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1 Introduction

The Semantic Web is the initiative of the W3C to make

information on the Web readable not only by humans but

also by machines. RDF is the data model for Semantic

Web data, and SPARQL is the standard query language

for this data model. In recent years, we have witnessed

a constant growth in the amount of RDF data available

on the Web, which has motivated the theoretical study of

fundamental aspects of RDF and SPARQL.

The goal of this paper is two-fold: to introduce

SPARQL, which is a fundamental technology for the de-

velopment of the Semantic Web, and to present some in-

teresting and non-trivial problems on RDF data manage-

ment at a Web scale, that we think the database commu-

nity should address.

2 Semantic Web Data

The RDF specification [26] considers two types of values:

resource identifiers (in the form of URIs [10]) to denote

Web resources, and literals to denote values such as natu-

ral numbers, Booleans, and strings. In this paper, we use

U to denote the set of all URIs and L to denote the set of

all literals, and we assume that these two sets are disjoint.

RDF also considers a special type of objects to describe

anonymous resources, called blank nodes in the RDF data

model. Essentially, blank nodes are existentially quanti-

fied variables that can be used to make statements about

unknown (but existent) resources [34]. In this paper, we

do not consider blank nodes, that is, we focus on what are

called ground RDF graphs. Formally, an RDF triple is a

tuple:

(s, p, o) ∈ U×U× (U ∪ L),

where s is the subject, p the predicate and o the object.

An RDF graph is a finite set of RDF triples.
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Figure 2 shows an example of an RDF graph with

data from the RNA Comparative Analysis Database1,

RNA Ontology2, Gene Ontology3, TaxonConcept4 and

DBpedia5. Since URIs can be long, they can be

abbreviated by assigning a prefix string to a URI.

For example, the prefix tc is assigned the string

http://lod.taxonconcept.org/ses/ in this exam-

ple. Then adding another string after the prefix, sepa-

rated by a colon (:), creates a new URI. For example,

tc:T9nAS is equivalent to concatenating T9nAS to the

string assigned to tc.

The RDF graph shown in Figure 2 states that the Se-

quence identified by seq:237860 has a length of 118 and

is part of the taxon identified by tax:36178, which cor-

responds to the following RDF triples:

(seq:2378690, seq:length, "118")

(seq:2378690, seq:taxonomy, tax:36178)

Notice that literals, such as 118, are denoted between quo-

tation marks (i.e. "118"). Additionally, seq:237860 is

located in a cell location identified by obo:GO 0005634,

which is a sub class of obo:GO 0043231. Further-

more, sequence seq:237860 is of type seqtype:3,

which is the same as rnao:16S rRNA that comes

from the RNA Ontology. Consequently, tax:36178

is the same as taxon tc:T9nAS that comes from

the TaxonConcept ontology. Finally, the taxon

tc:T9nAS is the same as dbpedia:Pallid sturgeon

from DBpedia, which is the subject of

dbpedia:Endemic fauna of the United States.

2.1 SPARQL 1.0: Syntax, semantics and

complexity

Jointly with the release of RDF in 1999 as Recommenda-

tion of the W3C, the natural problem of querying RDF

1http://www.rna.icmb.utexas.edu/DAT/
2http://bioportal.bioontology.org/ontologies/1500
3http://www.geneontology.org/
4http://www.taxonconcept.org/
5http://dbpedia.org/



prefix : <http://ribs.csres.utexas.edu/rcad/> prefix seq: <http://ribs.csres.utexas.edu/rcad/SequenceMain/>

prefix obo: <http://purl.obolibrary.org/obo/> prefix seqtype: <http://ribs.csres.utexas.edu/rcad/SequenceType/>

prefix tc: <http://lod.taxonconcept.org/ses/> prefix tax: <http://ribs.csres.utexas.edu/rcad/Taxonomy/>

prefix dbpedia: <http://dbpedia.org/resource/> prefix rnao: <http://purl.obolibrary.org/obo/rnao.owl#>

:Sequence

seq:237860

rdf:type

"118"
seq:length

seqtype:3

seq:sequenceType

rnao:16S rRNA

owl:sameAs

obo:GO 0005634

seq:location

obo:GO 0043231

rdfs:subClassOf

tax:36178

seq:taxonomy

tc:T9nAS
owl:sameAs

dbpedia:Pallid sturgeon

owl:sameAs

dbpedia:Category:Endemic fauna of the United States

dcterms:subject

Figure 1: RDF triples containing biological information from five different sources: The RNA Comparative Analysis

Database (orange nodes), The RNA Ontology (blue node), The Gene Ontology (red nodes), TaxonConcept (yellow

node), and DBpedia (green nodes).

data was raised. Since then, several designs and im-

plementations of RDF query languages have been pro-

posed [15]. In 2004, the RDF Data Access Working

Group released a first public working draft of a query lan-

guage for RDF, called SPARQL [44]. Currently, SPARQL

is a W3C recommendation, and has become the stan-

dard language for querying RDF data. In this section,

we give an algebraic formalization of the core fragment

of SPARQL, and we provide some results about the com-

plexity of the evaluation problem for this query language.

It is important to notice that there is an extended version of

this query language called SPARQL 1.1 that is currently

under development [18], and which is studied in Sec-

tion 2.2. Thus, in this section we use the term SPARQL

1.0 to refer to the first standard version of SPARQL de-

fined in [44].

2.1.1 Syntax and semantics of SPARQL 1.0

To present the syntax of SPARQL 1.0, we use the alge-

braic formalism for this query language proposed in [39,

40, 41]. More specifically, assume that V is an infinite set

of variables disjoint from U and L, and assume that the

elements from V are prefixed by the symbol ?. Then a

SPARQL 1.0 graph pattern is recursively defined as fol-

lows:

• A tuple from (U∪V)× (U∪V)× (U∪L∪V) is

a graph pattern (a triple pattern).

• If P1 and P2 are graph patterns, then the expressions

(P1 AND P2), (P1 OPT P2), and (P1 UNION P2)
are graph patterns.

• If P is a graph pattern and R is a built-in condition,

then the expression (P FILTER R) is a graph pat-

tern.

Moreover, a SPARQL 1.0 query is defined by either

adding the possibility of selecting some values from a

graph pattern or asking whether a graph pattern has a solu-

tion (which corresponds to the notion of Boolean query):

• If P is a graph pattern and W is a finite set of

variables, then (SELECT W P ) is a SPARQL 1.0

query.

• If P is a graph pattern, then (ASK P ) is a SPARQL

1.0 query.

Notice that the notion of built-in condition is used in the

definitions of graph patterns and SPARQL 1.0 queries.

A built-in condition is a Boolean combination of terms

constructed by using equality (=) among elements of

(U ∪ L ∪ V), and the unary predicate bound over vari-

ables.6 Formally,

• if ?X, ?Y ∈ V and c ∈ (U ∪ L), then bound(?X),
?X = c and ?X =?Y are built-in conditions; and

• if R1 and R2 are built-in conditions, then (¬R1),
(R1 ∨R2) and (R1 ∧R2) are built-in conditions.

6For simplicity, we omit here other built-in predicates such as isIRI,
isLiteral and isBlank, and other features such as comparisons (<,

>,≤, ≥), data type conversion and string functions. We refer the reader

to [44, Section 11.3] for details.



Example 2.1 In the running example shown in Figure 2,

the following is a SPARQL 1.0 query that intuitively se-

lects sequences that have length 118:

(SELECT {S}

((?S,seq:length, ?L) FILTER (?L = "118")))

To define the semantics of SPARQL 1.0 queries, we need

to borrow some terminology from [39, 40, 41]. A map-

ping µ is a partial function µ : V → (U∪L). The domain

of µ, denoted by dom(µ), is the subset ofV where µ is de-

fined. Two mappings µ1 and µ2 are compatible, denoted

by µ1 ∼ µ2, when for every ?X ∈ dom(µ1) ∩ dom(µ2),
it is the case that µ1(?X) = µ2(?X). Notice that if

µ1 ∼ µ2 holds, then µ1 ∪ µ2 is also a mapping. More-

over, notice that two mappings with disjoint domains are

always compatible, and that the empty mapping µ∅ (i.e.

the mapping with empty domain) is compatible with any

other mapping. Finally, given a mapping µ and a set W
of variables, the restriction of µ to W , denoted by µ|W ,

is a mapping such that dom(µ|W ) = (dom(µ) ∩W ) and

µ|W (?X) = µ(?X) for every ?X ∈ (dom(µ) ∩W ).

The semantics of SPARQL 1.0 is defined by consider-

ing four basic operators on sets of mappings. More pre-

cisely, given sets Ω1 and Ω2 of mappings, the join of, the

union of, the difference between, and the left-outer join

between Ω1 and Ω2 are defined as follows [39, 40, 41]:

Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and

µ1 ∼ µ2},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | ∀µ′ ∈ Ω2: µ 6∼ µ′}

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 r Ω2).

Notice that in the definition of Ω1 r Ω2, notation µ 6∼ µ′

is used to indicate that mappings µ, µ′ are not compat-

ible. Intuitively, Ω1 ⋊⋉ Ω2 is the set of mappings that

result from extending mappings in Ω1 with their compat-

ible mappings in Ω2, and Ω1 r Ω2 is the set of mappings

in Ω1 that cannot be extended with any mapping in Ω2.

Finally, a mapping µ is in Ω1 Ω2 if it is the extension of

a mapping of Ω1 with a compatible mapping of Ω2, or if it

belongs to Ω1 and cannot be extended with any mapping

of Ω2.

We are now ready to define the semantics of SPARQL

1.0. First, we define the semantics of built-in conditions.

Given a mapping µ and a built-in conditionR, we say that

µ satisfies R, denoted by µ |= R, if [39, 40, 41]:

• R is ?X = c, where c ∈ U, ?X ∈ dom(µ) and

µ(?X) = c;

• R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and

µ(?X) = µ(?Y );

• R is bound(?X) and ?X ∈ dom(µ);

• R is (¬R1), and it is not the case that µ |= R1;

• R is (R1 ∨R2), and µ |= R1 or µ |= R2;

• R is (R1 ∧R2), µ |= R1 and µ |= R2.

Second, we define the semantics of graph patterns. Given

a triple pattern t, denote by var(t) the set of variables

mentioned in t, and given a mapping µ such that var(t) ⊆
dom(µ), denote by µ(t) the triple obtained by replac-

ing the variables in t according to µ. Then given an

RDF graph G and a graph pattern P , the evaluation of

P overG, denoted by JP KG, is defined recursively as fol-

lows [39, 40, 41]:

• if P is a triple pattern t, then JP KG = {µ |
dom(µ) = var(t) and µ(t) ∈ G}.

• if P is (P1 AND P2), then JP KG = JP1KG ⋊⋉ JP2KG.

• if P is (P1 OPT P2), then JP KG = JP1KG JP2KG.

• if P is (P1 UNION P2), then JP KG = JP1KG ∪
JP2KG.

• if P is (P1 FILTERR), then JP KG = {µ ∈ JP1KG |
µ |= R}.

Moreover, given a SPARQL 1.0 query Q =
(SELECT W P ), define the evaluation of Q over

an RDF graph G as JQKG = {µ|W | µ ∈ JP KG} [40].

Finally, given a SPARQL 1.0 query Q = (ASK P ),
define the evaluation of Q over an RDF graph G as:

JQKG =

{

yes JP KG 6= ∅

no otherwise

It should be noticed that the idea behind the OPT oper-

ator is to allow for optional matching of graph patterns.

Consider graph pattern expression (P1 OPT P2) and let

µ1 be a mapping in JP1KG. If there exists a mapping

µ2 ∈ JP2KG such that µ1 and µ2 are compatible, then

µ1 ∪ µ2 belongs to J(P1 OPT P2)KG. But if no such a

mapping µ2 exists, then µ1 belongs to J(P1 OPT P2)KG.

Thus, operator OPT allows information to be added to a

mapping µ if the information is available, instead of just

rejecting µ whenever some part of the pattern does not

match. This feature of optional matching is crucial in Se-

mantic Web applications, and more specifically in RDF



data management, where it is assumed that every appli-

cation have only partial knowledge about the resources

being managed.

Assume that µ is a mapping such that dom(µ) =
{?X1, . . . , ?Xk} and µ(?Xi) = ai for every i ∈
{1, . . . , k}. From now on, we also use notation {?X1 →
a1, . . . , ?Xk → ak} to represent such a mapping.

Example 2.2 Consider again the RDF graph G shown

in Figure 2. The following SPARQL 1.0 graph pattern is

used to return the list of sequences in this graph, together

with the Taxa they are part of and their lengths:

P1 = ((?S,seq:taxonomy, ?T ) AND

(?S,seq:length, ?L)).

In this case, we have that JP1KG = {µ1}, where µ1 is

the mapping {?S → seq:237860, ?T → tax:36178,

?L → "118"}. Moreover, the following SPARQL 1.0

graph pattern is used to retrieve the list of sequences in

G, together with their locations and names, if the latter

information is available:

P2 = ((?S,seq:location, ?L) OPT

(?S,seq:name, ?N)).

In this case, we have that JP2KG = {µ2}, where

µ2 is the mapping {?S → seq:237860, ?L →
obo:GO 0005634}. Notice that in the mapping µ2 we do

not have any value associated with the variable ?N , as we

have no information about the name of the sequence with

id seq:237860 in the graph G. Also notice that if P2 is

replaced by the graph pattern:

P3 = ((?S,seq:location, ?L) AND

(?S,seq:name, ?N)),

then we obtain the empty set of mappings when evaluat-

ing P3 over G, as in this case we do not use the optional

feature of SPARQL 1.0 when retrieving the names of the

sequences in G.

2.1.2 Complexity of the evaluation problem

In this section, we present a survey of the results on the

complexity of the evaluation of SPARQL 1.0 graph pat-

terns, that is, without considering the SELECT operator.

In this study, we consider several fragments built incre-

mentally, and present complexity results for each such

fragment. Among other results, we show that the com-

plexity of the evaluation problem for general SPARQL

1.0 graph patterns is PSPACE-complete, and that this high

complexity is obtained as a consequence of unlimited use

of nested optional parts.

As is customary when studying the complexity of the

evaluation problem for a query language [49], we consider

its associated decision problem. We denote this problem

by EVALUATION and we define it as follows:

PROBLEM : EVALUATION

INPUT : An RDF graphG, a graph pattern

P and a mapping µ
QUESTION : Is µ ∈ JP KG?

Notice that the pattern and the graph are both input for

EVALUATION. Thus, we study the combined complexity

of the query language [49].

We start this study by considering the fragment con-

sisting of graph pattern expressions constructed by using

only the operators AND and FILTER. In what follows,

we call AND-FILTER to this fragment.7 Given an RDF

graphG, a graph patternP in this fragment and a mapping

µ, it is possible to efficiently check whether µ ∈ JP KG by

using the following simple algorithm [39]. First, for each

triple t in P , verify whether µ(t) ∈ G. If this is not the

case, then return false. Otherwise, by using a bottom-up

approach, verify whether the expression generated by in-

stantiating the variables in P according to µ satisfies the

FILTER conditions in P . If this is the case, then return

true, else return false. Thus, assuming that |G| denotes

the size of an RDF graph G and |P | denotes the size of a

graph pattern P , we have that:

Theorem 2.3 ([39, 41]) EVALUATION can be solved in

time O(|P | · |G|) for the AND-FILTER fragment of

SPARQL 1.0.

We continue this study by adding the UNION operator to

the AND-FILTER fragment. It is important to notice that

the inclusion of UNION in SPARQL 1.0 was one of the

most controversial issues in the definition of the language.

The following theorem shows that the inclusion of this

operator makes the evaluation problem for SPARQL 1.0

graph patterns considerably harder.

Theorem 2.4 ([39, 41]) EVALUATION is NP-

complete for the AND-FILTER-UNION fragment

of SPARQL 1.0.

In [45], the authors strengthen the above result by show-

ing that the complexity of evaluating graph pattern expres-

sions constructed by using only AND and UNION oper-

ators is already NP-hard. Thus, we have the following

result.

7We use a similar notation for other combinations of

SPARQL 1.0 operators. For example, the AND-FILTER-

UNION fragment of SPARQL 1.0 is the fragment consisting

of all the graph patterns constructed by using only the operators

AND, FILTER and UNION.



Theorem 2.5 ([45]) EVALUATION is NP-complete for

the AND-UNION fragment of SPARQL 1.0.

We now consider the OPT operator. The following the-

orem proved in [39] shows that when considering all the

operators in SPARQL 1.0 graph patterns, the evaluation

problem becomes considerably harder.

Theorem 2.6 ([39, 41]) EVALUATION is PSPACE-

complete.

To prove the PSPACE-hardness of EVALUATION, the

authors show in [41] how to reduce in polyno-

mial time the quantified boolean formula problem

(QBF) to EVALUATION. An instance of QBF is

a quantified propositional formula ϕ of the form

∀x1∃y1∀x2∃y2 · · · ∀xm∃ym ψ, where ψ is a quantifier-

free formula of the form C1 ∧ · · · ∧ Cn, with each Ci

(i ∈ {1, . . . , n}) being a disjunction of literals, that is,

a disjunction of propositional variables xi and yj , and

negations of propositional variables. Then the problem

is to verify whether ϕ is valid. It is known that QBF is

PSPACE-complete [16]. In the encoding presented in [41],

the authors use a fixed RDF graphG and a fixed mapping

µ. Then they encode formula ϕ with a pattern Pϕ that

uses nested OPT operators to encode the quantifier alter-

nation of ϕ, and a graph pattern without OPT to encode

the satisfiability of formula ψ. By using a similar idea, it

is shown in [45] how to encode formulasϕ and ψ by using

only the OPT operator, thus strengthening Theorem 2.6.

Theorem 2.7 ([45]) EVALUATION is PSPACE-complete

even for the OPT fragment of SPARQL 1.0.

When verifying whether µ ∈ JP KG, it is natural to as-

sume that the size of P is considerably smaller than the

size of G. This assumption is formalized by means of the

notion of data complexity [49], which is defined as the

complexity of the evaluation problem for a fixed query.

More precisely, for the case of SPARQL 1.0, given a graph

pattern expression P , the evaluation problem for P , de-

noted by EVALUATION(P ), has as input an RDF graphG
and a mapping µ, and the problem is to verify whether

µ ∈ JP KG.

Theorem 2.8 ([41]) EVALUATION(P ) is in LOGSPACE

for every SPARQL 1.0 graph pattern expression P .

2.1.3 Well-designed patterns: On the use of the OPT
operator in SPARQL 1.0

One of the most delicate issues in the definition of a se-

mantics for graph pattern expressions is the semantics of

the OPT operator. As we have mentioned before, the idea

behind this operator is to allow for optional matching of

patterns, that is, to allow information to be added if it is

available, instead of just rejecting whenever some part of

a pattern does not match. However, this intuition fails in

some simple examples.

Example 2.9 Consider again the RDF graph shown in

Figure 2, and let P be the following graph pattern:

((?X,seq:length,"118") AND

(?Y,owl:sameAs,tc:T9nAS)),

which retrieves in ?X the identifiers of the sequences
that have length 118 and retrieves in ?Y the identi-
fiers of the taxa that are the same as the taxon with
identifier tc:T9nAS. Moreover, let P ′ be the graph pat-
tern obtained from P by replacing the triple pattern
(?Y, owl:sameAs, tc:T9nAS) by the following graph
pattern using the OPT operator:

((?Y,owl:sameAs,tc:T9nAS) OPT

(?X,seq:label, ?Z)). (1)

Finally, let G be an RDF graph obtained by adding the

triple

(seq:504416, seq:label, "ID 504416")

to the RDF graph shown in Figure 2. Given that P ′ is ob-

tain by adding an OPT operator to P , one would expect

that the information extracted from an RDF graph by us-

ing P is contained in the information extracted by using

P ′. However, one can use RDF graphG to show that this

is not the case in general. In fact, it is straightforward to

see that JP KG = {µ}, where µ is the mapping {?X →
seq:237860, ?Y → tax:36178}, while JP ′KG = ∅.

To see why the latter holds, notice that the evaluation

of triple pattern (?X, seq:length, "118") over G gives

as result a set consisting of mapping µ1 = {?X →
seq:237860}, while the evaluation of graph pattern

(1) over G gives as result a set consisting of mapping

µ2 = {?X → seq:504416, ?Y → tax:36178, ?Z →
"ID 504416"}, and mappings µ1, µ2 are not compatible

as µ1(?X) 6= µ2(?X).

The pattern P ′ in the previous example is unnatural as

the triple pattern (?X, seq:label, ?Z) seems to be giv-

ing optional information for (?X, seq:length, "118")
(they share variable ?X), but in P ′ it is giving optional in-

formation for (?Y, owl:sameAs, tc:T9nAS) (see pattern

(1) above). In fact, it is possible to find a common char-

acteristic in the examples that contradict the intuition be-

hind the definition of the OPT operator: A graph pattern



P mentions an expression Q = (P1 OPT P2) and a vari-

able ?X occurring both inside P2 and outside Q, but not

occurring in P1. In [39], the authors introduce a syntac-

tic restriction that forbids the form of interaction between

variables discussed above. To present this restriction, we

need to introduce some terminology. A graph pattern P is

said to be safe if for every sub-pattern (P1 FILTERR) of

P , every variable mentioned inR is also mentioned in P1.

Then a graph pattern P in the AND-FILTER-OPT frag-

ment of SPARQL 1.0 is said to be well designed [39] if:

P is safe, and for every sub-pattern Q = (P1 OPT P2)
of P and variable ?X , if ?X occurs both inside P2 and

outside Q, then it also occurs in P1. For instance, pattern

P ′ in Example 2.9 is not well designed.

In [39], the notion of being well designed was intro-

duced in an attempt to regulate the scope of variables in

the OPT operator. Interestingly, well-designed graph pat-

terns also have good properties regarding the complexity

of the evaluation problem. As shown in Theorem 2.7, the

evaluation problem for SPARQL 1.0 is PSPACE-complete

even if only the OPT operator is considered. However,

Theorem 2.10 ([41]) EVALUATION is coNP-complete

for the fragment of SPARQL 1.0 consisting of well-

designed patterns.

It is important to notice that it was also shown in [39,

41, 11, 32] that well-designed patterns are suitable for re-

ordering and optimization, demonstrating the significance

of this class of queries from a practical point of view.

2.2 SPARQL 1.1

The SPARQL Recommendation [44] is not the last step

towards the definition of the right language for querying

RDF, and the W3C groups involved in the design of the

language are currently working on the new version of the

standard, the upcoming SPARQL 1.1 [18]. This new ver-

sion will include several interesting and useful features for

querying RDF. Among the multiple design issues to be

considered, there are three important problems that have

been in the focus of attention: federation of queries, the

use of navigation capabilities and the possibility of nest-

ing queries. These features have a clear motivation in

the context of querying distributed graph-shaped linked

data. In this section, we study these features paying spe-

cial attention to the theoretical and practical challenges

that arise from them. It is important to mention that due to

the lack of space, we do not cover in this section other im-

portant features of SPARQL 1.1 like the use of aggregates

and negation, and the inclusion in the language of some

entailment regimes [17, 30] to deal with the RDFS [26]

and OWL [38, 28] vocabularies.

2.2.1 Federation

Since the release of SPARQL 1.0 in 2008, the Web has

witnessed a constant growth in the amount of RDF data

publicly available on-line. Nowadays, several RDF repos-

itories provide SPARQL interfaces to directly querying

their data, which has led the W3C to standardize some

constructs for accessing these repositories by means of

so called SPARQL endpoints. All these constructs are

part of the federation extensions of SPARQL 1.1 [18, 43],

which extends the syntax of SPARQL 1.0 graph patterns

presented in Section 2.1 by including the following rule:

• If P is a graph pattern and c ∈ U ∪ V then

(SERVICE c P ) is a graph pattern.

In the above expression, P is a graph pattern expres-

sion that has to be evaluated over the SPARQL endpoint

represented by c. Notice that c can be a variable, thus

the definition of the semantics of the SERVICE opera-

tor is not immediately evident. To formalize this seman-

tics, assume the existence of a partial function ep(·) from

the set of URIs to the set of all RDF graphs such that

for every c ∈ U, if ep(c) is defined, then ep(c) is the

RDF graph associated with the endpoint accessible via

URI c. Then given an RDF graph G and a graph pat-

tern P = (SERVICE c P1), the evaluation of P over G,

denoted by JP KG, is defined by considering the following

cases:

• if c ∈ dom(ep), then JP KG = JP1Kep(c);

• if c ∈ U \ dom(ep), then JP KG = {µ∅} (recall that

µ∅ is the mapping with empty domain); and

• if c ∈ V, then

JP KG =
⋃

a∈dom(ep)

(

JP1Kep(a) ⋊⋉ {µc→a}

)

,

where µc→a is a mapping such that dom(µc→a) =
{c} and µc→a(c) = a.

The previous definition was proposed in [11, 12] to for-

malize the semantics for the SERVICE operator intro-

duced in [43]. The goal of this definition is to state in an

unambiguous way what the result of evaluating an expres-

sion containing the operator SERVICE should be, and as

such it should not be considered as a straightforward basis

for the implementation of the language. In fact, a direct

implementation of the semantics for (SERVICE ?X P )
would involve evaluating P in every possible SPARQL

endpoint, which is obviously infeasible in practice.



Given the definition of the semantics of the SERVICE
operator, it is natural to ask in which cases a query con-

taining a graph pattern (SERVICE ?X P1) can be eval-

uated in practice. This issue was considered in [11, 12],

where the authors study some restrictions that ensure that

SERVICE patterns can be evaluated by only considering

a finite set of SPARQL endpoints. More specifically, the

first restriction considered in [11, 12] is based on a no-

tion of boundedness, which is formalized as follows. A

variable ?X is said to be bound [11, 12] in a graph pat-

tern P if for every RDF graph G and every µ ∈ JP KG,

it holds that ?X ∈ dom(µ) and µ(?X) is mentioned in

G. Then one can ensure that a SPARQL pattern P can be

evaluated in practice by imposing the restriction that for

every sub-pattern (SERVICE ?X P1) of P , it holds that

?X is bound in P . Unfortunately, this simple condition

turned out to be not completely appropriate, as shown in

the following example.

Example 2.11 Assume first thatP1 is the following graph

pattern:

P1 = [(?X, service description, ?Z) UNION

((?X,service address, ?Y ) AND

(SERVICE ?Y (?N, email, ?E)))].

That is, either ?X and ?Z store the name of a SPARQL
endpoint and a description of its functionalities, or

?X and ?Y store the name of a SPARQL endpoint

and the IRI where it is located (together with a list

of names and email addresses retrieved from that lo-

cation). Variable ?Y is not bound in P1. How-

ever, there is a simple strategy that ensures that P1

can be evaluated over an RDF graph G: first compute

J(?X, service description, ?Z)KG, then compute

J(?X, service address, ?Y )KG, and finally for every µ
in the set of mappings J(?X, service address, ?Y )KG,

compute J(SERVICE a (?N, email, ?E))KG with a =
µ(?Y ). In fact, the reason why P1 can be evaluated in

this case is that ?Y is bound in the following sub-pattern

of P1:

((?X,service address, ?Y ) AND

(SERVICE ?Y (?N,email, ?E))).

As a second example, assume that G is an RDF graph

that uses triples of the form (a1, related with, a2) to

indicate that the SPARQL endpoints located at the IRIs a1
and a2 store related data. Moreover, assume that P2 is the

following graph pattern:

[(?U1, related with, ?U2) AND

(SERVICE ?U1 ((?N,email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F ))))].

When this query is evaluated over the RDF graph G,

it returns for every tuple (a1, related with, a2) in G,

the list of names and email addresses that that can be

retrieved from the SPARQL endpoint located at a1,

together with the phone number for each person in

this list for which this data can be retrieved from the

SPARQL endpoint located at a2 (recall that pattern

(SERVICE ?U2 (?N, phone, ?F )) is nested inside the

first SERVICE operator in P2). To evaluate this query

over an RDF graph, first it is necessary to determine the

possible values for variable ?U1, and then to submit the

query

((?N,email, ?E) OPT

(SERVICE ?U2 (?N,phone, ?F ))) (2)

to each one of the endpoints located at the IRIs stored in

?U1. In this case, variable ?U2 is bound in P2. How-

ever, this variable is not bound in the graph pattern (2),

which has to be evaluated in some of the SPARQL end-

points stored in the RDF graph where P2 is being eval-

uated, something that is infeasible in practice. It is im-

portant to notice that the difficulties in evaluating P2 are

caused by the nesting of SERVICE operators (more pre-

cisely, by the fact that P2 has a sub-pattern of the form

(SERVICE ?X1 Q1), whereQ1 has in turn a sub-pattern

of the form (SERVICE ?X2 Q2) such that ?X2 is bound

in P2 but not in Q1).

To overcome the limitations of the notion of bounded-

ness mentioned in the previous example, the authors in-

troduce in [11, 12] the notion of service-boundedness. To

present this notion, we need to introduce some terminol-

ogy. Given a graph pattern P , assume that T (P ) is the

parse tree of P , in which every node corresponds to a sub-

pattern of P . For example, Figure 2 shows the parse tree

of a graph pattern P . In this figure, u1, u2, u3, u4, u5, u6
are the identifiers of the nodes of the tree, which are la-

beled with the sub-patterns of P . It is important to no-

tice that this tree does not make any distinction between

the different operators in SPARQL, it just uses the child

relation to store the structure of the sub-patterns of a

SPARQL query. Then a graph pattern P is said to be

service-bound [11, 12] if for every node u of T (P ) with

label (SERVICE ?X P1), it holds that:

• there exists a node v of T (P ) with label P2 such that

v is an ancestor of u in T (P ) and ?X is bound in P2;

• P1 is service-bound.

For example, query Q in Figure 2 is service-bound.

In fact, the first condition above is satisfied as u5 is

the only node in T (Q) having as label a SERVICE



u6 : (?Y, a, ?Z)

u1 : ((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))))

u2 : (?Y, a, ?Z) u3 : ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))

u4 : (?X, b, c) u5 : (SERVICE ?X (?Y, a, ?Z))

Figure 2: Parse tree T (P ) of a graph patternP = [(?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))].

graph pattern, in this case (SERVICE ?X (?Y, a, ?Z)),
and for the node u3, it holds that: u3 is an an-

cestor of u5 in T (P ), the label of u3 is P =
((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))) and ?X
is bound in P . Moreover, the second condition above is

satisfied as the sub-pattern (?Y, a, ?Z) of the label of u5
is also service-bound.

The notion of service-boundedness captures our intu-

ition about the condition that a SPARQL query contain-

ing the SERVICE operator should satisfy. Unfortunately,

the following theorem shows that such a condition is un-

decidable and, thus, a SPARQL query engine would not

be able to check it in order to ensure that a query can be

evaluated.

Theorem 2.12 ([11, 12]) The problem of verifying, given

a SPARQL 1.1 query Q, whether Q is service-bound is

undecidable.

Given this undecidability result, the authors proposed

in [11, 12] a decidable sufficient condition for service-

boundedness, which is formalized as follows. Let P be

a graph pattern. Then the set of strongly bound variables

in P , denoted by SB(P ), is recursively defined as follows:

• if P = t, where t is a triple pattern, then SB(P ) =
var(t);

• if P = (P1 AND P2), then SB(P ) = SB(P1) ∪
SB(P2);

• if P = (P1 UNION P2), then SB(P ) = SB(P1) ∩
SB(P2);

• if P = (P1 OPT P2), then SB(P ) = SB(P1);

• if P = (P1 FILTER R), then SB(P ) = SB(P1);

• if P = (SERVICE c P1), with c ∈ I ∪ V , then

SB(P ) = ∅;

Moreover, graph pattern P is said to be service-

safe [11, 12] if for every node u of T (P ) with label

(SERVICE ?X P1), it holds that:

• there exists a node v of T (P ) with label P2 such that

v is an ancestor of u in T (P ) and ?X ∈ SB(P2);

• P1 is service-safe.

That is, the notion of service-safeness is obtained from the

notion of service-boundedness by replacing the restriction

that variables are bound by the syntactic restriction that

variables are strongly bound. In fact, it is possible to prove

that service-safeness is a sufficient condition for service-

boundedness.

Proposition 2.13 ([11, 12]) If a graph pattern P is

service-safe, then P is service-bound.

It is easy to see that one can efficiently verify whether a

graph pattern is service-safe. In fact, the notion of service-

safeness is used in the system presented in [11, 12] to ver-

ify that a graph pattern can be evaluated in practice.

2.2.2 Property paths

Navigational features have been largely recognized as

fundamental for graph database query languages. This

fact has motivated several authors to propose RDF query

languages with navigational capabilities [37, 2, 29, 6, 3,

42], and, in fact, it was the motivation to include the

property-path feature in SPARQL 1.1 [18]. Property paths

are essentially regular expressions, that are used to re-

trieve pairs of nodes from an RDF graph if they are con-

nected by paths conforming to those expressions. In this

section, we formalize the syntax and semantics of prop-

erty paths, and study the complexity of evaluating them.

It is important to mention that this formalization considers

a set semantics for SPARQL queries, so it does not suffer

from the complexity issues identified in [8, 33].



According to [18], a property path is recursively de-

fined as follows: (1) if u ∈ U, then u is a property

path, and (2) if p1 and p2 are property paths, then (p1|p2),
(p1/p2) and (p∗1) are property paths. Thus, from a syntac-

tical point of view, property paths are regular expressions

over the vocabulary U, being | disjunction, / concatena-

tion and ( )∗ the Kleene star. It should be noticed that

the definition of property paths in [18] includes some ad-

ditional features that are common in regular expressions,

such as p? (zero or one occurrences of p) and p+ (one or

more occurrences of p). In this section, we focus on the

core operators |, / and ( )∗, as the other operators can be

easily defined in terms of them.

A property-path triple is a tuple t of the form (v, p, w),
where v, w ∈ (U ∪ V) and p is a property path.

SPARQL 1.1 includes as atomic formulas triple patterns

and property-path triples. Thus, to complete the definition

of the semantics of SPARQL 1.1, we need to specify how

property-path triples are evaluated over RDF graphs, that

is, we need to extend the definition of the function J·KG
to include property-path triples. In order to do this, we

first overload the meaning of J·KG to also consider prop-

erty paths. More precisely, given an RDF graph G and a

property path p, the evaluation of p over G, denoted by

JpKG, is recursively defined as follows:

• if p = u, where u ∈ U, then JpKG = {(a, b) |
(a, u, b) ∈ G};

• if p = (p1|p2), then JpKG = Jp1KG ∪ Jp2KG;

• if p = (p1/p2), then JpKG = {(a, b) | ∃u ∈
U: (a, u) ∈ Jp1KG and (u, b) ∈ Jp2KG};

• if p = (p∗1), then

JpKG = {(a, a) | a ∈ U and a is

mentioned in G} ∪

(

⋃

n≥1

Jpn1 KG

)

,

where pn1 (n ≥ 1) is the property path obtained by

concatenating n copies of p1.

Then given an RDF graphG and a property-path triple t of

the form (?X, p, ?Y ), the evaluation of t over G, denoted

by JtKG, is defined as:

{µ | dom(µ) = {?X, ?Y } and (µ(?X), µ(?Y )) ∈ JpKG}.

Moreover, the semantics of a property-path triple of the

form either (a, p, ?Y ) or (?X, p, b) or (a, p, b), where

a, b ∈ U, is defined in an analogous way. Notice that for

every property-path triple t of the form (v, u, w), where

u ∈ U and v, w ∈ (U ∪V), the semantics of t according

to the previous definition coincides with the semantics for

t if we consider it as a triple pattern.

To study the complexity of evaluating property paths,

we define the following decision problem.

PROBLEM : EVALUATIONPROPERTYPATH

INPUT : An RDF graph G, a property-

path triple t and a mapping µ
OUTPUT : Is µ ∈ JtKG?

Notice that with EVALUATIONPROPERTYPATH, we are

measuring the combined complexity of evaluating a

property-path triple. The following result shows that

EVALUATIONPROPERTYPATH is tractable. This is a

corollary of some well-known results on graph databases

(e.g. see Section 3.1 in [42]). In the result, we use |G| to

denote the size of an RDF graph G and |t| to denote the

size of a property-path triple t.

Proposition 2.14 EVALUATIONPROPERTYPATH can be

solved in time O(|G| · |t|).

Thus, the use of property-path triples under the semantics

presented in this section does not significantly increase the

complexity of the evaluation problem for SPARQL.

2.2.3 Sub-queries

The advantages of having subqueries and composition in

a query language are well known; among the most impor-

tant for SPARQL we can mention incorporation of views,

reuse of queries, query rewriting and optimization, and

facilitating distributed queries.

SPARQL 1.0 only allows SELECT as the outermost

operator in a query (see Section 2.1.1). On the other

hand, motivated by the advantages of having subqueries

in a query languages, SPARQL 1.1 allows the possibil-

ity of nesting SELECT operators. More precisely, if W
is a finite set of variables and P is a graph pattern, then

(SELECT W P ) is a graph pattern in SPARQL 1.1 [18].

Moreover, the evaluation of such an expression over

an RDF graph G is defined exactly as for the case of

SPARQL 1.0: J(SELECT W P )KG = {µ|W | µ ∈
JP KG}.

Assume that ?X is a variable occurring in a graph

pattern P , W is a set of variables not includ-

ing ?X and Q is a SPARQL 1.1 query mention-

ing graph pattern (SELECT W P ). Due to the

semantics of SPARQL 1.1, the value of ?X cannot

be used in the remaining part of Q after evaluating

(SELECT W P ). As an example of this, recall that

a graph pattern expression P1 = (?X, a, ?Y ) AND



(SELECT {?X} (?X, b, ?Y )) is equivalent to P2 =
(?X, a, ?Y ) AND (SELECT {?X} (?X, b, ?Z)) accord-

ing to the semantics of SPARQL 1.1 (that is, for every

RDF graph G, it holds that JP1KG = JP2KG). Hence, the

two occurrences of the variable ?Y in P1 are not corre-

lated.

It is not clear whether there is a natural way to correlate

variables when using sub-queries in SPARQL 1.1, a func-

tionality that has proved to be very useful in other query

languages such as SQL. This drawback, and other limita-

tions of the sub-query functionality of SPARQL 1.1, are

studied in [4, 5], where the authors propose some exten-

sions to SPARQL 1.1 to solve these problems. In what

follows, we present one of these additions, and show how

it can be used to correlate variables in a natural way. More

precisely, the following rule is included in [4, 5] when

defining graph patterns: If P1, P2 are graph patterns, then

(P1 FILTER (ASK P2)), (P1 FILTER ¬(ASK P2))
are graph patterns.

To define the semantics of the expressions just pre-

sented, we need to introduce some terminology. Given

a graph pattern P and a mapping µ, define µ(P ) as the

graph pattern obtained from P by replacing every vari-

ables ?X ∈ dom(µ) occurring in P by µ(P ). Then given

an RDF graph G:

JP1 FILTER (ASK P2))KG =

{µ ∈ JP1KG | J(ASK µ(P2))KG = yes}

JP1 FILTER ¬(ASK P2))KG =

{µ ∈ JP1KG | J(ASK µ(P2))KG = no}

In the following example, we s how a query where the

possibility of correlating variables is needed, and we

show how it can be expressed by using the extension to

SPARQL 1.1 just introduced.

Example 2.15 Assume that we have an RDF graph stor-

ing bibliographic data. In this graph, a triple of the

form (a, name, b) is used to indicate that b is the name

of an author with identifier a, and a triple of the form

(a, series, b) is used to indicate that a is an identi-

fier of a particular edition of a conference with identifier

b (for example, (SIGMOD 11, series, SIGMOD) indicates

that SIGMOD 11 is a particular edition of SIGMOD, in this

case the 2011 edition). Moreover, a triple of the form

(a, isPartOf, b) is used in G to indicate that the arti-

cle with identifier a was published in the conference with

identifier b, and a triple of the form (a, isAuthorOf, b)
is used to indicate that a is the identifier of one of the au-

thors of the article with identifier b.
Assume that we want to retrieve from G the list of

authors who have published a paper in every edition of

SIGMOD. Given a particular author identifier id, we can

retrieve the SIGMOD editions where she/he did not publish

a paper by using the following graph pattern:

(?C,series,SIGMOD) FILTER

¬(ASK ((?P,isPartOf, ?C) AND

(id,isAuthorOf, ?P )))

Thus, the following graph pattern can be used to answer

our initial query, where identifier id is replaced by a vari-

able ?A:

(SELECT {?N}

(?A,name, ?N) FILTER

¬(ASK (?C,series,SIGMOD) FILTER

¬(ASK ((?P,isPartOf, ?C) AND

(?A,isAuthorOf, ?P )))))

3 The Challenges of Data Manage-

ment at Web Scale

Since its creation, in the early nineties, the Web has been

the object of study of the database community in areas

such as querying the Web, information extraction and

integration, website restructuring, semi-structured data

models and query languages, etc. Although aware that

database techniques were not “the magic bullet that will

solve all Web management information problems”, most

of this research focused in extending classical database

techniques to this new scenario [50].

Since the early 2000 we are witnessing the emergence

of the tip of an iceberg showing that drastic changes are

happening to the area of Web data management. If we

had to summarize them in one sentence it would be: real

distribution of big data.

A nice laboratory for these trends is Linked Data.

Linked Data defines a set of best practices in order to

treat data as a distributed interconnected graph, just as

the Web, through hyperlinks, has enabled documents to

be interconnected and distributed [27]. Linked Data is

based on the RDF data model which uses URIs. By

definition, each URI will be associated with an Internet

server. The Linked Data principles stipulate that when

a URI is dereferenced, the server should return a set of

RDF triples [9]. Those triples, in turn, may contain URIs

for different servers. Thus, there is a potential for a triple

on one server to logically connect to a triple on another

server, such that additional graph structured data may be

gathered from distributed servers. This is shown in Fig-

ure 2, where an RDF graph is composed of data coming

from five different servers. Therefore, heterogeneous dis-

tributed datasets, with their own schemas, coming form



diverse sources, are being linked together enabling a Web

of Data.

Linked Data has highlighted aspects of the cycle of data

management that in the classical setting did not occur, did

not have relevance, or were addressed by other communi-

ties. In what follows, we list some challenges of data man-

agement at Web scale, with the goal of showing the reader

that there are lots of interesting and non-trivial problems

to solve in this area.

Publication: Publishing means to prepare data for public

exposure. Berners-Lee introduced the Linked Data prin-

ciples consisting of four rules [9]: 1) Use URIs as names

for things, 2) Use HTTP URIs, 3) When a URI is derefer-

enced, provide useful information in RDF and 4) Include

links to other URIs so more things can be discovered. If

we assume distributed publication, the issues of handling

identifiers and mapping data to RDF have to be addressed.

URIs are global unique identifiers of resources. How

these URIs should be created? And given that a concept

can have several URIs identifying it, how can different

URIs that identify the same concept be managed and con-

trolled? Additionally, given that Linked Data is based

on the RDF data model, data in different formats must

be mapped to RDF. How can different formats (relational

database, logs, XML, spreadsheets, csv, etc) be mapped

into the RDF model? Consequently, a schema must be

chosen to describe the data. Which schemas should be

chosen? How are schemas mapped at a Web-scale? Map-

ping relational data to RDF has fostered standardizations

[7, 13] and the study of fundamental properties and opti-

mizations [46, 47].

Discovery: Distributed publication implies the notion of

discovery. One approach to discover data on the Web is

to follow the same approach that is done currently on the

Web: crawl webpages by following the links. This means

that data must be stored in centralized datasources giving

the advantage that data can be accessed quickly and statis-

tics can be created to enable discovery [19]. However, the

opportunity to access fresh data is missing and discovery

of new data is bounded to the centralized repository.

A decentralized approach does not assume prior infor-

mation about sources to be available, and executes queries

directly on the web discovering new sources on the fly.

This approach, also known as Link Traversal Based Query

Execution, can be seen as a combination of querying and

crawling [24, 25, 36]. Given a SPARQL query, if a triple

satisfies just one clause, then the connected components

of that triple, linked by URIs, may satisfy other query

clauses. Thus, in the course of evaluating a SPARQL

query, for each such URI, it may be necessary to go to

a server and collect an additional set of triples.

A hybrid approach combines the two previous ap-

proaches by assuming that information about some

sources is already available and more information can be

obtained during query execution [31, 48].

Querying: Given a set of data sources on the Web, how

can a query be executed in a reasonable amount of time

over the distributed and linked data sources? What should

be the syntax and semantics of a query language for the

Web? Is SPARQL the right query language for this? What

type of Web queries would a user like to express? What is

the complexity of evaluating a query over the distributed

data on the Web? What should the result of a query be?

Should it be a SPARQL solution mapping or an RDF

graph? Do we want a sound and complete answer? Or

a few good answers quickly is enough? Models of the

Web that could be used to solve these problems have been

developed [35, 1], and some initial results in the context

of Linked Data have been obtained [23, 20].

Navigation: The natural counterpart of querying in

Linked Data is navigation. Data sources are discovered

by following links, and navigating over the links among

datasets. How can the scope of this navigation be defined?

Does there need to be specific language to describe nav-

igation? What if there are several alternatives during the

navigation process? Which alternatives should be chosen?

What if there are no alternatives? Fionda et al. introduced

a declarative language that is designed to specify naviga-

tion patterns over the Web of Data [14].

Trust, Quality and Provenance: Data, and thus query re-

sults may not be considered trustworthy by certain users.

On the other hand, users may want to track the prove-

nance of data [21]. Should query results be associated

with its provenance? How can a source and a query results

be trusted? Should query results include their trustwor-

thiness scores? Trust-aware extensions to SPARQL have

been introduced [22], but should trust be a factor/operator

of the query language?
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