
Enhancing Commit Graphs with Visual
Runtime Clues

Juan Pablo Sandoval Alcocer
Departamento de Ciencias Exactas e Ingenierı́as

Universidad Católica Boliviana San Pablo
Cochabamba, Bolivia

sandoval@ucbcba.edu.bo

Harold Camacho Jaimes
Departamento de Ciencias Exactas e Ingenierı́as

Universidad Católica Boliviana San Pablo
Cochabamba, Bolivia
hcj1@ucbcba.edu.bo

Diego Costa
Institute of Computer Science

Heidelberg University
Germany

diego.costa@informatik.uni-heidelberg.de

Alexandre Bergel
ISCLab

Department of Computer Science
University of Chile

Chile
bergel@dcc.uchile.cl

Fabian Beck
University of Duisburg-Essen

Germany
fabian.beck@paluno.uni-due.de

Abstract—Monitoring software performance evolution is a
daunting and challenging task. This paper proposes a lightweight
visualization technique that contrasts source code variation with
the memory consumption and execution time of a particular
benchmark. The visualization fully integrates with the commit
graph as common in many software repository managers. We
illustrate the usefulness of our approach with two application ex-
amples. We expect our technique to be beneficial for practitioners
who wish to easily review the impact of source code commits on
software performance.

Index Terms—Software Evolution, Software Visualization

I. INTRODUCTION

Changes in the source code of a software may have a
significant impact in the overall performance of a program [1],
[2]. Most of the current repository hosting services, including
GitHub and GitLab, offer rich exploration tools to compare
different software versions. However, this comparison is mostly
performed on the source code, thus, discarding non-functional
properties, such as software performance (e.g., time and
memory).

This paper proposes a lightweight visualization technique,
called Spark Circle, to compare two software commits along
three metrics: the number of modified methods, a benchmark
execution time, and the amount of allocated objects. We employ
Spark Circle to visually represent static and dynamic properties
of a software across multiple versions. A Spark Circle is
obtained after automatically analyzing the source code and
running benchmarks on two consecutive software revisions. Our
technique is (i) paradigm/language-independent and (ii) easily
embeddable within a visual graph of source code commits, as
our preliminary application examples illustrate.

Our technique is meant to provide visual support that
summarizes differences between consecutive source code
revisions in terms of added, removed, and modified methods
as well as number of created objects and CPU consumption.

height

color

border color

Fig. 1. Illustrating example of Spark Circle

The paper makes the following contributions: (i) it describes
Spark Circle, a new lightweight visualization technique to
highlight variations in software metrics, and (ii) illustrates its
applicability embedded commit graphs.

Several techniques have been already proposed to monitor
the variation of dynamic properties across multiple software
versions [3]–[8]. However, none of the existing work proposes
a glyph that is easily embeddable within a commit graph of
software changes, such as the one offered by popular versioning
client systems.

The paper is outlined as follows: Section II describes the
Spark Circle technique; Section III applies Spark Circle to
visualize static and dynamic properties; Section IV presents
two application examples; Section VI concludes and outlines
our future work.

II. SPARK CIRCLE

We propose a glyph to visually highlight variations of metric
values. We call this glyph Spark Circle; as the name suggests, it
is inspired by a sparkline chart. Tufte [9] introduced sparklines
as “data-intense, design-simple, word-sized graphics”.



Fig. 2. Spark circles with different number of metrics

Spark Circle is a small bar chart drawn in a circular fashion,
visually representing metrics through ring sectors. Each ring
sector has a unique color. For instance, consider the example
in Figure 1, it is a Spark Circle with four ring sectors. Each
sector has two additional properties: height and border color;
where the height is used as main encoding and the border to
highlight additional related information. To illustrate this point,
Figure 2 displays four spark circles with one, two, three and
four ring sectors respectively. Since spark circles are designed
to be small, it is necessary to consider that a large number of
ring sectors may affect the readability.

III. RUNTIME VISUAL CLUES

We use Spark Circle to highlight variations between consecu-
tive commits in a commit graph visualization. In particular, we
focus on three metrics: number of changed methods, variation
of the number of allocated objects, and execution time variation.

Consider that the commit graph visualizes n commits, where
C = {c1, . . . , cn} is a set of commits.

Number of Changed Methods. Let be mai, mdi, mmi be the
number of added, deleted, and modified methods in version
ci, which are computed regarding a previous commit ci−1

(1 < i ≤ n). Let mci be the number of changed methods in
version ci, defined as:

mci = mai + mdi + mmi (1)

We map these metrics to a spark circle bar as follows:
• Color – Pink.
• Border Color – If mci > 0, the bar has a dark pink

border, and if mci = 0, it has a light pink border.
• Height – We categorize the number of changed methods

in six categories and assign a static height to each one of
these. Figure 3 illustrates each one of these categories.

mci = 0 2 < mci <= 5 5 < mci <= 10 10 < mci <= 15 15 < mci 0 < mci <= 2

Fig. 3. Number of changed methods (mci in commit ci)

We prefer the discrete categorization instead of using a linear
scale. Due to the small size of a spark circle, it is difficult to
estimate the exact number of changed methods, but for few
different sizes and categories, it should be possible. Note that
our visualization is not tied to these categories; end users may
personalize those according to their needs.

Object Allocation Variation. Memory consumption may be
characterized in many different ways (e.g., collection charac-
terization [10], object clusters [11]). We use the number of

created objects as a simple metric to summarize the memory
footprint. Let oi and oi−1 be the number of allocated objects
during the benchmark execution with the software version at
commits ci and ci−1, respectively (1 < i ≤ n). We define the
object allocation variation in a commit ci as:

∆(oi−1, oi) =
oi − oi−1

oi−1
(2)

We map this metric to a spark circle bar as follows:
• Color – Orange.
• Border Color – If ∆(oi−1, oi) > 0, the bar has a dark

orange border, and if ∆(oi−1, oi) ≤ 0, it has a light orange
border.

• Height – The height is proportional to the absolute value
of the object allocation variation abs(∆(oi−1, oi)).

…

…

…… … … … …

0 0.4 10.2-0.2-0.4-1 …

…

Fig. 4. Object allocation variation (∆(oi−1, oi) in commit ci)

Figure 4 illustrates how the height is related to object
allocation variation. The figure illustrates, from left to right,
a range from -100% (the new commit reduces the number
of create objects by 100%) to ≥ 100% (the new commit
doubles, at least, the number of created objects). The spark
circle bars have a maximum height, which is assigned if
abs(∆(oi−1, oi)) ≥ 1.

Execution Time Variation. Let ti and ti−1 be the average
execution time of the benchmark execution with the software
version at commit ci and ci−1, respectively (1 < i ≤ n). We
define an execution time variation in the commit ci as follows:

∆(ti−1, ti) =
ti − ti−1

ti−1
(3)

We map this metric to a spark circle as follows:
• Color – Blue.
• Border Color – If ∆(ti−1, ti) > 0, the bar has a dark blue

border, and if ∆(ti−1, ti) ≤ 0 it has a light blue border.
• Height – The height is proportional to the absolute value

of the execution time variation abs(∆(ti−1, ti)).

…

…

…… … … … …

0 0.4 10.2-0.2-0.4-1 …

…

Fig. 5. Execution time variation (∆(ti−1, ti) in commit ci)

Figure 5 illustrates how the height is related to execution
time variation. The figure illustrates, from left to right, a range
of variations of execution time from −100% (the new commit
reduces the benchmark execution time by 100%) to ≥ 100%
(the new commit doubles, at least, the execution time of the
benchmark). Similar to the previous metric, to control the bar
height boundaries, if the abs(∆(ti−1, ti)) ≥ 1, the height is
maximal.

2



IV. APPLICATION EXAMPLES

We developed an initial prototype to analyze the evolution of
two open source projects: XMLSupport and Roassal. Roassal
is a visualization engine [12], [13] and XMLSupport is a
XML parser, both are written in the Pharo programming
language [14].

Data Collection. We developed a script to collect the source
code and runtime metrics automatically.

• Number of Changed Methods. We use static analysis to
automatically compare two consecutive commits ci and
ci−1. We use the method signature to detect if a method
was added, deleted, or modified. A method is added if it
exists at ci but not at ci−1; a method is deleted if it exists
at ci−1 but not at ci; a method is modified if a method
with the same signature exists in both ci and ci−1 but
their source code is different.

• Execution Time. We used benchmarks produced by the
developers of Roassal and XMLSupport. To measure
steady-state performance we first execute a warm up
session where we run the benchmark twice; then, we run
the benchmarks 25 times while measuring the execution
time. As a result, we get 25 time measurements and
average them to compare the execution times.

• Object Allocations. We use instrumentation to count how
many objects are created during the benchmark execution.
Since the instrumentation may affect the benchmark
execution time, we measure this metric on a separate
run, apart from the execution time measurements.

XMLSupport. Figure 6 renders 13 commit versions in the
XMLSupport main branch. Commits tagged with letters A, B,
and D suffer performance regressions while having a small
number of changes only. Due to the size of the blue bar, we
conclude that the regression is relatively small. Figure 6 also
shows that the commit tagged with C reduces the number
of allocated objects, by 66.5%. The pink bar in this commit
reveals also that a few changes were done.

Roassal. Figure 7 renders commits done in Roassal. Glyphs
tagged with A, B, D, and E show that these commits introduce
a small performance regression in the project. Pink bars give
an overview of how many method changes were done in such
versions. Figure 7 shows two branches. Commits tagged with
A and C merge left branches with the main branch (the one on
the right side). In case of commits that merge two branches,
the execution time and object variations is computed using the
previous version of the main branch. For instance, the glyph at
A shows that the program is slower regarding commit B, and
the glyph at C shows that the execution time of the program
remains similar to commit D. Note that commit D introduces
a performance regression, which remains in commit C.

V. RELATED WORK

A diverse body of research work focuses on helping devel-
opers understand the evolution of source code through the use

A
B

C

D

Newer versions

Older versions

Fig. 6. XMLSupport commit graph visualization. Commits are sorted
chronologically, where the newest commit is at the top, and the oldest one at
the bottom

A
B

C
D
E

Newer versions

Older versions

Fig. 7. Roassal commit graph visualization. Commits are sorted chrono-
logically, where the newest commit is at the top, and the oldest one at the
bottom

3



of visualizations [15]–[18]. Uquillas et al. [16] combines text-
based diff information with structural visual representations into
a dashboard, that enables developers to explore and understand
the changes in their source code. Wilde and German [15]
make use of Merge-Trees to enhance the capabilities of
conventional graphs on tracking source code changes, and
ChronoTwigger [17] focuses on visualizing the co-evolution
of test and source code. In such studies, the visualization
is focused on structural aspects of code changes, while our
approach focuses on performance metrics and source code
variation.

Studies have also attempted to bridge the gap between
workflows in software development and performance analysis.
Beck et al. [19] propose the embeddings of run-time metrics
in the source code, and Cito et al. [20] build upon this concept
by developing an approach that provides live performance
feedback from production systems. In both studies, the em-
bedded run-time metrics can be used (during development)
to highlight potential performance issues at code level. Our
approach focuses on visualizing performance metrics across
multiple versions and can be combined with above mentioned
approaches to increase performance awareness of developers.

Our closest related works are studies that combine the
visualization of software evolution with tracking of performance
attributes.

Sandoval et al. [5] introduce the performance evolution
blueprint, a visualization that contrasts source code changes
with performance and call context trees. Similarly, Bezemer et
al. [4] propose the use of flame graphs to compare performance
and call context trees of two software versions. In the same
direction, Sandoval et al. [21] an interactive visualization to
compare multiple performance variations caused along a set of
software versions. It shows the evolution of source code and
performance metrics at different level of granularity based on
a matrix layout. Tarner et al. [3] discuss various visualization
approaches to compare runtime statistics on different executions,
including scenarios with source code changes. While also
tackling the problem of visualizing software evolution, our
work proposes a visualization better coupled with clients of
popular versioning systems.

VI. CONCLUSION

The Git version-control system plays an essential role in
the way software are nowadays built and most of git clients
offer a representation of commit graphs. In this work, we
propose to enrich commit graphs with a small, focused, and
expressive glyphs indicating relevant performance and source
code metrics. In particular, memory consumption, execution
time, and source code changes. We present two examples to
illustrate the usability of our visual glyph.

We believe that the metrics we used and their visual mapping
are useful to spot versions with performance anomalies.
However, the design may change depending on the objective
of the analysis. There is a large range of metrics that can
be encoded as spark circles. For instance, focusing on code
quality rather than performance, developers could use our

glyphs to visualize changes, code size, complexity, coupling,
and cohesion metrics as part of the commit graph.

As a future work, we plan to evaluate the impact of
Spark Circle on software development. We plan to conduct
a controlled experiment (measuring the causality between
the presence of spark circles and the efficiency of some
maintenance tasks) and a field study (measuring the impact
on software engineering in an organization and physical
environment).

ACKNOWLEDGMENT

We are deeply grateful to Lam Research and SEMANTICS
S.R.L. for their continued support. This work has been partly
funded by Deutsche Forschungsgemeinschaft (DFG, research
grant 288909335) and Baden-Württemberg Stiftung (project
“Visual Reporting of Performance and Resilience Flaws in
Software Systems”). We also thank Schloss Dagstuhl and GI for
sponsoring the GI-Dagstuhl seminar on “Visualizing Systems
and Software Performance (July 2018); the seminar influenced
this work and collaboration.

REFERENCES

[1] J. P. Sandoval Alcocer and A. Bergel, “Tracking down performance
variation against source code evolution,” in Proceedings of the 11th
Symposium on Dynamic Languages. ACM, 2015, pp. 129–139.

[2] A. Bergel, R. Robbes, and W. Binder, “Visualizing dynamic metrics
with profiling blueprints,” in Objects, Models, Components, Patterns, ser.
Lecture Notes in Computer Science, J. Vitek, Ed., vol. 6141. Springer
Berlin / Heidelberg, 2010, pp. 291–309.

[3] H. Tarner, V. Frick, M. Pinzger, and F. Beck, “Exploring visual
comparison of multivariate runtime statistics,” in Proceedings of the
9th Symposium on Software Performance, 2018.

[4] C. P. Bezemer, J. Pouwelse, and B. Gregg, “Understanding software
performance regressions using differential flame graphs,” in Proceedings
of the 22nd International Conference on Software Analysis, Evolution,
and Reengineering. IEEE, 2015, pp. 535–539.

[5] J. P. Sandoval Alcocer, A. Bergel, S. Ducasse, and M. Denker, “Per-
formance Evolution Blueprint: Understanding the impact of software
evolution on performance,” in In Proceedings of the First IEEE Working
Conference on Software Visualization. IEEE, 2013, pp. 1–9.

[6] J. P. Sandoval Alcocer, A. Bergel, and M. T. Valente, “Learning from
source code history to identify performance failures,” in Proceedings
of the 7th ACM/SPEC on International Conference on Performance
Engineering. ACM, 2016, pp. 37–48.

[7] X. Zhuang, S. Kim, M. i. Serrano, and J.-D. Choi, “PerfDiff: a framework
for performance difference analysis in a virtual machine environment,”
in Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. ACM, 2008, pp. 4–13.

[8] A. Bergel, F. B. nados, R. Robbes, and W. Binder, “Execution profiling
blueprints,” Software: Practice and Experience, vol. 42, no. 9, pp.
1165–1192, 2012. [Online]. Available: http://dx.doi.org/10.1002/spe.1120

[9] E. Tufte, Beautiful Evidence. Graphics Press, 2006.
[10] S. M. Alexandre Bergel, Alejandro Infante and J. P. S. Alcocer, “Reducing

resource consumption of expandable collections: The pharo case,” Science
of Computer Programming, vol. 161, pp. 34–56, 2018, advances in
Dynamic Languages.

[11] A. Infante and A. Bergel, “Object equivalence: Revisiting object equality
profiling (an experience report),” in Proceedings of the 13th ACM
SIGPLAN International Symposium on on Dynamic Languages, ser. DLS
2017. New York, NY, USA: ACM, 2017, pp. 27–38.

[12] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval, “Agile
visualization with Roassal,” in Deep Into Pharo. Square Bracket
Associates, 2013, pp. 209–239.

[13] A. Bergel, Agile Visualization. LULU Press, 2016. [Online]. Available:
http://AgileVisualization.com

[14] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep Into
Pharo. Square Bracket Associates, 2013. [Online]. Available:
http://books.pharo.org/deep-into-pharo/

4



[15] E. Wilde and D. German, “Merge-Tree: Visualizing the integration of
commits into Linux,” in Proceedings of the 4th Working Conference on
Software Visualization. IEEE, 2016, pp. 1–10.

[16] V. U. Gómez, S. Ducasse, and T. D’Hondt, “Visually characterizing
source code changes,” Science of Computer Programming, vol. 98, pp.
376–393, 2015, Special Issue on Advances in Dynamic Languages.

[17] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani,
“Chrono-Twigger: A visual analytics tool for understanding source and
test co-evolution,” in Proceedings of the 2th IEEE Working Conference
on Software Visualization. IEEE, 2014, pp. 117–126.

[18] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind, “System evolution
tracking through execution trace analysis,” in 13th International Workshop
on Program Comprehension, May 2005, pp. 237–246.

[19] F. Beck, O. Moseler, S. Diehl, and G. D. Rey, “In situ understanding of
performance bottlenecks through visually augmented code,” in Proceed-
ings of the 21st International Conference on Program Comprehension.
IEEE, 2013, pp. 63–72.

[20] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall,
“PerformanceHat: Augmenting source code with runtime performance
traces in the IDE,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. ACM, 2018, pp.
41–44.

[21] J. P. Sandoval Alcocer, A. Bergel, , and F. Beck, “Performance Evolution
Matrix: Visualizing performance variations along software versions,” in
7th IEEE Working Conference on Software Visualization. IEEE, 2019.

5


