
1

E-Breaker: Flexible, Distributed Environment for Collaborative Authoring

Nelson Baloian
1
 Francisco Claude

1
, Roberto Konow

2
, Gustavo Zurita

3

1
Computer Science Department – Universidad de Chile, Blanco Encalada 2120, Santiago, Chile

{nbaloian, fclaude,skreft,pevalenz}@dcc.uchile.cl
2

Computer Science Department Universidad Diego Portales

rkonowkr@gmail.com

Abstract

This paper presents a system called E-Breaker for

supporting small and medium size group authoring of

any kind of documents following a regular structure.

The system supports a decentralized model of

development, thus not requiring a central repository. A

set of rules for content ownership maintains the

synchronization of the work among all members of the

developing team which can work on - or offline. It

allows fine-grained locking of documents’ content.

Keywords: CSCW, Collaborative Design, Internet.

1. Introduction
In the last years, the traditional working style of people

depending on computing resources to do their work has

dramatically changed due to the influence of the recent

development of mobile computing devices and wireless

networks. The concept of “workstation” is being less

used and today it is common to find people working

anywhere, anytime not necessarily attached to a specific

location or time of the day. This working style has been

named as “nomadic computing” by some authors and

according to [1] the future of the personal computing is

on cellphone-like computing devices. According to [2]

the number of people working out of an office has

grown by 35% since the year 2000. In the past, it was

common that the working computer would be fixed at

the working place like the office, and working teams

would meet on a regular basis in that working place.

This facilitated the use of central repositories to support

the collaborative work synchronization since they will

have access to it. Nowadays people do not work

creating documents and/or programs on a computer

attached to a certain physical place. Consequently,

meetings for coordinating work frequently do not take

place in a pre-determined place, nor at pre-determined

time. .A diferencia de la realidad de hoy, las personas

(people) estan dispersadas en una gran area geografica,

donde las reuniones es algo dificil de organizar, ya que

existen varios factores tales como incompatibilidad de

horarios y disponibilidad de tiempo que complican la

realizacion de estas. Creemos que es necesario utilizar

las tecnologias actuales disponibles tanto de

dispositivos moviles como de telecomunicaciones para

soportar el trabajo colaborativo en este escenario.

 Dentro de este contexto, el desarrollo de entornos

colaborativos para soportar editores de textos

distribuidos ha sido varias veces atacada por autores en

el pasado [5]. Por ejemplo , en [3] muestra una

sincronizacion en tiempo real, utilizando una red P2P,

en [4] se describe un sistema de trabajo colaborativo

utilizando un repositorio central. Creemos que existen

varias razones para pensar que todavia hay espacio para

continuar con el desarrollo de aplicaciones que soporten

el trabajo colaborativo en ambientes nomadicos. Para

demostrar mas concretamente el escenario propuesto

tomemos el siguiente ejemplo de tres o cuatro

'researchers' que se encuentran discutiendo sobre un

paper en el cual estan trabajando. Ellos abren sus

laptops y comienzan a crear la estructura basica

(outline) del documento, en donde escriben brevemente

algo de contenido o comentarios asociados a cada

segmento del documento. Una red inalambrica puede

estar disponible, permitiendoles trabajar de forma

sincrona, en otro caso, pueden trabajar enviando el

documento por email o a trevez de pen drives.

Posteriomente deciden trabajar en forma separada,

asignando trabajos y responsabilidades. Todos o

algunos de los miembros quizas se reunan denuevo,

nuevos miembros que entren en el proyecto tendran que

'mergear' su trabajo. The same Ellos estarian muy

contentos de tener una herramienta que coordine su

trabajo con los siguientes requerimientos.

Work on a peer-to-peer architecture without having

a central repository. As we want to support people

who may start a new development without previous

preparation, a central repository may not be always

available for all members at that moment. Because of

this, every member of the developing group should have

a copy of the project, as updated as possible, even when

working alone.

Allow synchronous and asynchronous collaborative

working. Of course the system should support the

synchronous collaboration work when two or more

users are on line, providing adequate tools. But it

should also allow synchronizing the work with other

participants which are offline in the best possible way,

mailto:nbaloian@dcc.uchile.cl

2

and provide mechanisms for merging the code

developed off line.

Allow the inclusion of new unforeseen participants.

Because the system is aimed to support flexible and

changing teams, there should be a way to include

unforeseen participants and assign them tasks.

However, the system should avoid an uncontrolled

explosion of participants and maintain a certain order in

the versioning of the code.

Allow fine grained locking of a document. In a less

formal and flexible working team everyone may have

access to the working documents and be able to modify

them. However, to synchronize the documents copies of

all participants in a full peer to peer environment, where

there is no central repository may be a complex task, if

we do not want to introduce too restrictive rules about

who has the lock of a document. is a complex task. in a

fully distributed environment where there is no central

server. Una buena solucion, es que el sistema permita el

bloqueo de segmentos dentro del documento. Para esto

el documento debe estar estructurado en secciones,

subsecciones, abstract, titulo, etc. El sistema debe ser

capaz ademas de permitir el bloqueo de partes del

documento que aun no hayan sido escritas.

Ser independiente del tipo de documento y del editor

que se este utilizando. Creemos firmemente que el

editor de texto debe ser independiente del sistema. Esto

quiere decir, que si existen miembros que usen LaTeX

mientras que otros usen OpenOffice para escribir los

documentos, deben poder sincronizar su trabajo,

siempre y cuando el documento tenga una estructura

predefinida y este sujeto a ciertas restricciones.

Some authors have already pointed out to the necessity

of not having a centralized repository to coordinate the

work of a software developing team [5], while others

also have stressed the necessity of having a fine

grained, logical oriented locking of the code [6]. These

requirements can also be applied to the collaborative

authoring of any document which has a certain

structure. The decentralized model is certainly the most

flexible and suitable model for these requirements

 However, there is still no system which meets all

the requirements mentioned. Developing such a system

represents a challenge of high complexity, in the design

and in its implementation. In this work we will present

a system called E-Breaker for supporting small and

medium size software development based on an

extreme programming principle, meeting the

requirements mentioned above.

2. State of the art

Back in the late 80'and early 90's when the Internet was

rapidly expanding, there was a great interest in the

distributed systems. It was then predicted that such

systems will be the dominant technology for the

synchronous collaborative work in the future [7].We

can nowadays confirm those predictions and add that

these system have also deeply influenced the working

style in all fields, Of course, computer system

programming being was one of the first, and many

systems have been developed since very early. We can

classify those systems in two categories according to

the aspect they stress with their support.

2.1 Versioning management systems

In the 1990's perhaps the most used tool for

collaborative work synchronization was created, CVS,

[3] initiating a wave of development of tools supporting

Version Management. CVS problems are well known

[8]: it uses a centralized model, a central data repository

and only few operations or commands which can be

executed offline. This makes this structure really

unsuitable for synchronous collaborative programming

development. All developers need access to the central

server for almost all operations. Today, there is a whole

family of CVS-like tools: GNU-Arch, Subversion,

CSSC, PVCS, etc. These applications are frequently

used in the Open Source community and also in large

business environments. All of them follow the same

schema: one central repository, and file-level

permissions. (Check in, Check out). These tools are

used for Version Management in mid to large software

development projects with many programmers

involved.

2.2 Collaborative development environments

One of the first approaches to the implementation of

collaborative development environments is the Orwell

system [9]. This system allows the Smalltalk

programmers to develop programs using a common

library. An interesting aspect of this system is that it

organizes the developing system code in methods and

classes instead of files, thus using a more logical

approach to present the code. Another Collaborative

Environment that follow the same idea of the Orwell

system is Tukan [10].This synchronous distributed team

programming environment for Smalltalk claims to solve

the problems that Extreme Programming teams have.

Tukan incorporates a version management system and

adds awareness information, communication channels

and synchronous collaboration mechanisms. It also

provides a shared code repository with a distributed

version management and the code integration can be

made in a centralized or decentralized way. The IBM

Rational ClearCase System [11] provides real time

support for collaboration between developers located

anywhere on the Internet. It uses a central server, that

manages users permissions and differences between the

source code versions. The server has also support for

multiple repository server deployments for large-scale

enterprise teams.

 Another tool to which supports the collaborative

editing of source code is the Collab add-on for the

Netbeans 5.0 [12]. This add-on allows the NetBeans

3

users to edit files collaboratively, share files and

provides space to communicate with other

3. E-breaker: Organization, Roles and

Ownership

In order to allow the synchronization of the code being

developed among the members of the group in an

asynchronous scenario, E-Breaker imposes that any

existing piece of document in any of the participants'

computer should be “owned” by someone. A E-

Breaker collaborative document development project

starts with one person defining the project an others

joining it. Each new member including the one who

created the project has to register an e-mail address and

receives a digital signature. All members can develop

new code which is owned by him/her. Other members

will receive the document’s source and can use, modify,

and even share it with others, but the only “official”

version can be distributed or approved by the owner. In

this way, there will be always a “current final version”

of the entire document which will be the sum of all the

code pieces each participant owns. In order to allow

users to delegate their work, they can pass the

ownership of the code among each other. Figure 1 and

Figure 2 show an example how ownership of the

document source may develop during a project

involving three collaborators.

3.1 Rules for document source ownership

In order to allow the synchronization of the code being

developed among the members of the group in an

asynchronous scenario E-Breaker imposes that any

existing code in any of the participants' computer

should be “owned” by someone. A E-Breaker

document development project starts with one person

defining the project an others joining it. Each new

member including the one who created the project has

to register an e-mail address and receives a digital

signature. All members can develop new code which is

owned by him/her. Other members will receive the code

and can use, modify, and even share it with others, but

the only “official” version can be distributed or

approved by the owner. In this way, there will be

always a final version of the entire software which will

be the sum of the code pieces each participant owes. In

order to allow users to delegate their work, users can

pass the ownership of the code among each other.

Figure 1 and Figure 2 show an example how ownership

of code may develop during a project involving three

programmers.

3.2 Exceptions to the Rules

It is important to maintain the rights of the owner of the

code and the order of the project itself in order to avoid

an uncontrolled explosion of versions. It is also known

that in many projects it is sometimes impossible to

maintain and respect every rule because of the

emergence of unforeseen situations, so an alternative

should exist for bypassing the rules in exceptional

cases. For example, it could happen that a certain user

cannot work on the project anymore and that he is not

reachable to ask him to delegate the work to other users.

In this case there are two mechanisms that can be

applied and the two coexist giving more flexibility to

the system. The first one is that a user can ask the rest

of the team to approve or reject by voting a petition for

becoming the owner of a certain code piece that is

owned by a third member of the team and/or to force

the acceptance of a given modification.

Figure 1: Colors show ownership of the code: blue for

user A, green for user B and yellow for user C.. In the

first row, A and B start a new project writing both a

part of the code. In the second, they merge their works

and keep the ownership. In the third row, C joins the

project and A grants ownership rights to part of the

code.

Figure 2: User C works on the part of the owner code

and distributes it to A and B with the new code included

3.3 Logical locking

As we already said, the entities of the code which can

be owned are logical more than physical one. Logical

entities which can be locked are organized according to

the hierarchical organization of the document. For

example, the locking is done over a name of a class or

interface, a method inside a class if the document

contains a program. Apart from this, it also incorporates

the option of separating part of the code inside a

function in order to be locked. Every part of the code is

assigned to a user and it appears locked for the rest of

the development team. It is important to notice that

locking a part of a code means that a specific snipe of

code is owned by a specific user, so other users can not

distribute modified code as a final accepted code. They

4

need the permission of the actual owner. However, they

have the chance to modify it for personal use or to

present it to the owner or the rest of the team for being

accepted as final in the future.

 By automatically locking the inherited classes of a

locked class, i.e. the user that owns a specific class,

owns by default the subclasses that extend it, a better

control of the whole system is achieved. For example, a

class that has been implemented to fit a small set of

requirements and is not completely defined could have

many changes in their implementation issues, the data

representation, and many similar details. This

functionality ensures that the users that try to inherit

from such classes must have the permission from the

owner of the parent class, preventing inconsistencies

 It is certain that having temporary code or avoiding

modifications completely is not possible, but this option

of the system allows giving a little more control to the

process and as it is based on the rules defined for the

system, they are still flexible enough to support a more

relaxed working style.

3.4 Synchronizing the work

Synchronization must be possible when working

synchronously as well as asynchronously. When

working synchronously the information about changes

of any type is sent to all connected participants. When a

latecomer joins a working session with one or more

other participants, their records are compared to update

information about changes. Only code changes which

are issued by the owner of the code are forcibly

exchanged so there is no conflict about which is the

latest version, since the owner issues a correlative

number when its code is ready to be distributed. This

number is also used to check if the change has been

incorporated already. When an owner wants to publish

a new version of a code a file with an XML content

containing metadata and data for the code is generated

and signed with his digital signature. The same is done

for distributing information about changes to the code

ownership and new members.

 In order to support the fact that some participants

could be seldom online simultaneously with the rest of

the group or that various subgroups do not meet each

other frequently E-Breaker offers an asynchronous

mechanism based on the use of e-mail. The XML files

with the changes are sent to all email addresses of the

project. Users can download them and process them

offline.

 As the system is supposed to work on an XP

environment, the option of pair programming [14] is a

very important issue. To allow pair programming, a

user should ask for being watched by another user. The

user that begins to watch should have permission of

modifying parts of the source code and to see real-time

the modifications made by the user that sent him the

invitation. When both ended to work as a pair, the

source code should be saved on both workstations, but

the modification should be marked as from one user

only, so that the owner receives only one confirmation

of a given code.

3.5 Assigning Roles

E-Breaker is aimed to support more a flat project

structure in which every participant has the same rights

and responsibilities. However, sometimes even in small

projects there may be a need for having a certain

hierarchy in order to maintain the synchronization

among the participants. E-Breaker introduces two

mechanisms which allow this with flexibility. The first

one is, when a user is created it may or not receive the

right of accepting new participants for the project. The

number of participants which is allowed to invite can be

also be specified. This rule helps to keep the control

about the number of participants in the project. The

second one is about receiving the ownership of a code.

A user may receive or not the permission of passing the

ownership of a code to a third one. This may be used to

assign responsibilities to certain members of the team

which they will not able to avoid by granting rights to

another member. With these simple two rules it is

possible to assign administrative roles to certain people.

4. The documents architecture

 Our synchronization method applies to

document types which can be described by a LALR

grammar. Some examples are Java files or a limited

version of a text document. The idea of applying this to

text documents is very interesting, since we can

synchronize documents written in Latex and

OpenOffice for example, the only limitation is that the

document format is limited and that the editor used

should implement the merging method.

 Every file processed generates an XML file, this

XML represents the abstract parse tree of the LALR

grammar. The representation is direct but has some

issues when synchronizing. The main problem is for

example if we have the following grammar:

*CompilationUnit→CompilationUnit Class|Enum

 |

Class→ClassName ListMinUnits

*ListMinUnits→varDeclaration | Method | StaticBlock

 |

varDeclaration→Modifiers Type Id [= Expression]

Method →MethodName Modifiers ParamList ReturnType StatementsBlock

StaticBlock→static StatementsBlock

The main problem with this approach is that if we have

a two versions of a Java file, for example:

class Example {

5

 function1() {...}
 function2() {...}

}

Version 1

class Example {

 function1() {...}
 function3() {...}

 function2() {...}

}

Version 2

 If the functions 1 and 2 have not been modified, the

only change is that the third function has been added. If

we watch the parse tree, function2 has been shifted one

level below and function3 uses its place in the tree. To

solve this problem, we consider every non-terminal

symbol that is used to describe list of components that

are in the same level and we mark them as not

representable. By doing this, we have all the functions

of the example in the same level of the tree, and the

synchronization is easier, because we have look for a

match in the same level for both trees. In the example,

every non-terminal symbols that should not be printed

are marked with a “*”. In the formal definition of the

grammar we just have to add a binary vector which

describes which non-terminal symbols should be

printed.

 The file generated is an XML file in which every tag

represents a printable element of the grammar. We add

three fields to every node: key, date and owner. Those

fields are used for the synchronization, to maintain

versions and historic information. Owner specifies the

user which owns the node or the component represented

by it. The date field stores the time of the last

modification to that component, and the key stores a

hash function which is used to identify changes during

the synchronization, using this key we can skip from

synchronizing complete branches of the tree.

 An example of a XML file generated from a Java file

is as follows:

class Complejo {

 double r,i;

public Complejo(double r, double i) {

 this.r = r;

 this.i = i;

 }

...
}

The resulting XML file, parsing this code with the same

grammar already shown, is:

<?xml version='1.0' encoding='UTF-8'?>
<javaxml>

 <class name="Complejo">

 <source>

 <field type="double">
 <var name="r">

 </var>

 <var name="i">
 </var>

 </field>

 <method name="Complejo" public="true">
 <parameters>

 <parameter>double r</parameter>

 <parameter>double i</parameter>
 </parameters>

 <code><![CDATA[{

 this.r = r;
 this.i = i;

 }

]]></code>
...

 </source>

 </class>
</javaxml>

 For implementing the logical management of the

code as described in chapter 3 e-Breaker uses three

logical layer file system architecture as seen in figure 3.

The bottom layer is the physical layer, containing the

accepted java files. The middle layer is the metadata

layer containing data for access management and

presentation of the code. The upper layer is the logical

file system which implements the emulated file system

using the data stored in the other two layers.

Figure 3: The three layer architecture of e-Breaker

 D-Files: This layer contains the files with content that

is accepted by their owner. It is used to create

distributions of the software, giving an alternative to

build a patched version also, including code that has

not been accepted yet.

 Temporary Files: Those are the copy made for every

file containing modifications which are still not

approved by the owner of the code.

 XML Files: There is an XML for every file containing

the information about the owner, permissions and

information needed for the merging phase.

 The Emulated File System: Is the logical layer that

manages the logical access to the physical files and

presents the information about which part of the code

is owned by which user and whether the local code

has been approved or released by the owner. For this,

it uses the information stored in the XML files. It also

implements a transparent file system for the user

merging the temporary files with the accepted ones

when corresponds.

Logical Layer

Metadata Layer

Physical Layer

Emulated File System

 XML

 Definitive Files

Temporary Files

6

This file organization allows users to manage their

owns versions of every file, but without loosing the real

branch of the software being developed. The system

should always have a copy of the “real files”, that is, the

files containing code accepted by the owner. The reason

for having a XML file for every file in the system is to

simplify the merging phase every time a user has the

chance to synchronize his working copy. The merging

of the code, including the detailed and complex

permission system of the system is almost impossible

without any other information and very uncomfortable

if this information is stored in the source itself.

5. Conclusions

With the system presented in this document it should be

possible to support a collaborative document creation,

giving the opportunity to the small to medium-size

working team to use a tool that is flexible enough to

work without having troubles because of a complicated

tool. The simplicity behind this idea gives the tool a real

chance to be competitive in the market.

 The authors have been engaged in developing software

for medium-size enterprises, with their own small size

developing Software Company. The problem and

opportunity of these development teams is that they are

not really tied to a fixed working place. It is very

common that small companies work without a common

physical place and in many cases without a common

working schedule. This causes that often a member of

the team is not able to work for a fixed period of time.

The roles also change very dynamically within the

project with people getting in and out of the project

during the development. The existing tools are unable

to maintain the order needed in this situation. They

mostly consist of separated tools for the development

and the administration. This imposes an extra human

effort for keeping the order of the developing process

with the consequent resource consumption in a situation

where it can not be accepted, because it is too expensive

compared to the size of the project being developed. We

propose an XP developing environment to support those

conditions, where also there are no more than 8

developers and normally they are working in many

small projects at the same time, E-Breaker could be

really a starting solution to this scenario.

 The rules that the system implements about ownership

of the code for controlling the coordination of the

participant's work also support this fact and add more

flexibility, so that the user can create a project that

works under the rules that are most similar to the way

his/her team really works. The fact of using an IDE that

is widely known and used is very important, not only

because there is no need to build one from scratch, but

also because it does not represent a real adaptation to

new software for a development team.

 In order to implement peer-to-peer communications

among the online participants the system uses the

JXTA™ [13] technology, which provides libraries and

several APIs to make the implementation of peer-to-

peer networks more reliable. E-Breaker uses this

technology to discover the participants of the

developing team in the LAN and to establish a

connection between them. JXTA also allows the

system to be extended for many users, so that they can

be connected from anywhere in the Internet, even

trough firewalls.

References

[1] Schümmer,T. ,Schümmer,J. : Support for Distributed

Teams in eXtreme Programming,In eXtreme

Programming Examined, edited by Succi, Giancarlo,

Marchesi, Michele , Addison Wesley, 2001.

[2] Bowen,S.,Maurer,F. : Designing a Distributed Software

Development Support System Using a Peer-to-Peer

Architecture, 26th Int. Comp. Software and Apps. Conf.

(COMPSAC 2002), pp. 1087-1092, 2002.

[3] Berliner,B : CVS II:Parallelizing Software Development,

1989.

[4] SourceForge,http://www.vasoftware.com , last visited on

14 February 2006.

[5] Van der Hoek, A. , Heimbigner,D. , Wolf, A.L. : A

generic, peer-to-peer repository for distributed

configuration management, icse, pp. 308, 18th

International Conference on Software Engineering

(ICSE'96), 1996.

[6] Magnusson,B. ,Asklund,U.,Minör,S. : Fine-grained

revision control for collaborative software development,

Proceedings of the 1st ACM SIGSOFT symposium on

Foundations of software engineering, pp. 33 – 41, 1993.

[7] Xu1,B., Lian,W., Gao,Q. : A General Framework for

Constructing Application Cooperating System in Wind,

ACM SIGSOFT Software Engineering Notes

,Volume 28 , Issue 2 (March 2003), pp. 15

[8] Neary,D. : Subversion - a better CVS,

http://www.linux.ie/articles/subversion/ last visited on 13

February 2006

[9] Thomas,D. , Johnson,K. : Orwel, a configuration

management system for team programming, Conference

on Object Oriented Programming Systems Languages

and Applications, pp. 135 – 141, 1988.

[10] Schümmer,T. ,Schümmer,J. : TUKAN: A Team

Environment for Software Implementation. OOPSLA'99

Companion. OOPSLA '99, Denver, CO, pp. 35-36, 1999.

[11] IBM Rational ClearCase, Integrated SCM for Rational

Developer products and Eclipse,

ftp://ftp.software.ibm.com/software/rational/web/whitepap

ers/int-scm-rad- eclipse.pdf, White papers of IBM,

December 2004

[12] Netbeans, Sun Microsystems, http://www.netbeans.org,

last visited on 13 February 2006.

[13] JXTA Technology: Creating Connected Communities,

Sun Microsystems, http://www.jxta.org/docs/JXTA-Exec-

Brief.pdf, last visited on 13 February 2006.

http://www.linux.ie/articles/subversion/

