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ABSTRACT
Given historical versions of an RDF graph, we propose and compare

several methods to predict whether or not the results of a SPARQL

query will change for the next version. Unsurprisingly, we find

that the best results for this task are achievable by considering

the full history of results for the query over previous versions of

the graph. However, given a previously unseen query, producing

historical results requires costly offline maintenance of previous

versions of the data, and costly online computation of the query

results over these previous versions. This prompts us to explore

more lightweight alternatives that rely on features computed from

the query and statistical summaries of historical versions of the

graph. We evaluate the quality of the predictions produced over

weekly snapshots of Wikidata and daily snapshots of DBpedia. Our

results provide insights into the trade-offs for predicting SPARQL

query dynamics, where we find that a detailed history of changes

for a query’s results enables much more accurate predictions, but

has higher overhead versus more lightweight alternatives.
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• Information systems → Temporal data; Resource Descrip-
tion Framework (RDF); Query languages.
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1 INTRODUCTION
Recent years have seen increased interest in querying graphs, par-

ticularly in the context of NoSQL systems, Linked Data, Knowledge

Graphs, etc. A prominent data model for graphs is the Resource

Description Framework (RDF), whose standard query language is

SPARQL. Hundreds of RDF datasets have been published on the

Web following the Linked Data principles. These datasets often

provide a SPARQL service (known as an endpoint) that clients can
query over the Web [2]. The most prominent of these datasets –
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including the likes of DBpedia [19] and Wikidata [42] – provide

public access to structured descriptions of millions of entities and

their relations. SPARQL endpoints over such datasets can receive

in the order of millions of queries per day from the Web [21, 35].

SPARQL endpoints can suffer from timeouts and intermittent

availability [2]. An established way to improve the performance

of databases and Web-based systems is to apply server-side and/or

client-side caching to reuse some of the work done for previous

requests and/or to keep frequently accessed (partial) results in-

memory [16, 18, 22, 30, 45]. However, datasets are subject to change

over time [14], which may render cached data stale. When deciding

what results to cache, it is important to consider how long the

results will stay valid. On the server-side, caching dynamic results

that will soon become stale can be a waste of resources. On the

client-side, refreshing cached results by resending queries to the

server is necessary to avoid stale data, but frequent refresh queries

can put an unnecessary load on the endpoint’s server [5, 15, 16, 29].
1

Though works have studied the dynamics of various aspects of RDF

graphs and of Linked Data [6, 11, 14, 29], we see that more work is

needed on predicting the dynamics of SPARQL query results.

Contributions: In previous work [25], we proposed a machine

learningmethod to predict whether or not a SPARQL query’s results

will change in the next version of a dynamic RDF graph based on

features computed from (1) the query itself, (2) statistics of the

dynamicity of the query’s predicates, and (3) query results over

historical versions. In experiments over Wikidata, we found that

features based on historical results provided by far themost accurate

predictions. However, such features require evaluating previously-

unseen queries over multiple versions at runtime, incurring too

high an overhead for many use-cases (e.g., for caching, whose goal

is to reduce runtime overhead). In this paper, we propose novel

features based on estimates of the degree of change, i.e., the ratio of

results that change between versions. These estimates are extracted

from high-level statistics and do not require historical query results.

We compare the predictions made by the feature sets with respect

to two real-world benchmarks that evaluate queries over 17 weekly

versions ofWikidata [42] and 18 daily versions of DBpedia Live [24].

Hypothesis: We hypothesise that the methods we propose follow

a trade-off for predictions, as illustrated in Figure 1, where more

accurate predictions imply greater overheads. On the left-hand

side, we have query features, which require no knowledge of the

data, and thus involve the least overhead, but provide less accurate

predictions as a result. Next we have features about the dynamics

of predicates used in the query, which require high-level statis-

tics about how the triples involving a particular predicate change.

1
An alternative is to apply a push-based model, where the server notifies clients of
changes [17, 31], but this becomes untenable when dealing with thousands or millions

of clients. Knuth et al. [17] discuss further limitations of this approach.
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Figure 1: Hypothesised trade-off for predicting the dynam-
ics of the results of unseen queries

Thereafter, the degree-of-change measures require more detailed

statistics, but allow for computing more detailed meta-data regard-

ing a particular query’s sensitivity to changes in the graph. Finally,

we have knowledge of historical results, which for an unseen query,

requires evaluating the query on several historical versions, and

maintaining indexes over those versions, thus implying a much

higher overhead, but with the benefit of having much more detailed

information about how its results have changed over past versions.

Concretely, we hypothesise that the accuracy and overhead of pre-

dictions using different feature sets follows the ordering shown in

Figure 1. If this hypothesis is validated, it would imply that there is

no “one size fits all” solution to such prediction, but rather that the

choice of features on which to base the prediction depends on the

priorities of efficiency vs. accuracy in the context of the use-case.

Paper structure: Section 2 gives preliminaries for RDF/SPARQL.

Section 3 then provides a formal statement of the problem we ad-

dress. Section 4 discusses related works. Section 5 describes our pro-

posed approach for predicting query dynamics. Section 6 presents

the design and results of the experiments. We conclude and review

limitations and future directions in Section 7.

2 PRELIMINARIES
We begin by defining preliminaries related to RDF and SPARQL.

RDF is a graph-based data model recommended for use on the

Web. RDF is based on three pairwise-disjoint sets of RDF terms: IRIs
I, literals L, and blank nodes B. An RDF triple (s,p,o) ∈ (I ∪ B) ×
(I) × (I ∪ B ∪ L) is composed of a subject, a predicate, and an object.
An RDF graph is a set of RDF triples.

SPARQL is the query language recommended for use with RDF.

In this work, we focus on SELECT queries using core features from

SPARQL 1.0, namely basic graph patterns, unions, optionals, pro-

jection and distinct. Further query features can be supported as an

extension of our proposed method, left for future work.

Queries introduce a fourth set of terms: variables from the set V
that are disjoint with IRIs, literals and blank nodes. A triple pattern
t ∈ (I∪B∪L∪V)×(I∪V)×(I∪L∪B∪V) is then an RDF triple that

allows variables in any position. A basic graph pattern is a set of

triple patterns. For simplicity, we assume that blank nodes in triple

patterns are rewritten to fresh variables that are projected away.

We currently do not support blank nodes in the solutions of a query,

but they could be handled in future by skolemising them in the

input graph, or by canonically labelling them in the solutions [13].

A SPARQL query pattern is built recursively as follows:

(1) A basic graph pattern B is a query pattern.

(2) If Q1 and Q2 are query patterns, then Q1 AND Q2, Q1 UNION
Q2, and Q1 OPTIONAL Q2, are query patterns.

(3) Finally, if Q is a query pattern, V a list of variables and

∆ a boolean value, SELECT∆VQ is a SPARQL SELECT query,

whereV denotes the projected variables, and ∆ the DISTINCT
option that when true, removes duplicate results.

The semantics of a SPARQL SELECT query Q is defined in terms

of its evaluation over an RDF graphG , denotedQ(G), which returns

a bag (if DISTINCT is omitted) or a set (if DISTINCT is included) of

solution mappings. We assume here the standard definitions for the

evaluation of such queries (see, e.g., Pérez et al. [32]), where basic

graph pattern matching is homomorphism-based, AND is evaluated

as a natural join (Z), UNION as a bag union (∪), OPTIONAL as a

natural left-join ( ◃▹) and SELECT as projection (π ).

3 PROBLEM STATEMENT
We now formally state the problem that we address. We consider

a dynamic RDF graph to be an RDF graph that changes over time.

We represent a dynamic RDF graph G = (G1, . . . ,Gn ) as a tuple of

n RDF graphs, where each RDF graph denotes a discrete version.

In the prediction setting, latter versions may be future/unknown

at a given point in time; as a convention, we will use k to index

the current version in G = (G1, . . . ,Gk ,Gk+1, . . . ,Gn ) where 1 ≤

k < n ≤ ∞. Given a query and a dynamic RDF graph, the central

problem that interests us in this paper is as follows:

One-Shot-Change (OSC)
Input: a dynamic RDF graph G = (G1, . . . ,Gk );

a SPARQL query Q .
Output: true ifQ(Gk ) , Q(Gk+1) is predicted; false otherwise.

Note that by Q(G) = Q(G ′), we refer to bag equality, where order

does not matter but multiplicities are taken into account.

Example 3.1. Take the dynamic RDF graph G = (G1,G2,G3, . . .)

with three known versions of Wikidata graphs shown in Figure 2.
2

Between G1 and G2, the name of Swaziland is changed to Eswatini

and the old name is added as an alias. BetweenG2 andG3, the claim

that Luke Hall has the occupation of swimmer is changed to state

that his sport is swimming. Given a query Q such as the following,

which looks for names of swimmers and their countries:

SELECT DISTINCT ?swimmerName ?countryName {
?swimmer rdfs:label ?swimmerName .
?swimmer wdt:P106 wd:Q10843402 . # occupation swimmer
?swimmer wdt:P27 ?country . # nationality
?country rdfs:label ?countryName .

}

the goal of OSC is then to predict whether or not the results for

Q(G4) will change with respect to Q(G3). �

In terms of desiderata, the procedure for this problem should

provide accurate predictions (which we can evaluate by passing a

prefix of known versions, making predictions for held-out versions).

Rather than requiring the full dynamic RDF graphG as input, ideally

the procedure would accept d(G) and Q as input, where d(G) is

a description of the dynamic graph that is computed from G but

is (far) more concise than G. A server wishing to implement OSC
would then have less data to manage and could even publish d(G)

2
The prefixes used in this paper are as defined on http://prefix.cc

http://prefix.cc


Legend wdt:P27/nationality wdt:P31/instance of wdt:P106/occupation wdt:P641/sport

wd:Q1050/Eswatini/Swaziland wd:Q31920/swimming wd:Q2686854/Luke Hall wd:Q3624078/sovereign state wd:Q10843402/swimmer

Version G1 G2 G3

Triples

wd:Q1050 rdfs:label "Swaziland"@en .

wd:Q1050 wdt:P31 wd:Q3624078 .

wd:Q2686854 rdfs:label "Luke Hall"@en .

wd:Q2686854 wdt:P27 wd:Q1050 .

wd:Q2686854 wdt:P106 wd:Q10843402 .

wd:Q1050 rdfs:label "Eswatini"@en .

wd:Q1050 skos:altLabel "Swaziland"@en .

wd:Q1050 wdt:P31 wd:Q3624078 .

wd:Q2686854 rdfs:label "Luke Hall"@en .

wd:Q2686854 wdt:P27 wd:Q1050 .

wd:Q2686854 wdt:P106 wd:Q10843402 .

wd:Q1050 rdfs:label "Eswatini"@en .

wd:Q1050 skos:altLabel "Swaziland"@en .

wd:Q1050 wdt:P31 wd:Q3624078 .

wd:Q2686854 rdfs:label "Luke Hall"@en .

wd:Q2686854 wdt:P27 wd:Q1050 .

wd:Q2686854 wdt:P641 wd:Q31920 .

Added wd:Q1050 rdfs:label "Eswatini"@en .

wd:Q1050 skos:altLabel "Swaziland"@en .
wd:Q2686854 wdt:P641 wd:Q31920 .

Removed wd:Q1050 rdfs:label "Swaziland"@en . wd:Q2686854 wdt:P106 wd:Q10843402 .

Figure 2: Example of a dynamic RDF graph G = (G1,G2,G3, . . .) with three known versions based on Wikidata

so that clients can independently predict when results will change.

For example, d(G) might be a statistical summary of the graphs in

G and what changes between its versions.

Example 3.2. Consider the query Q from Example 3.1 and the

dynamic RDF graph G = (G1,G2,G3, . . .) from Figure 2. In order

to implement OSC, a natural strategy would be to evaluate and

compareQ(G1)withQ(G2) andQ(G2)withQ(G3). Since the results

change in both pairs of versions, we may say that it is likely they

will change again between Q(G3) and the future version Q(G4).

However, evaluatingQ(G1),Q(G2) andQ(G3) requires maintaining

the full versioning history, which may be costly. Also, if Q is a

previously unseen query, we incur the runtime cost of evaluating

Q(G1), Q(G2) and Q(G3). This approach is thus costly.

Alternatively, we may look at other clues for OSC that do not

require the costly evaluation of Q(G1), Q(G2) and Q(G3). First, we

may note that the query has four variables and two projected vari-

ables with distinct; we might expect a query with more variables

(particularly projected variables) to be more sensitive to change, a

query with distinct to be less sensitive to change, etc.; hence we pro-

pose that query features may potentially be useful for OSC. Second,
we may note that the query mentions two predicates (rdfs:label
and wdt:P106) whose triples are sometimes involved in changes

between historical versions, which may suggest that the query is

more sensitive to change; hence we propose that predicate dynam-
icity features may be useful for OSC. Finally, we may use statistical

summaries of (G1,G2,G3) to estimate and compare the cardinality

ofQ(G1∩G2) andQ(G1∪G2), as well asQ(G2∩G3) andQ(G2∪G3),

without evaluating these queries, giving us an estimate of what we

call the degree of change in the results of Q – i.e. the ratio of results

forQ that are sensitive to changes – across pairs of versions, which

we again propose may be useful for the OSC task.

Given the diversity of such clues that may influence different

aspects of OSC predictions, and the potential interactions between

them, we propose to encode these clues as features and use them

to train a binary classifier for computing the final prediction. �

Though we focus on OSC, the Time To Live (TTL) task, which
predicts the next versionm (m > k) in which the results Q(Gm )

are expected to change (if any), can be addressed by applying OSC
with gaps between versions. Given a query Q and a dynamic RDF

graph G = (G1, . . . ,Gk ), we can call OSC with G to predict a

change for Q(Gk+1); if true, we return k + 1; if false, we can use

G2 = (G1,G3, . . . ,Gk−mod(k−1,2)), returning k + 2 if OSC returns

true, or moving onto an interval of three if it returns false, and

so forth, outputting the lowest value j < k such that OSC on

G = (G1,G j+1, . . . ,Gk−mod(k−1, j)) andQ returns true, or returning

that there is no foreseeable change if no such value for j is found.3

4 RELATEDWORK
Before presenting our proposals for implementing OSC, we discuss
works on RDF/SPARQL dynamics. We also briefly discuss works in

the relational database literature regarding SQL.

RDF/Linked Data dynamics refers to how RDF graphs (on the

Web) change over time, and has been studied from numerous per-

spectives. While some works have focused on studying changes

over time within a particular RDF graph [11], others have focused

on changes across different datasets [7, 8, 14, 28, 38, 40], includ-

ing new datasets being added or removed [14, 40]. Dynamics have

been studied at the level of entities [11, 28, 40], predicates [14],

schemata [8], documents [7, 14, 38, 40] and entire datasets [14].

Many of these works have been observational in nature, trying to

capture and analyse patterns in dynamic Linked Data content [7, 8,

14, 28, 38]. Such works have also proposed models to characterise

dynamics – and ultimately predict changes – based on Poisson dis-

tributions [38], abstract schemata [8], Markov chains [41], empirical

distributions [27], machine learning models [29], formal concept

analysis [11], among other techniques.

Synchronisation refers to the problem of keeping multiple clients

up-to-date with remote changes on a server as efficiently (for both

client and server) as possible. There are two main approaches to

synchronisation. Push-based approaches are typically based on

servers notifying clients of relevant changes [10, 17, 23, 31, 37]. Such

approaches enable stronger levels of consistency, but centralise the

burden of synchronisation on the server. Conversely, in pull-based
approaches, the responsibility lies with clients to request updated

data from the server [1, 7, 15, 16]. Such approaches involve weaker

levels of consistency, but preserve the traditional style of client–

server interaction that has enabled the Web to scale.

3
More advanced reductions from TTL to OSC might consider applying binary search

to find j ; or using a voting scheme over (up to) j − 1 dynamic graphs with gaps of j ,
such as (G1,G4, . . .), (G2,G5, . . .), (G3,G6, . . .) for j = 3, etc.



SPARQL query caching reuses the results of SPARQL (sub-)queries
for subsequent requests. Numerous server-side caching techniques

for SPARQL have been proposed, based on similarity measures for

graph patterns [20, 36], the types of join used [18], generalised and

canonicalised sub-queries [30, 34, 44], etc. Rather than caching (sub-

)query results, Zhang et al. [45] cache frequently accessed triples.

Only the works of Martin et al. [22] and Williams and Weaver [43]

consider changes in the RDF graph; the former work invalidates

cached results for a query when a triple matching one of its query

patterns changes, while the latter work adds modification times to

the RDF index to quickly detect changes. On the client-side, Knuth

et al. [16] propose a service in which clients can register queries

that are scheduled for refresh according to policies such as how

long ago the last refresh took place, how long the query takes to

run, how often the results change, how many results change, etc.

Caching in relational databases has been studied under topics

such as semantic caching in client–server settings, where a client

maintains semantic descriptions of cached data that facilitates their

future reuse [3, 33]; incremental view maintenance [12], where a
materialised view, storing the results of a query, can be updated to

reflect changes in the underlying data rather than being recomput-

ing from scratch; etc. We are not, however, aware of works from

the relational literature that try to predict changes in query results.

Novelty: Weaim to predict whether or not the results of a SPARQL

query will change in the next version of a dynamic RDF graph. Pre-

vious works in this direction have been primarily based on dynamic

predicate features [4, 39] and/or historical results for the query [16].

We consider these methods, where we find that predicate features,

though more lightweight, offer poorer prediction accuracy. We thus

propose novel features based on estimating the degree of change

using cardinality estimations in order to strike a novel balance

between efficiency and accuracy. Our work complements works

on caching and synchronisation, which we see as use-cases: our

method can be used, for example, by a server to decide for which

queries to cache results, or by a client to decide when to refresh the

results for a given query by evaluating it again remotely.

5 PREDICTING OSC QUERY DYNAMICS
We now describe our approach for predicting changes in the results

of a particular query. Given a dynamic RDF graph and a query, the

general idea is to extract a set of features for the query relative to

the dynamic RDF graph that can be used for the purposes of binary

classification, predicting an answer for the OSC task.

5.1 Architecture
We present the architecture for our proposed system for predicting

OSC in Figure 3. The inputs are a queryQ and a dynamic RDF graph

G. The system then extracts a feature vector (f1, . . . , fk ). from these

inputs and feeds them into a pre-trained binary classifier to make

the OSC prediction. The query features (f1, . . . , fi ) are extracted
online from the query itself. The predicate and degree-of-change

features (fi+1, . . . , fj ) are extracted from a statistical description

d(G) of G, whose details will be described later; in practice, d(G)

can be computed and maintained offline (independently of the

query) in an incremental manner, requiring only the two most

Q
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Feature
Extractor

...

...

f1

fi
fi+1
...

...

fj

Predicate & Degree
Feature

Extractorsd(G)
Statistical
Analyser

G

fj+1
...

...

fk

Result
Feature
Extractor

Q(G)

Binary
Classifier

OSC
Prediction

Figure 3: Proposed architecture for predicting change OSC
given a query Q and dynamic RDF graph G

recent versions of G to be updated. Finally, the results features

(fj+1, . . . , fk ) require as input the full historical results ofQ for each

version of G (which we denote by Q(G)); this must be computed

online. The binary classifier is pre-trained over a given set of queries

Q for which ground truths are computed over withheld versions.

5.2 Features
We now present the details of our features. The degree-of-change

features are new to this work, while query, predicate, and results

features were also explored in our previous work [25].

Query features (Q). include statistics about the query. Formally,

given a query Q , we define that Q(Q) = (nT ,nV ,n
′
V , ®o), where nT

denotes the number of triple patterns in Q , nV denotes the number

of variables in Q , n′V denotes the number of projected variables

in Q , and ®o is a one-hot encoded vector that denotes the SPARQL

operators (OPTIONAL, UNION, etc.) used by Q . We hypothesise that

such features may be useful for predicting dynamics, where triples

with fewer triple patterns, variables, etc., will have fewer “opportu-

nities” to be affected by changes in query results. However, there

is no guarantee that query dynamics will correlate with them; for

example, additional triple patterns may constrain the results of

a query by making it more specific, and thus making its results

less likely to change. The value of query features for predicting

dynamics will need to be studied empirically.

Predicate features (P): include statistics about how frequently

and how many triples matching the predicates used in the query

change. More formally, let G1 ⊕ G2 = G1 \ G2 ∪ G2 \ G1 denote

the set of triples in one graph, but not in the other. Further let

σp=p (G) = {(x,y, z) ∈ G | p = y} denote the triples in G using the

predicate p. Now, given a dynamic RDF graph G = (G1, . . . ,Gk ),

we denote by ∆(G,p) =
∑k−1
i=1

|σp=p (Gi ⊕Gi+1) |

|σp=p (Gi∪Gi+1) |
the sum of the ra-

tios of triples for p that changed between each consecutive pair

of versions, such that the higher the value for ∆(G,p), the more

dynamic the triples associated with the predicate. Next let preds(Q)
denote the set of IRIs used as predicates in Q . Now we define

P(G,Q) =
∑
p∈preds(Q ) ∆(G,p)

|preds(Q ) |
, taking the mean value of ∆(G,p) for

all predicates in Q . Predicate features only require lightweight sta-

tistics about the dynamic RDF graph since the number of unique

predicates – even in large RDF graphs – tends to be relatively small.

However these features take into account few details of the query;

for example, a query searching for all labels and a query searching

for the label of a specific subject will not be distinguished.



Degree-of-change features (D): include statistics about the vari-
ability in the number of results returned by the query across the

historical versions. Specifically, given a query Q and an RDF graph

G, we denote by card(·, ·) a cardinality estimation function, where
card(Q,G) estimates the (bag) cardinality of |Q(G)|. Any such func-

tion can be used; we describe the one we use in Section 5.4. We

use the function card(Q,G) to estimate the dynamics of a query

by comparing the number of results for the query that depend on

data that did not change between two versions, versus the number

of results generated over the union of the two versions. Specifi-

cally, given a dynamic RDF graph G = (G1, . . . ,Gk ), we sum the

ratiosD(G,Q) =
∑k−1
i=1 1−

card(Q ,Gi∩Gi+1)
card(Q ,Gi∪Gi+1)

to estimate the degree-of-

change, i.e., the ratio of query results that are sensitive to changes

between versions.
4
When compared with query features, cardinal-

ity features take into account changes in the historical versions

of the graph. When compared with predicate features, degree-of-

change features take into account more details of the query, but

require additional statistics in order to estimate cardinalities.

Results features (R): include statistics about the historical results
for the query. These features are conceptually the simplest, where

we simply count the number of times the results for the query Q
changed between the pairs of consecutive versions of the dynamic

RDF graph. Formally, given a query Q and a dynamic RDF graph

with k known versions G = (G1, . . . ,Gk ) we define this feature as:

R(G,Q) = |{i ∈ {1, . . . ,k−1} : Q(Gi ) , Q(Gi+1)}|. Though concep-

tually the simplest, we expect that this feature will also provide the

most useful information for OSC prediction. Conversely, it incurs

the highest overhead for an unseen queryQ , requiring maintaining

all data for G1, . . . ,Gk offline and evaluating the queries used for

training over these versions, as well as evaluatingQ(G1), . . . ,Q(Gk )

online (when the query is received).

5.3 Dynamic graph description
In the case of query features, we do not require direct knowledge of

the dynamic graph. In the case of predicate and degree-of-change

features, while we require some knowledge of the dynamic graph,

we can also compute these features from a dynamic graph descrip-

tion that provides key statistics relating to a graph.

Specifically, given an RDF graphG , we define its key statistics as
a tuple s(G) = (nT ,nS ,nP ,nO )where nT = |G | denotes the number

of triples in G, nS := |{x : ∃y, z (x,y, z) ∈ G}| denotes the number

of unique subjects in G, nP := |{y : ∃x, z (x,y, z) ∈ G}| denotes

the number of unique predicates in G, while, analogously, nO :=

|{z : ∃x,y (x,y, z) ∈ G}| denotes the number of unique objects in

G. By d(G) = (s(G), {(p1, s(σp=p1 (G))), . . . , (pn, s(σp=pk (G)))}) we
denote the description of G, consisting of the key statistics of G,
and the key statistics for the partitions of G by predicate, where

preds(G) = {p1, . . . ,pk }.
5
For brevity, we will write nT [p], nS [p]

and nO [p] to denote the values for nT , nS and nO in s(σp=p (G)),
i.e., the number of unique triples, subject and objects, respectively

4
While it may be simpler – and thus tempting – to rather compare card(Q ,Gi ) and
card(Q ,Gi+1), they may generate the same number of results even though the results

themselves change. This issue would arise, for example, if we were to query for the

objects of rdfs:label over Figure 2, where the number of results per version remains

precisely the same even though the results change between G1 and G2 .

5
Note that nP = 1 for any s(σp=pi (G)) with 1 ≤ i ≤ k , and is not stored.

for the sub-graph of G with predicate p; we will similarly write nT ,
nS and nO to more concisely denote the values in s(G).

We can now generalise this idea to a dynamic graph description.

Given a dynamic graph G = (G1, . . . ,Gk ), we compute 6(k − 1)

graph descriptions, or in other words two graph descriptions for

each adjacent pair of graphs Gi , Gi+1, specifically, d(Gi ∩ Gi+1),

d(Gi ⊕ Gi+1), d(Gi ∪ Gi+1). Rather than describing each individ-

ual graph, this allows us to capture and compare statistics about

the triples that stayed the same in both versions, that changed be-

tween versions, and that appeared in either version, respectively. A

dynamic graph description d(G) is then a 3-tuple of the form:

d(G) = ((d(G1 ∩G2), . . . , d(Gk−1 ∩Gk ))

(d(G1 ⊕ G2), . . . , d(Gk−1 ⊕ Gk ))

(d(G1 ∪G2), . . . , d(Gk−1 ∪Gk )))

The predicate features described earlier are then trivial to compute

from d(G). This leaves us to discuss the estimations of cardinalities

needed for the degree-of-change features.

5.4 Cardinality estimations
Any cardinality estimation function card(·, ·) can be used within

our method, where the more accurate the function is in terms of pre-

dicting the actual number of results returned byQ overG , the better
the results we would expect for predicting dynamics. An obvious

implementation is to use card(Q,G) = |Q(G)|, i.e., to evaluate the

query on the graph and count the results. However, this is akin to

using historical query results, and will be costly. We instead define

a function card(·, ·) that uses (only) our dynamic-graph description.

Specifically, given an RDF graph G, we use d(G) to estimate the

cardinality of triple patterns per standard cardinality estimations

used by relational databases (e.g., by Postgres
6
), considering each

predicate as a binary relation (Mi ). We adopt typical assumptions in

these scenarios, such as the assumption that every join is complete,

and that (subject/object) values are uniformly distributed.

Let X ,Y ,Z ∈ V and x,y, z ∈ I ∪ L. We estimate the cardinality

of a triple pattern t , based on these assumptions, as follows:

if t = (x,y, z) then card(t, d(G)) =1
if t = (X ,y, z) then card(t, d(G)) =nT [y]/nO [y]
if t = (x,Y , z) then card(t, d(G)) =1
if t = (x,y,Z ) then card(t, d(G)) =nT [y]/nS [y]
if t = (X ,Y , z) then card(t, d(G)) =nT /nO
if t = (X ,y,Z ) then card(t, d(G)) =nT [y]
if t = (x,Y ,Z ) then card(t, d(G)) =nT /nS
if t = (X ,Y ,Z ) then card(t, d(G)) =nT

The resulting cardinality is only exact for (X ,y,Z ) and (X ,Y ,Z ).
Otherwise, when both subject and object are constant, we assume

that the cardinality is 1; when one of subject or object is constant,

we assume that the cardinality is a ratio of the total number of

triples in the corresponding graph divided by the number of unique

subject/object terms in the graph (per a uniform distribution).

The distribution of subject and object values may sometimes be

far from uniform. For example, a country such as India may appear

much more often as the object of the predicate birthPlace than a

country such as Tuvalu. We thus extend s(G) in order to store the κ

6
https://www.postgresql.org/docs/current/static/planner-stats-details.html

https://www.postgresql.org/docs/current/static/planner-stats-details.html


most common subject and object values and their frequencies, both

for the full graph and its predicate partitions. Thus if we have a

pattern (x,y,Z ), where x is in the top-κ most common subjects for

the sub-graph with predicate y, we take the exact cardinality. The
estimations for non top-κ values are also adjusted accordingly to

subtract the cardinalities of the top-κ values from the calculations.

The estimations for other query operators are then layered on top

of the estimates for triple patterns in a standard way. Specifically,

for each bag of solution mappings produced at each stage, we

maintain an estimated cardinality for the entire bag, as well as

an estimated number of unique values for each variable. When

we compute the cardinality estimate for a joinM1 Z M2 between

two bags of solutionsM1 andM2 on the variable V , if we estimate

that V takes v1 unique values in M1 and v2 unique values in M2,

then we assume that V will have min{v1,v2} unique values in

M1 Z M2 based on the assumption of complete joins. Without

loss of generality, if we assume that v1 ≤ v2, then the estimated

number of unique values for (other) variables inM2 will be reduced

by a factor of
v1

v2

. Finally, the number of mappings in M1 Z M2

will be computed as
m1m2

v2

, wherem1 andm2 denote the estimated

cardinalities forM1 andM2 respectively.We follow a similar process

for estimating the cardinalities of the left-join M1 ◃▹ M2, where

we do not lower the estimates for unique values of variables in

M1. For the union M1 ∪ M2, we sum (under bag semantics) the

estimates for M1 and M2 and sum the estimates of unique values

per variable (effectively assuming all values to be distinct inM1 and

M2). For projection combined with distinct, the overall cardinality

is given by the maximum number of unique values for an individual

projected variable, with each variable maintaining its estimate.

For computing the degree-of-change features, the dynamic-graph

description d(G) contains the individual graph descriptions needed

to compute card(Q,Gi ∩ Gi+1) and card(Q,Gi ∪ Gi+1), namely

d(Gi ∩Gi+1) and d(Gi ∪Gi+1) for 1 ≤ i < k − 1.

5.5 Classification
To make the final OSC prediction for Q and G, we use a binary

classifier trained over example queries. Specifically, given a dynamic

RDF graph G = (G1, . . . ,Gk ) and a set of training queries Q, we use

a sub-sequence of versions G′ = (Gi , . . . ,G j ) (where 1 ≤ i < j < k)
in order to build a feature set for each query Q ∈ Q, and evaluate

Q(G j ) = Q(G j+1) in order to label the query. Given an unseen

query Q ′
, we can then build the feature set with respect to G (or

any sub-sequence thereof if we do not wish to use all versions), and

use the trained classifier to predict whether or not the results for

Q ′
change for the next (withheld) version of the graph.

6 EVALUATION
Recalling the hypothesised trade-off shown in Figure 1, we first

focus on the accuracy of the features for OSC precision, and then

summarise the cost of extracting different features.

6.1 Accuracy
This evaluation aims to ascertain the quality of predictions (in terms

of precision, recall and F1-score) as to whether or not the results for
a query will change in the next version considering these features.

We begin by describing the two datasets used.

Datasets. We first consider a dataset of 17 weekly “truthy” ver-

sions ofWikidata
7
, spanning from 2019/11/14 (containing 4.4 billion

triples) to 2020/03/05 (containing 4.8 billion triples). The number of

triples grew by 9.2% during the time period, where approximately 4

times more triples are added, on average, than removed. A total of

78 billion triples are present in all versions. We use 141 queries that

were sourced from the user-contributed example queries published

by the Wikidata query service. The results for 20 queries never

change, while 56 change between each pair of versions [25].

We consider a second dataset based on DBpedia Live, where we

use the changesets to build 18 daily versions, spanning from 2019-

07-01 (containing 593.6 million triples), until 2019-07-18 (containing

590.3 million triples). In this case we see more deletions than inser-

tions, and fewer changes overall, when compared with Wikidata.

This is to be expected considering that the interval between ver-

sions is 7 times shorter in the case of DBpedia. Overall, the DBpedia

versions contain 10.7 billion triples. We use the set of 10,000 queries

extracted by Knuth et al. [16] from the LSQ dataset [35], composed

of queries evaluated by the DBpedia SPARQL endpoint. We filtered

these queries to remove those that returned empty results over all

versions. However, given the origin of these queries, we noted a

very high number of very similar queries, which we assume are

due to applications using the endpoints. To avoid the results being

skewed by repetitive queries, we partitioned the queries by their

predicate set, and applied a logarithmic downsampling to reduce

the number of similar queries in each partition such that there were

fewer than 20 queries per partition. The end result was 256 queries,

where there were 416 changes in results between pairs of versions

(out of a possible 4,318 comparisons). Of the 256 queries, 54 have

at least one change: 16 queries change each time while 21 change

only once. We note fewer changes than in the case of Wikidata,

likely due to the narrower gap between versions.

We used Unix sorts and custom Java code to extract data-based

features. In order to evaluate queries for producing ground truths

and results features, we loaded the corresponding graphs into Vir-

tuoso instances. We computed the cardinality estimation using the

κ most common subjects and objects with κ = 10, κ = 100, and

κ = 1000, selecting κ = 1000 as it offers better estimations when

compared with the real cardinality of training queries.

Binary classification models. We experiment with well-known

machine learning classifiers, including Decision Trees, Naive Bayes,

Nearest Neighbours and Linear SVM. We also include a Random

Baseline for comparison. We train and compare classifiers for dif-

ferent window sizes (specifically 3, 5, 9, corresponding to 2, 4 and 8

pairs of consecutive versions). For each query we evaluate whether

or not the change in the query results can be predicted from the set

of features extracted from the query itself and from the preceding

dynamic graph. We split the data by query into 80% for training

and 20% for tests, using 5-fold cross-validation to avoid overfitting.

Results. Tables 1 and 2 present, respectively, the results for OSC
prediction on the Wikidata and DBpedia datasets. For reasons of

space, we include only F1 scores, where we refer to the accompa-

nying online material for precision and recall [26]. We compare

7
TruthyWikidata versions provide values associatedwith the best non-deprecated rank

for a given property (e.g., the most recent population), and thereafter omit qualifiers.



Table 1: F1-score for OSC on the Wikidata dataset consider-
ing different features sets and window sizes (w)

Classifier Q P D R QPD QPDR

w=3 Random Baseline 0.509 0.499 0.497 0.482 0.496 0.5

Decision Trees 0.549 0.554 0.66 0.855 0.61 0.709

Naive Bayes 0.522 0.36 0.478 0.825 0.498 0.67

Nearest Neighbours 0.547 0.532 0.691 0.837 0.537 0.83
Linear SVM 0.582 0.441 0.387 0.825 0.603 0.827

w=5 Random Baseline 0.487 0.482 0.495 0.501 0.515 0.504

Decision Trees 0.539 0.541 0.677 0.868 0.622 0.735

Naive Bayes 0.516 0.382 0.484 0.841 0.513 0.76

Nearest Neighbours 0.54 0.536 0.656 0.837 0.524 0.851
Linear SVM 0.594 0.442 0.472 0.841 0.612 0.838

w=9 Random Baseline 0.497 0.501 0.499 0.517 0.487 0.508

Decision Trees 0.544 0.568 0.634 0.876 0.631 0.699

Naive Bayes 0.53 0.464 0.498 0.859 0.528 0.781

Nearest Neighbours 0.551 0.568 0.675 0.868 0.521 0.863
Linear SVM 0.595 0.445 0.546 0.86 0.626 0.85

the results for six feature sets: query (Q), property (P), degree-of-
change (D), historical results (R), all features without historical
results (QPD) and all features (QPDR). Given that different models

perform better/worse in different settings, we highlight the best

results in bold; Decision Trees had the best overall performance

though it was outperformed by other models in multiple cases.

Comparing window sizes, we see that the best results overall are

given for larger window sizes. This can be explained by the fact

that variances of individual versions are smoothed out when longer

intervals are considered. However, it is interesting to note that

the performance improvement is not very pronounced, possibly

because more recent changes are more similar to future changes.

Comparing different feature sets, we see that statistics based on

historical query results (R) are the most important, and enable (by

far) the most accurate predictions. In fact, the predictions with only

results features are considerably better than the predictions combin-

ing all other features. Conversely, we find that query features and

predicate features provide only slightly better predictions versus

the random baseline. In the case of Wikidata, degree-of-change

features offer notably better predictions than query or predicate-

based features, especially when using the Nearest Neighbours or

Decision Trees classifier. However, the quality of predictions drops

for DBpedia, which we believe to be due to the relative sparsity

of changes in the query results of the dataset, and also the more

non-monotonic nature of changes vs. Wikidata.

6.2 Efficiency
Regarding online costs, historical results features were (by far)

the most costly to compute. For the purposes of our experiments,

we evaluated these queries sequentially over Virtuoso; each query

added a cost ofw times the query evaluation time on a single ver-

sion based on evaluating the query on w independent copies for

thew versions in the window. While queries on multiple versions

could be parallelised, this would limit the parallel execution of indi-

vidual queries. In future, RDF archiving techniques [9] could offer

Table 2: F1-score forOSC on theDBpedia dataset considering
different feature sets and window sizes (w)

Classifier Q P D R QPD QPDR

w=3 Random Baseline 0.503 0.514 0.494 0.498 0.486 0.491

Decision Trees 0.57 0.488 0.567 0.928 0.535 0.888

Naive Bayes 0.475 0.532 0.473 0.902 0.489 0.809

Nearest Neighbours 0.519 0.474 0.507 0.928 0.481 0.904

Linear SVM 0.474 0.474 0.504 0.928 0.509 0.925

w=5 Random Baseline 0.506 0.506 0.503 0.498 0.51 0.506

Decision Trees 0.571 0.494 0.583 0.938 0.581 0.895

Naive Bayes 0.475 0.51 0.525 0.936 0.536 0.858

Nearest Neighbours 0.48 0.485 0.48 0.936 0.482 0.912

Linear SVM 0.475 0.475 0.509 0.938 0.515 0.937

w=9 Random Baseline 0.491 0.508 0.522 0.499 0.493 0.5

Decision Trees 0.509 0.502 0.505 0.946 0.521 0.883

Naive Bayes 0.473 0.507 0.525 0.931 0.536 0.866

Nearest Neighbours 0.474 0.503 0.47 0.942 0.481 0.914

Linear SVM 0.475 0.475 0.516 0.94 0.516 0.94

a way to optimise for querying multiple versions of an RDF graph.

Conversely other features could be extracted near-instantaneously.

Summarising off-line costs, query features have no overhead as

they require no indexes or statistics over the data. For dynamic

predicates and degree of change, computing the graph summary (an

O(n logn) process) for Wikidata was orders of magnitude slower

than for DBpedia due to the scale (78 vs. 11 billion triples in total),

but also the fact that Wikidata required computing deltas from

complete versions, while DBpedia Live provided a single base ver-

sion and its deltas as change sets (the graph summaries can be

computed incrementally from deltas/changes). The greatest offline

costs again involved the historical results, which required indexing

the data in Virtuoso (requiring dictionary encoding and sorting

in several orders for its indexes), and for building the training set,

which required evaluating training queries over all non-withheld

versions. Note that in the case of DBpedia we materialised each

version for the purposes of evaluating the queries; again, a future

option could be to rather leverage RDF archiving techniques.

7 CONCLUSIONS
In this paper, we have proposed a method for predicting whether

or not the results of a query will change in the next version of a

dynamic RDF graph. We propose four feature sets for this task,

based on queries, predicates, degree-of-change, and historical re-

sults. For this task, we hypothesise that there exists a trade-off

between the overhead of the framework and the accuracy of predic-

tion: extracting richer data provides better features for prediction,

but at the cost of extracting them. Our experiments confirm that

features based on historical results provide by far the most accurate

predictions. However, such features incur considerable overhead

that may be unjustifiable in use-cases such as caching. In the case

of Wikidata, degree-of-change estimates provide the next best alter-

native in terms of accuracy, which corresponds to our hypothesis;

such features require a statistical summary rather than a complete

index of historical versions. However, query features and dynamic

predicates provide little improvement over a random baseline, while



degree-of-change estimates likewise show relatively poor accuracy

over the daily DBpedia dataset where fewer changes are present.

For future work, it would be of interest to explore further features

that do not rely on historical results, to investigate the possibilities

of reducing the overheads of computing historical results using

RDF archiving techniques, and also to explore TTL predictions.

We refer to the online material for the datasets and queries used,

along with additional results [26].
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