
Fuzz Testing in Behavior-Based Robotics

Rodrigo Delgado1, Miguel Campusano2, Alexandre Bergel1

1ISCLab, Department of Computer Science (DCC), University of Chile
2SDU UAS, MMMI, University of Southern Denmark

Abstract— The behavior of a robot is typically expressed as a
set of source code files written using a programming language.
As for any software engineering activity, programming robotic
behaviors is a complex and error-prone task. This paper pro-
pose a methodology that aims to reduce the cost of producing a
reliable software describing a robotic behavior by automatically
testing it.

We employ a fuzz testing technique to stress software compo-
nents with randomly generated data. By applying fuzz testing to
a complex robotic-software, we identified errors related to the
coding, the way data is handled, the logic of the robotic behavior,
and the initialization of architectural components. Furthermore,
a panel of experts acquainted with the analyzed behavior have
highlighted the relevance and the significance of our findings.
Our fuzzer operates on the SMACH and ROS frameworks and
it is available under the MIT public open source license.

I. INTRODUCTION

The behavior of a robot is usually modeled and expressed
in software. A software for a robot, as any software artifact, is
prone to errors and bugs. The software engineering community
has produced many techniques to test and discover potential
problems in an early software development phase. One
popular technique is fuzz testing, which consists in loading
a program with random data with the hope of identifying a
software failure [1]. Fuzzing complements classical testing
techniques by allowing one to discover bugs and errors
that would be hard to find using ad-hoc generated input,
as frequently happens in a laboratory setting. As far as we
are aware, fuzzing for software testing has been superficially
considered by the robotic community despite its property to
identify software bugs and security issues.

This work describes and empirically evaluates a fuzz testing
technique designed to identify bugs in a robotic behavior.
Our experiment resulted in identifying critical bugs in a robot
competing at the RoboCup. The severity of the bugs and
the usefulness of our approach is empirically validated by a
panel of experts.
Contributions. This paper proposes a methodology to test a
state machine-based software describing the behavior of a
robot, testing each state in isolation. Our fuzzer operates with
the SMACH framework and is available to the community to
replicate our results and apply our technique in this location
https://github.com/rdelgadov/fuzz testing.
Note that our fuzzer is distributed under the MIT License,
making it business-friendly and available for academic
purposes.
Hypothesis and research questions. The hypothesis this
paper is based upon is that fuzzing can automatically identify
non-trivial bugs in robotic software behaviors. We refer to

“non-trivial bugs” as bugs that occur in situations that are
not contemplated by a laboratory and controlled setting. To
verify this hypothesis, we formulate the following research
questions:

RQ1: What are the characteristics of the errors identified
by fuzz testing? This question seeks to identify what type
of errors and categories of bugs fuzzing in a software-based
robotic behavior can be identified.

RQ2: Can fuzz testing detect representative and realistic
problems in robotic behaviors? This question relates to the
potential of fuzzing to identify bugs in the field vs in a
laboratory setting.

RQ3: Can fuzz testing find hard-to-spot errors? This
question relates to the complexity of identifying bugs and
errors. We rely on the perception of experts to qualify on the
complexity of the identification.

II. RELATED WORK

The interdisciplinary nature of our paper’s approach shares
various complimentary topics with a number of related works,
such as mixing robotic behavior, software development and
fuzz testing.

Fuzz testing. Fuzz testing is a technique originally designed
to detect vulnerabilities in software systems. The techniques
associated with fuzz testing are numerous. For example,
the fuzzing can be guided by a grammar [2], [3], [4] or
mutation [5], [6] to generate complex structured data.

Fuzz testing mixes random with automated data generation
to produce a wide range of plausible values to test the
software source code with. It has been shown that different
fuzz techniques can find different types of bugs in the same
software system [7]. There are some fuzzers that use finite
state machines to model the software and apply fuzz tests
to the model [8], [9]. This suggests that fuzz testing can be
beneficial to a particular context, such as using state machines
to define robotic behavior.

Testing robot behavior. Robot unit testing [10] is a close
approximation to the classical unit testing in software en-
gineering applied to robotics. Robot unit testing considers
simulators as a valid and sufficiently accurate tools to test
a robot software. Unit testing automatizes the monitoring
of some well defined scenarios. Our approach is therefore
complementary to robot unit testing since fuzz testing explores
a space of possible scenarios instead of restricting the testing
phase to a set of fixed and well determined scenarios.

Laval et al. propose a multi-layered testing methodol-
ogy [11], in which the safety of the human operators plays

a central role. The methodology they propose relies on the
definition of repeatable, reusable, and semi-automated tests.
A robot is then tested on a wide range of different aspects,
ranging from hardware actuators to software and the robot
behavior. Similarly to robot unit testing, Laval et al. heavily
rely on well defined scenarios the robot has to execute. Our
approach takes a different, yet complementary stance by not
being tied to any fixed and inevitably biased scenarios.
Fuzzing and robotic. Our effort is not the first attempt at using
fuzz testing for robotic development. The ros1 fuzzer1

operates on ROS topics to simulate the data of sensors. Our
fuzzer operates on userdata, and as such, can test an individual
state. Furthermore, our fuzzer uses a grammar, which signif-
icantly increases the capability of entering into conditional
branches, and therefore identifying more vulnerabilities. Also,
RvFuzzer [12] uses a model-based fuzzer to find valid inputs
that generate errors in command-driven robots. However,
RvFuzzer works at the outermost layer of the software by
testing commands that execute a complete behavior and does
not perform tests between components of the behavior.

III. STATE MACHINES AND SMACH
SMACH is a task-level programming architecture to

develop robotic behaviors2 [13]. SMACH is written in
Python and is designed to operate with ROS [14]. SMACH
implements hierarchical state machines in which a state can
be a state machine.
State. The central component in SMACH is the state defi-
nition. A state is modeled as an object with 3 parameters:
outcomes, input keys, and output keys. The outcomes are
string characters that represent a possible outcome transition
from the state used to make connection between states. The
input and output keys are the keys available to read and write
data passed through the states. The input and output keys are
passed through an object called userdata.

A state execution is expressed by evaluating its associated
execute function, which must return a string character
representing the outcome of the state. This outcome must
be linked to another state when the state machine is built,
this represents a transition. Returning a non-defined outcome
leads to an error.
State machine. Each state represents an atomic behavior.
A group of states can be contained in a structure called
state machine. As such, a combination of states represents a
composed and therefore complex behavior. In SMACH, state
machines are hierarchical, which means that a state machine
may include other state machines in addition to individual
states.
Userdata. To pass data through a state transition, SMACH
uses the notion of userdata, which is essentially a thread-safe
dictionary, mapping keys to values. Userdata instances are
passed through the states when a transition is triggered.
Internal and external inputs. We call internal inputs to
data passed through the state as userdata. We call external

1https://github.com/aliasrobotics/ros1 fuzzer
2http://wiki.ros.org/smach

inputs data obtained externally from the source code, e.g.,
sensors. As an example, a state that searches for a person in a
room first identifies the person and then delivers the position
information to the following states. The position given to the
following states is an internal input. The image to calculate
where the person is and the actual position of a robot are
external inputs.

IV. FUZZ TESTING IN ROBOTICS

Fuzz testing is a software engineering technique designed
to test a software application using automatic data generation
provided as inputs. This section illustrates fuzz testing for a
robotic behavior and details some properties of it.

A. Illustrating example

Consider the following simplified example inspired by our
experiment. Assume the following execute function of a
SMACH state that simply checks for a provided confirmation:

def execute(userdata):
text = userdata.confirmation text
if 'yes' in text:

return ”yes”
elif 'no' in text:

return ”no”
return ”aborted”

The function takes as argument an userdata ob-
ject, provided by another calling state (e.g., a voice-to-
text state). The object userdata contains a variable
confirmation text, which contains a string character
representing the confirmation text. The state, and therefore
the execute function, has three possible outcomes: "yes",
"no" or "aborted".

Presence of an error. The execute function given above
has an error. The equality of string characters must be
performed using == and not with the operator in. We have
the expression ’yes’ in ’yes’ that evaluates to True,
which therefore complies with the intention of the execute
function. However, the expression ’yes’ in ’eyes’ also
evaluates to True since the word ’eyes’ contains all the
letters of ’yes’. As such, saying “eyes” would be interpreted
as a positive confirmation message, which is obviously wrong
and constitutes an error.

Fuzz testing to the rescue. The error, which consists in using
== instead of in can be easily identified with a simple value
generation. Consider the function:

def fuzz(init=2,fin=3):
size=random.randrange(init,fin)
alphabet = 'yesno'
return ''.join(random.choice(alphabet) for i in range(size))

The function fuzz generates a word of 2 or 3 letters long
picked from the basket ’yesno’. Providing such generated
words as input of the state and monitoring the outcome of
the state can easily uncover the code error. For example, the
word ’noe’ or ’eno’ would be interpreted as a ’no’.
This example illustrates the principle of fuzz testing, which
is elaborated in the next subsection.

B. Our Fuzzer

We built a fuzzer that operates on SMACH state machines.
Our fuzzer is based on a grammar [2] and generates random
values as input keys of state machines. Thanks to the
hierarchical nested state machines, our fuzzer is able to
operate at the level of an individual state (fine-grained and
white-box testing) or a whole state machine (coarse-grained
and black-box testing). Relying on a grammar to generate
random input is essential to ensure a coherent structure in
the provided inputs.
White-box testing. Our fuzzer randomly generates userdata
and provides it to a particular state, possibly part of a larger
state machine. In this operation mode, the fuzzer is stressing
the behavior of one single state, thus we qualify this mode as
white box testing by searching for issues in the internal logic
(as opposed to the machine interface as we will see later).

To be able to generate appropriate userdata, it is crucial
to restrict the space of the values accepted by a state. For
example, assume a state expects an integer value as input. If
our fuzzer provides a string character to that state, a type error
will be inevitably produced. Since Python is a dynamically-
typed language (as JavaScript and contrary to Java and C++),
it is not possible to determine whether a variable accepts
a string or a number by solely looking at the source code
definition3. However, our fuzzer needs this crucial piece of
information to generate random values of the appropriate type.
Without such information, our fuzzer will identify trivial and
non-relevant type errors instead of valuable bugs and errors
in the robotic behavior logic.

To address this obstacle, we have designed a state-
monitoring technique to determine the type of values expected
by a state. The technique consists in monitoring values
provided by a calling state to the called state. When values
are provided to a state during a seed execution, the userdata
structure is simply logged for offline analysis. We qualify
as a seed the executions exercised on a robot that involves
the state in which one wishes to obtain type information of
the userdata. Such a seed execution is meant to represent a
representative execution, which typically happens within a
laboratory setting.

After one or more seed executions, types are inferred from
the logs. Luckily, values commonly used in SMACH to pass
through userdata are most of the times numbers or string
characters. Complex data structure such as object instances
are rarely employed, which greatly simplifies both the type
inference and the value generation.

White-box testing is able to identify bugs and faults that are
contained within one single state. As such, it is convenient to
use white-box testing in critical and hub states in a possible
large web of inter-connected states.
Black-box testing. Typically, a robot interacts with an envi-
ronment in which noise in sensor reading and unexpected
perturbations are unfortunately way too frequent. In the black-
box testing mode, our fuzzer stresses the behavior of a whole

3We do not consider the optional type information supported by Python as
a reliable source of information due to its scarce use in robotic engineering.

state machine, instead of focusing on internal and individual
states. As such, black-box testing operates at a coarse grain
(by considering a whole state machine) while white-box
testing operates at a fine grain (by considering individual
states).

Concretely, black-box testing generates values representing
external values that are provided by the robot. Random values
are generated and provided to a SMACH state machine,
simulating a tunneling of external values. Black-box testing
is adapted to simulate changes on robot data with values that
may be interpreted as inadequate or wrong.

V. EXPERIMENTS

Our hypothesis is that fuzz testing can identify erroneous
and complex robotic behaviors. To verify this, three questions
are stated in Section I, covering the nature of the identified
problems (RQ1), the difficulty of finding these issues (RQ2),
and the severity of the bug of robot behavior (RQ3). This
section describes the experimental design and the methodol-
ogy we used to answer the research questions and verify our
hypothesis.

A. Experimental context

The UChile Peppers team, from the University of Chile,
uses a Pepper-based robot from SoftBank Robotics to support
human-robot interaction in domestic environments4.

As for most robots developed in a University, large parts
of the software source code is written by under- and post-
graduate students during the development of their thesis. As
such, it is crucial to rigorously and extensively test the robotic
behavior to remain competitive. Note that the authors of this
paper are not involved in the development of the robot nor
part of the UChile Peppers team.

We wish to maximize the feedback from the participants
in our experiment. We restrict our evaluation to white-box
testing only to have a better description of the encountered
errors.

B. Methodology

We have designed a methodology to answer our three
research questions, as presented in Figure 1. This subsection
details each step of it.

S1: behavior
selection

S2: input
description

S3: run the
fuzzer

S4: result
analysis

S5: error
selection

S6:
classification

S7: specific
valueS8: reporting

Fig. 1: Steps of methodology to test a behavior

S1: behavior selection. A robot, such as the one implemented
by the UChile Peppers team is complex and offers a wide
range of different specific behaviors. The first step of our
methodology involves the identification of the set of specific
behaviors to be tested. It is important to identify such specific

4https://uchile-robotics.github.io/bender-index.html

behaviors and clearly determine the expected outputs. As such,
it is important that the specific behaviors are deterministic
and may be re-executed at will.
S2: input description. Accepted input values must be ade-
quately described and characterized in order to apply fuzz
testing to a state or a state machine. This involves identifying
(i) the names of the inputs, (ii) the type of the data used
by the state code (using the state-monitoring technique), and
(iii) whether it is external or internal to adequately tune the
value generation by our fuzzer. The output of that step is a
clear and unambiguous description of the input. The fuzzer
is also correctly tuned to produce inputs properly structured
by designing a grammar.

In case the fuzzer produces some values of a wrong type
or inadequately defined (e.g., providing positive numbers
while only negative numbers are expected), additional seed
executions may be run or the grammar may be refined.
S3: run the fuzzer. The third step consists in executing the
fuzzer on each state of the state machine involved in the
selected robot behavior to be tested. To execute a state, input
values must be generated using the grammar and the type
information described above.

The more a state is tested (i.e., executed with generated
input values), the probability to identify faults and anomalies
increases. A state execution represents an incremental unit of
exploring the space of plausible input values, thus increasing
the likelihood to trigger an anomaly.

The number of executions of each state is specified by one
of the hyperparameters associated to the fuzzing process. In
our actual setting, we execute each state 100 times. As we
will discuss later on, this arbitrary value produced satisfactory
results, but this number can be increased in presence of solid
computational resources (e.g., a cluster of CPU or multiple
and identical instances of the robot).

The output of this step S3 is a set of logs of each state
execution that contains (i) the input values, (ii) state outcomes,
(iii) errors if any, (iv) state execution time, and (v) stack trace
if an error occurred.
S4: result analysis. After executing the states, logs are care-
fully and semi-automatically reviewed to identify anomalies
in the behavior execution. From our experience, anomalies
are best identified by using two different approaches: (i)
looking for errors and stack traces, and (ii) comparing the
fuzzer outputs with executions that are known to be correct
(as obtained in a laboratory and controlled setting).
S5: error selection. Many possible software anomalies may
have been identified from the previous step. As such, the
practitioner needs to filter false positives from relevant
software errors. Furthermore, duplication of errors must be
filtered out: different input values may lead to the same
error. The associated stack traces are likely to be sufficient
at identifying whether the error is the same or not.
S6: classification. When a situation is encountered, be it an
error or an expected behavior, it is crucial to determine the
cause of, as it is most likely caused by either incorrect inputs
or an error in the state behavior.

S7: specific value. If an error is caused by incorrect inputs,
the grammar used by the fuzzer has to be refined, thus making
the process jump to Step S2. Consider the case where a state
expects a string as input value, but only two different strings
are accepted, ’yes’ and ’no’ as in our previous example.
Providing any other strings may lead to an abnormal behavior.
In this particular case, the grammar needs to restrict the string
generation under these constraints.

As software defining a robotic behavior grows over time,
it frequently happens that a developer has little knowledge
about what she needs to operate with. This step allows you to
test a state without knowing its inner workings. A practitioner
can iterate by refining the grammar until relevant software
anomalies are spotted. Note that in case of providing different
types of input values that allow a seemingly successful
execution, the behavior of the state may have a vulnerability
or simply not use the provided input.

S8: report. At this stage, we, as external agents of the
development team, are confident that the filtered errors
designate situations that must be reported to the robotic
development team.

For each identified error, we asked the following questions
to a panel of experts:

• Q1 – Do you think this situation is a software problem?
• Q2 – Do you have a connection with the situation?
• Q3 – Do you think you could have found the situation

on your own?
• Q4 – Have you seen this situation before?
• Q5 – How difficult do you think it is to find the situation?

Answers ranges from 1 (easy) to 5 (hard)
• Q6 – Is it important for RoboCup competition? Answers

range from 1 (not important) to 5 (very important)
This questionnaire collects opinions about our findings in

an unbiased fashion. Each panel member was individually
questioned and not in a group to not influence other members.
Our questionnaire does not mention the word “error” to not
bias the participant in taking our findings as an actual error.
Instead, we use the generic term “situation”, which is more
neutral on the kind of problems reflected by our findings.

Each participant received and evaluated three situations
per errors. We indicated to the participants the exact location
of an error in the source code, the input values our fuzzer
generated, and the outcomes from the state execution. We
also encourage the participant to reproduce the error.

We voluntarily kept a low number of evaluations to avoid
fatigue from our participants, which would inevitably affect
the quality of their opinion. The following section presents
our results.

VI. RESULTS AND DISCUSSION

We applied our methodology on a robotic behavior provided
by the UChile Peppers team. The robotic software we tested is
composed of 124 different states, defining 6 different specific
robotic behaviors. In total, our fuzzer operated on 24 different
internal inputs using a dedicated grammar and 9 external
inputs with different options.

Part.
ID

Exp.
[years]

Position Area Errors

P1 4 Und. CS E3, E4, E5
P2 1 Und. EE E1, E2, E6
P3 5 Und. ME E2, E3, E5
P4 3 Und. EE E1, E2, E4
P5 4 Und. EE E2, E3, E6
P6 5 PhD/Prof. CS E1, E3, E4
P7 6 Prof. EE / CS E2, E5, E6

TABLE I: Participant information (Und. = undergraduate
student, Prof. = professional, CS = Computer Science, EE =
Electrical Engineering, ME = Mechanical Engineering)

In total, we identified 6 software errors that we believe
are anomalies in the robotic behavior. We presented these 6
errors to the 7 members of the UChile Peppers team.

Each error was reviewed by at least 3 different participants
to give us a chance to contrast different perceptions of the
same error. Table I summarizes the distribution of the different
errors to each participant. To ease the post mortem analysis
of the interviews, each session was recorded.

A. Error characterization

We formulated our first research question as follows:
RQ1: What are the characteristics of the errors identified

by fuzz testing?
The 6 errors we identified either (i) prevented the state

to complete its execution or (ii) emitted errors and warning
using the SMACH or ROS logging facility. We classify these
6 errors into four categories: syntax error, data handling
error, logic error, and architecture configuration error. We
adopted the three first categories from Zhao et al. [15] to
classify bug fixes.

Syntax error. We designate as a syntax error a sequence of
characters that cannot be interpreted by the Python interpreter.
Syntax errors happen to be frequently produced by non-
experts since (i) programming environments for Python do a
poor job at notifying practitioners about the presence of such
errors, (ii) robot programmers usually do not have training
in software engineering. A syntax error will occur when the
interpreter is trying to execute the first instruction contained
in the file with an error. Consider the following code snippet:

action mapping = {”left”:”I am going left” ”right”:”I am going right”}

This code contains a syntax error because a comma is
missing between the string "I am going left" and
"right". Our fuzzer identified one syntax error, which was
not detected during the development and the test made in
laboratory because it was fixed on the robot itself.

Data handling error. By being dynamically typed, Python
does not offer a safety net to prevent elementary incorrect
data. Furthermore, it frequently happens that collections
of heterogeneous elements are provided, e.g., if the tuple
(’move left’, 15) is provided to a state, then that state
needs to assume that the first element of that tuple is a string
and the second is an integer. If not done, the code will likely
suffer from a data handling error.

Data handling error occurs when data are not properly
handled by a state. In such a case, the error could either
be in the calling state (i.e., data passed to another state is
incorrectly defined), or in the called state (i.e., data provided
as input is correct but incorrectly handled). Consider the
following code snippet:

a list = userdata.list objects
position = (a list[0],a list[1])
return position

In a previous version of the code, the variable
userdata.list objects was containing the two co-
ordinates of a position in a two-dimensional space. After
a new version of the code was produced, the variable now
provides a label indicating a physical position (e.g., ’Door’)
instead of coordinates. It will return a tuple of chars (e.g.,
("D","o")) and will produce an error on the following
states.

We also qualify as a data handling error situations
where a declared parameter is not accessible (e.g., by
using the remapping ability of SMACH), or if some
non-existent data are being accessed (e.g., a list =
userdata.non existing field). We found 3 errors
where data was not well defined or the state tries to access
non-existing data.

Data handling errors may be complex to find and debug
because they usually require a solid knowledge about the state
producing the data, the data itself, and the state consuming
the data. Furthermore, the producer and the consumer of
data can be distant. This may happen in the case that a state
simply forwards the received data. In such a case, our fuzzer
is therefore valuable at identifying such an error.

Logic error. An incorrect conditional statement or loop
control may lead to a logic error. During the execution, a
logic error may be expressed by executing a wrong branch
in a condition (e.g., the else branch is executed instead of
the then branch). Consider the following code:

text confirmation='Yes'
if userdata.text confirmation=='yes':

return 'yes'
elif userdata.text confirmation=='no':

return 'no'
return 'aborted'

This code contains a logic error because the variable
text confirmation points to the capitalized string
’Yes’, while the first condition is expressed with lowercase
’yes’. As a result, the branch return ’aborted’ will
be considered while obviously the first one should be
considered.

From our experience with the software provided by the
UChile Peppers team, logic errors are usually difficult to
catch and identify. One reason for this difficulty is the fact
that a logical error is usually not expressed by an application
crash. Instead, in our experiment, a logical error is expressed
by an unexpected behavior of the robot. In the example given
above, orally saying “yes” to the robot was transcribed as
’Yes’ instead of ’yes’ by the voice-to-text module. Thus

Error Q1 Q2 Q3 Q4 Q5 Q6
E1 3/3 0/3 2/3 3/3 2.7 5
E2 5/5 2/5 5/5 3/5 3 4.8
E3 3/4 3/4 3/4 3/4 2.75 4.5
E4 2/3 1/3 3/3 3/3 1.7 4
E5 3/3 3/3 3/3 3/3 2.3 4.7
E6 3/3 1/3 1/3 2/3 2.3 4.5

TABLE II: Result of our experiment. Questions are listed in
Section V-B. In X/Y, X = number of “yes” and Y = total
number of answers. Average score is given for Q5 and Q6.

leading to an unexpected behavior. Identifying logical errors
involves a close comparison of the fuzzer output with a
correct execution performed in a controlled setting. During
our experiment, we found one case of a logical error.
Architecture configuration error. To perform a sophisticated
behavior, a robot will typically involve various independently
designed components. When initiating or resetting a robot
behavior, a long sequence of component initializations must
be performed. We experienced an unexpected behavior in
the way the main state machine of the robot is initialized.
By providing a particular list of robot features to activate,
an extraordinary large amount of logs were produced by
both SMACH and ROS. After the initialization, the robot
did not seem to have any anomalies. After discussing with
a core developer of the UChile Peppers team, it seems that
some components associated to a particular robot features are
initialized more than once in some non-obvious circumstance.
As a result, significantly more logs were generated, however,
no apparent dysfunctions were experienced. We experienced
only one instance of this architecture configuration error.
Answering RQ1. In our experiment, we found four kinds of
errors: syntax errors, data handling error, logical errors, and
architecture configuration error. It is likely that other kinds of
errors may be found, for example involving an incorrect use
of an API, or an incorrect interaction with a sensor driver.
However, in our experimental setting, we have not seen such
a case.

B. Realistic error

We aim to identify realistic errors and anomalies in software
modeling robotic behaviors. We surveyed a panel of experts to
assess the practical values of the software errors we identified.
Collecting opinions and feedback about our findings is
essential to assess how close our technique meets practitioners
expectation. We formulated our second research questions as:

RQ2: Can fuzz testing detect representative and realistic
problems in robotic behaviors?

Answers of the questions defined in Section V-B are listed
in Table II. The situations we presented to the participants
are largely identified as a software problem (Q1). The errors
we identified were known to the participants, but they were
not fixed (Q4). The reported errors are perceived as important
or very important (Q6).

Being able to build repeatable unit test cases using the
values provided by our fuzzer is perceived as very valuable
by the participants. For example, E2 is a data handling error

that occurred when an undeclared variable was used in an
if-else clause. Participant P3 knew of the error E2 since she
already encountered it during RoboCup 2018. The error was
fixed for the competition, but the fix was never incorporated
in the software. As such, we found the error that already
appeared before the competition.
Answering RQ2. We therefore answer to RQ2 by stating that
our fuzz technique was able to identify representative and
realistic problems for the robotic behavior defined by the
UChile Peppers team.

C. Hard-to-spot errors
Intuitively, an error that is easy to spot is likely easy to fix.

Oppositely, an error that is well hidden in the internal software
is likely to be damaging in the long run since people may
build on top of it. Assessing the difficulty for practitioners
to identify the errors is therefore important. We formulated
our third research question as follows:

RQ3: Can fuzz testing find hard-to-spot errors?
We found that although participants do not have a connec-

tion to the presented errors (Q2), however, they think they
could have found the errors (Q3) without too much effort
(Q5). Interestingly, these errors were not investigated or even
reported before our experiment.

We found out that the expertise of a practitioner directly
contributes to the ability of identifying errors. A practitioner
with high expertise in Python and the employed frameworks
will likely perceive syntax errors as easy to find, and our
experiment confirmed it. An experienced practitioner may
also be familiar with debugging and memory inspecting tools,
which is apparently key to identifying and addressing data
handling errors. However, the logic errors seem to be the
most complicated kinds of errors to identify and address.
Although we do not pretend to generalize our case, some of
the participants indicated that the logic error we identified
was hard to spot.
Answering RQ3. Overall, we answer to RQ3 by stating
that our fuzzer identified errors that are perceived as mildly
difficult to be found, therefore not considered as hard-to-spot
despite being latent for possibly a long time and not being
reported by the team.

VII. CONCLUSION AND FUTURE WORK

Our overall effort indicates that software artifacts developed
by the robotic community could benefit from state-of-the-art
techniques produced by the software engineering community.

We have produced a fuzzer, available to the SMACH and
ROS community. Our experiment indicates clear benefits
for the robotic behavior we have analyzed. Currently, one
significant threat to the validity of our work is that we only
have conclusive results for one single robot. As future work,
we plan to replicate our results with different robots and
robotic behaviors.

ACKNOWLEDGMENTS

The work presented in this paper was partially funded
by Fondecyt Regular 1200067, Lam Research, and by the
Innovation Fund Denmark project HealthDrone.

REFERENCES

[1] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
Fuzzing Book,” in The Fuzzing Book, Saarland University, 2019.
Retrieved 2019-09-09 16:42:54+02:00.

[2] D. Yang, Y. Zhang, and Q. Liu, “BlendFuzz: A Model-Based Frame-
work for Fuzz Testing Programs with Grammatical Inputs,” in 2012
IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications, pp. 1070–1076, 2012.

[3] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 724–735, IEEE, 2019.

[4] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator: a grammar-
based open source fuzzer,” in Proceedings of the 9th ACM SIGSOFT
international workshop on automating TEST case design, selection,
and evaluation, pp. 45–48, 2018.

[5] Z. Zhang, Q. Wen, and W. Tang, “An Efficient Mutation-Based Fuzz
Testing Approach for Detecting Flaws of Network Protocol,” in 2012
International Conference on Computer Science and Service System,
pp. 814–817, 2012.

[6] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-
box mutational fuzzing,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pp. 511–522,
2013.

[7] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 2123–2138, 2018.

[8] M.-H. Wang, H.-C. Wang, Y.-R. Chen, and C.-L. Lei, “Automatic Test
Pattern Generator for Fuzzing Based on Finite State Machine,” Security
and Communication Networks, vol. 2017, pp. 1–11, 11 2017.

[9] B. Cui, S. Liang, S. Chen, B. Zhao, and X. Liang, “A Novel Fuzzing
Method for Zigbee Based on Finite State Machine,” International
Journal of Distributed Sensor Networks, vol. 2014, pp. 1–12, 01 2014.

[10] A. Bihlmaier and H. Wörn, “Robot Unit Testing,” in Simulation,
Modeling, and Programming for Autonomous Robots (D. Brugali,
J. F. Broenink, T. Kroeger, and B. A. MacDonald, eds.), (Cham),
pp. 255–266, Springer International Publishing, 2014.

[11] J. Laval, L. Fabresse, and N. Bouraqadi, “A methodology for testing
mobile autonomous robots,” in 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 1842–1847, IEEE, 2013.

[12] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “RVFuzzer: Finding Input Validation Bugs in
Robotic Vehicles through Control-Guided Testing,” in 28th USENIX
Security Symposium (USENIX Security 19), (Santa Clara, CA), pp. 425–
442, USENIX Association, Aug. 2019.

[13] J. Bohren and S. Cousins, “The SMACH high-level executive,” Robotics
& Automation Magazine, IEEE, vol. 17, pp. 18 – 20, 01 2011.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

[15] Y. Zhao, H. Leung, Y. Yang, Y. Zhou, and B. Xu, “Towards an
understanding of change types in bug fixing code,” Information and
software technology, vol. 86, pp. 37–53, 2017.

