
Object-Centric Debugging
Preprint version to be published at ICSE 2012

Jorge Ressia
Software Composition Group

University of Bern
Switzerland

scg.unibe.ch

Alexandre Bergel
PLEIAD Lab

Department of Computer Science (DCC)
University of Chile

pleiad.dcc.uchile.cl

Oscar Nierstrasz
Software Composition Group

University of Bern
Switzerland

scg.unibe.ch

Abstract—During the process of developing and maintaining
a complex software system, developers pose detailed questions
about the runtime behavior of the system. Source code views
offer strictly limited insights, so developers often turn to tools
like debuggers to inspect and interact with the running system.
Unfortunately, traditional debuggers focus on the runtime stack
as the key abstraction to support debugging operations, though
the questions developers pose often have more to do with
objects and their interactions.

We propose object-centric debugging as an alternative ap-
proach to interacting with a running software system. We show
how, by focusing on objects as the key abstraction, natural
debugging operations can be defined to answer developer
questions related to runtime behavior. We present a running
prototype of an object-centric debugger, and demonstrate, with
the help of a series of examples, how object-centric debugging
offers more effective support for many typical developer tasks
than a traditional stack-oriented debugger.

I. INTRODUCTION

Debugging is formally the process of finding and reducing
the number or defects in a computer program, thus making
it behave as expected. More broadly, however, debugging is
the process of interacting with a running software system to
test and understand its current behavior. Software developers
frequently turn to debuggers to obtain insight into parts of
a running system before attempting to change it, rather than
to remove defects. Similarly, in test-driven development [1],
debuggers are frequently used as a development tool to iden-
tify those parts of the system that need to be implemented
next.

Traditional debuggers are focused on the execution stack.
The developer identifies parts of the source code of interest
and sets breakpoints accordingly. The software then runs
until a breakpoint is reached, and the developer can then
inspect and interact with the code and entities in the scope
of the breakpoint. Unfortunately this process is ill-matched
to typical development tasks. First of all, breakpoints are
set purely with respect to static abstractions, rather than to
specific objects of the running system. As a consequence,
identifying the right place to set breakpoints in the source
code requires a deep understanding of what happens during

the execution. Second, debugging operations are focused
on the execution stack, rather than on the objects. There
exists therefore a considerable conceptual gap between the
interface offered by the debugger and the questions of
interest by the developer.

Sillito et al. [2] identified 44 kinds of questions that
programmers ask themselves when they perform a change
task on a code base. A typical such question which is
particularly relevant here is: Where is this variable or data
structure being accessed? Developers take two approaches
to answer this question. The first approach is to follow the
control flow and use the step over and step into stack-
based operations. Manual step-wise execution works well
when the code space to explore is relatively small, but may
be impractical otherwise. The second approach is to place
breakpoints in all potential places where the variable might
be accessed. Again, this can work well for a small code
space, but can quickly become impractical if a variable is
potentially accessed from many methods. Some debuggers
allow the developer to insert breakpoints on accesses to
instance variables. However, when such a breakpoint is
applied to a particular class all instances of the class are
affected. If the developer needs to follow a specific object’s
instance variable access, then he needs to proceed through
breakpoint executions until the right object is found. Even
with a small number of instances this process is error prone
and not straightforward.

These approaches are inherently static since they start
from the static source code. Neither approach directly an-
swers the question Where is this variable or data structure
being accessed? for a specific object. There is consequently
a gap between the kinds of questions developers ask about
the running software system and the support offered by
traditional debuggers to answer these questions.

Object-centric debugging attempts to close the gap be-
tween developers’ questions and the debugging tool by
shifting the focus in the debugger from the execution stack to
individual objects. The essence of object-centric debugging
is to let the user perform operations directly on the objects
involved in a computation, instead of performing operations

http://scg.unibe.ch/
http://pleiad.dcc.uchile.cl/
http://scg.unibe.ch/

on the execution stack. A fundamental difference between
conventional and object-centric debugging is that the latter is
specified on an already running program. Instead of setting
breakpoints that refer to source code, one sets breakpoints
with reference to a particular object.

The contributions of the present paper are:
• A new technique called object-centric debugging which

provides a set of operations targeted to objects than to
the execution stack.

• Examples illustrating the advantages of object-centric
debugging over traditional stack-based debugging.

• A prototype implementation of an object-centric debug-
ger.
Outline: The remainder of this paper is structured as

follows: Section II explains and motivated the need for
object-centric debugging. Section III presents the object-
centric approach with its operations. In Section IV we
demonstrate how our approach solves the challenges of
object-centric debugging with various case studies. Sec-
tion V presents our infrastructure to implement object-
centric debuggers. Section VI analyzes how object-centric
debugging can be implemented in other languages. In Sec-
tion VII we discuss the state of the art of debugging.
Section VIII summarizes the paper and discusses future
work.

II. MOTIVATION

During software development and evolution, programmers
typically need answers to various questions about how the
software behaves at runtime. Although various dynamic
analysis tools exist, the programmers’ first mainstream tool
choice to explore the state of a running program is the
debugger. The classical debugger requires the programmer
to set breakpoints in the source code before debugging
is enabled, and then offers the programmer operations to
explore the execution stack. Unfortunately the debugger
is not designed to answered many of the questions that
programmers typically pose, making it difficult, if not im-
possible for the programmer to set meaningful breakpoints.

In this section we explore these questions, and establish
three challenges that a debugger should meet to better
support software evolution tasks, namely: (i) intercepting ac-
cess to object-specific runtime state; (ii) monitoring object-
specific interactions; and (iii) supporting live interaction.
These challenges lead us to propose object-centric debug-
ging to meet these challenges.

A. Questions Programmers Ask

Sillito et al. [2] identified 44 kinds of questions that
programmers ask when they perform a change task on a
code base. Several of these questions involve understanding
the program execution:

• When during the execution is this method called?
(Q.13)

• Where are instances of this class created? (Q.14)
• Where is this variable or data structure being accessed?

(Q.15)
• What are the values of the argument at runtime? (Q.19)
• What data is being modified in this code? (Q.20)
• How are these types or objects related? (Q.22)
• How can data be passed to (or accessed at) this point

in the code? (Q.28)
• What parts of this data structure are accessed in this

code? (Q.33)
Sillito et al. note: “In several sessions, the debugger was

used to help answer questions of relevancy. Participants
set breakpoints in candidate locations (without necessarily
first looking closely at the code).” In the context of a
running object-oriented system these questions express that
programmers need to deal with specific objects at runtime.

Consider, for example, questions 13 and 14. Simply by
placing a breakpoint in the method concerned (Q.13), or
in the constructor(s) of the class being instantiated (Q.14),
and running either the program or its test suite one can
quickly obtain answers to these questions and then explore
the execution stack to obtain detailed information about the
calling context.

This procedure works fine when trying to understand
the general behavior of objects. However, when introducing
polymorphism and delegation the behavior of objects of
the same class changes depending on their composition.
These cases require an object-specific analysis and simple
breakpoint are not the best option. Conditional breakpoints
are heavily used in real world application development
when programmers need to interrupt the execution of the
application when a particular expression is evaluated to
true. First the programmer needs to find the specific object
he is interested in. Then the programmer has to specify
a suitable condition to identify the specific object already
found, rather than directly interacting with it. This approach
may be feasible if there exist only few objects to analyze. If,
however, there are many instances of many classes, setting
conditional breakpoints may be tedious and error prone.

The situation is much the same with many of the other
questions.

B. Getting to the Objects

Both traditional stack-centric and object-centric debuggers
share a common operational process. Developers use de-
buggers to understand the runtime behavior of a system. In
the runtime the developer deals with objects instead of with
their static representation in the source code. Stack-centric
and object-centric debugging diverge when the developer
finds a particular object that is not behaving as expected.
In a traditional stack-centric debugger the developer leaves
the debugger and turns to the static representation of the
system to place regular or conditional breakpoints to steer
the execution around a particular object. In an object-centric

2

debugger the developer does not need to leave the debugger
but applies object-centric operations directly on the object
of interest.

In both cases we need to get to the objects that are relevant
for the debugging case. However, once the relevant ob-
jects have been detected, the steering method is completely
different. Object-centric debugging allows the developer to
continue interacting with the runtime, applying operations
directly on the objects, instead of working with the static
representation of the system.

C. Intercepting Object-specific State Access

Questions 15, 19, 20, 28 and 33 all have to do with
tracking state at runtime. Consider in particular question 15:
Where is this variable or data structure being accessed? Let
us assume that we want to know where an instance variable
of an object is being modified. This is known as keeping
track of side-effects [3]. One approach is to use step-wise
operations until we reach the modification. However, this can
be time-consuming and unreliable. Another approach is to
place breakpoints in all assignments related to the instance
variable in question. Finding all these assignments might
be troublesome depending on the size of the use case, as
witnessed by our own experience.

During the development of a reflective tool we faced
the situation that an unexpected side effect occurred. The
bytecode interpreter of the host language1 is modeled by the
class InstructionStream. This class defines an instance
variable called pc (i.e., program counter) which models
where the execution is in the instruction stream. The class
MethodContext is a subclass of ContextPart, itself a
subclass of InstructionStream. During our development,
we encountered an unexpected increase of the variable pc

in an instance of MethodContext. Tracking down the
source of this side effect is highly challenging: 31 of the
38 methods defined on InstructionStream access the
variable, comprising 12 assignments; the instance variable
is written 9 times in InstructionStream’s subclasses. In
addition, the variable pc has an accessor that is referenced
by 5 intensively-used classes. Without a deep understanding
of the interpreter, it is difficult to track down the source
of the error with simple debugging strategy. Some debug-
gers provide instance variable related breakpoints. However,
these breakpoints are not object-specific thus requiring the
introduction of conditional breakpoints to interrupt execution
only in the right context.

Questions 19, 20, 28 and 33 can also be difficult to answer
through classical debugging. The typical approach in each
case is to statically identify possible call sites that may
access or modify the data in question, insert breakpoints,
and then invoke the debugger. For complex programs (which
are the only programs that are really of interest), finding and

1http://www.pharo-project.org/

setting suitable breakpoints may be an overwhelming task,
and running the debugger may yield false positives.

D. Monitoring Object-specific Interactions

Let us reconsider question 13: When during the execution
is this method called? If the programmer is only interested
in knowing when the method is called for a specific object
(or caller), then a conditional breakpoint may be set, i.e.,
which will only cause the debugger to start if the associated
condition is met. This, however, assumes that the object
can be statically identified, since the breakpoint is set in
the source code view, not at runtime. Furthermore, if the
source code of the object in question is not accessible, the
programmer will be forced to set breakpoints at the call sites.

Question 22 poses further difficulties for the debugging
approach: How are these types or objects related? In stati-
cally typed languages this question can be partially answered
by finding all the references to a particular type in another
type. Due to polymorphism, however, this may still yield
many false positives. (An instance variable of type Object

could be potentially bound to instances of any type we are
interested in.) Only by examining the runtime behavior can
we learn precisely which types are instantiated and bound to
which variables. The debugging approach would, however,
require heavy use of conditional breakpoints (to filter out
types that are not of interest), and might again entail the
setting of breakpoints in a large number of call sites.

E. Supporting Live Interaction

Back-in-time debugging [4], [5] can potentially be used to
answer many of these questions, since it works by maintain-
ing a complete execution history of a program run. There are
two critical drawbacks, however, which limit the practical
application of back-in-time debugging. First, the approach
is inherently post mortem. One cannot debug a running
system, but only the history of completed run. Interaction
is therefore strictly limited, and extensive exploration may
require many runs to be performed. Second, the approach
entails considerable overhead both in terms of runtime
performance and in terms of memory requirements to build
and explore the history.

Although conventional debugging is more interactive, it
also requires much advance preparation in terms of exploring
the static source code to set breakpoints of potential interest.
As a consequence, also conventional debuggers fall short in
supporting live, interactive debugging.

F. Towards Object-Centric Debugging

If we reexamine the set of questions identified by Sillito
et al. that relate to running software, we can see that they
essentially cover all possible combinations of: “From where
and what is this object’s state accessed?” and “How does
this object interact with other objects?” In other words,

3

http://www.pharo-project.org/

the focus of programmers’ questions appears to be not the
execution stack but rather the objects in the running system.

We therefore hypothesize that an object-centric debugger
— i.e., a debugger that allows one to set breakpoints
on access to individual objects, to its methods and to
its state — might better support programmers in answer-
ing typical development questions. In particular an object-
centric debugger would (i) intercept object-specific state
access without needing one to set breakpoints in call sites
or state. (ii) monitor interactions with individual objects
without requiring conditional breakpoints; and (iii) support
lightweight, live interaction with a running system without
requiring breakpoints in source code.

III. OBJECT-CENTRIC DEBUGGING

A. Object-Centric Debugging in a Nutshell

Conventional debugging allows one to interrupt and in-
teract with a running program by specifying breakpoints in
the execution flow of the program. Object-centric debug-
ging, by contrast, interrupts execution when a given object
is accessed or modified. Whereas conventional debugging
requires breakpoints to be set at locations corresponding to
points in the source code, object-centric debugging intercepts
interactions that do not necessarily correspond to fixed points
in the source code.

As we saw in the previous section, of the questions that
programmers pose about software, the most problematic
ones are those dealing with how and where the state of
an object is accessed, and how an object interacts with
other objects. Object-centric debugging therefore introduces
mechanisms to intercept execution on precisely those inter-
actions.

A fundamental difference between conventional and
object-centric debugging is that the latter is specified on an
already running program. Instead of setting breakpoints that
refer to source code, one sets breakpoints with reference to
a particular object. This means that object-centric debugging
operations can only be applied to a running program which
has already been interrupted, possibly with the help of a con-
ventional breakpoint. Clearly this implies that object-centric
debugging is intended to augment conventional debugging,
not to replace it.

Let us see which object-centric debugging operations are
supported.

B. State-related operations

There are two object-centric debugging operations that
intercept accesses to object state.

Halt on write. When an instance variable of an object
is changed the execution should be halted. We can scope
this operation to any instance variable of the object or to a
particular one.

Halt on read. The execution is halted when an object’s
instance variable is used. We can scope this operation to any
instance variable or to a specific one.

C. Interaction operations

There are six object-centric debugging operations that deal
with object interactions.

Halt on call. When any of an object’s methods is called
from any other object, execution should be halted. This
operation can be applied to one or several objects and can
be scoped to apply to a single method or to several ones.

Halt on invoke. When an object invokes any method,
execution should be halted. This operation can be applied to
one or several objects and can be scoped to apply to one or
several method declarations.

Halt on creation. Execution is halted when an instance of
a certain class is created.

Halt on object in invoke. Execution is halted when an
object’s method is invoked and a particular object is present
in the invocation parameters. This operation can be applied
to all methods an object can answer or to a subset of them.

Halt on object in call. When a particular object is used as
a parameter of a method call the execution should be halted.
This operation can be applied to all called methods or to a
subset of them.

Halt on interaction. Every time two particular object
interact by invoking a method between each other the
execution is halted.

IV. EXAMPLES: ADDRESSING DEBUGGING CHALLENGES

In this section we demonstrate how object-centric de-
bugging fulfills the three key debugging challenges we
identified (Section II): (i) intercepting object-specific state
access without requiring breakpoints in call sites or on state;
(ii) monitoring interactions with individual objects with-
out requiring conditional breakpoints; and (iii) supporting
lightweight, live interaction with a running system without
requiring breakpoints in source code. We present three case
studies and compare how stack-based debuggers are used
against the advantages of using an object-centric debugger.

A. Example: Tracking object-specific side-effects

The motivating problem presented in Section II is an
example of tracking the cause and location of a side
effect. Pharo provides a bytecode interpreter modeled by
the class InstructionStream. This class defines an in-
stance variable called pc which models the current lo-
cation of execution in the instruction stream. The class
MethodContext is a subclass of ContextPart, itself a
subclass of InstructionStream. During our development,
we encountered an unexpected increase of the variable
pc hold in an instance of MethodContext. Identifying
the circumstance in which a side-effect occurs is known

4

to be difficult [6], [7]. Debuggers are often employed to
understand the cause of execution effect [2].

With a conventional debugger, it takes 18 step in op-
erations to reach the first modification of the pc instance
variable, and over 30 operations to reach the next one.
Setting breakpoints in all possible call sites that might access
pc does not offer any improvement: 31 of the 38 methods
defined on InstructionStream access the variable, com-
prising 12 assignments; the instance variable is written 9
times in InstructionStream’s subclasses. In addition, the
instance variable pc has an accessor that is referenced by 5
intensively used classes.

Object-centric debugging solves this problem trivially:
by applying the halt on write debugging operation on the
MethodContext instance, the source of the problem is
quickly identified. Since this operation can be scoped to
a specific instance variable, we can specify that execution
should halt only on a write of the pc instance variable.

InstructionStream class>>on:
InstructionStream class>>new
InstructionStream>>initialize
CompiledMethod>>initialPC
InstructionStream>>method:pc:
InstructionStream>>nextInstruction
MessageCatcher class>>new
InstructionStream>>interpretNextInstructionFor:
...

on:
new

initialize
method:pc:
nextInstruction
interpretNextInstructionFor:
...

step into,
step over,
resume

next message,
next change

stack-centric debugging

object-centric debugging

...

centered on
the InstructionStream class

centered on
the InstructionStream object

next message,
next change

Figure 1. Evolution from stack-centric to object-centric debugging.

We can observe in Figure 1 how object-centric debugging
differs from conventional debugging. In the upper part of
Figure 1 we observe a traditional stack-centric debugger
which is manipulated using step-wise operations. In the
lower part of Figure 1 we observe two different object-
centric debugging scopes for the same example. In one
case we apply the halt on call and halt on write to the
InstructionStream class object, thus we get the debug-
ger to take into account messages to the class that perform
these operations. In the other case we apply the same two
operations to an instance of the class InstructionStream
. The debugger takes into account the method calls and
the instance variables changes happening in this particular
object. The results of object-centric debugging are more
concise and directly related to the developer’s needs. With

object-centric debugging we flow through the execution and
see only the points that are relevant to us. With stack-centric
debugging we see the whole execution and we need to steer
the execution by manually introducing breakpoints.

This case study illustrates how object-centric debugging
intercepts object-specific state access without needing break-
points to be set at call sites or on state.

B. Example: Individual Object Interaction

Modifications to compilers can introduce subtle bugs
that are very hard to understand and track down. The
compilation process of Pharo Smalltalk transforms source
code to bytecode. In a first phase the source code is
parsed and transformed to an Abstract Syntax Tree (AST)
which, afterwards, is processed by the bytecode genera-
tor. It can be cumbersome and extremely complicated to
debug during the compilation process. ASTs are traversed
using the visitor pattern [8]. The tree is analyzed several
times for different purposes, like semantic analysis, closure
analysis and early optimizations. This data is used by the
BytecodeGenerator to produce the bytecode represen-
tation. At bytecode level variables are accessed through
indices. In a compiled method, variables might have different
indices depending on the context in which they are being
used. For example, a variable can have index 3 in the outer
scope of the method, but index 2 in an inner scope.

Instances of LexicalScope model the different scopes
in a particular method, mapping each variable to its index
in that scope. A common bug we have encountered when
modifying the compiler is to produce variables with the
wrong accessing index in the bytecode, thus leading to
unpredictable behavior. To debug this situation, we need
to be able to track a single AST node, intercept all the
messages it receives. This should enable us to see why the
LexicalScope instances indexed are incorrect.

Analyzing the visitor patterns in a stack-based debugger
is sometimes difficult due to the number of methods being
sent back and forth between the objects and the visitor.
Moreover, we are interested in analyzing the indexing of
a single variable. To be able to follow a single AST node
we need to place breakpoints in all potential methods in
which the node might be called, including inherited methods.
Instances of the class ASTVariableNode understand up to
523 methods, rendering this approach impractical. Moreover,
in a class-based system like Pharo Smalltalk, placing a
breakpoint in a particular method affects all instances of
ASTVariableNode. Conditional breakpoints could be used,
however, we need to manually deal with the identity of the
object and still introduce them in all the methods that may
be possibly invoked (523 methods).

Object-centric debugging offers a high-level operation
called halt on call. This operation allows method calls
on a particular object to be intercepted. Using this op-
eration we are able to follow a particular instance of

5

ASTVariableNode and detect why a LexicalScope in the
compilation process was producing an erroneous index. We
can obtain the problematic instance of ASTVariableNode
by inspecting the AST tree. In this case, the method name

was being used by a particular visitor in charge of the
indexing. The indices in an instance of LexicalScope were
wrongly calculated due to a string problem in the name of
the variable.

With this case study we show how object-centric debug-
ging can monitor interactions with individual objects without
requiring conditional breakpoints.

C. Example: Live Object Interaction

Mondrian [9] is an open and agile visualization engine.
Mondrian models visualizations as graphs, i.e., in terms of
nodes and edges modeled by classes MONode and MOEdge.
Generally, Mondrian visualizations are composed of hun-
dreds to thousands of nodes and edges. The rendering
involves a complex interaction between the various entities.
When a particular node is not being rendered correctly, it
can be very difficult to debug.

The rendering of Mondrian entities is performed by a
Shape object. Each node passes itself as a parameter to a
Shape object that specifies the rendering (double dispatch).
In the case of an abnormal rendering for a particular node,
traditional debuggers promote the insertion of a breakpoint
in the rendering method. However, the execution will be
halted each time Mondrian renders a node. This is clearly
impractical for large graphs.

Conditional breakpoints might help in this situation. To
achieve this the object being tracked somehow has to be
globally accessible. In languages like Java, C, C# and
Smalltalk, conditional breakpoints have to be defined sep-
arately and we cannot build conditions depending on a
manually selected dynamic value.

The debugger has no operations to insert at runtime
conditional breakpoints that are object specific. This means
that objects that are not active in the current state can only
be accessed with the help of globals.

Object-centric debugging offers a high-level operation
called halt on object in call. We apply this operation to
the Shape object performing the rendering and we specify
the MONode instance that we want to analyze. We obtain
the Shape object by invoking a method on the Mondrian
easel which models the plane in which nodes and edges
are rendered. We can inspect a Mondrian graph visualiza-
tion by clicking on each node and obtaining the object it
represents. In this case the abnormally-rendered node is not
being rendered with the correct size. We select that object
from the visualization and thus obtain the MONode instance.
We assume that any object constructed at runtime can be
reflectively accessed and used by object-centric debugging
operations. Every time that the node is passed as parameter
of a method call by the particular Shape object, execution

will be interrupted. No conditional breakpoints have to be
manually defined. We also avoid dealing with object identity,
and we avoid relying on the static representation of the
objects.

With this case study we show how object-centric debug-
ging can support lightweight, live interaction with a running
system without requiring breakpoints in source code.

V. IMPLEMENTATION

There were two main implementation requirements for
object-centric debugging. First, the execution of high-level
debugging operations should not break other development
tools such as code browsers and versioning tools. Second, we
need to instrument the application to insert object-specific
breakpoints at locations of interest. Because of this, we
need to rely on the meta-programming facilities of the host
language. These facilities are not always uniform and require
ad hoc code to hook in behavior. To avoid this drawback we
decided to use a framework that provides uniform meta-
programming abstractions.

The prototype of object-centric debugging is built on top
of the Bifröst reflection framework [10]. Bifröst offers fine-
grained unanticipated dynamic structural and behavioral re-
flection through meta-objects. Instead of providing reflective
capabilities as an external mechanism we integrate them
deeply into the environment. Explicit meta-objects allow us
to provide a range of reflective features and thereby evolve
both application models and the host language at run-time.
Meta-objects provide a sound basis for building different
coexisting meta-level architectures by bringing traditional
object-oriented techniques to the meta-level.

In recent years researchers have worked on the idea of
applying traditional object-oriented techniques to the meta-
level while attempting to solve various practical problems
motivated by applications [11]. These approaches, however,
offer specialized solutions arising from the perspective of
particular use cases.

The Bifröst model solves the main problems of previous
approaches while providing the main reflection require-
ments.

• Partial Reflection. Bifröst allows meta-objects to be
bound to any object in the system thus reflecting
selected parts of an application.

• Selective Reification. When and where a particular
reification should be reified is managed by the different
meta-objects.

• Unanticipated Changes. At any point in time a meta-
object may be bound to any object thus supporting
unanticipated changes.

• Meta-level Composition. Composable meta-objects pro-
vide the mean for bringing together different adapta-
tions.

• Runtime Integration. Bifröst’s reflective model lives
entirely in the language model, so there is no VM

6

modification or low level adaptation required.
From an implementation point of view, object-centric

debugging requires a mechanism for runtime method redef-
inition. Object-specific behavior can be built on top of this
mechanism.

The prototype of object-centric debugging2 and the ex-
amples presented in this paper are implemented in Pharo
Smalltalk3, an open-source Smalltalk [12] implementation.

A. Debugging Operation Definition

Each debugging operation is defined as a method in the
Object class. Due to this, these operations can be executed
on any object of the system.

In the next snippet of code we can observe the halt
on call operation definition. (Readers unfamiliar with the
syntax of Smalltalk might want to read the code exam-
ples aloud and interpret them as normal sentences: An
invocation to a method named method:with:, using two
arguments looks like: receiver method: arg1 with:

arg2. Other syntactic elements of Smalltalk are: the dot
to separate statements: statement1. statement2, and
square brackets to denote code blocks or anonymous func-
tions: [statements].)

1 haltOnCall
2 | aMetaObject |
3 aMetaObject := BehavioralMetaObject new.
4 aMetaObject
5 when: (MessageReceiveEvent new)
6 do: [self metaObject unbindFrom: self.
7 TransparentBreakpoint signal].
8 aMetaObject bindTo: self

Listing 1. Pharo Smalltalk implementation of Halt on call object-centric
operation.

In line 3 a behavioral meta-object is instantiated. In
Smalltalk objects interact by sending messages to each other.
A method invocation is therefore called a message send, and
an object’s method is called when a message is received.
Behavioral meta-objects work by perceiving the execution
of the system as a set of events like: message send, received
message, state read, state write, object creation, etc. We use
this meta-object to instrument a particular object behavior
when it receives a message. The message when:do: defines
that when a particular event is happening to an object
then we want a particular behavior to be executed. The
class MessageReceiveEvent models the event when an
object receives a message. The second argument is a block
with the instrumentation behavior. This instrumentation is
divided in two steps. First, in line 6 the instrumentation is
removed from the object by unbinding it from the meta-
object. Second, in line 7, a TransparentBreakpoint,
an exception used as a breakpoint by the Smalltalk envi-
ronment, is signaled thus triggering the debugger. In line
8 the meta-object that defines the adaptation is bound to

2http://scg.unibe.ch/research/bifrost/ocd/
3http://www.pharo-project.org/

the object that received the message haltOnNextMessage

. The instrumentation behavior in lines 4–7 will only be
executed when the object bound to the meta-object re-
ceives a message. In this case since we are not defining
any particular message name, the instrumentation will be
executed when any message is received by the adapted
object. To instrument an object for a particular message
name, the message when: anEvent in: aMessageName

do: aBlock should be used instead. There is already an
object-centric debugging operation defined in Object which
does exactly that: haltOnCall: aMessage subjectTo:

aBlock.
In the next snippet of code we can observe the halt on

write operation definition.

1 haltOnWrite
2 | aMetaObject |
3 aMetaObject := BehavioralMetaObject new.
4 aMetaObject
5 when: (StateWriteEvent new)
6 do: [self metaObject unbindFrom: self.
7 TransparentBreakpoint signal].
8 aMetaObject bindTo: self

Listing 2. Pharo Smalltalk implementation of Halt on write object-centric
operation

As we can see the definition is almost identical to
Listing 1 but with a different meta-event. The class
StateWriteEvent models the event when an object’s
instance variable is changed. This particular example in-
struments an object to trigger a halt when any instance
variable is changed. For specifying a particular instance
variable the object-centric operation haltOnWriteFor:

aVariableName of the class Object should be used in-
stead.

B. Extending Operations

Bifröst meta-objects provide facilities to manage the ex-
tension to which the adaptation should be applied. When
a particular event is triggered the instrumentation block
can reify various abstractions which will only be known at
runtime.

1 aMetaObject
2 when: (MessageReceiveEvent new)
3 do: [:receiver :selector :arguments | ...].

In line 3 we can observe that the receiver, selector
and arguments of the message received will be available
as arguments of the block. The developer can use these
arguments for evaluating conditions at runtime and define
new and more specific object-centric debugging operations.

C. User Interface Modifications

To facilitate the use of object-centric debugging features
the Pharo debugger and inspector were modified. The de-
bugger was enhanced with direct buttons for halt on call
and halt on write. We added menu items to the inspector
with direct access to the object-centric operations. From the

7

http://scg.unibe.ch/research/bifrost/ocd/
http://www.pharo-project.org/

debugger, a developer may thus inspect any object in the
current context, and from the inspector apply object-centric
operations to objects of interest.

A key requirement of our implementation is not to break
the existing toolchain. Smalltalk is a class-based language,
so code browsers show the method definitions for each class.
Object-specific modifications of the code are not well-suited
to these browsers, so object-centric debugging operations are
only available in the debugger and inspector.

D. Performance
Instrumentation always impacts the performance of the

application being modified. We have performed a micro-
benchmark to assess the maximal performance impact of our
Smalltalk prototype of object-centric debugging. We assume
that the behavior required to fulfill the profiling requirements
is constant to any instrumentation strategy.

All benchmarks were performed on an Apple MacBook
Pro, 2.8 GHz Intel Core i7 in Pharo 1.1.1 with the jitted
Cog VM.

Consider a benchmark in which a test method is being
invoked one million times from within a loop. We measure
the execution time of the benchmark with Bifröst reifying
all 106 method activations of the test method. This shows
that in the reflective case the code runs about 35 times
slower than in the non-reflective case. However, for a real-
world application with only few reifications the performance
impact is significantly lower. Bifröst’s meta-objects provide
a way of adapting selected objects thus allowing reflection
to be applied within a fine-grained scope only. This provides
a natural way of controlling the performance impact of
reflective changes.

Let us consider the Mondrian profiling problem presented
by Bergel et al. [13]. The main source of performance degra-
dation is from the execution of the method displayOn:,
i.e., whenever a node is redisplayed. We developed a bench-
mark where the user interaction is simulated to prevent
human interaction from polluting the measurements. In this
benchmark we redraw one thousand times the nodes in
the Mondrian visualization. This implies that the method
displayOn: is called extensively. The results showed that
the profiler-oriented instrumentation produces on average a
20% performance impact. The user of this Mondrian visu-
alization can hardly detect the delay in the drawing process.
Note that our implementation has not been aggressively
optimized.

Another important detail of our implementation is that
instrumentations are removed once they have interrupted
the execution. The impact on performance is consequently
temporal and local to specific objects of the application.

VI. FEASIBILITY OF OBJECT-CENTRIC DEBUGGING IN
OTHER LANGUAGES

Dynamically modifying the behavior of individual objects
is an essential ingredient for implementing an object-centric

debugger. This section revises the available approaches for
that purpose outside Pharo Smalltalk.

Iguana [14] offers selective reification making it possible
to select program elements down to individual expressions.
It also allows dynamic changes to be applied in an object-
specific manner. Iguana is developed for C++ and works by
placing annotations in the source code to define behavioral
reflective actions.

Java is a class-based object-oriented language with good
support for introspection but poor support for intercession.
However, several tools and techniques have been developed
to overcome this limitation.

Iguana/J [15], [16] is the implementation of Iguana for
Java. Iguana/J enables unanticipated changes to Java ap-
plications at run-time without requiring instrumentation or
restarting the application for the changes to be available.
Object-specific adaptation behavior is built into the VM
modifications provided by this tool.

Partial Behavioral Reflection was introduced by Tanter
et al. [17]. This model is implemented in Reflex for the
Java environment. The key advantage is that it provides a
means to selectively trigger reflection, only when specific,
predefined events of interest occur. Object-specific behavior
can be introduced at runtime with conditional instructions
in the adapted behavior.

Developers can define object-centric debugging operations
and offer them through the Java Debugging Interface (JDI).
It is then up to the IDE, i.e., Eclipse, IntelliJ IDEA or
NetBeans, to provide a user interface for object-centric
actions in the debuggers.

Aspect-Oriented Programming (AOP) [18] modularizes
cross-cutting concerns. Join points define all locations in
a program that can possibly trigger the execution of addi-
tional cross-cutting code (advice). Pointcuts define at run-
time whether an advice is executed. AOP features have
been introduced in various languages thus making object-
centric debugging feasible in these languages. Recently, new
advances in AOP, like AspectWerkz [19] and EAOP [20],
provide dynamic aspects that can be defined at runtime
for specific objects. Object-centric operations can be then
modeled by advice containing a breakpoint.

Recently, Moret et al. introduced Polymorphic Bytecode
Instrumentation (PBI) [21], a technique that allows dynamic
dispatch amongst several, possibly independent instrumen-
tations. These instrumentations are saved and indexed by a
version identifier. These versions can control the visibility
of the adaptations to specific objects. This technique is an
excellent candidate to implement OCD with low overhead
in a conventional programming language like Java.

Self [22] is a prototype-based language which follows
the concepts introduced by Lieberman [23]. In Self there
is no notion of class; each object conceptually defines its
own format, methods, and inheritance relations. Objects are
derived from other objects by cloning and modification.

8

Modifications can be applied to a specific object at runtime.
Ruby [24] introduced mixins as a building block of

reusability, called modules. Modules can be applied to
specific objects without modifying other instances of the
class adding or modifying state and methods. Object-centric
operations can be modeled as modules for modifying the
behavior of a particular method of an object introducing
breakpoints.

VII. RELATED WORK

In recent years researchers have worked on enhancing
debuggers to address the questions the developers ask them-
selves. In this section we review research related to object-
centric debugging.

Breakpoint generation: Most development environ-
ments offer convenient breakpoint facilities, however the use
of these environments usually requires considerable effort
to set useful breakpoints. Determining the location to insert
a breakpoint entails programmer knowledge and expertise.
Breakpoint generation has been proposed to reduce the effort
required to select the location to insert breakpoints [25] by
identifying the execution path commonly taken by failed
tests. This approach uses dynamic fault localization tech-
niques to identify suspicious program statements and states,
through which both conditional and unconditional break-
points are generated.

Dynamic languages: The popularity of dynamic web
content produced a number of debugging techniques for dy-
namic languages and web pages. Web page breakpoints [26]
are conditional breakpoints dedicated to the web domain.
For example, this approach proposes operations like “Break
on attribute change” and “Break on element removal”.
The authors added domain-specific breakpoints capabilities
to a general-purpose debugger for Javascript allowing the
developer to initiate the debugging process via web page
abstractions rather than lower level source code views.

Omniscient debugging: Omniscient debugging [27],
[4], [28] is also known as back-in-time debugging or re-
versible debugging. These debuggers record the whole his-
tory, or execution trace, of a debugged program. Developers
can explore the history by simulating step-by-step execution
both forward and backward. However, omniscient debugging
has scalability issues due to the large number of traces
to manage and the challenge of quickly responding to
queries on these. To overcome these issues Pothier et al. [5]
proposed a trace oriented debugger (TOD) in the context of
Java. TOD is composed of an efficient instrumentation for
event generation, a specialized database for scalable storage,
and support for partial traces to reduce trace volume. While
this approach has the benefit that no data is lost, its drawback
is that it requires extensive hardware power, which is not
available for many developers today.

Lienhard et al. [29] presented a practical approach to
back-in-time debugging using partial traces in a different

way than TOD. Information about objects that are eligible
for garbage collection is discarded. Performance is also
significantly better than in TOD because this approach
is implemented at the virtual machine level, whereas all
previously mentioned approaches are based on bytecode
instrumentation. This approach stores historical data directly
in the application memory, so does not require any additional
logging facility to gather and store data.

In query-based debugging the user defines a query in
a higher-level language that is then applied to the logged
data [30], [31], [32], [33]. Queries can test complex object
interrelationships and sequences of related events.

Some back-in-time debuggers instead of saving the exe-
cution data replay the program until a desired point in the
past. The main advantage of replay-based approaches over
logging-based approaches is their low performance over-
head. Debuggers like Bdb [34] and Igor [35] take periodic
state snapshots to optimize the time required to reach a
particular point in the past. A drawback of replay-based
approaches is that deterministic replay cannot be guaranteed
depending on the behavior of program.

Omniscient debugging looks backwards to analyze the
static history of a debugged program. Object-centric de-
bugging looks forward to analyze the relationships between
objects. Object-centric debugging avoids these scalability
issues by using a runtime object-specific operations. Object-
centric debugging can answer the same questions as Omni-
scient debugging without the scalability issues.

The Whyline is a debugging tool that allows programmers
to ask “Why did” and “Why did not” questions about their
program’s output Whyline [36] tries to aid the developer
by applying static and dynamic analyses and then answer
some of the developer’s questions. OCD brings the debug-
ging actions closer to the developer’s mental model of the
domain in terms of objects. They are therefore two different
approaches.

VIII. CONCLUSION

In this paper we have presented a new debugging ap-
proach called object-centric debugging. By focusing on
objects, natural debugging operations are defined to answer
developer questions related to runtime behavior. Object-
centric operations directly act on objects by intercepting
access to runtime state; monitoring how objects interact; and
supporting live interaction.

We demonstrated that the results of object-centric debug-
ging are more concise and directly related to the developer’s
needs. With object-centric debugging we flow through the
execution and see only the points that are relevant to us.
In contrast, with traditional stack-centric debuggers we see
the whole execution and we need to steer the execution by
manually introducing breakpoints.

Conventional debugging better handles scenarios where
the assumptions are general to all the instances of a class,

9

and closer to the source code. OCD handles situation where
the developer questions are closer to the objects which model
the domain. Once you have an assumption about an object
then you would like to follow that object and avoid dealing
with traditional breakpoint management, i.e., if in Mondrian
you have 1000 nodes and you need to follow a single one,
this is better handled by OCD.

We have presented a fully working prototype of an object-
centric debugger and shown how this debugger is used
to solve three non-trivial realistic examples. The Smalltalk
prototype implementation has shown the feasibility of this
approach. The impact on performance due to instrumentation
is not perceived by the user. Since the history of the execu-
tion is not saved both performance and memory consumption
are not as important as in omniscient debugging approach.

We have discussed how other mainstream languages can
provide object-centric debugging thus demonstrating that
this approach is not limited to a single language.

So far we have only taken a traditional debugger and
enhanced it with object-centric capabilities. Despite the new
object-centric operations, it inherently limits the users to a
stack-frame introspection. Although the debugger operates
on the inter-object interactions, the runtime is still presented
in terms of stack-frames. Our future work includes a dedi-
cated user interface for our object-centric debugger. The user
should navigate through a web of interacting objects instead
of being constrained by the stack frame presentation.

ACKNOWLEDGMENTS

We thank Stéphane Ducasse, Fabrizio Perin, Lukas Renggli and
the anonymous reviewers for their feedback on drafts of this paper.

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing Mod-
els and Code” (SNF Project No. 200020-131827, Oct. 2010 – Sept.
2012). We also thank CHOOSE, the special interest group for
Object-Oriented Systems and Environments of the Swiss Informat-
ics Society, for its financial contribution to the presentation of this
paper. This work has been partially funded by Program U-INICIA
11/06 VID 2011, grant U -INICIA 11/06, University of Chile, and
FONDECYT project 1120094.

We thank ESUG (esug.org), the European Smalltalk User
Group, for its financial support.

REFERENCES

[1] K. Beck, Test Driven Development: By Example. Addison-
Wesley Longman, 2002.

[2] J. Sillito, G. C. Murphy, and K. De Volder, “Questions pro-
grammers ask during software evolution tasks,” in Proceed-
ings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, ser. SIGSOFT ’06/FSE-
14. New York, NY, USA: ACM, 2006, pp. 23–34.

[3] K. Maruyama and M. Terada, “Debugging with reverse
watchpoint,” in Proceedings of the Third International Con-
ference on Quality Software (QSIC’03). Washington, DC,
USA: IEEE Computer Society, 2003, p. 116.

[4] B. Lewis, “Debugging backwards in time,” in Proceedings of
the Fifth International Workshop on Automated Debugging
(AADEBUG’03), Oct. 2003. [Online]. Available: http:
//arxiv.org/abs/cs/0310016v1

[5] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient
debugging,” Proceedings of the 22nd Annual SCM SIGPLAN
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’07), vol. 42, no. 10, pp.
535–552, 2007.

[6] J. P. Banning, “An efficient way to find the side effects of
procedure calls and the aliases of variables,” in Proceedings of
the 6th ACM SIGACT-SIGPLAN symposium on principles of
programming languages (POPL’79). New York, NY, USA:
ACM, 1979, pp. 29–41.

[7] J. J. Dolado, M. Harman, M. C. Otero, and L. Hu, “An
empirical investigation of the influence of a type of side
effects on program comprehension,” IEEE Transactions on
Software Engineering, vol. 29, no. 7, pp. 665–670, 2003.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, Mass.: Addison Wesley Professional, 1995.

[9] M. Meyer, T. Gı̂rba, and M. Lungu, “Mondrian: An
agile visualization framework,” in ACM Symposium on
Software Visualization (SoftVis’06). New York, NY, USA:
ACM Press, 2006, pp. 135–144. [Online]. Available:
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf

[10] J. Ressia, L. Renggli, T. Gı̂rba, and O. Nierstrasz,
“Run-time evolution through explicit meta-objects,” in
Proceedings of the 5th Workshop on Models@run.time
at the ACM/IEEE 13th International Conference
on Model Driven Engineering Languages and
Systems (MODELS 2010), Oct. 2010, pp. 37–48,
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-641/. [Online]. Available: http://scg.unibe.ch/
archive/papers/Ress10a-RuntimeEvolution.pdf

[11] J. McAffer, “Engineering the meta level,” in Proceedings of
the 1st International Conference on Metalevel Architectures
and Reflection (Reflection 96), G. Kiczales, Ed., San Fran-
cisco, USA, Apr. 1996.

[12] A. Goldberg and D. Robson, Smalltalk 80: the Language
and its Implementation. Reading, Mass.: Addison Wesley,
May 1983. [Online]. Available: http://stephane.ducasse.free.
fr/FreeBooks/BlueBook/Bluebook.pdf

[13] A. Bergel, O. Nierstrasz, L. Renggli, and J. Ressia,
“Domain-specific profiling,” in Proceedings of the 49th
International Conference on Objects, Models, Components
and Patterns (TOOLS’11), ser. LNCS, vol. 6705. Springer-
Verlag, Jun. 2011, pp. 68–82. [Online]. Available: http:
//scg.unibe.ch/archive/papers/Berg11b-Profiling.pdf

[14] B. Gowing and V. Cahill, “Meta-object protocols for C++:
The Iguana approach,” AAA, Tech. Rep., 1996.

[15] B. Redmond and V. Cahill, “Supporting unanticipated dy-
namic adaptation of application behaviour,” in Proceedings
of European Conference on Object-Oriented Programming,
vol. 2374. Springer-Verlag, 2002, pp. 205–230.

10

http://esug.org/
http://arxiv.org/abs/cs/0310016v1
http://arxiv.org/abs/cs/0310016v1
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://scg.unibe.ch/archive/papers/Ress10a-RuntimeEvolution.pdf
http://scg.unibe.ch/archive/papers/Ress10a-RuntimeEvolution.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://scg.unibe.ch/archive/papers/Berg11b-Profiling.pdf
http://scg.unibe.ch/archive/papers/Berg11b-Profiling.pdf

[16] ——, “Iguana/J: Towards a dynamic and efficient reflective
architecture for Java,” in Proceedings of European Conference
on Object-Oriented Programming, workshop on Reflection
and Meta-Level Architectures, 2000.

[17] É. Tanter, J. Noyé, D. Caromel, and P. Cointe, “Partial
behavioral reflection: Spatial and temporal selection of
reification,” in Proceedings of OOPSLA ’03, ACM
SIGPLAN Notices, nov 2003, pp. 27–46. [Online].
Available: http://www.dcc.uchile.cl/∼etanter/research/publi/
2003/tanter-oopsla03.pdf

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,”
in ECOOP’97: Proceedings of the 11th European Conference
on Object-Oriented Programming, ser. LNCS, M. Aksit and
S. Matsuoka, Eds., vol. 1241. Jyvaskyla, Finland: Springer-
Verlag, Jun. 1997, pp. 220–242.

[19] J. Bonér, “What are the key issues for commercial aop use:
how does aspectwerkz address them?” in Proceedings of
the 3rd international conference on Aspect-oriented software
development, ser. AOSD ’04. New York, NY, USA: ACM,
2004, pp. 5–6.

[20] R. Douence, O. Motelet, and M. Sudholt, “A formal defini-
tion of crosscuts,” in Proceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection 2001), ser. Lecture Notes
in Computer Science, vol. 2192. Berlin, Heidelberg, and
New York: Springer-Verlag, Sep. 2001, pp. 170–186.

[21] P. Moret, W. Binder, and E. Tanter, “Polymorphic bytecode
instrumentation,” in Proceedings of the tenth international
conference on Aspect-oriented software development, ser.
AOSD ’11. New York, NY, USA: ACM, 2011, pp. 129–
140.

[22] D. Ungar and R. B. Smith, “Self: The power of simplicity,” in
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, vol. 22,
Dec. 1987, pp. 227–242.

[23] H. Lieberman, “Using prototypical objects to implement
shared behavior in object oriented systems,” in
Proceedings OOPSLA ’86, ACM SIGPLAN Notices,
vol. 21, Nov. 1986, pp. 214–223. [Online]. Available:
http://web.media.mit.edu/∼lieber/Lieberary/OOP/Delegation/
Delegation.htmlhttp://reference.kfupm.edu.sa/content/u/s/
using prototypical objects to implement 76339.pdf

[24] Y. Matsumoto, Ruby in a Nutshell. O’Reilly, 2001.

[25] C. Zhang, D. Yan, J. Zhao, Y. Chen, and S. Yang, “Bpgen:
an automated breakpoint generator for debugging,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 271–274.

[26] J. J. Barton and J. Odvarko, “Dynamic and graphical web
page breakpoints,” in Proceedings of the 19th international
conference on World wide web, ser. WWW ’10. New York,
NY, USA: ACM, 2010, pp. 81–90.

[27] H. Lieberman, “Reversible object-oriented interpreters,” in
Proceedings ECOOP ’87, ser. LNCS, J. Bézivin, J.-M. Hullot,
P. Cointe, and H. Lieberman, Eds., vol. 276. Paris, France:
Springer-Verlag, Jun. 1987, pp. 11–19.

[28] C. Hofer, M. Denker, and S. Ducasse, “Design
and implementation of a backward-in-time debugger,”
in Proceedings of NODE’06, ser. Lecture Notes in
Informatics, vol. P-88. Gesellschaft für Informatik
(GI), Sep. 2006, pp. 17–32. [Online]. Available:
http://scg.unibe.ch/archive/papers/Hofe06aUnstuckNode.pdf

[29] A. Lienhard, T. Gı̂rba, and O. Nierstrasz, “Practical
object-oriented back-in-time debugging,” in Proceedings
of the 22nd European Conference on Object-Oriented
Programming (ECOOP’08), ser. LNCS, vol. 5142.
Springer, 2008, pp. 592–615, ECOOP distinguished paper
award. [Online]. Available: http://scg.unibe.ch/archive/papers/
Lien08bBackInTimeDebugging.pdf

[30] M. Martin, B. Livshits, and M. S. Lam, “Finding applica-
tion errors and security flaws using pql: a program query
language,” in Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05). New
York, NY, USA: ACM Press, 2005, pp. 363–385.

[31] R. Lencevicius, U. Hölzle, and A. K. Singh, “Query-based
debugging of object-oriented programs,” in Proceedings of
the 12th ACM SIGPLAN conference on Object-oriented pro-
gramming (OOPSLA’97). New York, NY, USA: ACM, 1997,
pp. 304–317.

[32] A. Potanin, J. Noble, and R. Biddle, “Snapshot query-based
debugging,” in Proceedings of the 2004 Australian Software
Engineering Conference (ASWEC’04). Washington, DC,
USA: IEEE Computer Society, 2004, p. 251.

[33] S. Ducasse, T. Gı̂rba, and R. Wuyts, “Object-oriented
legacy system trace-based logic testing,” in Proceedings of
10th European Conference on Software Maintenance and
Reengineering (CSMR’06). IEEE Computer Society Press,
2006, pp. 35–44. [Online]. Available: http://scg.unibe.ch/
archive/papers/Duca06aTestLogtestingCSMR.pdf

[34] S. I. Feldman and C. B. Brown, “Igor: a system for program
debugging via reversible execution,” in Proceedings of the
1988 ACM SIGPLAN and SIGOPS workshop on Parallel and
distributed debugging (PADD’88). New York, NY, USA:
ACM, 1988, pp. 112–123.

[35] B. Boothe, “Efficient algorithms for bidirectional debug-
ging,” in Proceedings of the ACM SIGPLAN 2000 confer-
ence on Programming language design and implementation
(PLDI’00). New York, NY, USA: ACM, 2000, pp. 299–310.

[36] A. J. Ko and B. A. Myers, “Designing the whyline: a debug-
ging interface for asking questions about program behavior,”
in Proceedings of the 2004 conference on Human factors in
computing systems. ACM Press, 2004, pp. 151–158.

11

http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://scg.unibe.ch/archive/papers/Hofe06aUnstuckNode.pdf
http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://scg.unibe.ch/archive/papers/Lien08bBackInTimeDebugging.pdf
http://scg.unibe.ch/archive/papers/Duca06aTestLogtestingCSMR.pdf
http://scg.unibe.ch/archive/papers/Duca06aTestLogtestingCSMR.pdf

	Introduction
	Motivation
	Questions Programmers Ask
	Getting to the Objects
	Intercepting Object-specific State Access
	Monitoring Object-specific Interactions
	Supporting Live Interaction
	Towards Object-Centric Debugging

	Object-Centric Debugging
	Object-Centric Debugging in a Nutshell
	State-related operations
	Interaction operations

	Examples: addressing debugging challenges
	Example: Tracking object-specific side-effects
	Example: Individual Object Interaction
	Example: Live Object Interaction

	Implementation
	Debugging Operation Definition
	Extending Operations
	User Interface Modifications
	Performance

	Feasibility of Object-centric Debugging in other languages
	Related Work
	Conclusion
	References

