
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 1

CAT: Cellular Automata on Tensor cores
Cristóbal A. Navarro, Felipe A. Quezada, Enzo Meneses, Héctor Ferrada, Nancy Hitschfeld

Abstract—Cellular automata (CA) are simulation models that
can produce complex emergent behaviors from simple local rules.
Although state-of-the-art GPU solutions are already fast due to
their data-parallel nature, their performance can rapidly degrade
in CA with a large neighborhood radius. With the inclusion
of tensor cores across the entire GPU ecosystem, interest has
grown in finding ways to leverage these fast units outside the
field of artificial intelligence, which was their original purpose.
In this work, we present CAT, a GPU tensor core approach that
can accelerate CA in which the cell transition function acts on
a weighted summation of its neighborhood. CAT is evaluated
theoretically, using an extended PRAM cost model, as well as
empirically using the Larger Than Life (LTL) family of CA as
case studies. The results confirm that the cost model is accurate,
showing that CAT exhibits constant time throughout the entire
radius range 1 ≤ r ≤ 16, and its theoretical speedups agree
with the empirical results. At low radius r = 1, 2, CAT is
competitive and is only surpassed by the fastest state-of-the-
art GPU solution. Starting from r = 3, CAT progressively
outperforms all other approaches, reaching speedups of up to
101× over a GPU baseline and up to ∼ 14× over the fastest state-
of-the-art GPU approach. In terms of energy efficiency, CAT is
competitive in the range 1 ≤ r ≤ 4 and from r ≥ 5 it is the most
energy efficient approach. As for performance scaling across GPU
architectures, CAT shows a promising trend that if continues for
future generations, it would increase its performance at a higher
rate than classical GPU solutions. A CPU version of CAT was
also explored, using the recently introduced AMX instructions.
Although its performance is still below GPU tensor cores, it
is a promising approach as it can still outperform some GPU
approaches at large radius. The results obtained in this work put
CAT as an approach with great potential for scientists that need
to study emerging phenomena on CA with large neighborhood
radius, both in GPU and CPU.

Index Terms—Cellular Automata, Tensor Cores, Game of Life,
Larger than life, GPU Computing, Energy Efficiency.

I. INTRODUCTION

Cellular automata (CA) are discrete dynamical systems
capable of producing complex emergent phenomena [1]. Orig-
inally conceived as abstract mathematical systems, CA have
found utility in several fields of science and technology; from
artificial life systems [2], [3], [4], fluid simulation [5] to highly
complex ecological and urban systems [6], [7], among many
others. In terms of computation, a key property of CA is that
they are highly data-parallel, making them ideal candidates for
parallel computing.

With the advent of Graphics Processing Units (GPUs),
current implementations of CA have harnessed their paral-
lel processing capabilities [8], enabling the study of larger-
scale and more intricate models. State-of-the-art implemen-
tations employ several techniques that range from using the

Cristóbal A. Navarro, Felipe A. Quezada, Enzo Meneses, and Héctor
Ferrada are with the Department of Informatics of Austral University of Chile
and the Temporal research group (http://temporal.uach.cl).

Nancy Hitschfeld is with the Computer Science Department of University
of Chile.

programmable cache memory (known as shared memory in
CUDA) [9], multi-GPU [10], to more specific ones such as
using multiple cells per thread [11], packet coding [12] and
multiple step simulation [13] in programmable cache. These
state-of-the-art techniques build on top of the traditional data-
parallel scheme for cellular automata where each GPU thread
is in charge of one (or more) cells and its entire neighborhood
of radius r, typically Moore or Von Neumann. An example
illustration is shown in Figure 1.

GPU threads

Fig. 1. Traditional data-parallel approach for simulating Cellular Automata
(CA) using a global halo of ghost cells which is common for avoiding complex
logic on the boundary threads. In this example each thread ti,j is in charge
of one cell and must explore its Moore neighborhood of radius r = 1. In
general, with this approach one simulation step costs at least Ω(r2) time.

One of the main limitations of the traditional data-parallel
scheme is that performance decreases as the CA neighborhood
radius r increases. This is because for each thread, a potential
neighborhood of (1 + 2r)× (1 + 2r) cells must be explored,
producing a memory bound scenario that costs at least Ω(r2)
memory accesses. This cost per thread limits the possibilities
of researching and applying CA models such as Larger than
Life [14] which exhibits emergent complex phenomena at
large neighborhood radius. Therefore, today a key challenge
is to find new ways to achieve fast and efficient simulation of
CAs with large neighborhood radius.

In the last decade, GPUs have shifted from pure general
purpose parallel processors (FP32 / FP64 / INT32 units),
to hybrid ones that also include specific purpose units which
are significantly faster for the task they were designed for.
One type of specialized units are the tensor cores [15], which
are part of the GPU chip and offer a hardware accelerated
Matrix Multiply Accumulate (MMA) function that runs in one
GPU cycle. These tensor core units were designed to keep up
with the demands of applications of artificial intelligence (AI)
that require training very large models, such as large language

http://temporal.uach.cl)


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 2

models (LLMs) [16] or computer vision models (CVM) [17],
among many others. Considering the high performance of
tensor cores and the fact that modern GPU chips can contain
hundreds of them, it is relevant to explore whether or not
tensor cores can be used to accelerate CA simulations beyond
current GPU solutions, and mitigate the performance degrada-
tion identified when increasing the neighborhood radius.

In this work, we present CAT (Cellular Automata on Tensor
cores); a GPU method that uses tensor cores to simulate
Cellular Automata (CA) at different neighborhood radii. The
main feature of CAT is that its cost per simulation step
remains constant, i.e., O(1), as long as the radius is within
the dimension of the square tensor core matrix. For current
GPUs, the matrix dimensions are 16× 16, thus the supported
constant cost range is 1 ≤ r ≤ 16. With this design, CAT
avoids performance degradation that is found in other state-
of-the-art approaches when the radius is increased. In terms
of requirements, CAT can accelerate any CA where the cell
transition function acts on a weighted summation of the cell’s
neighborhood. A CPU version of CAT was also explored using
the recent AMX instructions, showing promising results at a
large radius, even outperforming some GPU approaches.

The rest of the manuscript is organized as follows. Section II
covers related work, including the state-of-the-art approaches
for which CAT will be compared. Section III contains the
formulation and analysis of theoretical performance of CAT.
Section V presents experimental results using the Larger than
Life (LTL) family of CA at different neighborhood radius.
Section VI discusses the main results and concludes the work.

II. RELATED WORK

Up to date, several works have provided performance com-
parisons between state-of-the-art techniques to simulate CA on
multicore CPU and GPU [18], [8]. In general, it is well known
that GPU implementations can run faster than multicore CPU
ones (assuming high-end hardware on both cases); however,
it is worth noting that certain CA features may affect the
performance of one or the other significantly. For example,
more arithmetic operations in the transition function have been
found to favor more GPU parallelism [8], while complex
neighborhood accesses or avoiding the quiescent states of a
CA is a big challenge for GPUs and less so for CPUs [19],
[18].

Regarding research on GPU approaches, Fujita et al. pre-
sented a GPU implementation to accelerate the simulation
of game of life (GOL) [20] using a multistep scheme. This
scheme, also known as temporal blocking [21], consists of
loading tiles of the CA into CUDA’s programmable shared
memory (one region per CUDA block), and simulating several
time steps per kernel call in order to reuse cache memory.
During each kernel call, a halo of outdated cells progressively
grows from the perimeter of the CA region to the interior,
for t-steps. The cells that are further inside (not touched by
this halo) become valid simulated cells after all the steps. The
authors report large speedups of up to two orders of magnitude
over a sequential CPU implementation. This approach is best
suited for low neighborhood radius, as the outdated cells

boundary propagates at a rate of r cells per time step, limiting
the effectiveness of the technique at larger radius. The authors
did not link any source code in their manuscript.

Millan et al. [11] implemented and compared the perfor-
mance of classic and state-of-the-art GPU approaches for
simulating CA, using the game of life (GOL) as case study
as well as a compute-bound variant with additional synthetic
computation per time step (in order to manifest maximum
parallelism in the GPU). Their results showed that with
modern GPU architectures (2017+) the classic global memory
implementation is often the fastest approach, followed by a
multi-cell approach [22] which consists of simulating two
(or more) cells per thread in order to re-utilize part of the
thread’s neighborhood exploration effort on the adjacent cell.
The authors also consider radius r > 1, and show performance
results in the range 1 ≤ r ≤ 5. Their results reveal that
indeed the running times increase with the radius because
the work per cell increases at least as Ω(r2). These results
support the fact that running efficient CA simulations with
larger neighborhood radius is a known challenge that still
requires more research [23]. In the same work the authors also
compared their results with a shared memory approach [24],
[25] where for each block, the first four rows of threads are
in charge of filling the halo of the shared memory tile. They
found that a shared-memory approach on stencil-like patterns
[26] such as CA does not necessarily improve the performance
anymore as it did in the past. This behavior has also been re-
ported in another work [27] and agrees with our experimental
results when comparing global vs shared memory baselines
at low radius. This phenomenon can be attributed in part to
the L1/L2 caches now being much more effective than before
as well as the increased size of the L2 which automatically
caches the global memory accesses of threads. Source codes of
both the multi-cell and shared memory implementations were
made available by Millan et al. [11] 1 and were included in
our experimental comparison, named MCELL and SHARED
respectively. These implementations were extended by our
team to support r ∈ [1..16] and performance optimizations
were made for the multi-cell (MCELL) approach.

Cagigas et al. [12] proposed an efficient approach for
simulating CA using regular GPU Computing, i.e., no use of
tensor cores. The core idea is the application of packet coding,
a technique where each GPU thread reads a 64-bit word from
GPU global memory and simulates 8-bit cells codified inside
with bitwise operations. Two benefits arise from this approach;
i) just one global coalesced memory access is performed for
multiple cells, and ii) the computational effort for accessing the
neighborhood is shared among the codified cells. The authors
report that doing packet coding is between 3× to 4× faster
than the baseline GPU approach, and faster than other state
of the art techniques such as lookup-table (i.e., to precompute
possible outcomes of the transition function, and access the
table with the cell’s current state and neighbor information)
and temporal blocking [21] implemented with the AN5D
framework [28]. The work was focused on radius r = 1,

1The classic global memory approach is also included in the experiments
as part of our own baseline implementations.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 3

however the approach can be extended to larger radius. The
authors made their source code available but only working for
radius r = 1, therefore our team extended the implementation,
named as PACK, to support radiuses in the range r ∈ [1..16].

Regarding the use of tensor math, Zhuang et al. proposed
a Python deep learning framework based on high-level tensor
computation on GPU to accelerate land simulation CA [29].
The authors report that by using their approach, they achieve
up to ∼ 50× of speedup over a sequential counterpart running
on a CPU. No details are given on the use of tensor-cores,
neither tests on other well known cellular automata such as
game of life (GOL), as the scope of the work is more oriented
at formulating the problem in a high-level tensor framework
for an specific application.

Regarding the use of GPU tensor cores, Liu et al. [30]
used them to accelerate the finite difference method (FDM)
for partial differential equations (PDEs), which is a stencil-
like pattern. The authors report average speedups of up to
∼ 4.55× over a highly optimized GPU baseline. This work
is relevant to mention because it puts a precedent on the
benefits of using tensor cores in stencil-like patterns, and
it can even be used to simulate cellular automata as well,
although best suited for CA with small neighborhood radius.
This is because it was formulated using an in-halo scheme.
Although this scheme has the benefit of using fewer matrix
operations than the method we propose (two products instead
of six), it reduces the effective tensor core fragment size p×q
cells, to (p − 2r) × (q − 2r) cells. This creates the need to
overlap fragments according to r and limits the range of r to
r < p

2 , r < q
2 . Considering that current tensor core fragments

can have sizes in the order of p × q = 16 × 16 elements,
the in-halo approach at r = 1 would produce an effective
simulation area of 14 × 14 which is not a big issue. But as
the radius increases, the in halo would grow to the point that
only a small area in the center is effective. In contrast, CAT
(our proposed method) chooses the opposite design; an out-
halo scheme which has favorable implications for large radius
simulations with tensor cores. The design of CAT, including
its out-halo scheme, is detailed in Section III, with its possible
extensions explained in Section VI).

Lastly, Chen et al. [31] recently proposed an efficient way
of doing high-precision (FP64) stencil computations on GPU
using tensor cores as well. Their matrix layout is different
however, as they convert tiles of the input data to matrix
rows and convolution tiles to matrix columns, among other
technical improvements such as a lookup table to reduce
integer operations and dirty bits to alleviate bank conflicts in
shared memory.

III. FORMULATION OF CAT
One of the most time consuming tasks in simulating many

CA is accessing the neighboring cells, which must be done
for each cell of the domain and at each time step of the
simulation. Such CA are known to be memory-bound because
the dominant cost is in the memory accesses (i.e., neighbor-
hood access) rather than in the arithmetic operations of the
transition function. A very well known example of memory-
bound CA is John Conway’s Game of Life [20], [2] and

its generalization to any radius known as Larger than Life
[32], [14], [4] which is even more memory-bound due to the
larger neighborhood radius. Apart from being memory-bound,
these CA also characterize for having a transition function that
acts on the weighted summation of each cell’s neighborhood.
Simulating memory-bound CA in GPU has its challenges
because it saturates the memory bandwidth much earlier
than the computational capacity of the chip. Traditional GPU
solutions often mitigate this problem by doing an efficient
use of the memory hierarchy, including the programmable L1
cache known as shared memory in CUDA’s terminology. The
proposed method, Cellular Automata on Tensor cores (CAT),
handles these types of CA from a different perspective; by
adapting the exploration of neighborhood cells as a series of
MMA operations executed by the tensor cores, which take one
GPU cycle per MMA.

The formulation of CAT relies on a fundamental linear alge-
bra fact which is that the weighted neighborhood summation of
a CA cells (except for the boundary ones) can be computed
simultaneously with two matrix products between the entire
CA domain and a constant band matrix of ones. The result
of these two matrix operations returns a matrix where each
element is the weighted sum of all of its neighborhood data
including itself twice2. For neighborhood radius r = 1, the
band matrix is tridiagonal, and for general radius the diagonal
band has a width of 2r+1. A frequent approach for handling
the neighborhood of boundary cells more efficiently is to
include a global halo of ghost cells of width r. Although this
global halo has an extra memory cost of ≈ 4nr = O(n), it is
not significant compared to the problem size O(n2).

Let Λn′×n′ be the matrix representation of an entire cellular
automata of size n×n, using a global halo of ghost cells where
n′ = n+ 2r, and Πn′×n′ the entire band matrix with halo as
well, then the reduction of all Moore neighborhoods can be
computed with two MMAs:

Hn′×n′ = Λn′×n′ ×Πn′×n′ + 0n′×n′ (1)

RMoore
n′×n′ = Πn′×n′ ×Hn′×n′ + 0n′×n′ (2)

The first step reduces horizontally into H , while the second
step does a vertical reduction using H as input, to end up with
the Moore neighborhood reduction matrix R. The simplified
Von Neumann neighborhood can also be computed, it only
requires to redefine Eq. (2) as:

RVon Neumann
n′×n′ = Πn′×n′ × Λn′×n′ +Hn′×n′ (3)

Figure 2 illustrates an example of how the two MMAs (the
0n′×n′ matrices were omitted) apply for a Game of Life (GoL)
CA of size n×n = 16×16 with Moore neighborhood of r = 1.
The purple bands surrounding the 16×16 domain is the global
halo of ghost cells.

In any of the two neighborhood types (Moore or Von
Neumann), there will be duplicate state values added on each
non-zero cell. If the CA rule needs to exclude the center cell
in the neighborhood counting, then one can compute R− 2Λ
in parallel as an extra instruction in the same GPU kernel,
using a standard per-thread logic.

2The center cell value can later be subtracted by each thread if needed.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 4

1
1 1 1
1 2 2 1

1 1 1
1 1 1
1 1 1 1 1 1

1 2 3 2 1
1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1
1 2 2 1

Step 1: Horizontal

Step 2: Vertical

2 1 1 1
1 1 1 2 4 3 1
1 1 1 2 4 4 1
2 3 2 1 2 2 1
3 4 3 1 1 1
2 3 2 1 3 5 3 1

1 2 1 1 1 5 6 5 1
2 2 1 1 1 3 5 3 1 1 1 1
1 2 2 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2 2 1

1 2 1 1 2 1
1 1 1 1 1 1 1 1 1

1 3 4 2
1 4 4 2
1 2 2 1

1

1
1
1

1

11

1 1
1 1

1 1

11 1

1

1 11

1 2 1
1 1 1

1
1 1 1
1 2 2 1

1 1 1
1 1 1
1 1 1 1 1 1

1 2 3 2 1
1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1
1 2 2 1

1

11

1 1

11 1

1

11
111

11

11
111

111
1

11
111

111
1

11
111

111
1

11
111

111
1

11
1

1 1
1

1
1 1

11
111

11

11
111

111
1

11
111

111
1

11
111

111
1

11
111

111
1

11
1

1 1
1

1
1 1

Fig. 2. Concept of how a pair of matrix products between an entire CA (Λ)
and a band matrix (Π) can count the living neighbors of all cells (no tensor
core logic introduced yet). Here, the CA includes a global halo of ghost cells,
giving a total size of (n+ 2r)× (n+ 2r) = 18× 18 as the neighborhood
radius is r = 1. The final cells of R contain their number of living neighbors
plus its own state added twice (cells with no number have value zero).

In order to compute Eqs. (1) and (2) (or Eq. (3) if needed)
efficiently with tensor cores, one has to consider that the
products defined between the CA and the band matrices (as
shown in Figure 2), in practice have to be programmed as
several tensor core MMAs that occur at a smaller scale and
in parallel between fragments of Λ and Π, similar to the
blocked matrix multiply scheme. Furthermore, given that the
band matrix Π is non-zero only on its diagonal band, then the
MMAs that actually matter are the ones where the band is
present, i.e., all other MMAs can be skipped as the product
would compute to zero.

Applying the two MMAs idea of Figure 2 directly onto
each fragment would require the in-halo scheme, which is not
efficient for a large neighborhood radius, as it would restrict
the effective fragment area from p× q to (p− 2r)× (q − 2r)
cells, and all fragments would have to be overlapped in r
cells in order to cover the entire domain. Moreover, an in-
halo scheme limits the radius range up to half the size of
the tensor core fragment. To prevent this, CAT handles the
problem differently; fragments do not restrict the effective
area to their inside when r increases, but instead expand to
the outside allowing to simulate the entire fragment without
imposing limits on the radius range. This is achieved by
including two more MMAs for the neighbor fragments; one for
each direction (horizontal and vertical). This design requires
the width of the global halo of ghost cells to be a multiple
of the fragment size. Considering that CAT operates with one
center fragment and two adjacent ones, and the fact that the
band matrix is constant, Π can be just represented with three
fragments; π1, π2, π3 as shown in Figure 3 (fragments are of
size 4× 4 just for visual simplicity).

Representing Π with just three fragments not only simplifies
tensor core programming inside the GPU kernels, but it also
reduces the memory usage for Π, from O(n2) down to O(1).

11
111

111
11

1
1

11
111

111
11

1
1

11
111

111
11

1
1

11
111

111
11

1
1

11
111

111
11

1
1

11
111

111
11

11 11
111

111
11 1

CAT representationExplicit Representation

Band Matrix Representations

Fig. 3. On the left, an explicit representation of the band matrix Π, which
uses O(n2) memory. On the right, the CAT representation of Π, which uses
just three fragments π1, π2, π3 to represent the entire matrix. Fragments are
of size 4× 4 just for visual simplicity.

Considering that the cellular automata matrix Λ is composed
of fragments FΛ

i,j , and Π is represented by three constant
fragments π1, π2, π3, then the first step of CAT, i.e, the
computation of fragments FH

i,j in the horizontal reduction
matrix H , is

FH
i,j = FΛ

i,j−1 × π1 + FΛ
i,j × π2 + FΛ

i,j+1 × π3 (4)

with i including the top and lower halo fragments and j not
including them (i.e., just the interior columns). All FH

i,j can
be computed in parallel, each one handled by a different warp
of threads. Once all fragments of H have been computed,
the second step (vertical reduction) consists of computing the
fragments of matrix R, which are defined in terms of the
fragments of H as

FR
i,j = π3 × FH

i−1,j + π2 × FΛ
i,j + π1 × FΛ

i+1,j (5)

this time with i, j only including the interior fragments, not
the halo ones. Again, all FR

i,j are computed in parallel, one per
warp, using the tensor cores of the GPU. It is worth mentioning
that the combination of the horizontal and vertical steps and
the re-use of H as input for the second step allow CAT to
capture the diagonal neighbors of a cell.

The entire overview of CAT, including the horizon-
tal/vertical steps and the regions where the fragments need
to be computed (dashed regions), is illustrated in Figure 4 for
the case of Moore neighborhood3 and fragments of 4× 4 for
visual simplicity. From the Figure, matrix Λ is loaded into
fragments FΛ

i,j using a per-warp logic. Then, each fragment
FH
i,j inside the dashed region needs to be computed and is the

result of computing Eq. (4). Once all threads synchronize with
the first step finished, they proceed to the second step which
is similar, but uses H as input instead of Λ and computes Eq.
(5) on the dashed region of R. Once R is computed, threads
can continue in the same kernel with the transition function
to each cell, using a per-thread logic.

3The cost does not change when switching to the simplified Von Neumann
neighborhood, as both neighborhoods employ the same amount of MMAs.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 5

11
111

111
11

1

1

11
111

111
111

1 1

1
1 1 1
1 2 2 1

1 1 1
1 1 1
1 1 1 1 1 1

1 2 3 2 1
1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1
1 2 2 1

1

11

1 1

11 1

1

Step 1 Step 2

2 1 1 1
1 1 1 2 4 3 1
1 1 1 2 4 4 1
2 3 2 1 2 2 1
3 4 3 1 1 1
2 3 2 1 3 5 3 1

1 2 1 1 1 5 6 5 1
2 2 1 1 1 3 5 3 1 1 1 1
1 2 2 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2 2 1

1 2 1 1 2 1
1 1 1 1 1 1 1 1 1

1 3 4 2
1 4 4 2
1 2 2 1

1

1
1
1

1 1
1 1
1 11

1 2 1
1 1 1

1
1
1 2

1
1
1 1

1

1
1

11

CAT Overview

Horizontal Vertical

Fig. 4. Overview of CAT illustrated with a Game of Life of n×n = 16×16 cells, neighborhood r = 1 and periodic boundary conditions using a global halo
of ghost fragments (purple). In the first step all fragments FH

i,j inside the dashed region of H contain the horizontal reduction computed with three sequential
MMAs between fragments FΛ

i,j−1, F
Λ
i,j , F

Λ
i,j+1 and π1, π2, π3. In the second step all FR

i,j inside the dashed region of R contain the full reduction computed
with three more MMAs between the fragments π3, π2, π1 and FH

i−1,j , F
H
i,j , F

H
i+1,j . This gives a total cost of six MMAs per fragment at any radius that fits

in the fragment. For this example the fragments were shown as 4× 4 for visual clarity, but in practice the ones employed in CAT are of size 16× 16.

Matrices Λ and R need to be in GPU memory, as they play
the role of in and out, respectively, as in any standard GPU-
based CA implementation. Matrix H does not need to be in
memory, as they are actually fragments that emerge at GPU
cache level.

A. CAT with large neighborhood radius

The main benefit of CAT is that by design it already supports
simulation on a large neighborhood radius up to the fragment
size. This is because instead of using an in-halo scheme, i.e.,
to restrict the effective simulation area to the inside of the
fragment as r increases, it uses an out-halo scheme where the
effective area is always the entire fragment and increasing r
only has an impact on the width of the band matrix which in
practice means defining π1, π2, π3 according to the r value of
the CA model. In other words, increasing r in CAT produces
the same six MMAs per fragment, but with more effective
computation than with a lower radius. At first, six MMAs per
fragment may be seen as too much work for r = 1, but it
is greatly compensated by the fact that the cost has already
been paid for higher radius, thus in theory the execution
time of CAT is unaffected when increasing the radius (in the
experimental results this is confirmed) as long as r is within4

the fragment size. In general, if the fragments are of size p×p,
then the maximum supported radius is r = f . In the case of
CAT, it uses CUDA fragments of 16× 16 thus the maximum
radius is r = 16. Figure 5 shows how π1, π2, π3 become for
radius r = 8 and r = 16.

4It is possible to extend CAT to support neighborhood radiuses beyond the
fragment size. This is discussed in Section VI.

11
111

11

11
111

111
1

11
111

111
1

11
111

111
1

11
111

111
1

11
1

11111111
1111111
111111
11111
1111
111
11
1

11

11
111

111
1

11
111

111
1

11
1

11

11
111

111
1

11
111

111
1

11
1
1 11

1

1
1

1

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1
1

1
1
1
1
1 1

1
1

1
1

1

1
1

1

1
1

1

1
1

1
1
1
1

1
1

1

1
1
1

1

1
1

1
1
1

1

1

1
1
1
1
1

1
1
1

1

1

1
1
1
1
1

1
1
1

1

1

1
1
1
1
1

1
1
1

1

1

1
1
1
1 1

1
1

1
1

1
1
11

11 1

1 1
1

11
1

1
1

1
1
1

1
1
1
1

1
1
1
1
1

1
1
1

1

1

1
1
1
1
1
1

1
1

1
1

1

11
111

11

11
111

111
1

11
11
111

1

11
111

111
1

11
111

111
1

11
1

11111111
1111111
111111
11111
1111
111
11
1

11

11
111

111
1

11
111

111
1

11
1

11

11
111

111
1

11
111

111
1

11
1
1 11

1

1
1

1

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1
1

1
1
1
1
1 1

1
1

1
1

1

1

1
1

1

1
1

1
1
1
1

1
1

1
1
1

1

1
1

1
1
11

1
1
1

1

1

1
1
1
1

1
11

11 1

1 1
1

11
1

1
1

1
1
1

1
1
1
1

1
1
1
1
1

1
1
1

1

1

1
1
1
1
1
1

1
1

1
1

1

1111111
1111111
111111
11111
1111
111
11
1

1
1
1
1
1
1

1
1
1
1
1

1
1
1
1

1
1
1
1
1 1

1111111
111111
11111
1111
111
11
1

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1
1

1

1

1
1

1

1

1
1

1
1
1 1

11
111

11

11
111

111
1

11
111

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1
1

1
1
1
1
1 1

1
1

1
1

1

1

1
1
1

1

1

1
1
1
1

1
11

11 1

11
11

1
1

1
1

1
1

1
1

1
1

1

11
1

1
1

1
1
1

1
1

1
1

1
1

11
1

1
1

1
1
1

1
1

1
1

1
1

11
1

1
1

1
1
1

1
1

1
1

1
1

11
1

1
1

1

1
1

1
1

1

1
1
1

1
1
1

1
1
1

1

1

1
1

1
1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 5. The band fragments at two different radius values r = 8, r = 16.
Here, the size of the fragment size is 16× 16, the actual size used by CAT.
With this fragment size, the maximum supported radius is r = 16.

B. CUDA Specific Optimizations

CAT includes three technical optimizations: 1) Fragment-
level continuous memory layout, 2) use of shared memory
and 3) optimal tile per CUDA block.

1) Fragment-level contiguous memory layout: CAT’s GPU
kernel begins with each warp loading the data from GPU
global memory into fragments of 16 × 16 cells which reside
at the register level. Usually, the CA data in global memory
is in row-major layout, which is efficient for traditional GPU



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 6

approaches in terms of memory accesses. However, with tensor
cores, this layout is less efficient because fragments are con-
tinuous 2D regions of memory and if the CA is in row-major
then there will be large memory strides of size n between
the rows of the fragment. This would produce a slowdown in
memory bandwidth, which can diminish the benefit of using
CAT significantly. To overcome this problem, CAT’s memory
layout linearizes fragments in memory, one after another. In
this new layout, a group of 16×16 = 256 consecutive elements
corresponds to a 2D fragment. This change makes the loading
of data into fragments fully coalesced. Figure 6 illustrates
CAT’s memory layout.

Fig. 6. The fragment-level contiguous memory layout used by CAT. At the
inner level, each fragment has its own row-major layout. At the outer level,
the entire CA has a row-major layout of fragments.

Tensor core memory layouts have been studied in the con-
text of deep learning, such as in the pooling operation, where
the NHWC (N images, H height, W width, C channels)
layout is recommended for tensor cores [33]. In these terms,
CAT uses a NHWC layout but local to each fragment, similar
to recent ideas in deep learning [34] and with C = 1.

2) Use of shared-memory for intermediate results: CUDA’s
shared memory resource was first considered for the entire
process of CAT, that is, at the beginning of the kernel each
CUDA block of threads would load all their corresponding
cells from Λ into a 2D shared memory buffer, synchronize,
and then perform all the remaining steps at the shared memory
level until the result is written back into global memory.
However, preliminary profiling of CAT showed that moving
data from global to shared, and from shared to fragment
registers, turned out to be slower than just loading from
global to fragment. Still, CAT does use shared memory for
the tile (per block) of intermediate fragments FH

i,j , which is
a fast movement of data from register level to L1 Cache
shared memory that occurs physically in the same streaming
multiprocessor (SM). Additionally, in the case of the constant
fragments π1, π2, π3, given that they are the same for all warps,
they are generated once in shared memory.

3) Optimal Tile per CUDA block: CAT works by mapping
a CUDA block of threads to a tile Q of CA cells. Doing a
full pass on all the tiles produces a simulation step of the
CA. Here, a tile Q is defined as a rectangular region of w×h
fragments of cells. A relevant aspect of CAT is the detachment
of the one-to-one mapping between the CUDA block of warps
and a tile Q of data. That is, CAT allows a tile Q to have more
fragments than the number of warps available in the mapped

CUDA block, and a different geometry as well. This relaxation
opens the possibility to explore what values of width (w) and
height (h) of Qw×h produces the highest performance of CAT.

Figure 7 presents a heat map where different tile shapes
were explored using a large CA of size n×n = 60416×60416.
From the Figure, one can note that the most efficient tile is of

1 3 7 11 15 19 23 27 30
width (w)

1
3

7

11

15

19

23

27

30
he

ig
ht

 (h
)

Optimal tile size, n = 60416

12

19

26

33

40

47

53
60
67
74

Ti
m

e 
(m

s)

Fig. 7. Heat map of the optimal shape for tile TH . Long shaped tiles produce
faster performance than square ones, specially narrow ones in width. The
optimal tile shape for TH is near w × h = 1× 14.

vertical shape, near w × h = 1 × 14. It was unexpected that
a column-shaped tile would be more efficient than one with
a regular shape. The experimental results shown in Section V
use the optimal shape for CAT.

C. Pseudocode of CAT’s Kernel

CAT uses the well known ping-pong simulation scheme
where two copies of the CA are used. One of them, the
CAin, holds the current state of cells for reading, and CAout is
used to write the future state of cells. For each simulation
step these buffers switch places. Algorithm 1 presents the
pseudocode of CAT’s GPU kernel, with its three optimizations
recently described. From the pseudocode, one can note that
there are three major synchronization barriers. The algorithm
starts by creating/initializing shared memory data such as the
tile QH and shared arrays for π1,π2,π3 before reaching
the first barrier. After this barrier, threads retrieve some warp
information such as warp ID and the total number per CUDA
block. Then, each warp proceeds to compute the horizontal
reduction for all of its corresponding fragments using a for
loop that has a stride of the number of warps in a CUDA
block. At each iteration, the resulting horizontal reduction is
stored in tile QH . The second sync barrier ensures that all
warps have finished the horizontal reduction and stored its
results in QH before passing to the vertical reduction which
is similar in logic. In general, for each reduction phase, three
MMA operations are employed with the help of an auxiliary
fragment F to accumulate the products and store the resulting
fragment to the corresponding array; QH for horizontal and
R for vertical. The third barrier ensures all reductions have



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 7

Algorithm 1 Pseudocode of CAT’s GPU Kernel
Require: n:size, Λ: In, R: Out, w,h:tile size, r : radius
QH ← DeclareSharedMemoryTile(w + 2, h+ 2)
gi, gj ← TileGlobalOffset(n,w, h,BlockID)
Sπ1 , Sπ2 , Sπ3 ← GenSharedBandMats(r)
——— SyncThreads() ———- ▷ Step 1: Compute H
Wx ← getWarpID()
Wb ← getNumWarpsPerBlock()
π1, π2, π3 ← getBandFragments(Sπ1 , Sπ2 , Sπ3)
for k ←Wx; k < w × (h+ 2); k ← k +Wb do

F ← ZeroFragment()
(i, j) ← (⌊k/w⌋, k mod w) + (0, 1)
FΛ
i,j−1, F

Λ
i,j , F

Λ
i,j+1 ← loadFragments(Λ, gi + i, gj + j)

F ← MMATC (FΛ
i,j−1,π1, [0] )

F ← MMATC (FΛ
i,j ,π2, F )

F ← MMATC (FΛ
i,j+1,π3, F )

Store(QH , F, i, j)
end for
——— SyncThreads() ———- ▷ Step 2: Compute R
for k ←Wx; k < w × h; k ← k +Wb do

F ← ZeroFragment()
(i, j) ← (⌊k/w⌋, k mod w) + (1, 1)
FH
i−1,j , F

H
i,j , F

H
i+1,j ← loadFragments(QH , i, j)

F ← MMATC (π3, FH
i−1,j , [0])

F ← MMATC (π2, FH
i,j , F )

F ← MMATC (π1, FH
i+1,j , F )

Store(R, F, gi + i, gj + j)
end for
—————- SyncThreads() ——————
for cells assigned to current thread t do ▷ Per Thread

c← getCell(Λ, t)
q ← getNeighborsReduction(R, t)
c′ ← applyCARule(c, q)
Store(R, c′, t)

end for

finished, and allows threads to compute the future state of all
their corresponding cells.

D. Cost Analysis of CAT

Computing the cost of CAT involves adding the costs of the
two main steps (Figure 4) and the application of the transition
function to each cell. One way to proceed with the analysis
is to obtain the parallel time of a CUDA block processing
a CA tile with Algorithm 1, considering a finite number of
resources (regular cores and tensor cores) residing on a GPU
streaming multiprocessor (SM). With the parallel time per
block computed, then one can expand it to the total number
of tiles that need to be processed, considering that there is a
finite number of SMs in a GPU chip. For this, we employ a
PRAM-like model [35] in its CREW variant (Concurrent Read,
Exclusive Write), but with finite resources and two extensions:
i) two types of memory accesses; global memory accesses
assisted by automatic L2 caching, with a cost of C, and cache
memory (L1) with a smaller cost of c, i.e., C = αc with α > 1;
ii) each CUDA MMA costs τ which is the actual number of
one-cycle physical tensor core executions for the p × q × k
fragment.

In CAT, the task of each CUDA block is to simulate a
tile of w × h fragments from the cell matrix Λ. In the
first step of Algorithm 1, the computation of each fragment
FH
i,j involves reading three fragments from Λ and the band

fragments π1, π2, π3 from shared memory, then perform three
MMAs (see Figure 4), and write the resulting fragment into
QH . The first three memory accesses are coalesced (because
of the fragment-row memory layout optimization), costing C
units each, while the reads on the band fragments cost c units
each. For the three MMAs, these cost τ units each and run
one after another because one warp is in charge. Lastly, the
write operation costs c as it is on shared memory. With these
considerations, the time for computing a fragment FH

i,j is

TFH
ij

= 3C + 3τ + 4c. (6)

Considering that each CUDA block gets one tile assigned,
there are w×(h+2) fragments to compute for the tile QH . At
a logical level, the number of fragments that get computed in
parallel depends on the number of warps per block Wb, but at
the physical level it depends on the number of tensor cores in
a SM, which we denote Zsm. Given that we have Zsm ≤ Wb,
then we can just consider Zsm as it is the dominant restriction.
With this consideration, the parallel time for computing a tile
QH becomes:

TQH =

⌈
w · (h+ 2)

Zsm

⌉
TFH

i,j
(7)

=

⌈
w · (h+ 2)

Zsm

⌉
(3C + 3τ + 4c). (8)

For the second step, fragments FR
i,j need to be computed. In

this case, the warps read the three fragments from the resulting
tile QH of step 1 that lies in shared memory, thus they cost
c units each. The band fragments π1, π2, π3 must be loaded
again this time as the first operand in the MMA, each one
costing c. Adding these costs with the three MMAs each of
cost τ and with the store operation on R that lies on global
memory, we have that the time for computing FR

i,j is

TFR
i,j

= 6c+ 3τ + C. (9)

In this second step, the target tile QR has w×h fragments to
compute for a given CUDA block. With this, the parallel time
for computing tile QR is

TQR =

⌈
w · h
Zsm

⌉
TFR

i,j
(10)

=

⌈
w · h
Zsm

⌉
(6c+ 3τ + C). (11)

Then, in the last stage of Algorithm 1, each thread applies
the CA’s transition function f(), of δ units, to each of its
corresponding cells. For each cell in the tile, this involves
reading the original cell state from Λ (C units), the neighbor-
hood reduction from R (C units), then applying f() (δ units)
and lastly writing the result back again on R (C units). This
gives a cost of (δ + 3C) per cell. For the parallelism at this
stage, the number of regular cores (i.e., the number of FP32
units as reference) are considered per SM, denoted Psm, as it
is the dominant restriction for threads in a CUDA block. With
this, the parallel time for this stage of the tile is

Tf = (δ + 3C)

⌈
(w · h)(p · q)

Psm

⌉
(12)



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 8

The last cost to include is the one at the beginning of
Algorithm 1, where threads cooperatively initialize the band
matrices Sπ1 , Sπ2 , Sπ3 in parallel with the regular cores Psm

in the SM. This gives a cost per band of

TSπ = c

⌈
p · q
Psm

⌉
(13)

Adding the costs of Eqs. (7), (10), (12) and (13), we get the
following total parallel time per tile:

TQw×h
= 3TSπ + E · (TQH + TQR + Tf ) (14)

where E ≥ 1 is a tile efficiency factor that models the behavior
found in Figure 7, where some w × h tile shapes make CAT
faster, while others make it slower. Surface E was built by
fitting a two-variable (w, h) fourth degree polynomial in the
discrete points of the the heatmap.

For a CA of n× n cells where n is a multiple5 of the tile
size w× h and the fragment size p× q, CAT’s total parallel
time running on a GPU with P SMs is

TCAT =

⌈
n2/(p · q · w · h)

P

⌉
TQw×h

(15)

As a comparison, using the same cost model, the parallel
running time of a reference (REF) baseline GPU method
would do the following per cell; a thread reads its corre-
sponding cell from global memory as well as its neighborhood
of radius r, costing (1 + 2r)2C units. Then, it computes a
reduction on its neighborhood (such as addition for example),
which costs (1 + 2r)2 − 1 units and applies the transition
function f() which costs δ units per cell. Finally, each thread
writes its resulting cell state back to global memory (C units),
leading to a time per cell of

T cell
REF = (1 + 2r)2C + (1 + 2r)2 − 1 + δ + C (16)

For an entire CA of n×n cells, the parallel time of a reference
(REF) baseline GPU algorithm would be

TREF =

⌈
n2

P · Psm

⌉
T cell

REF (17)

=

⌈
n2

P · Psm

⌉
((1 + 2r)2C + (1 + 2r)2 − 1 + δ + C).

(18)

When considering the speedup of TCAT with respect to TREF,
we obtain

SCAT =
TREF

TCAT
=

⌈
n2

P·Psm

⌉
T cell

REF⌈
n2/(p·q·w·h)

P

⌉
TQw×h

. (19)

From Eq. (19) one can note that the number of streaming mul-
tiprocessors P is not as relevant as the internal parallel times at
each one of them. To further analyze the speedup, SCAT must
be evaluated with actual values. For this, we consider a large
CA such as n = 230, a tile size of w × h = 1 × 14 and the
hardware related parameters aligned to a state of the art GPU
such as NVIDIA’s full6 GH100 chip [36]. Table I summarizes

5This assumption is just for analysis, CAT supports any value of n.
6The H100 GPU is a slightly cut down version of the full GH100 chip.

these parameters. The C value was defined as 6c, and not
orders of magnitude higher than c, because it considers the
existence of the L2 cache that automatically assists the global
memory on each access.

TABLE I
CHOSEN PARAMETERS FOR COST MODEL

Parameter Value Description
n× n limit n 7→ ∞ Representing a very large CA size.
w × h 1× 14 CAT optimal tile size.

C 6c Global + automatic L2 as a factor of c.
c 1 Manual cache (L1) cost.

p× q 16× 16 MMA Fragment size.
τ 16 # of internal 1-cycle calls per MMA.

Psm 128 Regular cores per SM.
Zsm 4 Tensor cores per SM.

δ 20 Cost of CA transition function f().

Using these parameters, Table II presents theoretical
speedups of CAT with respect to the reference GPU approach
REF, at radiuses r = 1, 4, 8, 16 under different scenarios
including hypothetical ones.

TABLE II
CAT’S THEORETICAL SPEEDUPS FOR A CA IN THE LIMIT n 7→ ∞.

Scenario Parameter change Theoretical Speedup SCAT
r = 1 r = 4 r = 8 r = 16

GH100 Chip n/a 1.20× 8.07× 27.9× 104×
More TC Units Zsm : 4 → 16 1.59× 10.6× 37.1× 138×
Faster TC Units τ : 16 → 1 1.55× 10.4× 36.1× 134×
More FP Units Psm : 128 → 512 0.60× 4.06× 14.1× 52.5×
Regular Tiles w x h :1 x 14 → 16 x 16 0.17× 1.15× 3.99× 14.8×
High Cost f() δ : 20 → 1000 0.79× 1.17× 2.25× 6.44×

In the first scenario, which simulates the full GH100 chip
specification, the cost model shows that CAT can reach sig-
nificant speedups as the CA neighborhood r increases, being
up to 104× faster than REF. This GH100 scenario serves
as a reference when measuring experimental speedups with
the H100 GPU, which is a slightly cut-down version of the
full GH100 chip. The next scenario, which is hypothetical,
increases the number of TC units in a SM by a factor of
four, showing a significant speedup boost of roughly ∼ 32%,
assuming the tile size has enough fragments to keep all of these
extra units active. In the next hypothetical scenario, making
the TC units faster shows that it also has a strong effect,
giving a boost of ∼ 28% to its speedup. The third hypothetical
scenario explores the case of more regular cores per SM and
shows that CAT’s speedup is reduced and slower than REF for
r = 1. The reason for this is because the REF implementation
benefits more than CAT with this change. The fifth scenario
explores the potential penalty if a non-optimal tile size is
chosen for CAT, such as w × h = 16 × 16. In this case,
the theoretical speedup is significantly reduced to the point of
being the slowest scenario for CAT at r = 1, but it manages
to provide favorable speedup for the rest of the radiuses,
although highly penalized. The last scenario explores a more
expensive transition function, showing that CAT’s speedup is
also penalized, becoming a less favorable scenario for CAT at
high radius with a maximum speedup of 6.44×. The reason
why the amount of work in f() affects CAT so much is that
this work is done by the regular GPU cores, even in CAT, thus
the tensor core work becomes a smaller fraction of the total



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 9

work per cell. The scenarios covered in Table II provide useful
insights on what hardware aspects and CA settings affect CAT
the most. The next Section presents an experimental evaluation
of CAT, comparing its performance against a reference GPU
baseline (BASE) as well as with other state-of-the-art GPU
techniques.

In terms of usability, this cost model only requires defining
n and δ which come from the CA in question. The C and
c parameters represent the latest behavior of GPUs in the
last years, therefore can be reused or redefined at will. For
the p × q parameter, this comes from the chosen fragment
type and size. In our case these we chose 16 × 16 FP16
fragments. The other parameters such as τ , Psm and Zsm

are determined by the GPU architecture, and the optimal tile
size w×h is experimentally found, being a one-time task per
GPU architecture.

E. Tensor Core Utilization and Impact

A lower bound on the effective FP16 tensor core TFLOPS
(floating point operations per second) was measured using
the optimal w × h = 1 × 14 tile shape. The lower bound
is computed as the quotient between the total number of
neighborhood FP summations in one simulation step, i.e.,
(n× n) · [(1 + 2r)× (1 + 2r)], divided by the average kernel
time of one simulation step. For this measurement, the problem
size was set at n = 60416 and the GPU used was the H100
GPU, which has a peak FP16 tensor core performance of 989.5
TFLOPS for dense matrices (the sparsity feature is not used).
Table III shows that at low radius the lower bound of TFLOPS
has a low utilization of the tensor core (0.27% at r = 1) but
rapidly increases with the radius of the neighborhood, reaching
an effective utilization of at least 33.47%. Having a tensor
core utilization that is distant to the peak hardware value is
not a surprise considering that CA simulation is by definition
a memory bound problem.

TABLE III
CAT’S EFFECTIVE FP16 TENSOR CORE TFLOPS FOR CA SIMULATION.

r CAT (FP16) H100 Tensor Core Utilization
(Peak 989.5 TFLOPS)

1 2.73 TFLOPS 0.27%
4 24.63 TFLOPS 2.48%
8 87.90 TFLOPS 8.88%

16 331.24 TFLOPS 33.47%

We also measured just the improvement that tensor cores
provide to CAT compared to not using them. For this, we com-
pared the CAT approach with another variant that computes
the MMAs with regular CUDA threads. Table IV compares
the average time per simulation step of both implementations
using an H100 GPU simulating a CA at different sizes (CAT
running time is not affected by radius). The comparison clearly
shows that the tensor cores contribute significantly to the
performance. At n ≥ 10000 the tensor cores already provide
a significant improvement in performance compared to not
using them, reaching approximately an order of magnitude
faster performance than the regular CUDA core version.

TABLE IV
IMPACT OF TENSOR CORE MMAS ON CAT’S PERFORMANCE.

n CAT
(Tensor Cores)

CAT
(CUDA cores)

Improvement by
Tensor Cores

1024 0.02 ms 0.06 ms ∼ 3.0×
10240 0.37 ms 3.49 ms ∼ 9.43×
20480 1.42 ms 13.89 ms ∼ 9.78×
30720 3.17 ms 31.13 ms ∼ 9.82×
40960 5.67 ms 55.23 ms ∼ 9.74×
50176 8.39 ms 82.77 ms ∼ 9.86×
60416 12.05 ms 119.98 ms ∼ 9.95×

IV. CPU VERSION OF CAT USING AMX

We also implemented CAT on CPU to work with the recent
CPU Advanced Matrix Extensions (AMX) [37] in parallel.
Support for the AMX instructions began just recently in
2023 with the 4th Generation Intel Xeon CPUs (Sapphire
Rapids), where each CPU core has a physical AMX region
that can do hardware-accelerated matrix multiplications. AMX
instructions have proven to be very competitive in perfor-
mance for dealing with inference AI workloads [38]. This
CPU version of CAT, named CAT-CPUAMX, was implemented
with OpenMP for the thread-level parallelization, and each
thread was programmed to execute manual AMX instructions
provided by gcc intrinsics header, in a very similar
way to how tensor cores are programmed with the wmma
CUDA interface. The only relevant difference is that AMX
fragments are currently of size 16×64 elements only, and CAT
needs square fragments. Therefore, this CPU variant executes
the CAT scheme on a super-fragment of 64 × 64 elements
by stacking four 16 × 64 AMX fragments7. CAT-CPUAMX
also includes AVX256 instructions8 for the transition function,
handling groups of 8 cells at a time on each thread.

In order to have a reference point for CAT-CPU, this
approach was compared to other known CPU approaches
for CA simulation, such as i) classic OMP (OpenMP), ii)
OMP + AVX256, and iii) OMP + AVX512. Table V shows
the performance of all these CPU approaches running on a
48-core Intel(R) Xeon(R) Platinum 8488C CPU. The results
show that at r = 4 CAT-CPUAMX already outperforms all
other approaches, and at higher radius it is even an order of
magnitude faster than the second fastest one.

TABLE V
CAT-CPUAMX VERSUS OTHER CPU APPROACHES. AVERAGE TIME (MS)

PER SIMULATION STEP AT n = 60416.

r OMP OMP + AVX256 OMP + AVX512 CAT-CPUAMX
1 623 ms 265 ms 268 ms 355 ms
4 3999 ms 488 ms 374 ms 354 ms
8 34955 ms 3879 ms 2128 ms 356 ms

16 115156 ms 14586 ms 7862 ms 357 ms

CAT-CPUAMX is completely evaluated in the next section
together with the original GPU version and the other state-of-
the-art GPU methods.

7A second option was to only use 16 × 16 of the 16 × 64 elements, but
this was not faster than the super fragment of 64× 64 cells.

8AMX + AVX256 ran faster than AMX + AVX512.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 10

V. EXPERIMENTAL EVALUATION

A. Experimental Design

Experiments consist of measuring the time, speedup, power
and energy efficiency of CAT in both its GPU and CPU
versions, and other state of the art GPU implementations at
simulating cellular automata simulation of n × n cells with
neighborhood radius between 1 ≤ r ≤ 16. These CA are
initialized with a random uniform distribution of living cells,
with density δ that varies according to the radius, and periodic
boundary conditions.

1) Chosen CA tests: We chose instances of the Larger
Than Life (LTL) family of CA [32], [14], [4], [39], which
is the generalization of the well-known Game of Life (GoL)
to any neighborhood radius r with its own survival/birth rules.
The neighborhood type is Moore, and the rule sets have been
specified to produce complex phenomena for each value of r.
The standard notation for defining LTL instances of CA is

RrCcMmSs1..s2Bb1..b2Nn (20)

where

• Rr: Neighborhood radius r.
• Cc: Number of states (c) per cell.
• Mm: Include (m = 1) or not (m = 0) the center cell.
• Ss1..s2 : Survival range [s1..s2] for living cells.
• Bb1..b2 : Birth range [b1..b2] for dead cells.
• Nn: Moore (n = M ) or Von Neumann (n = N )

neighborhood.

The LTL instances used for the tests are presented in Table
VI, each one using a certain value of r and an initial density
δ of living cells. Some of these LTL instances are known in
the literature and cited, such as Bosco’s rule by Evans [40],
or Bugsmovie by Griffeath [32], among others. The other CA
instances in the table are custom variations made by our team,
with their birth and survival ranges adapted to the specific
value of r. It is worth clarifying that choosing one or another

TABLE VI
LARGER THAN LIFE INSTANCES FOR TESTING AT DIFFERENT r.

r LTL Instance δ Name
1 R1C2M0S2..3B3..3NM 0.07 Game of Life [20]
2 R2C2M0S7..12B8..11NM 0.15 Starry Night (custom)
3 R3C2M0S15..23B14..17NM 0.25 Boiling Gnocchi (custom)
4 R4C2M0S40..80B41..80NM 0.50 Majority [32]
5 R5C2M0S35..59B34..45NM 0.21 Bosco’s Rule [40]
6 R6C2M0S49..81B46..65NM 0.22 Radiation (custom)
7 R7C2M0S101..201B75..170NM 0.29 Waffles [41]
8 R8C2M0S163..223B74..252NM 0.23 Globe [41]
9 R9C2M0S108..181B100..140NM 0.24 Gravity (custom)
10 R10C2M0S122..211B123..170NM 0.25 Bugsmovie [32]
11 R11C2M0S156..265B147..205NM 0.24 Broken Ships (custom)
12 R12C2M0S170..296B170..240NM 0.25 Scaled GOL [32]
13 R13C2M0S213..364B203..283NM 0.25 The Cleansing (custom)
14 R14C2M0S245..420B234..326NM 0.25 Scaled Bugsmovie [32]
15 R15C2M0S170..296B170..240NM 0.28 Pretzels [32]
16 R16C2M0S170..296B170..300NM 0.26 Tangy Ramen (Custom)

LTL instance does not affect the performance of the GPU
approaches, as they are only affected by n and r.

TABLE VII
GPU APPROACHES SELECTED FOR EVALUATION

Approach Main idea and GPU implementation details

BASE

Baseline global memory approach.
• Implemented by our team.
• One cell (char) per thread in global memory.
• CUDA Block Size: Bx ×By = 32× 32 threads.
• Neighborhood radius: r ∈ [1..16].

SHARED

Classic Shared Memory approach [24].
• By Millan et al. [11] supporting r ∈ [1..5].
• Out-halo: sh-mem of (Bx + 2r)× (By + 2r) cells.
• One cell (char) per thread.
• CUDA Block Size: Bx ×By = 32× 32 threads.
• [us] Radius extended to r ∈ [1..16].

CAT
(proposed)

Proposed Tensor Core (TC) based approach.
• Implemented by our team.
• Neighborhood reduction through Tensor Core MMAs.
• Multiple TC fragments (FP16) per warp.
• Out-halo: adjacent fragments for boundary cells.
• Uses sh-mem for intermediate results.
• CUDA Block Size: Bx ×By = 16× 16 threads.
• Neighborhood radius: r ∈ [1..16].

CAT-CPUAMX
(proposed)

CPU Version of CAT.
• Implemented by our team.
• Same idea of CAT, but with CPU AMX Instructions.
• OMP (OpenMP) for doing AMX on each CPU core.
• Super-fragments of 64× 64 cells.
• Neighborhood radius: r ∈ [1..64].

COARSE

Alternative shared memory approach.
• Implemented by our team.
• Thread Coarsening [42] and (char) cells.
• Out-halo: sh-mem of (80 + 2r)× (80 + 2r) cells.
• Neighborhood radius: r ∈ [1..16].

MCELL

Multi-cell + shared memory approach.
• Original code by Millan et al. [11], supporting r ∈ [1..5].
• Two adjacent cells (char) per thread for register re-use.
• CUDA Block Size: Bx ×By = 16× 16 threads.
• [us] Out-halo: sh-mem of (2Bx + 2r)× (By + 2r) cells.
• [us] Improved memory access on two-cell neighborhood.
• [us] Radius extended to r ∈ [1..16].

PACK

Packet coding technique.
• Idea and code by Cagigas et al. [12] supporting r = 1.
• 64-bit words codified as eight char (8-bit) cells.
• No use of shared memory → faster in global memory.
• CUDA Block Size: Bx ×By = 16× 16 threads.
• [us] Radius extended to r ∈ [1..16].

2) Approaches Selected for Evaluation: Table VII lists
the GPU implementations that were selected for perfor-
mance evaluation, with their source codes available at
https://github.com/temporal-hpc/CAT.

BASE, CAT, CAT-CPUAMX and COARSE were imple-
mented by our team, using CUDA C/C++ for the GPU meth-
ods and gcc C/C++ with intrinsics for the CAT-CPUAMX code.
BASE is a GPU baseline and corresponds to a standard GPU
implementations of stencil computation [5] where each thread
simulates one cell reading its entire neighborhood directly
from global memory. COARSE is a shared memory approach
with an out-halo design that also includes thread coarsening
[42]. It uses a large shared memory tile of (80+2r)×(80+2r)
cells per block, and each thread simulates multiple cells with a
stride of the block size. CAT is the proposed method and CAT-
CPUAMX is the CPU version of CAT using AMX instructions.

SHARED, MCELL and PACK correspond to related works
that made their implementation available using CUDA C/C++
as well. We extended these implementations to support 1 ≤
r ≤ 16 and also optimized some of them. For SHARED,
the core logic of the technique was extended to r ∈ [1..16]
with the expected code changes towards radius generalization.
For MCELL the case was less straightforward, extending it

https://github.com/temporal-hpc/CAT


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 11

to r ∈ [1..16] required changing the design from in-halo to
out-halo in order to run efficient in the range of r, and also
required improving the memory access such that the two-cell
neighborhood is read once for each thread at any r. In the
case of PACK, the extension of Cagigas et al. implementation
[12] to r ∈ [1..16] followed their scheme but now considering
that when 8 < r ≤ 16 the horizontal neighbor cells are found
in the two consecutive 64-bit words to the left/right, and not
one as in the original case. It is worth mentioning that these
extended implementations run as fast, or faster than before
when executed using their original supported radiuses. More
details on the core idea of the last three approaches can be
found in Section II.

In terms of precision, CAT uses FP16 types for the neigh-
borhood reduction, as it is currently the most suitable type
offered by GPU tensor cores in which square fragments can
be defined (i.e., full INT32 MMAs are still not supported
in square shape). Still, converting the floating point reduction
into INT32 provided correct simulations throughout the range
1 ≤ r ≤ 16. The reason why this works is because FP16 has
a 10 bit mantissa, which corresponds to a precision of 10+1,
then 211 is the largest integer that can be precisely represented,
which is sufficient to store the maximum possible amount of
living neighbors with radius r = 16 (i.e. 33 × 33 − 1 cells).
In the case of CAT-CPUAMX the matrix multiplication uses
INT8 in the operands and INT32 in the results, matching the
precision requirements. For the rest of the approaches, they
employ INT32 precision for neighbor counting and char
precision for the cell state.

3) Performance measures: The performance measures are
time in milliseconds and speedup with respect to the BASE
approach. Each measure is taken as the average of multiple
realizations, varying n in the range n ∈ [1024, 60416]. For
the lower values of n we used up to 32 realizations while
for high n we used up to four. Each realization measures the
average running time for simulating the given LTL instance, at
a given n, for 25 time steps. These measuring settings ensured
averages with a standard error of 1% or less.

The energy measurements were done by running a large size
simulation of n × n = 60416 × 60416 cells and measuring
the instant GPU Power in Watts (W) as a time series for
1000 simulation steps, using the nvml library from Nvidia.
From these GPU power time series, the average total energy
per simulation step is obtained in Joules (J), and the average
energy efficiency per simulation step is obtained as Cells/J .

4) Testing Platform: Table VIII lists the testing platform.
As for software, we used CUDA 11.8, NVML 550.54.15 and

TABLE VIII
TESTING PLATFORM

Property Value
OS Linux Ubuntu 24.04 LTS
CPU 48-core Intel Xeon Platinum 8488C
RAM 251 GB RAM
GPU NVIDIA H100 SXM5 80GB HBM3

GCC 11.4, except for CAT-CPUAMX that used GCC 13.2.

B. Performance Results

Figure 8 presents the time and speedup of the selected ap-
proaches. The first row shows the average time per simulation
for radiuses r = 1, 4, 8, 16, while the second row shows the
speedups with respect to BASE. The results show that CAT
keep’s its running time constant as r increases while the other
approaches take more time to complete. This behavior makes
CAT’s speedup increase with r, starting as the second fastest
at r = 1 with a speedup of 1.3×, but becoming the fastest
one at r = 4, 8, 16 with speedups of 9×, 27×, and 101×
respectively. These results also agree with the cost model and
its theoretical speedups from Table II when the full GH100
chip was assumed. For the other approaches, one can observe
that their speedups cluster into three groups as r increases; the
first top group with just CAT, the second group with PACK
followed by MCELL, and the third group with COARSE
followed by SHARED. It is worth noting that PACK is the
fastest approach at r = 1 with ∼ 3× of speedup, which
translates to being 2.3× faster than CAT. On the other hand,
at r = 16 CAT is ∼ 14× faster than PACK. Another behavior
to note is that COARSE performs better than SHARED as
a shared memory based solution, and it avoids being slower
than the BASE at r = 1 as SHARED did, which is a known
issue of shared memory solutions in modern GPUs [26], [27].
This difference between COARSE and SHARED has less of an
impact at higher r, where both are much closer in performance.
For CAT-CPUAMX, it is worth noticing that it behaves just like
CAT but at a slower level of performance. Still, at r = 16 it is
up to 3.4× faster than BASE, and even outperforms COARSE
and SHARED.

More details are given in Figure 9, which shows the
performance impact from increasing the neighborhood radius
r, given a large CA of n × n = 60416 × 60416 cells. The
plots show that r = 3 is the crossover point where CAT
surpasses PACK and becomes the fastest approach for the
remaining range of r. Coincidentally, it is also the crossover
zone where MCELL surpasses COARSE, and where SHARED
surpasses BASE. Another behavior to note is that CAT’s
speedup increases with r being up to two orders of magnitude
faster than BASE, whereas the other approaches converge at
specific values, with PACK being the second fastest approach
reaching near 7× of speedup. In the case of CAT-CPUAMX,
it has a crossover point of r = 8 where it is faster than
BASE, and near r = 14 it becomes faster than SHARED
and COARSE.

C. Energy Efficiency

Figure 10 presents the power consumption and energy
efficiency of all approaches, for radiuses r = 1, 4, 8, 16. For
the power consumption plots, CAT’s energetic behavior is a
short high-power curve that peaks near 700W which is the
TDP of the H100 GPU. At r = 1, CAT’s energy efficiency
is in the same range as the other approaches, except for
PACK, which is much more energy efficient by a great margin.
This can be explained by the bit-level logic of PACK, which
is highly efficient. However, as r increases, CAT’s power
consumption curve remains roughly the same, while the other



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 12

0 1 2 3 4 5 6
n 1e4

10 2
10 1
100
101
102
103
104

Ti
m

e 
(m

s)
CA step time, r = 1
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

0 1 2 3 4 5 6
n 1e4

10 2
10 1
100
101
102
103
104

Ti
m

e 
(m

s)

CA step time, r = 4
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

0 1 2 3 4 5 6
n 1e4

10 2
10 1
100
101
102
103
104

Ti
m

e 
(m

s)

CA step time, r = 8
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

0 1 2 3 4 5 6
n 1e4

10 2
10 1
100
101
102
103
104

Ti
m

e 
(m

s)

CA step time, r = 16
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

0 1 2 3 4 5 6
n 1e4

10 1

100

101

102

Sp
ee

du
p

Speedup over BASE, r = 1
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

1.3x

0.05x
0 1 2 3 4 5 6

n 1e4

100

101

102

Sp
ee

du
p

Speedup over BASE, r = 4
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

9.0x

0.3x
0 1 2 3 4 5 6

n 1e4

100

101

102

Sp
ee

du
p

Speedup over BASE, r = 8
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

27x

0.9x
0 1 2 3 4 5 6

n 1e4

100

101

102

Sp
ee

du
p

Speedup over BASE, r = 16
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

101x

3.4x

Fig. 8. Time and Speedup for all approaches at different values of neighborhood r.

0 2 4 6 8 10 12 14 16
r

101

102

103

104

Ti
m

e 
(m

s)

CA step time, n = 60416
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

0 2 4 6 8 10 12 14 16
r

10 1

100

101

102

103

Sp
ee

du
p

Speedup over BASE, n = 60416
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

Fig. 9. Impact of the neighborhood radius r in the time and speedup of all
approaches for a large CA of n× n = 60416× 60416 cells.

approaches sustain their consumption for longer, thus using
more energy. This difference is most noticeable at r = 16,
where CAT can be up to 6.45× more energy efficient than the
second best, and an order of magnitude more efficient than
the rest. For the other approaches, their power curves tend
to transform from pulse-like shapes to plateau-like ones. In
the case of CAT-CPUAMX, its behavior is a low-power curve
with high total energy but constant with r. This makes it a
competitive approach at high radius such as r = 16.

Figure 11 shows more in detail how increasing r affects the
total energy used and energy efficiency of each approach. The
total energy of CAT remains almost unchanged throughout
the range of r, while the other approaches use more energy
with higher r. In terms of energy efficiency (cells per Joule),
r = [4..5] is the crossover zone where CAT’s surpass PACK
and become the most energy efficient approach. Below this
value, PACK is the most energy efficient one. As for the
other approaches, in general, they are more energy efficient
than BASE, although their differences are smaller at high r.
For CAT-CPUAMX, it shows a constant energy consumption
just as CAT for GPU, but at one order of magnitude higher.
For this CPU version two crossover points can be identified
along r, one at r = 6, where it becomes more energy efficient
than BASE, and another near r = 14, where it becomes more
energy efficient than SHARED and COARSE.

D. Scaling with GPU Generations

The first generation of tensor cores was introduced back
in 2017 with NVIDIA’s V100 GPU, which had the Volta
architecture. Since then, different tensor core generations were
released, with improved performance and features. The second
generation of tensor cores was introduced in 2018 with the
Turing architecture, focused on videogames (e.g., the TITAN
RTX GPU) with no data-center variant. The third generation
was released in 2020 with the Ampere architecture (e.g.,
the A100 GPU), and the fourth generation in 2022 with
the Hopper architecture (e.g., the H100 GPU). Many other
aspects also got improved on each generational jump, such
as the number of traditional cores (FP32/INT32 units),
memory capacity, memory bandwidth, among others. These
improvements make both classical and tensor core based GPU
implementations automatically scale their performance by just
using newer hardware. The scaling factors provided by the last
GPU architectures can give key insights on what performance
future GPU architectures could bring to CAT in comparison
to the other approaches.

Figure 12 presents the scaling factors of CAT and all other
approaches, relative to their performance on a Volta V100
GPU. Overall, CAT shows the highest scaling factors across
GPU architectures, specially when switching from the A100
to the H100 where it achieves a scaling of near 3.3× in all
cases. This jump in performance is in agreement with the 2-
year technological improvement that the H100 GPU provides
in comparison to the A100. A particular behavior is noted
at r = 1 where SHARED exhibits the highest scaling when
jumping from the V100 to the A100. But in general, the
transition from Ampere to Hopper is the one that provides the
highest jump, and tensor core performance has been scaling
at a higher rate than regular GPU compute. It is very likely
that this scaling trend could continue given the importance of
AI these days, favoring CAT with a scaling rate that is higher
than traditional GPU approaches.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 13

100 101 102 103 104 105

Time (ms)
0

100
200
300
400
500
600
700

Po
we

r (
W

)
Power consumption, n = 60416, r = 1

BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

100 101 102 103 104 105

Time (ms)
0

100
200
300
400
500
600
700

Po
we

r (
W

)

Power consumption, n = 60416, r = 4
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

100 101 102 103 104 105

Time (ms)
0

100
200
300
400
500
600
700

Po
we

r (
W

)

Power consumption, n = 60416, r = 8
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

100 101 102 103 104 105

Time (ms)
0

100
200
300
400
500
600
700

Po
we

r (
W

)

Power consumption, n = 60416, r = 16
BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

BASE
SHAREDCAT

COARSE
MCELL

PACK

CAT-CPUAMX
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Cells
J

1e9

4.5e8 4.4e8 4.6e8 5.3e8 5.2e8

1.3e9

3.0e7

Energy efficiency, n = 60416, r = 1

BASE
SHAREDCAT

COARSE
MCELL

PACK

CAT-CPUAMX
0

1

2

3

4

Cells
J

1e8

8.9e7

1.9e8

4.4e8

2.3e8
2.7e8

4.6e8

2.9e7

Energy efficiency, n = 60416, r = 4

BASE
SHAREDCAT

COARSE
MCELL

PACK

CAT-CPUAMX
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Cells
J

1e8

2.5e7
7.3e7

4.2e8

8.2e7
1.1e8

2.0e8

2.9e7

Energy efficiency, n = 60416, r = 8

BASE
SHAREDCAT

COARSE
MCELL

PACK

CAT-CPUAMX
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Cells
J

1e8

6.7e6 2.3e7

4.3e8

2.4e7 3.9e7
6.6e7

2.9e7

Energy efficiency, n = 60416, r = 16

Fig. 10. Power time series and energy efficiency for all approaches at different values of neighborhood r.

0 2 4 6 8 10 12 14 16
r

101

102

103

104

En
er

gy
 (J

)

Total energy, n = 60416

BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

0 2 4 6 8 10 12 14 16
r

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Cells
J

1e9
Energy Efficency, n = 60416

BASE
SHARED
CAT
COARSE
MCELL
PACK
CAT-CPUAMX

Fig. 11. Impact of the neighborhood radius r in the total energy and energy
efficiency for a large CA of n× n = 60416× 60416 cells.

VI. DISCUSSION AND CONCLUSIONS

This work presented CAT (Cellular Automata on Tensor
Cores), a GPU approach that uses tensor cores to accelerate
the simulation of cellular automata (CA) at large neighborhood
radius. Because of its design based on computing the neigh-
borhood reduction via Matrix Multiply Accumulate (MMA)
operations, CAT’s performance is unaffected by the increase
in neighborhood radius in the range 1 ≤ r ≤ 16, while other
state-of-the-art approaches do increase their work (hence time)
as r increases. CAT can be employed on any CA model where
the cell transition function acts over a weighted summation of
its neighbors, such as the life-like CA models.

Experiments using the Larger Than Life (LTL) family of
Cellular Automata (CA) as case studies showed that CAT is
the fastest approach of all in the range 3 ≤ r ≤ 16; reaching
up to 101× of speedup over a traditional baseline approach
and up to ∼ 14× faster than the fastest state-of-the-art GPU
method (PACK). For the low range 1 ≤ r ≤ 2, CAT is still
not the fastest approach, but it is still competitive, being only
behind the GPU packet coding approach (PACK) which is
efficient at low neighborhood radius. In terms of energy usage
and efficiency, CAT is the most energy-efficient approach in
the range 5 ≤ r ≤ 16; up to 6.45× more efficient than the
second most efficient approach (PACK), and up to an order of
magnitude more efficient than the rest.

In terms of performance scaling across GPU architectures,
the last two tensor core generations (Ampere and Hopper)
have provided significant scaling factors to CAT, which are
much higher than the ones observed for the other approaches.
Assuming that least part of this trend continues in the future
because of AI, supported by the fact that AI is driving the
evolution of GPUs towards more tensor core performance,
then CAT becomes a promising approach for upcoming GPU
architectures.

We also implemented a CPU version of CAT, named CAT-
CPUAMX, which uses recently introduced AMX instructions
that accelerate matrix multiplication on the CPU in a very sim-
ilar way as how GPU tensor cores work. The results showed
that although CAT-CPUAMX is not as fast as its GPU version,
it is still highly competitive and can outperform some GPU
approaches in a large neighborhood radius. Furthermore, the
performance of AMX instructions is progressively improving
on each CPU generation, thus it will become an even more
attractive resource in the future years.

As for future work, CAT can be further improved and
extended in several aspects. For instance, caching the tiles
of Λ into shared memory should make CAT run even faster;
a preliminary version was attempted but reported slower
performance than the actual version of CAT. Further research
and experimentation is required to reach a proper caching
scheme of the Λ tile. Another technical improvement for CAT
is to support more neighborhood types; currently CAT’s design
supports Moore and Simplified Von Neumann neighborhoods.
A third neighborhood that is often required is the original Von
Neumann neighborhood, which has a diamond shape. Support-
ing this neighborhood would require redefining the nonzero
entries of the band matrices to capture the diamond-shaped
neighborhood, as well as verifying if the transition from step 1
to step 2 of MMAs should accumulate or multiply the previous
result. A third technical improvement is to take advantage of
the low precision types currently supported by tensor cores,
such as INT8 which is faster than the FP16 types currently
used, or the experimental types BIT,INT4, which are even



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 14

V100
(Volta)

A100
(Ampere)

H100
(Hopper)

GPU

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sc
al

in
g 

Fa
ct

or
Scaling Across GPU architectures

r = 1, n=40960
BASE
SHARED
CAT
COARSE
MCELL
PACK

V100
(Volta)

A100
(Ampere)

H100
(Hopper)

GPU

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sc
al

in
g 

Fa
ct

or

Scaling Across GPU architectures
r = 4, n=40960

BASE
SHARED
CAT
COARSE
MCELL
PACK

V100
(Volta)

A100
(Ampere)

H100
(Hopper)

GPU

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sc
al

in
g 

Fa
ct

or

Scaling Across GPU architectures
r = 8, n=40960

BASE
SHARED
CAT
COARSE
MCELL
PACK

V100
(Volta)

A100
(Ampere)

H100
(Hopper)

GPU

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sc
al

in
g 

Fa
ct

or

Scaling Across GPU architectures
r = 16, n=40960

BASE
SHARED
CAT
COARSE
MCELL
PACK

Fig. 12. Scaling factors of CAT and all other approaches with respect to their performance on the Volta V100.

faster. Some of these types are only supported by rectangular
shaped fragments, but the square shaped requirement can still
be accomplished by stacking several of these fragments until
a major square region is built again. Currently, what penalizes
this last idea is the need of converting all INT32 results back
again into low precision types in between the two major steps
of CAT. Finding a faster way of re-using the resulting INT32
fragment back as a product operand for another MMA could
indeed accelerate CAT significantly.

CAT’s neighborhood radius range can be extended beyond
1 ≤ r ≤ 16; it only requires to expand the main idea
presented in Figure 4 to consider the next closest fragments at
each reduction direction, i.e., Fi±2,j±2. This expansion implies
having six band fragments π1, π2, . . . , π6 instead of three,
as well as to widen the global halo in one more fragment.
All of these changes would make CAT support neighborhood
radiuses in the range 1 ≤ r ≤ 32. In general, successive
applications of this expansion would make CAT increase its
supported radius range by +16. Each new expansion would
put CAT’s running time at a higher plateau of running time,
but would remain constant for that new supported range. The
challenge however is that FP16 may not be precise enough
to store the maximum amount of neighbors for such large
radiuses. Possible solutions could be to normalize the range
of values, which would push the limitation to appear in a larger
r, or a more fundamental solution is that future GPUs could
support full INT32 MMAs.

Lastly, exploring the 3D extension of CAT is a natural
extension to continue research. The challenge would be to
find ways to represent 3D reductions with tensor cores that
operate on 2D MMAs. Reusing the main idea of CAT, now
by layers is feasible, but other new approaches could also be
explored and tested, especially given that generic arithmetic
reductions are known to run efficiently on tensor cores [43],
opening the possibility of reducing entire volumes of cells with
a few MMAs.

To conclude, this work has shown that tensor cores can
indeed accelerate non-AI applications such as the simulation of
cellular automata, and not only GPU tensor cores, but also the
recently introduced CPU AMX instructions which for practical
purposes can be thought of as the CPU tensor cores. CAT, both
in GPU or CPU, can be of great interest for research teams
that need to study complex phenomena that emerge from CA
with a large neighborhood radius.

ACKNOWLEDGMENT

This work was supported by the ANID FONDECYT
grants #1221357, #1241596, the Temporal research lab, and
the Patagón Supercomputer of Austral University of Chile
(FONDEQUIP EQM180042). The authors thank Roberto
Melita, who brought rich ideas and discussions in the early
stages of this investigation.

REFERENCES

[1] E. F. Codd, Cellular automata. Academic press, 2014.
[2] A. Adamatzky, Game of life cellular automata. Springer, 2010, vol. 1.
[3] C. G. Langton, “Studying artificial life with cellular automata,” Physica

D: Nonlinear Phenomena, vol. 22, no. 1-3, pp. 120–149, 1986.
[4] K. M. Evans, “Larger than life: Digital creatures in a family of two-

dimensional cellular automata,” Discrete Mathematics & Theoretical
Computer Science, no. Proceedings, 2001.

[5] D. D’Ambrosio, G. Filippone, R. Rongo, W. Spataro, and G. A. Trunfio,
“Cellular automata and gpgpu: an application to lava flow model-
ing,” International Journal of Grid and High Performance Computing
(IJGHPC), vol. 4, no. 3, pp. 30–47, 2012.

[6] P. Hogeweg, “Cellular automata as a paradigm for ecological modeling,”
Applied mathematics and computation, vol. 27, no. 1, pp. 81–100, 1988.

[7] M. Batty, H. Couclelis, and M. Eichen, “Urban systems as cellular
automata,” pp. 159–164, 1997.

[8] M. J. Gibson, E. C. Keedwell, and D. A. Savić, “An investigation of
the efficient implementation of cellular automata on multi-core cpu and
gpu hardware,” Journal of Parallel and Distributed Computing, vol. 77,
pp. 11–25, 2015.

[9] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on gpu architectures,” in Pro-
ceedings of the 26th ACM international conference on Supercomputing,
2012, pp. 311–320.

[10] Y. Zhang, J. Zhou, Y. Yin, X. Shen, and X. Ji, “Multi-gpu implementa-
tion of a cellular automaton model for dendritic growth of binary alloy,”
Journal of Materials Research and Technology, vol. 14, pp. 1862–1872,
2021.

[11] E. N. Millán, N. Wolovick, M. F. Piccoli, C. G. Garino, and E. M.
Bringa, “Performance analysis and comparison of cellular automata gpu
implementations,” Cluster Computing, vol. 20, no. 3, pp. 2763–2777,
2017.

[12] D. Cagigas-Muñiz, F. Diaz-del Rio, J. L. Sevillano-Ramos, and J.-L.
Guisado-Lizar, “Efficient simulation execution of cellular automata on
gpu,” Simulation Modelling Practice and Theory, vol. 118, p. 102519,
2022.

[13] T. Fujita, D. Nishikori, K. Nakano, and Y. Ito, “Efficient gpu imple-
mentations for the conway’s game of life,” in 2015 Third International
Symposium on Computing and Networking (CANDAR). IEEE, 2015,
pp. 11–20.

[14] K. M. Evans, Larger than Life: It’s so nonlinear. The University of
Wisconsin-Madison, 1996.

[15] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,” in
2018 IEEE international parallel and distributed processing symposium
workshops (IPDPSW). IEEE, 2018, pp. 522–531.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, APRIL 2024 15

[16] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro
et al., “Efficient large-scale language model training on gpu clusters
using megatron-lm,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1–15.

[17] X. Wang, Y. Wei, Y. Xiong, G. Huang, X. Qian, Y. Ding, M. Wang, and
L. Li, “Lightseq2: Accelerated training for transformer-based models
on gpus,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2022, pp. 1–
14.

[18] S. Rybacki, J. Himmelspach, and A. M. Uhrmacher, “Experiments with
single core, multi-core, and gpu based computation of cellular automata,”
in 2009 first international conference on advances in system simulation.
IEEE, 2009, pp. 62–67.

[19] G. Oxman, S. Weiss, and Y. Be’ery, “Computational methods for
conway’s game of life cellular automaton,” Journal of Computational
Science, vol. 5, no. 1, pp. 24–31, 2014.

[20] M. Gardner, “The fantastic combinations of jhon conway’s new solitaire
game’life,” Sc. Am., vol. 223, pp. 20–123, 1970.

[21] L. Zhang, M. Wahib, P. Chen, J. Meng, X. Wang, T. Endo, and
S. Matsuoka, “Revisiting temporal blocking stencil optimizations,” in
Proceedings of the 37th International Conference on Supercomputing,
2023, pp. 251–263.

[22] J. Balasalle, M. A. Lopez, and M. J. Rutherford, “Optimizing memory
access patterns for cellular automata on gpus,” in GPU Computing Gems
Jade Edition. Elsevier, 2012, pp. 67–75.

[23] J. Tran, D. Jordan, and D. Luebke, “New challenges for cellular automata
simulation on the gpu,” SIGGRAPH, Los Angeles. ACM. Poster, 2004.

[24] P. Topa and P. Młocek, “Using shared memory as a cache in high per-
formance cellular automata water flow simulations,” Computer Science,
vol. 14, no. 3, pp. 385–385, 2013.

[25] P. Topa, “Cellular automata model tuned for efficient computation on
gpu with global memory cache,” in 2014 22nd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing.
IEEE, 2014, pp. 380–383.

[26] A. Schäfer and D. Fey, “High performance stencil code algorithms for
gpgpus,” Procedia Computer Science, vol. 4, pp. 2027–2036, 2011.

[27] P. Renc, T. Pęcak, A. De Rango, W. Spataro, G. Mendicino, and J. Wąs,
“Towards efficient gpgpu cellular automata model implementation using
persistent active cells,” Journal of Computational Science, vol. 59, p.
101538, 2022.

[28] K. Matsumura, H. R. Zohouri, M. Wahib, T. Endo, and S. Matsuoka,
“An5d: automated stencil framework for high-degree temporal blocking
on gpus,” in Proceedings of the 18th ACM/IEEE International Sympo-
sium on Code Generation and Optimization, 2020, pp. 199–211.

[29] H. Zhuang, X. Liu, X. Liang, Y. Yan, J. He, Y. Cai, C. Wu, X. Zhang,
and H. Zhang, “Tensor-ca: A high-performance cellular automata model
for land use simulation based on vectorization and gpu,” Transactions
in GIS, vol. 26, no. 2, pp. 755–778, 2022.

[30] X. Liu, Y. Liu, H. Yang, J. Liao, M. Li, Z. Luan, and D. Qian,
“Toward accelerated stencil computation by adapting tensor core unit
on gpu,” in Proceedings of the 36th ACM International Conference on
Supercomputing, 2022, pp. 1–12.

[31] Y. Chen, K. Li, Y. Wang, D. Bai, L. Wang, L. Ma, L. Yuan, Y. Zhang,
T. Cao, and M. Yang, “Convstencil: Transform stencil computation to
matrix multiplication on tensor cores,” in Proceedings of the 29th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 333–347.

[32] D. Griffeath, “Self-organization of random cellular automata: four
snapshots,” Probability and phase transition, pp. 49–67, 1994.

[33] N. Corporation, “Nvidia deep learning performance,” https://docs.
nvidia.com/deeplearning/performance/dl-performance-convolutional/
index.html, accessed: 2024-11-9.

[34] J. Choi, H. Kwon, W. Lee, J. Choi, and J. Lim, “Learning from distinc-
tive candidates to optimize reduced-precision convolution program on
tensor cores,” arXiv preprint arXiv:2202.06819, 2022.

[35] R. M. Karp, A survey of parallel algorithms for shared-memory ma-
chines. University of California at Berkeley, 1988.

[36] NVIDIA, “Nvidia h100 tensor core gpu architecture,” NVIDIA,
May, 2024. [Online]. Available: https://resources.nvidia.com/
en-us-tensor-core/gtc22-whitepaper-hopper

[37] I. Corporation, “Accelerate artificial intelligence work-
loads with intel® advanced matrix extensions,”
https://www.intel.com/content/www/us/en/content-details/785250,
accessed: 2024-11-2.

[38] H. Kim, G. Ye, N. Wang, A. Yazdanbakhsh, and N. S. Kim, “Exploiting
intel® advanced matrix extensions (amx) for large language model
inference,” IEEE Computer Architecture Letters, 2024.

[39] C. T. Bekaroglu, “Analyzing dynamics of larger than life: Impacts of
rule parameters on the evolution of a bug’s geometry,” Ph.D. dissertation,
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE, 2023.

[40] K. M. Evans, “Is bosco’s rule universal?” in Machines, Computations,
and Universality: 4th International Conference, MCU 2004, Saint Pe-
tersburg, Russia, September 21-24, 2004, Revised Selected Papers 4.
Springer, 2005, pp. 188–199.

[41] M. Wojtowicz, “Larger than life family, cellular automata rules lexicon,”
http://www.mirekw.com/ca/rullex_lgtl.html, accessed: 2024-05-14.

[42] A. Magni, C. Dubach, and M. F. P. O’Boyle, “A large-scale cross-
architecture evaluation of thread-coarsening,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13. New York, NY, USA: Association
for Computing Machinery, 2013.

[43] C. A. Navarro, R. Carrasco, R. J. Barrientos, J. A. Riquelme, and
R. Vega, “Gpu tensor cores for fast arithmetic reductions,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
72–84, 2020.

Cristóbal A. Navarro has a Ph.D. degree in com-
puter science from the University of Chile (2015).
Currently, he is an associate professor at the Uni-
versidad Austral de Chile and leads the Temporal
research lab as well as the Patagón Supercomputer
project. Today, his research interests include GPU
computing, computer graphics, and computational
physics.

Felipe A. Quezada has Bsc and Msc degrees in
computer science with a focus on HPC and data
science, both at Universidad Austral de Chile. He
is currently working as a researcher in the Temporal
Group led by Dr. Cristóbal A. Navarro and as an
HPC engineer at the Patagón Supercomputer project.
His interests are mainly focused on HPC, machine
learning, and computer graphics.

Enzo Meneses holds Bsc and Msc degrees in com-
puter science at the Universidad Austral de Chile.
Currently he is a researcher of the Temporal group
led by Dr. Cristóbal A. Navarro, where new GPU
techniques are developed. His interests are mainly
parallel algorithms and data structures, and lately the
use of RT Cores beyond ray tracing.

Héctor Ferrada received his Ph.D. degree in Com-
puter Science from the University of Chile in 2016,
focusing on his research in the design and analysis
of algorithms for compact data structures. In 2016-
2017, he conducted postdoctoral research in the
Genome Scaling Algorithms Group at the Univer-
sity of Helsinki, Finland, in collaboration with Dr.
Veli Mäkinen. Currently, he mainly teaches courses
related to his research interests in algorithms and
data structures.

Nancy Hitschfeld received a PhD in Applied Sci-
ences from the ETH-Zurich in 1993. Currently, she
works as full professor at the Computer Science De-
partment, University of Chile. Her research interests
include geometric modeling, polygon and polyhedral
meshes, and parallel algorithms, for problem solving
in computational science and engineering applica-
tions.

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://www.intel.com/content/www/us/en/content-details/785250/accelerate-artificial-intelligence-ai-workloads-with-intel-advanced-matrix-extensions-intel-amx.html
http://www.mirekw.com/ca/rullex_lgtl.html

