
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011

Online at http://www.jot.fm.

Modeling Domain-Specific Profilers

Jorge Ressiab Alexandre Bergela Oscar Nierstraszb

Lukas Renggli

a. PLEIAD Lab, Department of Computer Science (DCC),
University of Chile
pleiad.dcc.uchile.cl

b. Software Composition Group, University of Bern, Switzerland
scg.unibe.ch

Abstract Domain-specific languages and models are increasingly used
within general-purpose host languages. While traditional profiling tools
perform well on host language code itself, they often fail to provide mean-
ingful results if the developers start to build and use abstractions on top
of the host language. In this paper we motivate the need for dedicated
profiling tools with three different case studies. Furthermore, we present
an infrastructure that enables developers to quickly prototype new profilers
for their domain-specific languages and models.

Keywords Programming Languages, Reflection, Domain-specific Lan-
guages, Profilers.

1 Introduction

Recent advances in domain-specific languages and models reveal a drastic change in
the way software is being built. The software engineering community has seen a rapid
emergence of domain-specific tools, ranging from tools to easily build domain-specific
languages [Vis04], to transform models [TCJ10], to check source code [RDGN10a],
and to integrate development tools [RGN10].

While research on domain-specific languages has made consistent progress in
language specification [DKV00], implementation [CM09], evolution [FP06] and ver-
ification [KR08], little has been done to support profiling. We consider profiling to
be the activity of recording and analyzing program execution. Profiling is essential
for analyzing transient run-time data that otherwise would be difficult to harvest and
compare. Code profilers commonly employ execution sampling as the way to obtain
dynamic run-time information. Unfortunately, information extracted by regularly
sampling the call stack cannot be meaningfully used to profile a high-level domain built
on top of the standard language infrastructure. Specialized domains need specialized
profilers.

Jorge Ressia, Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli. Modeling Domain-Specific Profilers.
In Journal of Object Technology, vol. N, 2011, pages M:1–0. doi:10.5381/jot.201Y.VV.N.aN

http://www.jot.fm/copyright.html
http://www.jot.fm
http://pleiad.dcc.uchile.cl/
http://scg.unibe.ch/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

2 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

Let us consider the example of the Mondrian visualization engine (details follow
in Section 2.1). Mondrian models visualizations as graphs, i.e., in terms of nodes
and edges. One of the important performance issues we recently faced is the refresh
frequency: nodes and edges were unnecessarily refreshed too often. Standard code
profilers did not help us to localize the source of the problem since they are just able
to report the share of time the CPU spends in the method displayOn: of the classes
MONode and MOEdge. The problem was finally resolved by developing a custom profiler
that could identify which nodes and edges were indeed refreshed too often. This
domain-specific profiler was able to exploit knowledge of Mondrian’s domain concepts
to gather and present the needed information.

We argue that there is a need for a general approach to easily develop specialized
profilers for domain-specific languages and tools. A general approach must offer means
to (i) specify the domain concepts of interest, (ii) capture the relevant information
from the run-time execution, and (iii) present the results to the developer.

In this paper we detail MetaSpy, an event-based approach for domain-specific
profiling. With MetaSpy, a developer specifies the events of interest for a given domain.
A profiler captures domain information either by subscribing to existing application
events, or by using a reflective layer to transparently inject event emitters into the
domain code. The collected events are presented using graph-based visualizations.

The contributions of this paper are: (1) the identification of the need for domain-
specific profilers, (2) the presentation of three real-world case-studies where domain-
specific profilers helped to significantly improve performance and correctness of domain-
specific code, (3) the presentation of an infrastructure for prototyping domain-specific
profilers, and (4) a simple but expressive mechanism to express causality between
events. MetaSpy was introduced in an earlier publication [BNRR11]. This article
extends our previous work by considering the causality between low-level events.

Outline. The remainder of this paper is structured as follows: Section 2 illustrates
the problems of using a general-purpose profiler on code that is built on top of
a domain-specific language. Section 3 introduces our approach to domain-specific
profiling. Section 4 demonstrates how our approach solves the requirements of domain-
specific profilers with three use cases. Section 5 demonstrates how our approach
deals with event causality. Section 6 presents our infrastructure to implement domain-
specific profilers. Section 7 presents an analysis on the performance impact of MetaSpy.
Section 8 summarizes the paper and discusses future work.

2 Shortcomings of Standard Profilers

Current application profilers are useful to gather runtime data (e.g.,method invocations,
method coverage, call trees, code coverage, memory consumption) from the static
code model offered by the programming language (e.g., packages, classes, methods,
statements). This is an effective approach when the low-level source code has to be
profiled.

However, traditional profilers are far less useful for a domain different than the
code model. In modern software there is a significant gap between the model offered
by the execution platform and the model of the actually running application. The
proliferation of meta-models and domain-specific languages brings new abstractions
that map to the underlying execution platform in non-trivial ways. Traditional profiling
tools fail to display relevant information in the presence of such abstractions.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 3

MetaSpy1 and the examples presented in this paper are implemented in the
Pharo Smalltalk2 programming language, an open-source Smalltalk [GR83]. Readers
unfamiliar with the syntax of Smalltalk might want to read the code examples aloud and
interpret them as normal sentences: An invocation of a method named method:with:,
using two arguments looks like: receiver method: arg1 with: arg2. A method with
no arguments looks like receiver method. Other syntactic elements of Smalltalk are:
the dot to separate statements: statement1. statement2; square brackets to denote
code blocks or anonymous functions: [statements]; and single quotes to delimit
strings: 'a string'. The caret ^ returns the result of the following expression.

2.1 Difficulty of profiling a specific domain

This section illustrates three shortcomings of traditional profiling techniques when
applied to a specific domain.

CPU time profiling

Mondrian [MGL06] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010 a serious
performance issue was raised3. Tracking down the cause of the poor performance was
not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods under
executions. Such a profiling technique is relatively accurate since it has little impact
on the overall execution. This sampling technique is used by almost all mainstream
profilers, such as JProfiler, YourKit, xprof [GH92], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk, textually
describes the execution in terms of CPU consumption and invocation for each method
of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:

...
23.4% {4911ms} MOEdge>>displayOn:

...

We can observe that the virtual machine spent about 54% of its time in the
method displayOn: defined in the class MORoot. A root is the unique non-nested node
that contains all the nodes of the edges of the visualization. This general profiling
information says that rendering nodes and edges consumes a great share of the CPU
time, but it does not help in pinpointing which nodes and edges are responsible for
the time spent. Not all graphical elements equally consume resources.

Traditional execution sampling profilers center their result on the frames of the
execution stack and completely ignore the identity of the object that received the

1http://scg.unibe.ch/research/bifrost/metaspy/
2http://www.pharo-project.org/
3http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116

Journal of Object Technology, vol. N, 2011

http://scg.unibe.ch/research/bifrost/metaspy/
http://www.pharo-project.org/
http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

4 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

method call and its arguments. As a consequence, it is hard to track down which
objects cause the slowdown. For the example above, the traditional profiler says
that we spent 30.9% in MONode>>displayOn: without saying which nodes were actually
refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing, parser
combinators, parsing expression grammars and packrat parsers to model grammars
and parsers as objects that can be reconfigured dynamically [RDGN10b]. A number of
grammars have been implemented with PetitParser, including Java, Smalltalk, XML
and SQL.

Let us consider a Java grammar in PetitParser which is defined in 210 host language
methods. The if statement parsing rule is defined as follows:

PPJavaSyntax>>ifStatement
^ ('if' asParser token , conditionalExpression , statement) ,

('else' asParser token , statement) optional

These methods build a graph of objects describing the grammar. It would be useful
to establish how much of the grammar is actually exercised by a set of test cases to
identify untested productions.

Traditional coverage tools focus on the source code artifacts instead of domain-
specific data. They assess the coverage of the application source code by listing the
methods and source lines covered by an execution.

In our case all methods and all lines of code are covered to build the grammar,
but some parts of the resulting graph are not exercised by the tests. This is why
we are unable to analyze the parsing and production coverage of this grammar with
traditional tools.

Causality

Traditional profilers report events based on the run-time structure of the application. A
run-time profiling report is typically structured as a tree in which indentation indicates
nested calls. The sequence of methods executed is reported in a linear fashion: A
method m1 that is executed before m2 will be reported as m1 above m2.

This hardcoded presentation is disconnected from the profiled model. When
considering the Mondrian example, the sequence of displayOn: methods executed
cannot be related to the order in which the nodes are rendered. In PetitParser the
order does not represent the sequence in which the parsers are activated.

Understanding the sequence of a large number of events is challenging at best.
Unfortunately, textual searching over a log file discards the structure of the model by
solely operating on what the user decided to log. Textual search is a rather limited
technique, even though it is commonly employed [Nag10].

2.2 Requirements for domain-specific profilers

The three examples given above are representative. They illustrate the gap between a
particular domain and the source code model. We argue that to efficiently profile an
arbitrary domain, the following requirements need to be fulfilled:

Journal of Object Technology, vol. N, 2011

http://www.squeaksource.com/PetitJava.html
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 5

• Specifying the domain. Being able to effectively designate the objects relevant
for the profiling is essential. In Mondrian we are interested in the different
nodes and the invocation of the displayOn: methods, rather than focusing on
the implementing classes. In PetitParser we are interested in how often and if at
all production objects are activated by a given input.

• Capturing domain-related events. Relevant events generated by the domain have
to be monitored and recorded to be analyzed during or after the execution. An
event represents a particular change or action triggered by the domain being
profiled. Whereas the class MOGraphElement and its subclasses total more than 263
methods, only fewer than 10 methods are related to displaying and computing
shape dimensions.

• Effectively and concisely presenting the necessary information. The information
collected by traditional profilers is textual and targets method invocation. A
method that invokes another will be located below it and indented. Moreover,
each method frame represented has a class name and a method name, which
completely ignores the identity of the object and arguments that are part of the
call. Collected information has to be presented in such a way as to bring the
important metrics and domain object composition into the foreground.

• Relation between events. An important and recurrent task in profiling is to
understand the meaning of a sequence of emitted events. This is necessary when
a developer wants to understand the causes of a suboptimal execution. Captured
events have to be causally related to each other to trace high level operations.
Since such relation between events cannot be enforced by the domain, it has
to be reconstructed upon reception. Captured events have to be presented in a
sequence that reflects the meaning of the model operations.

• Browsing events. The number of events generated by a typical application
execution may easily skyrocket. Diving into those events is often the only way
to understand the reason for suboptimal execution. Navigating through and
giving a meaning to such a large number of events requires adequate tools that
are aware of the model used to generate the events.

Common code profilers employ execution sampling as the way to cheaply obtain
dynamic information. Unfortunately, information extracted when regularly sampling
the method call stack cannot be used to profile a domain other than the source code
model.

3 MetaSpy in a Nutshell

In this section we will present MetaSpy, a framework that supports building domain-
specific profilers. The key idea behind MetaSpy is to provide domain-specific events
that can later be used by different profilers with different objectives.

Figure 1 shows a class diagram of MetaSpy. There are two main abstractions: the
instrumentation strategies and the domain-specific profilers.

An instrumentation strategy is responsible for adapting a domain-specific model
and triggering specific actions in the profiler when certain events occur. A profiler
models a domain-specific profiling requirement by composing multiple instrumentation
strategies.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

6 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

MetaInstrumenter

install
setUp
tearDown
uninstall

handler

install
uninstall

announcer

Announcement
Instrumenter

doesNotUnderstand:
run:with:in:
install
setUp
tearDown
uninstall

theClass
selector
method

MethodInstrumenter

install
uninstall

parser
grammar
replacement

ParserInstrumenter

Profiler

observeClass:do:
observeClass:selector:do
observePackage:do:
observePackagesMatching:do:
observeParser:in:do:
install
setUp
tearDown
uninstall

model
strategies

setUp
visualize

MondrianProfiler
setUp
visualize

OmniBrowserProfiler
setUp
visualize

PetitParserProfiler

Instrumentation strategies Profilers

User provided classes

Figure 1 – The architecture of the MetaSpy profiler framework.

Some instrumentation strategies work by registering to existing events of the
application domain. Other instrumentation strategies intercept the system by meta-
programming, i.e., conventional instrumentation. Installing an instrumentation strat-
egy activates it and its associated events, while uninstalling deactivates them.

Some of the instrumentation strategies provided by MetaSpy are:

• Announcement Instrumenter dispatches events satisfying a particular condition
from the announcer (subject) to the external profiler (observer).

• Method Instrumenter triggers an event whenever a specific method is invoked
on any instance of a specified class.

• Object Instrumenter triggers an event whenever a specific method is invoked on
a particular object. This is called object-specific profiling.

• Parser Instrumenter triggers an event whenever a specific grammar production
is activated. This is a very specific instrumentation strategy only working with
PetitParser productions.

Other dedicated instrumentation strategies can be implemented by adhering to
the same interface.

Profilers are responsible for modeling the domain-specific behavior to profile the
main abstractions in each domain. The abstract Profiler class models the behavior
of a general profiler. Subclasses are instantiated with a domain-specific model and
implement the set-up and tear-down of one or more instrumentation strategies into
the model. Furthermore, they define how and what data is collected when the
instrumented model is exercised. To actually instrument the model and start collecting
events the method install is used. Similarly, to remove all instrumentation from
the model, uninstall is used. Both methods dispatch the requests to the respective
instrumentation strategies using the current model.

Each profiler is responsible for presenting the collected data in the method
visualize. Depending on the nature of the data, this method typically contains
a Mondrian [MGL06] or Glamour [Bun09] script, or a combination of both. Mondrian

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 7

is a visualization engine to depict graphs of objects in configurable ways. Glamour is
a browser framework to script user interfaces for exploratory data discovery.

Next, we will show real-world examples of domain-specific profilers.

4 Validation

In this section we will analyze three case studies from three different domains. We
will show how MetaSpy is useful for expressing the different profiling requirements in
terms of events. We will also demonstrate how MetaSpy fulfills the domain-specific
profiling requirements, namely specifying, capturing, and presenting domain-specific
information.

For each case study we show the complete code for specifying and capturing events.
We do not show the code for visualizing the results, which typically consists of 20–50
lines of Mondrian or Glamour script code. We use the Mondrian visualization tool to
visually and interactively report profiles. In Section 4.1 we also consider Mondrian as
the profiling subject. We therefore visualize using Mondrian the profile of Mondrian
itself.

4.1 Case Study: Displaying invocations

A Mondrian visualization may comprise a great number of graphical elements. A
refresh of the visualization is triggered by the operating system, resulting from user
actions such as a mouse movement or a keystroke. Refreshing the Mondrian canvas
iterates over all the nodes and edges and triggers a new rendering. Elements that are
outside the window or for which their nesting node has an active bitmap in the cache
should not be rendered.

A graphical element is rendered when the method display:on: is invoked. Moni-
toring when these invocations occur is key to having a global view of what should be
refreshed.

Capturing the events

The MetaSpy framework is instantiated to create the MondrianProfiler profiler.

Profiler subclass: #MondrianProfiler
instanceVariableNames: 'actualCounter previousCounter'

MondrianProfiler defines two instance variables to monitor the evolution of the
number of emitted events: actualCounter keeps track of the current number of triggered
events per event type, and previousCounter stores the number of event types that
were recorded before the previous visualization step.

MondrianProfiler>>initialize
super initialize.
actualCounter := IdentityDictionary new.
previousCounter := IdentityDictionary new

The installation and instrumentation of Mondrian by MetaSpy is realized by the
setUp method:

MondrianProfiler>>setUp
self model root allNodes do: [:node |

self

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

8 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

observeObject: node
selector: #displayOn:
do: [:receiver :selector :arguments |

actualCounter
at: receiver
put: ((actualCounter at: receiver ifAbsent: [0]) + 1)]]

All the nodes obtained from the root of the model object are “observed” by the
framework. At each invocation of the displayOn: method, the block given as parameter
to do: is executed with the object receiver on which displayOn: is invoked, the selector
name and the argument. This block updates the number of displays for each node of
the visualization.

Specifying the domain

The instrumentation described in the setUp method is only applied to the model
specified in the profiler. This model is an object which models the domain to be
profiled, in this case a Mondrian visualization. The instrumentation is only applied to
all nodes in this visualization. Only when these nodes receive the message displayOn:,
the actual counter is incremented. This object-specific behavior is possible due to the
use of a reflection framework called Bifröst [RRGN10].

Presenting the results

The profiling of Mondrian is visualized using Mondrian itself. The visualizeOn:
method generates the visualization given in Figure 2.

Figure 2 – Profiling (left) the System Complexity visualization (right).

One important point of visualizeOn: is to regularly update the visualization to be
able to see the evolution of the domain events over time.

Figure 2 gives a screenshot of a visualization and the profiler. The right-hand
side is an example of the System Complexity visualization [LD03] of the collection
class hierarchy. System complexity is a typical usage of Mondrian, which exhibits the
problem mentioned in Section 2.1.

The left-hand side shows the profiler applied to the visualization on the right-
hand side. The profiler lists all the classes visualized in the system complexity. The
profiler associates to each class a horizontal bar indicating the number of times the
corresponding node in the system complexity has been displayed. This progress bar
widens upon node refresh. The system complexity visualization remains interactive,

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 9

even when being profiled. Selecting, dragging and dropping nodes refreshes the
visualization, thus increasing the displayed progress of the corresponding nodes. This
profile helps in identifying unnecessary rendering. Thanks to this profiler, we identified
a situation in which nodes were refreshing without receiving user actions which caused
the sluggish rendering. More precisely, edges were constantly refreshed, even when they
were not visible. The profiler is uninstalled when the profiled Mondrian visualization
is closed.

4.2 Case Study: Events in OmniBrowser

OmniBrowser [BDPW08] is a framework for defining and composing new browsers, i.e.,
graphical list-oriented tools to navigate and edit elements from an arbitrary domain.
In the OmniBrowser framework, a browser is described by a domain model specifying
the domain elements that can be navigated and edited, and a metagraph specifying the
navigation between these domain elements. Nodes in the metagraph describe states
the browser is in, while edges express navigation possibilities between those states.
The OmniBrowser framework then dynamically composes widgets such as list menus
and text panes to build an interactive browser that follows the navigation described
in the metagraph.

OmniBrowser uses announcements for modeling the interaction events of the user
with the IDE. A very common problem is to have certain announcements be triggered
too many times for certain scenarios. This behavior impacts negatively the performance
of the IDE. Moreover, in some cases odd display problems are produced which are
very hard to track down.

Capturing the events

To profile this domain-specific case we implemented the class OmniBrowserProfiler:

Profiler subclass: #OmniBrowserProfiler
instanceVariableNames: 'actualCounter'

The instrumentation in the setUp method counts how many times each announce-
ment was triggered.

OmniBrowserProfiler>>setUp
self

observeAnnouncer: self model announcer
do: [:ann |

actualCounter
at: ann class
put: (actualCounter at: ann class ifAbsent: [0]) + 1]

Specifying the domain

We specify the entities we are interested in profiling by defining the model in the
profiler. The model is an instance of the class OBSystemBrowser, the entry point
of OmniBrowser. All OmniBrowser instances have an internal collaborator named
announcer which is responsible for the signaling of announcements. This is the object
used by the profiler to catch the announcement events.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

10 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

Figure 3 – Profiling (left) an OmniBrowser instance (right).

Presenting the results

A Mondrian visualization was implemented to list the type and the number of an-
nouncements triggered (cf. Figure 3).

4.3 Case Study: Parsing framework with PetitParser

Rigorous test suites try to ensure that each part of the grammar is covered by tests and
is well-specified according to the respective language standards. Validating that each
production of the grammar is covered by the tests is a difficult activity. As mentioned
previously, traditional tools of the host language work at the method and statement
level and thus cannot produce meaningful results in the context of PetitParser where
the grammar is modeled as a graph of objects.

Capturing the events

With MetaSpy we can implement the grammar coverage with a few lines of code. The
instrumentation happens at the level of the primitive parser objects. The method
observeParser:in: wraps the parser object with a handler block that is called for each
activation of the parser.

1 PetitParserProfiler>>setUp
2 self model allParsers do: [:parser |
3 self observeParser: parser in: self grammar do: [
4 counter
5 at: parser
6 put: (counter at: parser ifAbsent: [0]) + 1]]

Line 2 iterates over all primitive parser objects in the grammar. Line 3 attaches
the event handler on Lines 4–6 to each parser in the model. The handler then counts
the activations of each parser object when we run the test suite of the grammar.

Specifying the domain

The domain in this case is an instance of the grammar that we want to analyze. Such
a grammar may be defined using hundreds of interconnected parser objects.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 11

Presenting the results

This provides us with the necessary information to display the grammar coverage in a
visualization such as that shown in Figure 4.

Figure 4 – Visualization of the production coverage of an XML grammar with uncovered
productions highlighted in black (left); and the same XML grammar with updated test
coverage and complete production coverage (right). The size of the nodes is propor-
tional to the number of activations when running the test suite on the grammar.

5 Identifying Event Causality

Mondrian visualizes graphs of nodes and edges. Apart from the edges displayed in the
visualization, nodes can support other relationships: nodes might be nested within
each other, i.e., when a parent is moved, its children have to be redrawn; nodes might
have interaction dependencies, when one node is selected another one is updated;
nodes might have caching dependencies, when one node changes dependent nodes need
to invalidate their state; and so on.

The use of log files to identify such dependencies may indeed be successful [YD00].
However, producing an adequate log file that covers all the different situations requires
a significant amount of work and good system knowledge.

We favor prototyping of lightweight tools to address the possible problems on the
spot.

5.1 Expressing causality

According to the experience we gain by profiling multiple model executions, events
generated by the model cannot be used to meaningfully structure an execution profile.
This is not really a surprise since events are generated from a model to fulfill a need
of the model itself, and not really for profiling purposes. No assumption can therefore
be made on the information carried by those events.

A practical solution is to annotate events upon reception with information about
the sequentiality and the timing. MetaSpy offers a generic event class, called SpyEvent.
A spy event knows its creation time and the previously emitted event.

The class SpyEvent may be subclassed to capture domain relations. For example,
MondrianEvent knows about siblings of the node that emitted the event. This is an
important relation for tracing how the cache is activated.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

12 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

5.2 Navigation between events

To analyze the event activation sequence in Mondrian we have the following spy:

Profiler subclass: #MSMondrianCacheActivationSequenceProfiler
instanceVariableNames: 'lastEvent mapping announcer'

This profiler has three variables. The last event that has been emitted is kept in
the variable lastEvent. Since all the events are kept in a linked list, it is sufficient to
keep a reference of the last event to access previous events. The association between a
Mondrian node and the events the node has emitted is kept in the variable mapping.
The browser is updated via an announcer.

The profiler is installed with setUp:

MondrianCacheActivationSequenceSpy>>setUp
super setUp.
nodes do: [:node |

self
observeObject: node
selector: #displayOn:
do: [:receiver :selector :arguments |

lastEvent := (MondrianEvent for: receiver next: lastEvent).
(mapping at: receiver ifAbsentPut: [OrderedCollection new])

add: lastEvent]]

MondrianCacheActivationSequenceSpy is responsible for adapting Mondrian nodes
to find out the order in which the method displayOn: was executed. Each execution
of the method displayOn: should create an instance of MondrianEvent. Each Mondrian
node is instrumented so that every time that the message displayOn: is invoked a
MondrianEvent is created and saved within the mappings indexed by node. Each
MondrianEvent knows the node that generated it and the previous event. The setUp is
invoked to install the instrumentation.

Mondrian events are first captured during the profile. The browsing tool described
below is useful to navigate between them.

Glamour [Bun09] is an engine for scripting browsers. We use it to build navigation
tools for the captured events. The Glamour-based tool is set up in the visualize
method:

MondrianCacheActivationSequenceSpy>>visualize
| browser |
browser := Tabulator new.
browser title: 'Mondrian event crawler'.
browser

column: #events;
column: #model.

browser transmit to: #events;
andShow: [:constructor | self eventsIn: constructor].

browser transmit from: #events; to: #model;
andShow: [:constructor | self modelIn: constructor].

browser updateOn: Announcement from: [:v | announcer].
browser openOn: lastEvent.

Figure 5 shows the result of a Mondrian profiling using the Glamour script. The
left-hand side gives the sequential list of the events we captured using emitted by
Mondrian. The right-hand side gives the information associated to the event selection.

The method modelIn: is invoked when one selects an event. The method fills a
glamour element with three tabs, two lists and a Mondrian visualization:

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 13

Figure 5 – Glamour-based event navigation tool.

MondrianCacheActivationSequenceSpy>>modelIn: constructor
modelIn: constructor

constructor list
title: 'sibling';
display: [:event | self siblingOf: event].

constructor list
title: 'parent';
display: [:event | self parentOf: event].

constructor mondrian
title: 'graph';
painting: [:view :event |

view nodes: (self siblingOf: event).
view edgesFrom: #owner.
view treeLayout].

The methods parentOf: and siblingOf: are used to retrieve the data from the
Mondrian model and are not presented here.

The list of events are accessed using the helper method:

MondrianCacheActivationSequenceSpy>>eventsIn: constructor
constructor list

title: 'events';
display: [:event | event allPreviousEvents];
updateOn: Announcement from: [:v | announcer]

Events are linked to each other forming a list. The method allPreviousEvents
returns the list of all previous events.

Using an adequate model, a browsing tool is easily implementable using Glamour.
Presentations are constructed and combined to reflect the navigation flow of the
extracted events.

The variable mapping plays an important role since it associates the events with
the node who emitted them. A hash map effectively implements this relation.

6 Implementing Instrumentation Strategies

MetaSpy has two ways of implementing instrumentation strategies: listening to pre-
existing event-based systems, or using the meta-level programming techniques of the
host language to define a meta-event the strategy is interested in.

Let us consider the class AnnouncementInstrumenter, whose responsibility is to
observe the generation of specific announcements.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

14 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

AnnouncementInstrumenter>>install
self announcer

on: Announcement
send: #value:
to: self handler

The install method installs an instrumentation strategy object on the domain
specified in the install method. In this snippet of code we can see that the strategy
is hooked into the announcement system by evaluating the strategy’s handler when an
announcement is triggered.

However, not all profiling activities can rely on a pre-existing mechanism for
registering to events. In some cases, a profiler may be hooked into the base code
using an existing event mechanism, for example the OmniBrowser profiler. In other
cases, extending the base code with an appropriate event mechanism is simply too
expensive. Because of this, we need to rely on the meta-programming facilities of the
host language. These facilities are not always uniform and require ad hoc code to hook
in behavior. To avoid this drawback we decided to use a framework that provides
uniform meta-programming abstractions.

6.1 Bifröst

Bifröst [RRGN10] offers a model of fined-grained unanticipated dynamic structural
and behavioral adaptation. Instead of providing reflective capabilities as an external
mechanism, Bifröst integrates them deeply into the environment. Bifröst is a reflective
system based on explicit meta-objects to improve meta-level engineering.

Bifröst has been designed as an evolution of partial behavioral reflection for
Smalltalk [RDT08], which in turn was conceived as an extension of the Reflex model
[TNCC03]. Bifröst is a reflective architecture [Mae87] where meta-objects control the
different aspects of reflection offered by the language. Bifröst’s meta-objects provide
a structural view and a behavioral view. In the context of MetaSpy we were mainly
interested in behavioral reifications. A behavioral meta-object reifying message sends
was used for the message send instrumenter. A Message Received event is also provided
by the behavioral meta-object. State read and write are also supported thus MetaSpy
can profile these dynamic events. Bifröst meta-objects when attached to a single
object are object-specific in nature, thus fulfilling an important domain-specific profiler
design requirement.

The Bifröst model solves the main problems of previous approaches while providing
the main reflection requirements. Moreover, these requirements are key for having a
domain-specific profiler which can adapt and evolve at runtime on top of the objects
that define the domain. These requirements are:

Partial Reflection. Bifröst allows meta-objects to be bound to any object in the
system thus reflecting selected parts of an application.

Selective Reification. When and where a particular reification should be reified is
managed by the different meta-objects.

Unanticipated Changes. At any point in time a meta-object can be bound to any
object thus supporting unanticipated changes.

Meta-level Composition. Composable meta-objects provide the means for combining
different adaptations.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 15

Runtime Integration. Bifröst’s reflective model lives entirely in the language model,
so there is no VM modification or low-level adaptation required.

Bifröst’s adaptation mechanism is built on top of lower-level meta-objects. In the
Smalltalk implementation of Bifröst we bind meta-objects to abstract syntax tree
(AST) nodes. A meta-object can be associated to a single AST node or to multiple
ones. The next time the method is compiled the system automatically generates
new bytecodes that take the meta-object into account. This behavior allows Bifröst
to adapt the predefined behavior of objects. AST meta-objects reify AST-related
information depending on the AST node. For example, a message send node can
reify the sender, the receiver and the arguments at runtime. The meta-level behavior
specified in the meta-object can be executed before, after or instead of the behavior of
the AST node the meta-object is adapting.

Let us consider the Message Received Instrumenter, whose responsibility is to
instrument when a specific object receives a specific message.
MessageReceivedInstrumenter>>install

self observerMetaObject bind: self object

MessageReceivedInstrumenter>>setUp
profilingMetaObject := BehaviorMetaObject new

when: self selector
isReceivedDo: self handler

The method install binds a meta-object to the object to be observed. The method
setUp initializes the profiling meta-object with a behavioral meta-object. This meta-
object evaluates the handler when a specific message is received by the profiled object.
This mechanism is termed object-specific instrumentation.

In our Smalltalk implementation of Bifröst, the profiled application, the profiler,
and the visualization engine are all written in the same language, Pharo, and run on
the same virtual machine. Nothing in our approach prevents these components from
being decoupled and having them written in a different language or running remotely.
This approach is often taken with profilers and debuggers running on the Java virtual
machine (e.g., Java debugging interface4).

6.2 Feasability of Domain-specific Profiling

Let us analyze the feasibility of implementing this approach in other contexts. Object-
specific instrumentation is not trivial to achieve in class-based languages like Smalltalk
and Java. Classes are deeply rooted in the language interpreter or virtual machine
and performance is tweaked to rely heavily on these constructs. Moreover, most
languages provide a good level of structural reflection to deal with structural elements
like classes, method, statements, etc. Most languages, however, do not provide a
standard mechanism to reflect on the dynamic abstractions of the language. There are
typically no abstractions to intercept meta-events such as a message send, a message
receive, a state read, etc. There has recently been extensive work on object-specific
runtime adaptations and operation decomposition of the runtime system.

Aspect-Oriented Programming (AOP) [Kic96, KLM+97, KIL+97] is a technique
which aims at increasing modularity by supporting the separation of cross-cutting
concerns. Dynamic object-specific aspects have been introduced with an operational
decomposition view of the system.

4http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html

Journal of Object Technology, vol. N, 2011

http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

16 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

Douence, Motelet and Südholt [DMS01] introduced a general operational model
for crosscutting based on execution monitors called Event-based Aspect-Oriented
Programming (EAOP). Douence and Südholt [DS02] later introduced constructor calls
and constructor returns as events. The Execution Monitor in their implementation
observes events emitted during execution. The execution of the base program is
suspended when an event is emitted. The monitor matches this event against different
event patterns. When a pattern is satisfied the associated actions are executed.

The JAsCo language [SVJ03] provides a way of separating when an aspect should
be applied and what should be done. Hooks are defined with abstract pointcuts. Traps
are introduced in the potential places where an event should be triggered. Connectors
link these events to the hooks that dictate what should be done. Connectors can be
loaded dynamically making this approach highly dynamic.

Stateful aspects or tracematches make it possible to restrain the application of an
aspect to the occurrences of certain execution event patterns. AspectJ extension with
tracemath [AAC+05] events patterns are matched in all threads of the system.

7 Micro-benchmark

Profiling always impacts the performance of the application being analyzed. We have
performed a micro-benchmark to assess the maximal performance impact of MetaSpy.
We assume that the behavior required to fulfill the profiling requirements is constant
to any instrumentation strategy.

We analyze the impact of MetaSpy on both profiling uses cases. All benchmarks
were performed on an Apple MacBook Pro, 2.8 GHz Intel Core i7 in Pharo 1.1.1 with
the jitted Cog VM.

Registering instrumentation strategies to a pre-existing event-based system depends
heavily on the the system used and how it is used.

Using meta-level programming techniques on a runtime system can have a significant
performance impact. Consider a benchmark in which a test method is being invoked
one million times from within a loop. We measure the execution time of the benchmark
with Bifröst reifying the 106 method activations of the test method. This shows that
in the reflective case the code runs about 35 times slower than in the reified one.
However, for a real-world application with only few reifications the performance impact
is significantly lower. Bifröst’s meta-objects provide a way of adapting selected objects
thus allowing reflection to be applied within a fine-grained scope only. This provides a
natural way of controlling the performance impact of reflective changes.

Let us consider the Mondrian use case presented in Section 2.1. The main source
of performance degradation is from the execution of the method displayOn: and
thus whenever a node gets redisplayed. We developed a benchmark where the user
interaction with the Mondrian easel is simulated to avoid human delay pollution in the
exercise. In this benchmark we redraw one thousand times the nodes in the Mondrian
visualization. This implies that the method displayOn: is called extensively. The
results showed that the profiler-oriented instrumentation produces on average a 20%
performance impact. The user of this Mondrian visualization can hardly detect the
delay in the drawing process. Note that our implementation has not been aggressively
optimized. It has been shown [AR01] that combining instrumentation and sampling
profiling leaded to accurate profiles (93–98% overlap with a perfect profile) with low
overhead (3–6%). The profilers we presented in this paper are likely to benefit from
such instrumentation sampling.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 17

8 Conclusions and Future Work

Our contributions are the following:

1. We demonstrated the need for domain-specific profilers. We argued that tra-
ditional profilers are concerned with source code only and are inadequate for
profiling domain-specific concerns. We demonstrated this drawback with two
use cases.

2. We formulated the requirements domain-specific profilers must fulfill: specifying
the domain, capturing domain related events and presenting the necessary
information.

3. We presented MetaSpy, a framework for defining domain-specific profilers. We
also presented three real-world case studies showing how MetaSpy fulfills the
domain-specific profiler requirements.

As future work we plan to:

• Provide ready-made and pluggable visualizations that can be used by new
domain-specific profilers. We plan to use Glamour to build these visualizations.

• Apply MetaSpy in the context of large meta-models, such as the FAMIX meta-
model in Moose and the Magritte meta-model in Pier.

• Provide additional ready-made event types that enhance the expressibility of
new profilers.

• Profiler scoping is of key importance to obtain tailored information. We plan
to enhance the scoping mechanism to be able to dynamically attach events to
groups of objects.

References

[AAC+05] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hen-
dren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. Adding trace matching with
free variables to AspectJ. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, pages 345–364, New York, NY, USA, 2005.
ACM. doi:10.1145/1103845.1094839.

[AR01] Matthew Arnold and Barbara G. Ryder. A framework for reduc-
ing the cost of instrumented code. In Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, PLDI ’01, pages 168–179, New York, NY, USA,
2001. ACM. Available from: http://altair.snu.ac.kr/newhome/
kr/course/system_software/2005/Arnold01Sampling.pdf, doi:
10.1145/378795.378832.

[BDPW08] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts.
Creating sophisticated development tools with OmniBrowser. Journal of
Computer Languages, Systems and Structures, 34(2-3):109–129, 2008.
doi:10.1016/j.cl.2007.05.005.

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.1145/1103845.1094839
http://altair.snu.ac.kr/newhome/kr/course/system_software/2005/Arnold01Sampling.pdf
http://altair.snu.ac.kr/newhome/kr/course/system_software/2005/Arnold01Sampling.pdf
http://dx.doi.org/10.1145/378795.378832
http://dx.doi.org/10.1145/378795.378832
http://dx.doi.org/10.1016/j.cl.2007.05.005
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

18 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

[BNRR11] Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia.
Domain-specific profiling. In Proceedings of the 49th Interna-
tional Conference on Objects, Models, Components and Patterns
(TOOLS’11), volume 6705 of LNCS, pages 68–82. Springer-Verlag,
June 2011. Available from: http://scg.unibe.ch/archive/papers/
Berg11b-Profiling.pdf, doi:10.1007/978-3-642-21952-8_7.

[Bun09] Philipp Bunge. Scripting browsers with Glamour. Master’s thesis,
University of Bern, April 2009. Available from: http://scg.unibe.ch/
archive/masters/Bung09a.pdf.

[CM09] Jesús Sánchez Cuadrado and Jesús García Molina. A model-based
approach to families of embedded domain specific languages. IEEE
Transactions on Software Engineering, 99(1), 2009. doi:10.1109/TSE.
2009.14.

[DKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. ACM SIGPLAN Notices, 35(6):26–
36, June 2000. Available from: http://homepages.cwi.nl/~arie/
papers/dslbib.pdf, doi:10.1145/352029.352035.

[DMS01] Remi Douence, Olivier Motelet, and Mario Sudholt. A formal definition
of crosscuts. In Proceedings of the Third International Conference
on Metalevel Architectures and Separation of Crosscutting Concerns
(Reflection 2001), volume 2192 of Lecture Notes in Computer Science,
pages 170–186, Berlin, Heidelberg, and New York, September 2001.
Springer-Verlag. doi:10.1007/3-540-45429-2_13.

[DS02] Rémi Douence and Mario Südholt. A model and a tool for event-based
aspect-oriented programming (EAOP). Technical report, Ecole des
Mines de Nantes, December 2002.

[FP06] Steve Freeman and Nat Pryce. Evolving an embedded domain-
specific language in Java. In OOPSLA’06: Companion to the 21st
Symposium on Object-Oriented Programming Systems, Languages,
and Applications, pages 855–865, Portland, OR, USA, 2006. ACM.
doi:10.1145/1176617.1176735.

[GH92] Aloke Gupta and Wen-Mei W. Hwu. Xprof: profiling the execution of X
Window programs. In Proceedings of the 1992 ACM SIGMETRICS joint
international conference on Measurement and modeling of computer
systems, SIGMETRICS ’92/PERFORMANCE ’92, pages 253–254,
New York, NY, USA, 1992. ACM. Available from: http://doi.acm.
org/10.1145/133057.133152, doi:10.1145/133057.133152.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983. Available
from: http://stephane.ducasse.free.fr/FreeBooks/BlueBook/
Bluebook.pdf.

[Kic96] Gregor Kiczales. Aspect-oriented programming: A position paper
from the Xerox PARC aspect-oriented programming project. In Max
Muehlhauser, editor, Special Issues in Object-Oriented Programming.
Dpunkt Verlag, 1996.

[KIL+97] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,
Cristina Videira Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-

Journal of Object Technology, vol. N, 2011

http://scg.unibe.ch/archive/papers/Berg11b-Profiling.pdf
http://scg.unibe.ch/archive/papers/Berg11b-Profiling.pdf
http://dx.doi.org/10.1007/978-3-642-21952-8_7
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://dx.doi.org/10.1109/TSE.2009.14
http://dx.doi.org/10.1109/TSE.2009.14
http://homepages.cwi.nl/~arie/papers/dslbib.pdf
http://homepages.cwi.nl/~arie/papers/dslbib.pdf
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1007/3-540-45429-2_13
http://dx.doi.org/10.1145/1176617.1176735
http://doi.acm.org/10.1145/133057.133152
http://doi.acm.org/10.1145/133057.133152
http://dx.doi.org/10.1145/133057.133152
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 19

oriented programming. Technical report, Xerox Palo Alto Research
Center, 1997.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Aksit and Satoshi Matsuoka,
editors, ECOOP’97: Proceedings of the 11th European Conference
on Object-Oriented Programming, volume 1241 of LNCS, pages 220–
242, Jyvaskyla, Finland, June 1997. Springer-Verlag. doi:10.1007/
BFb0053381.

[KR08] Jevgeni Kabanov and Rein Raudjärv. Embedded typesafe domain
specific languages for Java. In PPPJ’08: Proceedings of the 6th
International Symposium on Principles and Practice of Program-
ming in Java, pages 189–197, Modena, Italy, 2008. ACM. doi:
10.1145/1411732.1411758.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on Software
Engineering (TSE), 29(9):782–795, September 2003. Available from:
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf,
doi:10.1109/TSE.2003.1232284.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages
147–155, December 1987. doi:10.1145/38765.38821.

[MGL06] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An ag-
ile visualization framework. In ACM Symposium on Software Vi-
sualization (SoftVis’06), pages 135–144, New York, NY, USA, 2006.
ACM Press. Available from: http://scg.unibe.ch/archive/papers/
Meye06aMondrian.pdf, doi:10.1145/1148493.1148513.

[Nag10] Meiyappan Nagappan. Analysis of execution log files. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 2, ICSE ’10, pages 409–412, New York, NY, USA,
2010. ACM. Available from: http://doi.acm.org/10.1145/1810295.
1810405, doi:10.1145/1810295.1810405.

[RDGN10a] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz.
Domain-specific program checking. In Jan Vitek, editor, Proceed-
ings of the 48th International Conference on Objects, Models, Com-
ponents and Patterns (TOOLS’10), volume 6141 of LNCS, pages
213–232. Springer-Verlag, 2010. Available from: http://scg.unibe.
ch/archive/papers/Reng10bDomainSpecificProgramChecking.pdf,
doi:10.1007/978-3-642-13953-6_12.

[RDGN10b] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz.
Practical dynamic grammars for dynamic languages. In 4th Workshop
on Dynamic Languages and Applications (DYLA 2010), Malaga, Spain,
June 2010. Available from: http://scg.unibe.ch/archive/papers/
Reng10cDynamicGrammars.pdf.

[RDT08] David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated
partial behavioral reflection: Adapting applications at runtime. Jour-
nal of Computer Languages, Systems and Structures, 34(2-3):46–65,

Journal of Object Technology, vol. N, 2011

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1145/1411732.1411758
http://dx.doi.org/10.1145/1411732.1411758
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://dx.doi.org/10.1109/TSE.2003.1232284
http://dx.doi.org/10.1145/38765.38821
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://dx.doi.org/10.1145/1148493.1148513
http://doi.acm.org/10.1145/1810295.1810405
http://doi.acm.org/10.1145/1810295.1810405
http://dx.doi.org/10.1145/1810295.1810405
http://scg.unibe.ch/archive/papers/Reng10bDomainSpecificProgramChecking.pdf
http://scg.unibe.ch/archive/papers/Reng10bDomainSpecificProgramChecking.pdf
http://dx.doi.org/10.1007/978-3-642-13953-6_12
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

20 · J. Ressia, A. Bergel, O. Nierstrasz, L. Renggli

July 2008. Available from: http://scg.unibe.ch/archive/papers/
Roet08aUPBReflectionJournal.pdf, doi:10.1016/j.cl.2007.05.
001.

[RGN10] Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. Embedding lan-
guages without breaking tools. In Theo D’Hondt, editor, ECOOP’10:
Proceedings of the 24th European Conference on Object-Oriented Pro-
gramming, volume 6183 of LNCS, pages 380–404, Maribor, Slove-
nia, 2010. Springer-Verlag. Available from: http://scg.unibe.ch/
archive/papers/Reng10aEmbeddingLanguages.pdf, doi:10.1007/
978-3-642-14107-2_19.

[RRGN10] Jorge Ressia, Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz.
Run-time evolution through explicit meta-objects. In Proceed-
ings of the 5th Workshop on Models@run.time at the ACM/IEEE
13th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2010), pages 37–48, October 2010.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
641/. Available from: http://scg.unibe.ch/archive/papers/
Ress10a-RuntimeEvolution.pdf.

[SVJ03] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an
aspect-oriented approach tailored for component based software de-
velopment. In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 21–29, New York, NY,
USA, 2003. ACM. doi:10.1145/643603.643606.

[TCJ10] Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Improving higher-
order transformations support in atl. In Proceedings of the Third inter-
national conference on Theory and practice of model transformations,
ICMT’10, pages 215–229, Berlin, Heidelberg, 2010. Springer-Verlag.
doi:10.1007/978-3-642-13688-7_15.

[TNCC03] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial
behavioral reflection: Spatial and temporal selection of reification. In
Proceedings of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46,
nov 2003. Available from: http://www.dcc.uchile.cl/~etanter/
research/publi/2003/tanter-oopsla03.pdf, doi:10.1145/949305.
949309.

[Vis04] Eelco Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In C. Lengauer
et al., editors, Domain-Specific Program Generation, volume 3016 of
Lecture Notes in Computer Science, pages 216–238. Spinger-Verlag,
June 2004. Available from: http://archive.cs.uu.nl/pub/RUU/CS/
techreps/CS-2004/2004-011.pdfhttp://www.stratego-language.
org/Stratego/ProgramTransformationWithStrategoXT, doi:10.
1007/b98156.

[YD00] Karim Yaghmour and Michel R. Dagenais. Measuring and character-
izing system behavior using kernel-level event logging. In Proceedings
of the annual conference on USENIX Annual Technical Conference,
ATEC ’00, pages 2–2, Berkeley, CA, USA, 2000. USENIX Associa-
tion. Available from: http://www.usenix.org/event/usenix2000/
general/full_papers/yaghmour/yaghmour.pdf.

Journal of Object Technology, vol. N, 2011

http://scg.unibe.ch/archive/papers/Roet08aUPBReflectionJournal.pdf
http://scg.unibe.ch/archive/papers/Roet08aUPBReflectionJournal.pdf
http://dx.doi.org/10.1016/j.cl.2007.05.001
http://dx.doi.org/10.1016/j.cl.2007.05.001
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://scg.unibe.ch/archive/papers/Ress10a-RuntimeEvolution.pdf
http://scg.unibe.ch/archive/papers/Ress10a-RuntimeEvolution.pdf
http://dx.doi.org/10.1145/643603.643606
http://dx.doi.org/10.1007/978-3-642-13688-7_15
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://dx.doi.org/10.1145/949305.949309
http://dx.doi.org/10.1145/949305.949309
http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-2004/2004-011.pdf http://www.stratego-language.org/Stratego/ProgramTransformationWithStrategoXT
http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-2004/2004-011.pdf http://www.stratego-language.org/Stratego/ProgramTransformationWithStrategoXT
http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-2004/2004-011.pdf http://www.stratego-language.org/Stratego/ProgramTransformationWithStrategoXT
http://dx.doi.org/10.1007/b98156
http://dx.doi.org/10.1007/b98156
http://www.usenix.org/event/usenix2000/general/full_papers/yaghmour/yaghmour.pdf
http://www.usenix.org/event/usenix2000/general/full_papers/yaghmour/yaghmour.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Modeling Domain-Specific Profilers · 21

About the authors

Jorge Ressia is a PhD candidate at the Software Composition
Group of the University of Bern, Switzerland. His research interests
include programming languages, object-oriented programming,
meta-programming and reflection. Contact him at ressia@iam.
unibe.ch, or visit jorgeressia.com.

Alexandre Bergel is Assistant Professor at the University of
Chile. He and his collaborators carry out research in diverse
aspects of software engineering and software quality, including
software profiling and visualization. Contact him at abergel@dcc.
uchile.cl, or visit bergel.eu.

Oscar Nierstrasz is a Professor of Computer Science at the
Institute of Computer Science (IAM) of the University of Bern,
where he founded the Software Composition Group in 1994. Prof.
Nierstrasz is co-author of over 200 publications and co-author of
the books Object-Oriented Reengineering Patterns and Pharo
by Example. Contact him at oscar@iam.unibe.ch, or visit
scg.unibe.ch/staff/oscar.

Lukas Renggli is working as a Software Engineer at Google
Zurich. He received a PhD in Computer Science from the Software
Composition Group of the University of Bern, Switzerland. His
research interests include domain-specific languages and tools.
Contact him at renggli@gmail.com, or visit lukas-renggli.ch.

Acknowledgments We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing Models and Code" (SNF
Project No. 200020-131827, Oct. 2010 – Sept. 2012). This work has been partially
funded by Program U-INICIA 11/06 VID 2011, grant U-INICIA 11/06, University of
Chile and FONDECYT project 1120094. We also like to thank Mircea Lungu and
Toon Verwaest for their feedback on earlier drafts of this paper.

Journal of Object Technology, vol. N, 2011

mailto:ressia@iam.unibe.ch
mailto:ressia@iam.unibe.ch
http://www.jorgeressia.com/
mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl
http://bergel.eu/
mailto:oscar@iam.unibe.ch
http://scg.unibe.ch/staff/oscar
mailto:renggli@gmail.com
http://www.lukas-renggli.ch/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

	Introduction
	Shortcomings of Standard Profilers
	Difficulty of profiling a specific domain
	Requirements for domain-specific profilers

	MetaSpy in a Nutshell
	Validation
	Case Study: Displaying invocations
	Case Study: Events in OmniBrowser
	Case Study: Parsing framework with PetitParser

	Identifying Event Causality
	Expressing causality
	Navigation between events

	Implementing Instrumentation Strategies
	Bifröst
	Feasability of Domain-specific Profiling

	Micro-benchmark
	Conclusions and Future Work
	Bibliography
	About the authors

