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CHAPTER THREE

From Adaptive Analysis to
Instance Optimality

Jérémy Barbay

Abstract: This chapter introduces the related concepts of .adaptive
analysis and instance optimality. The goal is to define an extremely
fine-grained parameterization of a problem instance space in order
to argue that a particular algorithm for the problem is “optimal” in
a very strong sense. This chapter presents two detailed case studies,
for the MAXIMA SET problem and a database aggregation problem,
as well as a representative list of additional techniques, results, and
open problems.

3.1 Case Study 1: Maxima Sets

Suppose you have a new job and need to find a house to buy or rent. You would
like to find a place close to work but not too expensive. You gather a list of possible
houses, but there are too many to visit them all. Can you reduce the list of places to
visit without compromising any of your criteria?

This is a two-dimensional version of a well-known problem, reinvented multiple
times in various areas; we will call it the MAXIMA SET problem. In a computational
geometry context, it was first considered by Kung et al. (1975). The input is a set S of
n points in the plane. A point of S is called maximal if none of the other points in §
dominates it in every coordinate. The goal in the MAXIMA SET problem is to identify
all of the maximal points (i.e., the maxima set).! See also Figure 3.1.2

Several algorithms have been proposed for the MAXIMA SET problem in two
dimensions.? These algorithms highlight the importance of analyzing an algorithm’s
running time as a function of two parameters, the usual input size # (i.e., the number
of input points)and also the output size & (i.e., the number of maximal points). We
next briefly review several of these algorithms, which are important precursors to the
more general notions of adaptive analysis and instance optimality. This sequence
of increasingly instance-adaptive running time bounds will illustrate a process of
iterative refinement, culminating in a form of instance optimality.

1 For the house-finding problem, the x- and y-axes correspond to the negative price and negative distance
of a house (as in the house-finding problem, smaller prices and distances are better).

2 The same problem is explored in Chapter 12 in the context of self-improving algorithms.

3 These algorithms can also be used to compute the convex hull of a set of points, and indeed were originally
proposed primarily for this purpose.
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Figure 3.1 A point set and its maxima. Solid circles are the maximal points, hollow circles are the
dominated points. The dashed lines indicate the “region of domination” for each of the maximal points.

3.1.1 Jarvis March (a.k.a. Gift Wrapping)

Among the n# houses to consider, the cheapest and the closest are especially good
candidates and can be identified with O(n) comparisons. If there is only one such
house (at once cheaper and closer than any other), the problem is solved. Otherwise,
the cheapest and the closest must both be part of the output (they correspond to
maximal points, which we will call candidate houses), and one can then iterate on the
remaining # — 2 houses.

On account of a similar algorithm for the CONVEX HULL problem (Jarvis, 1973),
we will call this‘algorithm Jarvis march. The number of house comparisons per-
formed by the algorithm is ® (n/1) in the worst case for instances with # houses and 4
candidate houses selected in the end. This running time ranges from © (1) to © (%),
depending on the output size A.

3.1.2 Graham’s Scan

Another approach, which improves over the quadratic worst-case running time
of Jarvis march, is to first sort the # houses by increasing price using O(nlogn)
comparisons and then scan the list of houses in order to eliminate all the houses that
are not maxima. Scanning the sorted list requires at most 2n = O(n) further home
comparisons: the first house of this list is the cheapest and necessarily a candidate, and
any house considered after that is either a candidate (if it is closer to work than the
previous most expensive candidate considered) or can be pruned (if it is at once more
expensive and farther to work than the previously most expensive house considered).

As before, by analogy with a similar algorithm for the CoNVEX HULL problem
(Graham, 1972), we’ll call this algorithm Graham’s scan.* This algorithm performs

4 Called Sweeping Line in Chapter 12.
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O(nlogn) house comparisons. A reduction from SORTING can be used to show that,
in the comparison model of computation, no algorithm uses asymptotically fewer
comparisons in the worst case over instances with z houses.

Jarvis march is superior to Graham’s scan when 1 = o(log 1), equivalent to it when
h = ©(ogn), and inferior to it otherwise. How could we know which algorithm to
use, given that the number / of candidate houses is what we wanted to compute in the
first place? One idea is to execute both algorithms in parallel and stop as soon as one
of them finishes.” This would yield a solution that runs in O(z-min{A, log n}) time, but
potentially with many comparisons performed twice. Is there a more parsimonious
solution?

3.1.3 Marriage Before Conquest

Rather than choosing between Jarvis marchand Graham’s scan, Kirkpatrick
and Seidel (1985) described a clever solution that performs O(nlogh) house com-
parisons in the worst case over instances with # input points and /4 maximal points.
They called the analogous algorithm for the CONVEX HULL problem Marriage Before
Conquest (Kirkpatrick and Seidel, 1986), and we adopt that name here.®

Algorithm Marriage Before Conquest(S):

. If |S] = 1 then return S.

. Divide S into the left and right halves S, and S, by the median x-coordinate.

. Discover the point ¢ with the maximum y-coordinate in S,.

. Prune all points in Sy and S; that are dominated by g.

. Return the concatenation of Marriage Before Conquest(S,) and Marriage Before
Conquest(S;).

| N S

This divide-and-conquer algorithm uses as a subroutine the linear-time median
finding algorithm of Blum et al. (1973). After identifying the median house price,
one can partition the set of # houses.into the |7/2] cheapest houses (corresponding to
Sy, as cheaper is better) and the [7/2] most expensive houses (corresponding to Sy).
Given such a partition, one can find a first candidate house by selecting the house
closest to work among the |n/2] least expensive houses, prune the houses dominated
by this candidate, and recurse on both the set of remaining cheaper houses and the
set of remaining more expensive houses.

Theorem 3.1 (Kirkpatrick and Seidel, 1985) Given a set S of n points in the
plane, the algorithm Marriage Before Conquest computes the maximal points of S
in O(nlogh) time, where h is the the number of maximal points.

Proof Sketch The number of comparisons performed by the algorithm is
O(nlogh), as in the worst case the median divides the # — 1 maxima left to
identify into two sets of roughly equal sizes. (In the best case, the median divides
the instance into one instance with half the input points and one maximal point,

3 Kirkpatrick (2009) describes this as a “Dovetailing” solution.
6 The algorithm described here is a slight variant of that in Kirkpatrick and Seidel (1985); the original pruned
only points from Sy in line 4.
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which is then solved recursively in linear time, and one instance with # — 2
maxima but only #/2 input points.) U

A reduction from the SORTING MULTISETS problem on an alphabet of size s shows
that no algorithm in the comparison model has a running time asymptotically better
than O(nlogh), in the worst case over inputs with input size n and output size /.

Marriage Before Conquest is so good that its inventors titled their paper on
an extension to the CONVEX HULL problem “The Ultimate Planar Convex Hull
Algorithm?” (Kirkpatrick and Seidel, 1986). To answer this question (for MAXIMA
SET or CONVEX HULL), one would need to prove that no algorithm can outperform
Marriage Before Conquest by more than a constant factor. Haven’t we already proved
this? What type of optimality could one hope for beyond optimality over instances
of a given input size and output size?

3.1.4 Vertical Entropy

It turns out there are natural finer-grained parameterizations of the input space for
the MAxiMA SET (and CONVEX HULL) problem, which enable stronger notions of
algorithm optimality. For example, consider an instance with output size 1 = o(n),
where one of the 4 houses in the output is cheaper and closer than the n — 4
dominated houses. Such an instance is much easier for the Marriage Before Conquest
algorithm than, say, one where each of the 4 candidate houses dominates exactly
(n — h)/h noncandidate houses. In the latter case, the algorithm might well run in
@ (nlogh) time. But in the former case, it performs only O(n + hlogh) = o(nlogh)
comparisons: as 1 = o(n), the median-priced house will be among the n—# dominated
houses, leading to the selection of the particular one cheaper and closer than the
n — h noncandidate houses and the latter’s immediate elimination, leaving only 2 — 1
candidate houses to process in O(klogh) time.

To better measure the difference in- difficulty between such instances, Sen and
Gupta (1999) defined #; as the number of noncandidate houses dominated by the
ith cheapest candidate house (and no candidate house cheaper than this one), and
the vertical entropy of an instance as the entropy of the distribution of {n;};c[2, ..., 4.
Formally:

h
n; n
Ho(no, ... 1) = Z;log (;7) (3.1)
=2

1

Note that, by basic properties of entropy, H, < log, A.
Vertical entropy yields a more fine-grained parameterization and the following
result:

Theorem 3.2 (Sen and Gupta, 1999) Given a set S of n points in the plane, the

Marriage Before Conquest algorithm computes the maxima set of S in O(nH.,)
time, where H, is the vertical entropy (3.1) of S.
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Proof Sketch We claim that the number of comparisons used by the Mar-
riage Before Conquest algorithm is O(logn — Y7, nilogn;) = O 5 n;
log(n/n;)) = OmH,(m, . ..,n;)). The essential idea is that, if a maximal point
dominates at least #; input points, then it will be identified by Marriage Before
Conquest after at most log, (n/x;) rounds. (For example, if n; > n/2, it will be
identified immediately; if #; > n/4 it will be identified after at most two levels
of recursion; and so on.) Thus, the ; input points that it dominates contribute
at most n; comparisons to at most log, (n/n;) partition phases. U

A reduction from the SORTING MULTISETS problem on an alphabet of size &7 — 1
and frequency distributions {n;};c2,..., 5 shows that no algorithm in the comparison
model has a running time asymptotically better than O(##,), in the worst case over
inputs with input size # and vertical entropy H,,.

Because H, < log, &, the analysis of Sen and Gupta (1999) is more fine-grained
that that of Kirkpatrick and Seidel (1985). This shows that Marriage Before Conquest
is even more “adaptive” than its authors gave the algorithm credit for. But does
Theorem 3.2 prove that it truly is the “ultimate” algorithm for the problem?

3.1.5 (Order-Oblivious) Instance Optimality

Theorem 3.2 is insufficient to claim the “ultimateness” of the Marriage Before
Conquest algorithm: one could define in a very similar way the “horizontal entropy”
of an instance. There are instances with high vertical entropy and low horizontal
entropy, and vice versa. One could also define a “horizontal” version of the Marriage
Before Conquest algorithm, which would iteratively partition houses around the one
of median distance rather than cost, which would then be optimal with respect to the
horizontal entropy parameter. This section outlines a result of Afshani et al. (2017),
who showed that the Marriage Before Conquest algorithm is indeed “ultimate,”
among algorithms in the comparison model that do not take advantage of the order
of the input.

Central to the notion of instance optimality is the idea of a certificate of an
instance.” Any correct algorithm for a problem implicitly certifies the correctness
of its output, and the description length of this certificate is a lower bound on the
algorithm’s running time. In instance optimality, the goal is to define a form of
certificate such that, for every instance (1) every correct algorithm implicitly defines
such a certificate and (2) the protagonist algorithm (to be proved instance-optimal)
runs in time at most a constant factor times the length of the shortest certificate.

In the specific case of the MAXIMA SET problem, any correct algorithm must be
able to justify: (1) for each of the n—A noncandidate houses, why it was discarded; and
(2) for each of the /& candidate houses, why it cannot be discarded. The algorithms
presented in this section (Jarvis march, Graham’s scan, and Marriage Before
Conquest) justify their choices in the same way: (1) each noncandidate house is
discarded only after the algorithm has found another house that dominates it; and
(2) each candidate house is added to the output only after it has been determined that
there is no cheaper house which is closer, and no closer house that is cheaper.

7 A similar notion is used in Chapter 12 in the context of self-improving algorithms.
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Figure 3.2 A “harder” point set for the compu- Figure 3.3 An “easier” point set.

tation of the maxima set in two dimensions.

The next definition formalizes this idea. By the staircase of a point set, we mean
the boundary of the union of the “regions of domination” of the maximal points (cf.,
Figure 3.1).

Definition 3.3 Consider a partition IT of the set S of # input points into
disjoint subsets S, ...,S;. The partition IT is respectful if each subset S is
either a singleton or can be enclosed by an axis-aligned box B; whose interior is
completely below the staircase of S. Define the entropy H(IT) of the partition I1
to be Z,i:l (ISk|/n) log(n/|Sk|). Define the structural entropy H(S) of the input
set S to be the minimum of H(IT) over all respectful partitions IT of S.

The intuition is that each nonsingleton group S; represents a cluster of points that
could conceivably be eliminated by an algorithm in one fell swoop.® Thus the bigger
the S;’s, the easier one might expect the instance to be (Figures 3.2-3.3).

The structural entropy is always at most the vertical entropy (and similarly the
horizontal entropy), as shown by taking the S;’s to be “vertical slabs” as in Figure 3.4
(with each maximal point in its own set).

The following result shows that, for every instance, the running time of the
Marriage Before Conquest algorithm is bounded by the number of points times the
structural entropy of the instance.

Theorem 3.4 (Afshani et al., 2017) Given a set S of n points in the plane,
the algorithm Marriage Before Conquest computes the maxima set of S in
Om(H(S) + 1)) time.

Proof Consider the recursion tree of the algorithm (Figure 3.5) and let
X; denote the sub-list of all maximal points of § discovered during the first
Jj recursion levels, in left-to-right order. Let S¥) be the subset of points of
S that survive recursion level j, i.e., that have not been pruned during levels
0,...,j of the recursion, and let n; = |SP|. The algorithm performs O(ny)
operations to refine level j into level j + 1, and there are at most [logn] such
levels in the computation, so the total running time is O(erfg d n;). Next
observe that:

8 Beginning from the northeast corner of the box, travel north until you hit the staircase, and then east until
you hit a maximal point ¢g. The point ¢ dominates all of the points in S;.
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Figure 3.4 A respectful partition using vertical slabs: structural entropy generalizes vertical entropy.
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Figure 3.5 The beginning of the recursive partitioning of S. The two bottom boxes are already leaves of
the recursion tree, while the two top boxes will be divided further.

(i) there can'be at most [1/2/] points of S with x-coordinates between any
two consecutive points in Xj; and

(ii) all points of S that are strictly below the staircase of X; have been pruned
during levels 0, . . ., j of the recursion.

Let IT be a respectful partition of S. Consider a nonsingleton subset Sy in IT.
Let B;. be a box enclosing S; whose interior lies below the staircase of S. Fix
a level j. Suppose that the upper-right corner of B has x-coordinate between
two consecutive points ¢; and g;41 in X;. By (ii), the only points in By that can
survive level j must have x-coordinates between ¢; and ¢;+1. Thus, by (i), the
number of points in Sy that survive level j is at most min {|Sk|, /27 } (Note
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that the bound is trivially true if Sy is a singleton.) Because the Sy ’s cover the
entire point set, with a double summation we have

[logn] [logn] '
Yo om= ) > min{ISgl [n/27}
j=0 =0 K

[logn]

=Y > min{[Skl [2/27}
k  j=0

< Y (SkIMog(/1SkDT + ISkl + 1Skl/2 + ISkl /4 + - - + 1)
k

< Y ISkl(Tlog(n/ISk)] + 2)
k

€ O(n(H(IT) + 1)).

This bound applies for every respectful partition of S, so it also applies
with H(IT) replaced by the structural entropy H(S) of S. This completes the
proof. ]

Moreover, a nontrivial adversary argument can be used to prove a matching lower
bound for all order-oblivious algorithms (Afshanietal., 2017). Formally, the statement
is: For every correct algorithm A for the MAXIMA SET problem and every set S of #
points, there exists an ordering of the points in S such that 4 uses Q (H(S) + 1))
comparisons to solve the corresponding instance of MAXIMA SET. Thus, any running
time bound that does not reference the ordering of the points in the input (like all of
the standard running time bounds for algorithms for the MAXIMA SET problem) must
be Q@(HS) + 1)).

Theorem 3.4 and the matching lower bound prove a strong form of “ultimateness”
for the Marriage Before Conquest algorithm. But could we do even better by
somehow taking advantage of the input order?

3.1.6 Partially Sorted Inputs

Remember the Graham’s scan algorithm (Section 3.1.2), which first sorted the houses
by price and then scanned the sorted list in linear time to discard noncandidate
houses? This algorithm shows that the MAXIMA SET problem can be solved in linear
time for instances in which the input is already sorted. An analogous observation
holds for inputs that are partially sorted, meaning that the (ordered) input can be
partitioned into a small number of sorted fragments. Here, the maxima set of each
fragment can be computed in time linear in the fragment length, and the merging
of all the maxima sets can in some cases be done quickly enough to obtain a better
running time bound than an order-oblivious algorithm.’

Theorem 3.5 (Ochoa, 2019) Consider a sequence S of n points in the plane
comprising sorted fragments of lengths rq, ..., r,, with structural entropy H(S).

9 For further examples of algorithms that adapt to partially sorted inputs, see Exercise 3.6 and Section 3.3.1.
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There is an algorithm which computes the maxima set of S in O(n+min{n logn —
Y8 o rilogri,nH)}) time.

Perhaps techniques along the lines of Theorem 3.5 can lead to a truly instance-
optimal algorithm for the MAXIMA SET problem, without any restriction to order-
obliviousness?

3.1.7 Impossibility Result

In fact, the very existence of the Graham’s scan algorithm implies that no algorithm
for the MAXIMA SET problem can be truly instance optimal in the comparison model:

Theorem 3.6 (Afshani et al., 2017) There is no instance-optimal algorithm for
the M axim4 SET problem.

In fact, for every algorithm A for the MAXIMA SET problem, there is another
algorithm B for the problem and an infinite family of inputs z such that 4 runs in
2 (nlogn) time on these inputs while B runs in O(#) time.

Proof Sketch The intuition of the proof is very simple: For any given
instance I, there is at least one competing algorithm that correctly guesses
an order in which to process the input so that the Graham’s scan algorithm
computes the maxima set of 7 in linear time. Furthermore, no algorithm in
the comparison model can solve a// instances of size # in o(nlogn) time (by a
simple counting argument). Hence, no algorithm can compute the maxima set
for every instance / in time bounded by a constant factor times that of the best
algorithm for /. U

Theorem 3.6’ shows that the “order-oblivious™ qualifier (or some other restriction)
is necessary for an instance optimality result for the MAXIMA SET problem. Thus,
if one had to choose an “ultimate” algorithm for the problem, the Marriage Before
Conquest algorithm is the best candidate around: it (or the minor variant described
here) is instance optimal among order-oblivious algorithms, which would seem to be
the next best thing to a truly instance-optimal algorithm (which does not exist).

3.2 Case Study 2: Instance-Optimal Aggregation Algorithms

This section considers a second case study of an instance-optimal algorithm, for the
database aggregation problem for which the concept was originally defined.

3.2.1 Instance Optimality

‘We begin by zooming out to discuss instance optimality in general. Some measures of
difficulty are finer than others. Could there be a “finest-possible” measure, so that an
algorithm that is optimal with respect to that measure is automatically optimal also
with respect to every other (coarser) measure? This may seem like a pipe dream for
any natural computational problem, but Fagin et al. (2003) described such a result
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for a database aggregation problem.!® Algorithms that are optimal with respect to
such a finest-possible measure — instance-optimal algorithms — can be viewed as the
ultimate adaptive algorithms, always as good (up to a constant factor) as every other
algorithm on every input.

Consider a computational problem and cost measure, with cost(4, z) denoting the
cost incurred (e.g., number of operations) by the algorithm A on the input z.

Definition 3.7 (Instance Optimality) Analgorithm A for a problem is instance
optimal with approximation ¢ with respect to the set C of algorithms if for every
algorithm B € C and every input z,

cost(A4,z) < c¢-cost(B,z),

where ¢ > 1 is a constant, independent of B and z.

The constant ¢ in Definition 3.7 is called the optimality ratio of A (with respect
to C). By an instance-optimal algorithm, one generally means an algorithm with
optimality ratio bounded by a constant.!! This is a-demanding definition, and for
many problems there is no instance-optimal algorithm with respect to any reasonably
rich class of algorithms C. In Theorem 3.4, we saw an example of an instance-
optimal algorithm for the MAXIMA SET problem with respect to the class of order-
oblivious algorithms, and from Theorem 3.6 we learned that there is no instance-
optimal algorithm for the problem with respect to the class of all comparison-based
algorithms.

The rest of this section covers the original success story for instance-optimal
algorithms.

3.2.2 The Setup

The problem is as follows. There is a very large set X of objects, such as Web pages.
There is a small number m of attributes, such as the ranking (e.g., PageRank) of a Web
page under m different search engines. To keep things simple, assume that attribute
values liein [0, 1]. Thus an object consists of a unique name and an element of [0, 1]”.

Weare also given a scoring function o :[0, 1] — [0, 1] which aggregates m attribute
values into a single score. We interpret higher attribute values and scores as being
“better.” We assume that the scoring function is monotone, meaning that its output is
nondecreasing in each of its inputs. An obvious scoring function is the average, but
clearly there are numerous other natural examples.

The algorithmic goal is, given a positive integer k, to identify k objects of X that
have the highest scores (ties can be broken arbitrarily).

We assume that the data can be accessed only in a restricted way. It is presented as
msorted lists Ly, Ly, ..., L. Eachlist L;isa copy of X, sorted in nonincreasing order

10 This paper by Fagin et al. (2003) was the winner of the 2014 EATCS-SIGACT Godel prize, a “test of
time™ award for papers in theoretical computer science.

11 One drawback of this coarse definition of an instance-optimal algorithm is its Manichean nature — it
does not differentiate between competing instance-optimal algorithms whose optimality ratios differ by large
(constant) factors, nor does it differentiate between different problems that, even though they do not admit
instance-optimal algorithms, might nevertheless differ in difficulty.
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of the ith attribute value. An algorithm can access the data only by requesting the next
object in one of the lists. Thus an algorithm could ask for the first (highest) object
of L4, followed by the first object of L7, followed by the second object of L4, and so
on. Such a request reveals the name of said object along with all m of its attribute
values. We charge an algorithm a cost of 1 for each such data access.!> Thus, in the
notation of Definition 3.7, we are defining the cost measure cost(4, z) as the number
of data accesses that the algorithm A needs to correctly identify the top k objects in
the input z.

3.2.3 The Threshold Algorithm

We study the following threshold algorithm (TA). The algorithm is natural but
perhaps not the first algorithm one would write down for the problem. The reader
is encouraged to think about “more obvious” algorithms, which will probably not be
instance-optimal.

Algorithm 1 The threshold algorithm (TA)

Input: a parameter k& and m sorted lists.
Invariant: of the objects seen so far, S is those with the top k scores.

1. Fetch the next item from each of the m lists.

2. Compute the score o (x) of each object x returned, and update S as needed.

3. Let a; denote the ith attribute value of the object just fetched from the list L;, and
set a threshold ¢ := o (ay, . .., a;).

4. If all objects of S have score at least ¢, halt; otherwise return to step 1.

We first claim that the TA is correct — for every input, it successfully identifies
the & objects with the highest scores (even if it halts well before encountering all of
the objects of X).

Proof By definition, the final set S returned by the TA is the best of the objects
seen by the algorithm. If an object x € X has not been seen by the TA, then
its ith attribute value x; is at most the lowest attribute value a; of an object
fetched from the list L; (since the lists are sorted). Since o is a monotone scoring
function, o (x) isat most o (ay, . . ., @), which by definition is the final threshold
t of the TA, which by the stopping rule is at most the score of every object in S.
Thus every object in S has score at least as large as every object outside of S, as
desired. ]

12 This is not the most realistic cost model, but it serves to illustrate our main points in a simple way. In
the terminology of Fagin et al. (2003), this corresponds to a sequential access cost of 1 and a random access
cost of 0. More generally, Fagin et al. (2003) charge some constant cs for each data access of the type we
describe and assume that accessing list L; only reveals the value of the ith attribute; the other attribute values
are then determined via m — 1 “random accesses™ to the other lists, each of which is assumed to cost some other
constant ¢». Analogous instance optimality results are possible in this more general model (Fagin et al., 2003).
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The main takeaway point of the proof is: the threshold ¢ acts as an upper bound
on the best possible score of an unseen object. Once the best objects identified so far
are at least this threshold, it is safe to halt without further exploration.

3.2.4 Instance Optimality of the Threshold Algorithm

The threshold algorithm is in fact instance-optimal with optimality ratio m.

Theorem 3.8 (Instance optimality of the TA) For every algorithm A and every
input z,

cost(TA,z) < m- cost(A4,z). (3.2)

In words, suppose you precommit to using the TA, and you have a competitor
who is allowed to pick both an input z and a (correct) algorithm A4 that is specifically
tailored to perform well on the input z. Theorem 3.8 says that even with this extreme
advantage, your opponent’s performance will be only a factor of m better than yours.
Recall that we view m as a small constant, which makes sense in many natural
motivating applications for the problem. We will see in the text that follows that no
algorithm has an optimality ratio smaller than m.

Proof (of Theorem 3.8) Consider a (correct) algorithm 4 and an input z.
Suppose that 4 accesses the first &y, . .., kj, elements of the lists Ly, ...,L, en
route to computing the (correct) output S on z. For each i, let b; denote the ith
attribute value of the last accessed object of L; — the lowest such attribute value
seen for an object fetched from L;.

The key claim is that, on accord of A4’s correctness, every object x in A’s
output S must have a score o (x) thatis at least o (b, . .. ,by,). The reason is: For
all 4 knows, there is an unseen object y with attribute values b1, .. ., b, lurking
as the (k; + 1)th object of list L; for each i (recall that ties within an L; can be
broken arbitrarily). Thus, 4 cannot halt with x € Sand o(x) < o(by, ...,by)
without violating correctness on some input z’. (Here z’ agrees with z on the first
k; objects of each L;, and has an object y as above next in each of the lists.)

Now, after max; k; rounds, the TA has probed at least as far as 4 into each
of lists, and has discovered every object that 4 did (including all of S). Thus a;,
the ith attribute value of the final item fetched by the TA from the list L;, is
at most b;. Since o is monotone, o (ay, ...,dy) < o(by,...,by). Thus after at
most max; k; rounds, the TA discovers at least k& objects with a score at least its
threshold, which triggers its stopping condition. Thus cost(7T4,z) < m-max; k;;
since cost(4,z) = ) _; ki > max; k;, the proof is complete. L

3.2.5 A Matching Lower Bound on the Optimality Ratio

The factor of m in Theorem 3.8 cannot be improved, for the TA or any other
algorithm. We content ourselves with the case of & = | and a scoring function o
with the property that o (x) = 1 if and only if x; = x; = --- = x;,, = 1. More general
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lower bounds are possible (Fagin et al., 2003), using extensions of the simple idea
explained here.

The guarantee of instance optimality is so strong that proving lower bounds can
be quite easy. Given an arbitrary correct algorithm A, one needs to exhibit an input z
and a correct algorithm A" with smaller cost on z than A. Getting to choose 4’ and z
in tandem is what enables simple lower bound proofs.

Suppose k = 1. We will use only special inputs z of the following form:

 there is a unique object y with o (v) = 1; and
o this object y appears first in exactly 1 of the lists Ly, ..., L. (Recall that arbitrary
tie-breaking within a list is allowed.)

The lower bound follows from the following two observations. For every such
input z, there is an algorithm A4’ with cost(4’,z) = 1: It looks in the list containing y
first, and on finding it can safely halt with y as the answer, since no other object can
have a higher score. But for every fixed algorithm A4, there is such an input z on which
cost(4,z) > m: A must look at one of the lists last, and an adversary can choose the
input z in which y is hidden in this last list.

The fact that lower bounds for instance optimality arise so trivially should give
further appreciation for instance-optimal algorithms with small optimality ratios
(when they exist).

3.3 Survey of Additional Results and Techniques

Many techniques have been introduced to refine worst-case analysis through parame-
terizations of input difficulty beyond input size. There are too many such results to list
here, so we present only a selection that illustrates some key notions and techniques.

3.3.1 Input Order

We distinguish between algorithms adaptive to the ordering of the input versus those
to the (unordered) structure of the input. An example of the former is the algorithm in
Theorem 3.5, which adapts to partially sorted instances of the MAXIMA SET problem.
For further results along these lines for adaptive sorting, see the survey of Estivill-
Castro and Wood (1992) and the overview of Moffat and Petersson (1992).

3.3.2 Input Structure

An early example of adapting to (unordered) input structure is due to Munro and
Spira (1976), who showed how algorithms could adapt to the frequencies of the
elements in a multiset M in order to sort them with fewer comparisons than would
be required in the worst case. We discuss this and a few additional examples in the
text that follows.

Output size: In Section 3.1.3 we saw the concept of an output-sensitive algorithm, one
of the most basic notions of adaptivity to input structure. Kirkpatrick and Seidel
(1985) gave the first output-sensitive algorithm for computing the maximal points of
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a point set in d dimensions. Their algorithm’s running time is O(n(141og /1)) in 2 and
3 dimensions, and O(n(1 + logd_2 ) for dimensions d > 3, where /4 is the number of
maximal points. The next year Kirkpatrick and Seidel (1986) proved similar results
for the CONVEX HULL problem, if only in two and three dimensions.

Such results were later refined for the CONVEX HULL problem by Sen and Gupta
(1999) to adapt to the vertical entropy [cf. (3.1)] and by Afshani et al. (2017) to adapt
to the structural entropy of a point set (cf., Definition 3.3). See Section 3.5.1 for recent
progress and open questions for point sets in four or more dimensions.

Repetitions. For another example of (unordered) input structure, consider a multiset
M of size n (e.g., M = {4,4,3,3,4,5,6,7,1,2} of size n = 10). The multiplicity of
an element x of M is the number #1, of occurrences of x in M (e.g., m3 = 2). The
distribution of the multiplicities of the elements in M is the set of pairs (x,n1y) (e.g.,
{(LD,2,1),(3,2),43), 51, ®6 1), (7 1)} in M). Munro and Spira (1976) described
a variant of the MergeSort algorithm that uses counters, and which takes advantage
of the distribution of the multiplicities of the elements in M when sorting it. This
algorithm runs in O(n(1 + H(@mny, ... ,my))) time, where o is the number of distinct
elements in M, my, . ..,m, are the multiplicities of the o distinct elements, and H is
the entropy of the corresponding distribution. They proved that this running time is
the best possible in the decision tree model (up to constant factors), in the worst case
over instances of size n with o distinct elements of multiplicities m, . .., 7.

Miscellaneous Input Structure. Barbay et al. (2017a) proposed adaptive algorithms
for three related problems where the input is a set B of axis-aligned boxes in d
dimensions: the KLEE’'S MEASURE problem (i.e., computing the volume occupied by
the union of the boxes of B); the MAXIMAL DEPTH problem (i.e., computing the
maximal number of boxes of B that cover a common point of space); and the DEPTH
DISTRIBUTION problem (i.e., for each i compute the volume of the points that are
covered by exactly 7 boxes from 5).

3.3.3 Synergy between Order and Structure

Are there algorithms that profitably take advantage of both input order and input
structure? This is the question considered by Barbay et al. (2017b). They showed that,
for the problem of sorting a multiset, there is an algorithm that adapts simultaneously
to partially sorted inputs (as in Section 3.1.6) and also the entropy of the distribution
of elements’ frequencies; for some instances, this results in a running time that is
asymptotically faster than what can be achieved when taking advantage of only of
one of the two aspects. This article also considers data structures for answering rank
and select queries, while taking advantage of the query structure and query order (in
addition to the input order and input structure). Finally, Barbay and Ochoa (2018)
show analogous results for the MAXIMA SET and CONVEX HULL problems (in two
dimensions).

3.4 Discussion

This section compares and contrasts adaptive analysis and instance optimality with
parameterized algorithms and the competitive analysis of online algorithms.
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3.4.1 Comparison with Parameterized Algorithms

Both adaptive analysis and parameterized algorithms (as described in Chapter 2)
analyze the running time of algorithms using parameters above and beyond the
input size. One major difference between the two areas is that the former focuses
on polynomial-time solvable problems (often with near-linear worst-case complexity)
while the latter is focused on NP-hard problems.!* Lower bounds for NP-hard
parameterized problems are necessarily conditional (at least on P # NP, and often on
stronger assumptions such as the Strong Exponential Time Hypothesis). Meanwhile,
tight unconditional lower bounds are a prerequisite for instance optimality results,
and these are typically known only for near-linear-time solvable problems (such as
SORTING or CONVEX HULL in two or three dimensions) and restricted models of
computation (comparison-based algorithms or decision trees).

Adaptive analysis is relevant more generally to polynomial-time solvable problems
for which we don’t know good lower bounds. For example, Barbay and Pérez-Lantero
(2018) and Barbay and Olivares (2018) analyzed adaptive algorithms for various
string problems (in the spirit of EDIT DISTANCE) while Barbay (2018) presented
similar results for the DISCRETE FRECHET DISTANCE problem.

3.4.2 Comparison with the Competitive Analysis of Online Algorithms

An online algorithm is one that receives its input one piece at a time and is required
to make irrevocable decisions along the way. In the competitive analysis of online
algorithms (initiated by Sleator and Tarjan (1985) and covered in Chapter 24 of this
book), the goal is to identify online algorithms with a good (close to 1) competitive
ratio, meaning that the objective function value of the algorithm’s output is guar-
anteed to be almost as good as what could be achieved by an all-powerful and all-
knowing offline optimal algorithm.

The competitive ratio provided inspiration for the optimality ratio (Definition 3.7)
and instance optimality.'* Indeed, we can interpret a guarantee of ¢ on the competi-
tive ratio of an online algorithm A4 as a guarantee on the optimality ratio of 4 (where
the cost(4, z) 1s the objective function value of the output of 4 for the input z) with
respect to the family C of all algorithms (and in particular, the offline optimal one).

3.5 Selected Open Problems

We close our chapter with two open research directions.

3.5.1 High Dimensions

One may have more than two criteria for choosing a house: Rather than just the price
and the distance to work, certainly its size, whether it has a garden, the quality of

13 One superficial distinction is that in parameterized algorithms the relevant parameter value is generally
given as part of the input, while in adaptive analysis it shows up only in the analysis of an algorithm. But a
typical fixed-parameter tractable algorithm can be extended to handle the case where the relevant parameter is
not part of the input, merely by trying all possible values for that parameter.

14 Fagin et al. (2003) write, “We refer to ¢ as the optimality ratio. It is similar to the competitive ratio in
competitive analysis.”
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the neighborhood, and so on should be taken into account for such an important
decision.

The results of Kirkpatrick and Seidel (1985) on the MAXIMA SET problem also
covered the case of high dimensions, with the higher-dimensional analog of Marriage
Before Conquest computing the maximal set of a d-dimensional point set with
d>31in O(n logd_2 h) time, where as usual # and /& denote the size of the input
and output, respectively. Afshani et al. (2017) refined this analysis not only in
dimension two (as described in Section 3.1.5), but also in dimension three, with a
rather different algorithm that partitions the input based on a carefully chosen sample
of points. Barbay and Rojas-Ledesma (2017) proved analogous results in d >3
dimensions:

Theorem 3.9 (Barbay and Rojas-Ledesma, 2017) Consider a set.S of n points

in R, and let T1 be a respectful partition of S into subsets Si, ...,S; of sizes
ni, ..., ny, respectively. There is an algorithm that computes the maximal points
of Sin

t
0 (n +3 g logd™? i) (3.3)

n
k=1 k
time.

Could there be a matching lower bound, asis the case in two and three dimensions?
The (open) problem is that there is no reason to believe that the expression in (3.3) is
the minimal description length of a certificate of correctness; for example, for all we
know there is a bound that depends linearly on d (rather than exponentially).

3.5.2 Layers of Maxima Sets

In the MAXIMA SET problem, every point is given a binary classification (maximal or
not). More generally, one could identify the maximal set S; of the input S (the “first
layer™), followed by the maximal set S» of the remaining point S \ S1 (the “second
layer”), and so on.

Nielsen (1996) described this problem and an output sensitive solution (similar to
that described in Section 3.1.3 for the MAXIMA SET problem). Extending this result
to obtain order-oblivious instance optimality is not overly difficult, but it remains an
open problem to make the algorithm adaptive to various forms of input order.

3.6 Key Takeaways

In the following we summarize what we consider to be two of the main lessons from
this incomplete survey of results on adaptive analysis and instance optimality.

1. Most of the techniques used in the adaptive analysis of algorithms and data
structures resemble those used in classical worst-case analysis over instances of
a given input size, the difference being that the ideas are applied in a more fine-
grained context.
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2. The concept of instance optimality (for various computational models) can be
further refined to the concept of the optimality ratio among a class of algorithms
over a class of instances. Such a refinement differentiates between more pairs of
algorithms than the coarser criterion of instance optimality.

3.7 Notes

We conclude with some final bibliographic remarks, to supplement those given
throughout the preceding sections.

1. McQueen and Toussaint (1985) originally introduced the minor variant of Mar-
riage Before Conquest which was proved (order-oblivious) instance optimal in
Afshani et al. (2017).

2. Petersson and Moffat (1995) introduced a notion of formal reductions
between measures of difficulty, which induces a partial order on difficulty
measures (Estivill-Castro and Wood, 1992; Moffat and Petersson, 1992). Such
a theory of reductions is similar to the reductions between pairs of problems and
parameters discussed in Chapter 2 on parameterized algorithms (as reductions
between parameterized problems induce a partial order on them according to
difficulty), but in a context where one can prove unconditional lower bounds.

3. Barbay and Navarro (2013) formalized the notion of compressibility measures for
the analysis of the space used by compressed data structures, inspired by difficulty
measures used in the running time analysis of algorithms.
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Exercises

Exercise 3.1 The HANOI TOWER problem is a classic example of recursion, originally
proposed by Lucas (1883).1° A recursive algorithm proposed in 1892 completes

15 Recall the setup: The game consists of three identical rods and # disks of different sizes, which can slide
onto any rod. The puzzle starts with all disks on the same rod, ordered from the biggest (at the bottom) to the
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the task using 2" — 1 moves, and an easy argument shows that 2" — 1 moves are
necessary. For this exercise, consider the variant in which we allow disks of equal
size; everything else about the setup is the same as before. (A disk is allowed to be
placed on another disk with the same size.) We call this the Disk PILE problem. In
the extreme case, when all disks have the same size, the tower can be moved in a
linear number of moves.

.....

moves, where s denotes the number of distinct sizes and »; the number of disks
with size 7.
moves. o

(c) What is the worst-case performance of your algorithm over all instances with
a fixed value of s and a fixed total number of disks n?

(d) Which analysis is more fine-grained: the one for s and » fixed, or the one for
ni, ...,ns fixed?

Exercise 3.2 Given an unsorted array 4 and an element x, the UNSORTED SEARCH
problem is to decide whether 4 contains at least one element with the same value
as x. The cost measure is the number of times that an algorithm probes an entry
of 4.

(a) What is the best possible optimality ratio for the UNSORTED SEARCH problem
with respect to deterministic algorithms over instances of size k and r elements
with the same value as x?

(b) What is the best possible optimality ratio for the UNSORTED SEARCH problem
with respect to randomized algorithms over instances of size k and r elements
with the same value as x?

(c) What is the best possible optimality ratio for the UNSORTED SEARCH problems
with respect to randomized algorithms over instances of size k and o distinct
elements?

Exercise 3.3 Given a sorted array 4 and an element x, the SORTED SEARCH problem
is to decide whether A4 contains at least one element with the same value as x.
What are the best-possible optimality ratios for the SORTED SEARCH problem with
respect to deterministic and randomized algorithms over instances of size k and r
elements with the same value as x?

Exercise 3.4 In the ELEMENTARY INTERSECTION problem, the input is an element x
and k sorted arrays A, . .., Ay, and the goal is to decide whether x belongs to all &
of the arrays. In the ELEMENTARY UNION problem, the input is the same but the
goal is to decide whether x belongs to at least one of the k arrays.

smallest. A legal move consists of removing the topmost disk of one of the rods and placing it on top of the
stack on one of the other two rods. A key constraint is that no move is allowed to place a larger disk on top
of a smaller disk. The goal is to move the disks so that all are on a common rod (necessarily in sorted order)
different from the one they started on.
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(a) What is the best possible optimality ratio of an algorithm for the ELEMENTARY
INTERSECTION problem over instances formed by k arrays of size n/k each,
when p of those arrays contain an element of value equal to x?

(b) Whatis the best possible optimality ratio of an algorithm for the ELEMENTARY
UNION problem over instances formed by k arrays of size n/k each, when p of
those arrays contain an element of value equal to x?

Exercise 3.5 The algorithm Bubble Sort is well known to run in time ©(#?) in the
worst case and ®(n) for alreadysorted inputs. Consider the related procedures
Bubble Up and Bubble Down, defined as follows: Bubble Up compares each pair
of consecutive elements from the smallest index to the largest one, swapping them
if inverted; while Bubble Up compares each pair of consecutive elements from the
largest index to the smallest one, swapping them if inverted. In erder to simplify
the notation, suppose that the first and last elements of thearray are —oo (at index
0) and +oc (at index 7 + 1).

(a) Prove that a position p whose corresponding element is left unmoved by both
Bubble Up and Bubble Down is a natural pivet: in the input array, the element
is larger than all elements with smaller indices and smaller than all elements
with larger indices.

(b) Prove that there is an algorithm sorting an array of # elements with 5 natural
pivots in O(n(1 + log %)) time.

(c) Refine the previous proof to show that there is an algorithm sorting an array
of n elements with 5 natural pivots separated by n+1 gaps of sizes (vo, . ..,ry)
in O(n+ Z?:o rilogr;) time.

(d) Prove that, in the worst case over instances formed by 7 elements with 5 natural
pivots separated by n + 1 gaps of sizes (vg, . .., 1), every sorting algorithm in
the comparison model runs in time €2 (7 + Z?:o rilogr;).

Exercise 3.6 Thealgorithm QuickSort is well known to have worst-case running time
O (n?) when sorting length-n arrays and using arbitrary pivots, and worst-case
running time ® (#log #) when using median elements as pivots (using a linear-time
median subroutine). Consider the implementation QuickSortWithRepetitions in
which the partition induced by the median m yields three areas in the array: all
elements of value strictly smaller than # on the left, all the elements of value strictly
larger than m on the right, and all the elements of value equal to m in the remaining
central positions.

(a) Prove that such an implementation performs O(n(1 + log o)) comparisons in
the worst case over instances formed by # elements from an alphabet with o
distinct values.

(b) Refine the previous proof and show that such an implementation performs
On + Y7 nilog nﬂl_) comparisons in the worst case over instances formed
by n elements taken from the alphabet [1, ..., o], where #; is the number of
occurrences of the ith value.

(c) Prove a matching lower bound (up to constant factors) that applies to all order-
oblivious algorithms.

(d) Can you combine the analysis in (b) with that of natural pivots (Exercise 3.5)?
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