems are the capability of being deployed quickly and 

supporting real-time operations. These challenges set 

apart this type of positioning system from most of current 

technologies, which focus on higher accuracy 

achievements, a feature not mandatory for loosely-

coupled mobile work.  

This article presents the Easy to Deploy Indoor 

Positioning System (EDIPS), a WiFi-based system aimed 

for fast deployment and real-time operations rather than 

for high accuracy in positioning. The system is able to run 

in a broad range of mobile computing devices (from 

PDAs to tablet PCs) and interoperate in order to locate 

nomadic users by means of WiFi networks. Once 

deployed, the system is able to recognize the environment 

where the user is located, position other users on a map 

and react to changes on the user location.  

This positioning system can be added as a service into 

other software applications to provide user positioning 

awareness. EDIPS has been preliminary tested in a 



physical scenario simulating hospital facilities. 

Preliminary results indicate the system is easy to deploy 

and useful to position nomadic users performing loosely-

coupled mobile work. 

Next section presents the related work. Section 3 

explains the positioning model used by EDIPS. Section 4 

describes the EDIPS architecture, its main components 

and its user interface. Section 5 presents the evaluation 

process conducted to determine the accuracy of the 

EDIPS positioning system. Section 6 describes the 

evaluation conducted with medical interns in a simulated 

hospital scenario. Finally, Section 7 presents the 

conclusions and the future work. 

2 Related work 

Ample literature is available for real-time indoor 

positioning [4, 16, 23, 32]. Results describing partially 

successful efforts are available since at least a decade ago 

[3]. The existing proposals differ mainly in term of both, 

the method used to estimate the position of a resource and 

also the technology utilized to support the location 

process. These two elements typically establish several 

features of an Indoor Positioning System (IPS); e.g. its 

accuracy, deployment effort and coverage area. Next 

section presents the main strategies to estimate the 

position of indoor resources. Section 2.2 analyzes the 

technologies supporting IPS and some of the well-known 

implementations. Section 2.3 discuses various already 

implemented IPS, which could be used to support loosely-

coupled work. 

2.1 Indoor positioning location strategies 

Indoor positioning strategies can be classified in four 

categories: triangulation, fingerprinting, proximity and 

vision analysis [19, 20]. These strategies can eventually 

be combined to enhance the positioning system. 

Triangulation. This strategy takes advantage of the 

geometric properties of triangles in order to estimate 

the position of a resource. It considers a 2-D physical 

scenario. The estimation process uses three reference 

points with known geographical coordinates. Then, 

using the direction or length of the vector drawn 

between the location to be estimated (point A) and the 

reference points (B, C, D), it is possible to calculate 

the absolute position of point A [19]. This process is 

particularly known as tri-lateration. There are three 

methods typically used to calculate positions using 

triangulation: signal strength, time of arrival and angle 

of arrival [35]. The first two requires counting on 

three reference points to calculate a position, and the 

last one requires just two points. However, the angle 

of arrival method has accuracy problems when the 

target object to be located is far from the reference 

points [11]. The accuracy of the three methods 

improves when improve the number of reference 

points used for the estimation. An advantage of these 

methods is they involve just a small setup effort in 

order to start predicting the resources location. 

Fingerprinting. This strategy calculates positions in a 

physical space by comparing current measurement of 

a given set of signals, with pre-measured data related 

to particular locations. Typically the strategy involves 

two phases: an offline training phase and an online 

estimation phase [20]. The goal of the offline phase is 

to collect samples of location related data (e.g. WiFi 

signals strength) for the whole physical space that is 

considered for the estimation process. The second 

phase uses such data to estimate the position of 

resources in such scenario. This method could be quite 

accurate, but it involves an important effort to collect 

samples during the offline phase. 

Proximity. This strategy involves the use of detectors 

(e.g. RFID tags) that are located in known positions. 

When a target object is identified by a detector, the 

coordinates of such position are reported to a 

component in charge of mapping such data into a 

location in the physical scenario. The accuracy of this 

positioning strategy could be high, depending on the 

detection technology that is used. Such accuracy 

depends on the number of detectors deployed in the 

physical environment; the higher the density of 

detectors the higher the precision. This strategy is 

useful not only to position or track mobile users [6], 

but also to provide them personalized services [18] or 

support touch interactions [10]. RFID tags can be used 

to store data rather than only IDs [24]. A drawback of 

this strategy is the significant effort required for the 

setup process, which is usually high. 

Vision Analysis. This positioning strategy analyzes 

images received from one or more capturing points 

(e.g. cameras located in the tracking area) [7], in order 

to try identifying a tracked object. Real-time analysis 

of images could be appropriate if the number of 

objects to be tracked is small. Otherwise, it is more 

efficient to combine this strategy with some of the 

previous ones, e.g. with triangulation, to reduce the 

number of images required for the analysis. IPS using 

this positioning strategy involve an important effort 

and cost during the setup phase.  

2.2 Supporting technologies for IPS 

There are several technologies that can be used to support 

the indoor positioning mechanisms [35, 19]. Among them 

are infrared, radio-frequency, Bluetooth, and sensor 

networks technologies. 

Infrared systems need line-of-sight communication 

between transmitters and receivers without interference 

between the light source and the target [8]. Typically they 

operate based on target objects detection (i.e. proximity) 

with limited coverage. Some well known IPS using 

infrared are Active Badge [36], Firefly [12], and 

Optotrack [27]. 

Radio-frequency positioning systems use mainly 

triangulation and fingerprinting techniques [16]. Some of 

the radio-frequency technologies used by IPS are radio-

frequency identification (RFID) and wireless local area 

network (WLAN). A well known IPS using RFID is 

WhereNet [38]. For the case of WLAN technology, some 



well known IPS are RADAR [3], Ekahau [14], Compass 

[21] and Horus [40]. 

Bluetooth-based positioning systems mainly use 

proximity for resource positioning [30]. Typically, a 

Bluetooth-enabled device detects tags in indoor 

environments. Then, utilizing pre-loaded location 

information the mobile user’s device can determine where 

the person is located. A well known Bluetooth-based IPS 

is Topaz [37]. 

Sensor-based positioning systems typically involve a 

large number of sensors, located in predefined indoor 

places, in order to determine the position of a person or a 

device [25, 26]. Positioning methods using sensor 

networks are usually complex and expensive. A well 

known sensor-based IPS is the ORP system [2]. 

The authors of this article consider, based on the 

above presented evidence, the most relevant supporting 

technologies seems to be radio-frequency; particularly the 

WLAN. The rationale behind this opinion is three-fold. 

First, it provides a suitable signal threshold. Second, it 

allows to deal with users’ mobility in a gracefully manner. 

Third, it is anticipated this technology would involve a 

reduced deployment effort. Next section discusses more 

in depth some of the WLAN-based IPS, which could be 

used to support loosely-coupled mobile work.    

2.3 Indoor positioning systems for loosely-coupled 

mobile work 

There is a significant number of WLAN-based IPS 

reported in the literature, being RADAR [3] one the oldest 

infrastructure-based systems. This system processes RF-

derived distances to determine positioning, sharing 

several similarities with the system proposed in this 

article, but lacks the quick deployability feature. The bulk 

of the contribution of RADAR to this work is the use of a 

pre-stored RF-signal strength map built either by direct 

measurements or by using a propagation model. 

Interesting particular contributions are the following: (1) 

study of different signal propagation models, and (2) 

empirical analysis on how diverse factors impact 

measurement and prediction. In particular, factors such as 

the number of measurement points, the sampling rate, and 

the body orientation of the person carrying the monitored 

device. 

Horus [40] is another system that can be seen as an 

evolution from RADAR which tries to reduce the 

prediction error. Horus uses a probabilistic approach 

instead of the deterministic one found in RADAR. 

Probabilistic approaches would deliver better results than 

deterministic ones, according to [39]. Similarly to 

RADAR, Horus uses a two-phase process: an off-line 

phase for sample gathering and calibration, and an on-line 

phase, the actual positioning estimation task. 

Lastly, a very interesting work on the impact of 

movement behavior on positioning is presented by Castro 

and Favela [9]. Their work is framed in a hospital context 

and proposes the use of neural networks to tackle the 

problem generated by sudden movement of users. Their 

work highlight that movement behavior related to the 

monitored device has a significant impact on position 

estimations. 

The above described initiatives emphasize the trade-

off between effort/cost and performance. The more the 

accuracy and precision the system delivers the more the 

training/calibration, or additional technology, it takes. For 

the research presented in this article, an error in 

positioning up to 6 meters is considered acceptable, the 

system here proposed is envisioned to be used for human 

monitoring applications. 

In terms of the role that Wi-Fi technology may have 

for positioning purposes, apparently there are strong 

limitations imposed by effort involved in deploying 

phases on the level of accuracy that can be achieved. For 

example, Ekahau Real Time Location System [14] 

exhibits moderate accuracy, using WiFi signal strength 

fingerprints, while demanding significant amount of time 

[15] and effort during system set up and calibration 

phases. For the system proposed in this article, the 

calibration and system setup time are in the order of 

minutes. Another key difference between Ekahau and the 

model here proposed is access to information; in 

opposition to dissemination policies used in academia, 

details on algorithms and signal propagation model are 

not of public domain for systems like Ekahau. The 

following paragraphs detail the model for positioning 

developed under this research initiative, highlighting the 

concepts both derived from and different to the mentioned 

related work. 

3 EDIPS positioning model 

The solution proposed in this document relies, as some of 

the systems mentioned in the previous section, on the 

building and use of a signal strength blueprint. The key 

differences between related work and the research here 

presented lie on the performance during the blueprint 

creation task; algorithms on using Wi-Fi signal strength 

reference points to derive position estimations; and on 

exhibiting the capability to use and share the same 

blueprint among devices, indistinctly of the specific Wi-Fi 

interface embedded in each device. As one could expect, 

the downside for having such features is lower accuracy. 

Nevertheless, as this system is designed for human 

tracking and perception level, accuracy degradation is not 

an issue as long as it does not increase more than a few 

meters. 

3.1 Off-line phase – Infrastructure and calibration 

During this phase, the signal strength blueprint is created 

and loaded into the device. Signal strengths are calculated 

for each reference point. Only signal source are utilized 

for these calculations, and radial decay is assumed for 

signal propagation. While it may not be the best 

assumption when complete information is available, we 

consider it a fair assumption given the limited information 

known or required a priori. Signal coverage for each 

signal is attenuated or amplified based on parameters 

related to each device, setting, or reference point. Signal 

propagation is modeled as adjusted by a constant 

parameter independent of the emitting source. Again, it is 



a very basic model, enough to provide suitable accuracy 

while enabling faster setting and calibration phases. 

In opposition to RADAR, where signal decay models 

include the effect of walls, this effort only requires to be 

aware of the physical dimensions of the 2D space 

containing the operations area. Details on the map and 

realism are not relevant, only scale is considered. On the 

map, positions of access points are registered (see Figure 

1) as well as their MAC address. Then, the tasks 

described in the following paragraphs are conducted in an 

automated manner. 

 
 

Fig. 1  2D map for the operations area showing the reference 

points (circles) 

 

After the blueprint has been created the discretization 

process of the physical space is performed (Figure 2). 

Equal size cells are defined and overlaid on the blueprint. 

Each cell is given an a priori expected signal strength 

value considering the reference points. The spirit of the 

segmentation approach is to have cells independently 

treated in case different conditions affect them. 

Nevertheless, at this step in the general process, all cells 

are treated in the same manner.  

 

 
 

Fig. 2 Discrete cell model involving reference points (Wi-Fi 

access points) 

 

Usually, signal decay modeling considers a large 

signal strength sample dataset gathered at many locations 

in the operations area. By doing this, system setup, 

calibration, and training are significantly impacted. In this 

work, system training step is completely removed; it 

favors quick deployment at a reasonable lack of accuracy. 

Figure 3 shows the signal strength landscape after all 

reference points’ signals have been integrated into the 

operations area. 

 

 
 

Fig. 3  Estimated signal propagation and decay model for the 

operations area 

Regarding signal propagation and decay model, it is 

considered that a function f(m) denoting the signal 

strength value at a distance m exists. Such function is 

used to determine the signal strength from source j 

detected at cell i as follows: 

ADji KKVmfIntensitySS  )(_  

Where, m corresponds to the distance between cells i 

and j, Vj corresponds to a correction parameter for source 

j, KD corresponds to a device correction parameter, and KA 

is used to model environmental signal penetration. Unless 

these scalar correction parameters are specified by the 

user, they are given the unity value, i.e., 1.0. 

In summary, input for off-line phase of the positioning 

system are: the 2D map of the operations area, and 

location and MAC address for each reference point. With 

this information a basic, but extremely fast, signal 

strength discrete landscape can be developed. The system 

allows the end user to decide which Wi-Fi signal 

propagation model to use. For example, the person setting 

up the system choose one among the ones already 

developed in some of the related work already described 

in the Introduction, or she can develop her own 

theoretical/empirical one. 

3.2 On-line phase – Operations 

The On-line phase aims to keep updated positioning 

information about devices being tracked. At every time 

step it updates the data used for position estimation and 

calculates the location. High variance in data sampled at 

this point does not allow raw data to be used directly, so 

signal strength data needs to be smoothed before used. By 

means of incorporating the last n signal strength readings 

from access points, weighting higher the recent ones than 

the older ones, positioning gets updated. Based on 

preliminary observations during the development of this 

system it seems that weighted average works better than 

standard average. From now on signal strength will refer 

to the weighted average of signal strength. 

The positioning model tries to find the cells that 

minimize the error between the theoretical and sampled 

signal strengths. So, each cell from the grid is processed 

determining what place minimizes the error, including all 

other places given an error range. At the end of this 

iterative process the system holds a set of candidates pro 

the location of the device.  The worst case happens when 

the set of candidates are distributed in a non-continuous 

region in the grid. Currently, the position is determined by 



calculating the corresponding center of mass from the set 

of candidates. 

3.3 Error weighting algorithm 

This algorithm delivers a score (error) for each cell in the 

grid. The cells having the lowest scores are the ones 

considered as the ones where the monitored device most 

likely is located.  

Let us have U representing the set of all the signal 

sources used as reference points, and U' the subset of cells 

containing the strongest signals. For each X in U' we call 

Xm the sampled signal from source X and Xi the 

corresponding theoretical signal for source X at position i. 

Then, the following formula is used to calculate the error 

for cell i: 

),()( 2
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Given signal precision decays as it gets weaker, the 

calculation uses set U' instead of set U. Also, the 

quadratic error is weighted by a function f that favors 

stronger signals over the weaker ones. Quadratic error 

was chosen because it provides better treatment of 

variance in the sample. 

The above described process can be improved with 

problem domain restrictions/knowledge. For example, 

people carrying/wearing the monitored device cannot 

displace over certain value in a given period of time. 

Consequently, error related to cells far from the 

current/last cell can also be weighted, and impractical 

further locations can be ignored. Finally, there is always 

space for introducing movement behavior models to 

include movement patterns, frequent trajectories, etc. It is 

out of the scope of this article and is part of future work. 

4 Implemented indoor positioning system 

EDIPS has a layered and fully distributed architecture. 

Each mobile device running this positioning system is 

autonomous and does not need the support of any other 

component to perform the positioning estimation process. 

The system may operate in a variety of devices, such as 

PDAs, smartphones, tablet PCs, and notebooks, 

supporting interactions among them, as well. Next sub-

sections explain the role and components of each layer of 

the EDIPS architecture. 
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Fig. 4  EDIPS architecture 

4.1 Hardware support 

Since EDIPS uses WiFi not only to support the location 

process but also the communication/interactions among 

mobile workers, the WiFi interface becomes a crucial 

component. The positioning process must consider that 

WiFi antennas of different devices have different power. 

It means the signal emitted by an access point may be 

perceived differently by different devices, like 

smartphones and notebooks. Clearly, this situation affects 

the accuracy of the position estimation process. In order 

to deal with this issue EDIPS assigns a baseline signal 

strength for each type of device. The baseline signal 

strengths were established empirically based on several 

tests conducted by the authors using an important number 

of different devices. For example, the signal strength 

perceived by a smartphone is approximately the 70% of 

the signal strength perceived by a notebook located in the 

same place. On the other hand, signal strength differences 

among devices of the same type, even they do exist, they 

are not relevant in the position estimation process. 

If the user wants to improve the accuracy of the 

positioning prediction process of his/her device, the 

system allows the users to tune the signal strength 

perceived through a correction coefficient that is 

particular for each device. No particular setting of WiFi 

interfaces is required to use the system.  

If the device has an accelerometer, EDIPS is able to 

use it to enrich the awareness mechanisms deployed 

through the user interface; e.g. indicating that a nomadic 

worker is stationary or on the move. The accelerometer 

does not affect the accuracy of the location prediction 

process, and it is an optional component. 

4.2 Positioning system 

The positioning system involves mainly two components; 

a received signal strength (RSS) processor and a location 

estimator. These components are in charge of performing 

the estimation process described in section 3. However, 

there is a third component named HLMP API [31] that 

contributes to extend coverage area of the positioning 

system and eases the mobile workers discovery process. 

Next we present a brief explanation of such components.    

RSS Processor. During the offline phase this component 

is in charge of establishing the reference points in the 

operations area. This component also enables users to 

do tune the signal strength perceived by the antenna of 

each mobile device. During the online phase the RSS 

processor retrieves, adjusts, records and informs the 

signal strengths perceived from the reference points (i.e. 

the access points). This information is then used by the 

location estimator component to predict the position of a 

resource (e.g. a mobile worker). 

Location Estimator. During the offline phase this 

component performs the discretization of the physical 

space and characterizes the signal strengths for each cell 

of the map. Such information is stored in a XML file, 

which can be eventually shared among mobile users. 

During the online phase this component determines the 

most probable position of a target object depending on 



the set of signals strength currently received by the 

mobile device. This functionality is useful not only to 

position resources but also to identify the physical 

scenario where the user is located (e.g. the 3
rd

 floor of a 

particular building).   

HLMP API. This component allows mobile workers 

keep connected and interoperate through a Mobile Ad 

hoc Network (MANET). Such infrastructure provides 

most communication services required by nomadic 

users when performing loosely-coupled work [31]; e.g. 

automatic formation of a MANET, automatic detection 

of users, automatic inclusion/exclusion of users, 

messages routing, and data synchronization. Since this 

infrastructure provides messages routing, the 

positioning system’s coverage area could be extended 

over the limits of the WiFi communication range. For 

example, a mobile worker located in the 3
rd

 floor of a 

building could know the position of a partner located in 

a contiguous floor. Since HLMP does not utilizes the 

access points or centralized components, the use of this 

infrastructure allows keeping the fully distribution 

paradigm proposed in the design of EDIPS. HLMP also 

helps to implement awareness mechanisms that are 

required to perform loosely-coupled work, such as users 

presence, users roles and public/private resources. 

4.3 Location/collaboration services 

This layer involves two components: (1) the collaboration 

services that support the loosely-coupled work and (2) the 

awareness mechanisms that allow nomadic users become 

aware of peers. Most collaboration services are based on 

services provided by HLMP API. Examples of such 

collaboration services are work sessions management, file 

transfer and floor control. These components partially 

support the indoor positioning systems. To exemplify a 

situation where collaboration services support the IPS, let 

us suppose the following work scenario. User A detects 

the presence of user B in an indoor environment through a 

service provided by HLMP API. However user A is not 

able to know the location of B, because A does not count 

on the information of the physical environment where 

s/he is located (i.e. the signals strength map and the 

blueprint of the physical environment). In such case, 

EDIPS running in the user A´s device utilizes the file 

transfer service to obtain such information from B. Such 

information is dynamically loaded and thus user A is now 

able to locate user B. 

The second component, i.e. the component that 

implements awareness mechanisms, provides feedback 

about the surrounding ambient and its composition 

through the device screen. Some of the awareness 

mechanisms already implemented in EDIPS are the users’ 

presence and location, the map of the physical area where 

the user is located, and the mobility status of each user 

(i.e. if the user is stationary or on the move). The current 

implementation of the system updates this awareness 

information almost in real time. In order to shown more 

clearly these awareness components, next section presents 

the user interface that brings by default EDIPS.  

4.4 Location-based software application 

A simple location-based application was developed at 

EDIPS’s upper layer in order to evaluate the positioning 

services provided by this system. The application supports 

the offline and online phases of the location process. 

During the offline phase it is possible to load a blueprint 

of the area and mark the position of the access point(s). 

Such activity represents the deployment of the system and 

it takes (depending on the physical scenario) a few 

minutes.  

During the online phase the system presents the user 

interface shown in figure 5. There, it is possible to see the 

blueprint of the area in which the user is located and also 

the presence of other three nomadic users. The icon 

labeled as “me” is the local user, which is colored 

different to the rest of the participants. The user icon’s 

shape also changes depending on mobility status of the 

user. For example, (in Fig. 5) the local user and “user 1” 

are stationary, and the other two users are on the move. 

“User 2” appears over an arrow; it means such user is out 

of the screen portion visualized by the local users. Shall 

the local user want to find “user 2”, s/he has to walk in the 

direction indicated by the arrow. 

EDIPS also has an icons bar and a menu. The icons 

bar allows the users to perform quick commands on the 

user interface; particularly the first icon centers the 

blueprint image in the upper left corner. The second icon 

centers the image in the local user. The third icon shows 

users that are around, but not visible in the portion of the 

blueprint shown on the screen. The last icon hides all 

icons except the local user icon. 

 
 

Fig. 5  EDIPS main user interface 

 

The “maps” option in the EDIPS menu allows a 

person to access functionality related to blueprint and 

signals strength maps; e.g. to select the resolution of the 

blueprint shown on the screen or to obtain the signals 

strength map of a nomadic user near her. The option 

“options” in the menu allows configuring the visibility of 



a user as a member of the physical environment. For 

example, a nomadic user could prefer to be invisible 

during some time periods because s/he wants to avoid 

interruptions from other users. HLMP API provides 

several visibility services, and this menu option allows the 

user to active/deactivate such services.  
This application was used in two evaluation scenarios. 

The first one was focused on determining the accuracy of 

the proposed indoor positioning model, in addition to 

measure the effort required to deploy the system. The 

second scenario involved medical interns and had two 

goals: (1) to verify the effort required in the deployment 

process, and (2) to determine suitability of the application 

in supporting loosely-coupled work conducted by medical 

interns in a hospital setting. 

5 Evaluation scenario I 

The test of the system was conducted at the 3
rd 

floor of the 

Computer Science Department of the University of Chile, 

in Santiago, Chile. This test was fourfold. First, the error 

in meters was calculated for certain points of interest. A 

Wi-Fi enabled device was used for both determining the 

signal strength propagation model and testing the 

performance of the system at the points of interest. No 

correction parameters were utilized, i.e., they all had 

value 1.0. Second, the performance of the system was 

observed while varying the device to be monitored. Third, 

correction capability of the model and signal quality were 

studied while more reference points were added. Finally, 

the fourth is same as the third, except this time the signal 

strength landscape was improved based on “patching” 

weak signal spots detected through the ongoing sampling. 

 

 
 

Fig. 6  Floor plan for testing operations area showing locations 

were different elements were placed 

 

At the testing place there were already seven access 

points covering an area of approximately 55 x 24 square 

meters. Figure 6 presents the dimensions and the location 

of the elements utilized for this testing task. Numbered 

squares represent locations were measurements were 

conducted. The black star represents an additional 

reference point added during the second part of the test. 

Circles represent the locations of reference points, i.e., 

access points. Given the estimated position for the 

monitored device may not the same for different 

sampling, about 20 samples were averaged for every 

measurement point. 

The device used during the first part of the testing was 

a HTC Diamond Touch, from now on referred to as HD1. 

Table 1 presents the results for this part of the test. The 

measurements obtained at two points presented in this 

table are interesting. First, point 4 shows a small error, not 

surprisingly given its proximity to a reference 

point/access point. Second, at point 6 the error is large 

given increased distance to reference points. This point is 

a candidate for the third part of this test.  

For the second the phase of the test a different Wi-Fi 

enabled cell phone was used. HTC Diamond Touch 2, 

from now on HD2, was selected. Among the results for 

this component of the test it was observed that for a given 

measurement point there was a difference of about 10dB 

between readings obtained with HD1 and HD2. This fact 

suggested that the model should be adjusted. 
 

Table 1 Errors obtained for the different measurement points 

utilizing HD1 during the first face of the test 

Point Device Average Error (m) Standard Dev (m) 

1 HD1 4,61 0,61 

2 HD1 2,79 0,21 

3 HD1 8,74 1,38 

4 HD1 1,11 0,00 

5 HD1 3,26 0,64 

6 HD1 22,05 6,01 

7 HD1 4,44 0,40 

8 HD1 9,17 0,79 

9 HD1 7,99 4,23 

 

In the case of EDIPS, the propagation model is 

corrected by a constant modeled as intrinsic to the device, 

which tends to balance factors like having antennas with 

different gain among devices. HD2 received about 0.85 of 

the signals strength received by HD1, so the correction 

propagation model correction constant KD was adjusted 

accordingly. Table 2 presents the results for error 

calculation for the different measurement points. 

 
Table 2  Errors obtained for the different measurement points 

using HD2 during the second face of the test 

Point Device Average Error (m) Standard Dev (m) 

1 HD2 4,60 1,39 

2 HD2 2,38 0,45 

3 HD2 5,31 1,93 

4 HD2 1,00 0,00 

5 HD2 2,89 0,83 

6 HD2 10,16 3,64 

7 HD2 5,51 1,01 

8 HD2 6,50 1,25 

9 HD2 30,96 7,98 

 

Given the results obtained at point 6 from the two 

previous measurement sets a new reference point was 

added nearby, represented by the black star icon in Figure 

6. After that new measurements were taken at point 6 

drawing the results shown in Table 3. These results 

highlight a positive correlation between error and distance 

to reference points. 
 



Table 3  New measurements obtained at point 6 after reference 

point added nearby 

Point Device Average Error (m) Standard Dev (m) 

6* HD1 5,26 0,82 

6* HD2 5,92 1,49 

 

The last part of the test is similar to the previous one, 

but it involves a different type of model correction. Point 

9 exhibits a large error in previous sampling; even the 

signal strength received at that point is not weak. It leads 

us to think the issue was at the model level. After several 

samples were taken, the source correction parameter for 

the corresponding source was adjusted. Results after such 

adjustment improved significantly for HD1, but not for 

HD2 (see Table 4). We conjecture it was due to lack of 

reception of at least three strong enough signals at that 

point. 
 

Table 4 New measurements obtained at point 9 after source 

correction calibration 

Point Device Average Error (m) Standard Dev (m) 

9* HD1 0,95 0,72 

9* HD2 6,04 2,63 

6 Evaluation scenario II 

A second evaluation scenario involved the 3
rd

 and 4
th

 

floors from the Computer Science Department of the 

University of Chile (each floor having 1320 square 

meters). The building hosting these floors is similar to a 

hospital in terms of space distribution and materials used 

in its construction. The EDIPS deployment process took 

12 minutes for the 3
rd

 floor and 15 minutes for the 4
th

 

floor, involving only one person in such process. This is a 

minor deployment effort compared to the effort required 

by other IPS using fingerprinting, proximity or even 

triangulation.  

The goals for this evaluation were twofold: (1) to 

verify the results obtained in the first experimentation 

phase and (2) to determine if the application could be 

useful to support the loosely-coupled work performed by 

medical interns in a hospital. 

This experience involved three medical interns. Each 

medical intern had to find a target object (e.g., a person 

playing a medical specialist role) which was located in 

either the 3rd or 4th floor of the building. This activity is 

proper of a situation where the intern requires the opinion 

from a medical specialist in order to confirm a diagnosis. 

Three stationary and three mobile target objects were 

deployed in the evaluation scenario. To find the targets, 

each intern conducted six searching trials relying only on 

the EDIPS system, while an external observer monitored 

the interns’ activities at all times registering how long it 

took them to accomplish the searching tasks. 

The average error of the positioning system was 4-5 

meters approximately, which is similar to the values 

obtained from the first evaluation process, described in 

the previous section. All target objects were found in the 

first try; i.e., the EDIPS system provided a direct access to 

the searched resources. Table 5 shows average and 

standard deviation values for the time spent during the 

resources searching process 
 

Table 5 Time spent in searching for target resources  

 Search Duration 

(Average) 

Standard 

Deviation 

Stationary target 1 1´30” 25” 

Stationary target 2 2´15” 34” 

Stationary target 3 1´57” 20” 

Mobile target 1 2´24” 23” 

Mobile target 2 1´58” 18” 

Mobile target 3 2´37” 27” 

 

Analyzing the results from each searching task we can 

appreciate from Table 5 that the standard deviation ranges 

from 15% to 27%. We interpret these results as a 

confirmation that the functionality provided by the EDIPS 

system is appropriate to conduct the searching process, 

and therefore the users do not require using additional 

personal capabilities (e.g. sense of orientation) to carry 

out such process. The variance for the time each intern 

spent on the searching trials may be explained as a 

consequence from the fact that walking speeds and routes 

followed to reach target objects may vary from intern to 

intern. 

Fig. 7 and 8 correspond to the test labeled as 

“stationary target 2” in Table 5, where the intern looks for 

the medical specialist who is located in a hospital room 

doing personal work. Fig. 7 shows the EDIPS interface at 

the moment when User 1 (i.e. the intern) finds User 2 or 

“Me” (i.e. the medical specialist). Fig. 8 shows the same 

situation, but in the corresponding physical scenario. 

 

 
 

Fig. 7 Encounter between two users using EDIPS 

 



 
  

Fig. 8 Encounter in the physical scenario 

 

Once this experimentation process concluded, the 

interns were interviewed to gather their feedback on the 

usability and usefulness of this application. The responses 

from the interns were totally aligned with the feedback 

provided by the person monitoring the interns’ activities: 

the EDIPS system is useful and usable to locate persons 

within the domain of application conditioned by its 

restrictions. While current results are still insufficient to 

make sound conclusions, the authors consider there is 

ample space to make the results improve significantly 

with further work.  

7 Conclusions and future work 

An encouraging development of an indoor positioning 

system is presented in this article. The key characteristics 

of this system are the following: 

1. Quick building and setting up of this model. By 

setting a preliminary estimation for signal strength 

propagation much of the implementation effort can 

be reduced. Walls and more complicate signal 

propagation model utilized in other solutions are not 

considered here, improving performance for system 

start up. Nevertheless, the model proposed can be 

extended with as much detail as the user may 

need/desire, making this solution a very flexible one. 

2. A great advantage of the system proposed is that it is 

very flexible regarding the signal strength blueprint; 

it can be built on theoretical or empirical data, or a 

combination of both.  

3. Accuracy in positioning can be improved in an on 

demand basis, minimizing the efforts involved in 

such activity. In the results obtained during 

experimentation it has been shown that error is 

within a few meters. If error becomes greater than 

expected, the system provides calibration 

mechanisms to reduce it.  

The system proposed in this article has mechanisms to 

deal with the variety of antennas that can be found in 

different Wi-Fi interfaces. This design feature is crucial to 

avoid ending up with a model tied to specific devices 

being monitored. 

In terms of accuracy, the granularity level exhibited by 

the system developed may not allow tracking of objects 

inside a room, but it is adequate enough for people 

positioning and awareness. For example, it can be used 

for proximity awareness, people position tracking and 

monitoring, and situational awareness, among others. 

Lastly, the work presented here opens encouraging 

paths for further research and development. Some 

examples are: continue research on error reduction 

strategies and methods; improve the model based on few 

initial measurements; develop a method to estimate the 

intrinsic constant associated to a device’s signal decay 

and propagation; explore the impact of varying grid/cells 

dimension, also for memory and processing optimization; 

investigate the incorporation of inertial measurement units 

or inertial navigation systems, or a combination of 

multiple navigation sensors. All the previous ideas framed 

within the goals of this initiative: to have a system that is 

quickly deployable, easy to modify and adapt, while still 

delivering enough accuracy for indoor people tracking. 
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