
Foundations of RDF Databases

Marcelo Arenas1, Claudio Gutierrez2, and Jorge Pérez1

1 Department of Computer Science, Pontificia Universidad Católica de Chile
2 Department of Computer Science, Universidad de Chile

Abstract The goal of this paper is to give an overview of the basics
of the theory of RDF databases. We provide a formal definition of RDF
that includes the features that distinguish this model from other graph
data models. We then move into the fundamental issue of querying RDF
data. We start by considering the RDF query language SPARQL, which
is a W3C Recommendation since January 2008. We provide an algebraic
syntax and a compositional semantics for this language, study the com-
plexity of the evaluation problem for different fragments of SPARQL, and
consider the problem of optimizing the evaluation of SPARQL queries,
showing that a natural fragment of this language has some good prop-
erties in this respect. We furthermore study the expressive power of
SPARQL, by comparing it with some well-known query languages such
as relational algebra. We conclude by considering the issue of querying
RDF data in the presence of RDFS vocabulary. In particular, we present
a recently proposed extension of SPARQL with navigational capabilities.

1 Introduction

The Resource Description Framework (RDF) [34] is a data model for representing
information about World Wide Web resources. Jointly with its release in 1998 as
Recommendation of the W3C, the natural problem of querying RDF data was
raised. Since then, several designs and implementations of RDF query languages
have been proposed. In 2004, the RDF Data Access Working Group, part of the
W3C Semantic Web Activity, released a first public working draft of a query
language for RDF, called SPARQL [45]. Since then, SPARQL has been rapidly
adopted as the standard for querying Semantic Web data. In January 2008,
SPARQL became a W3C Recommendation.

RDF and SPARQL are two of the core technologies in the data and query lay-
ers of the Semantic Web stack. In this paper, we give an overview of the current
state of the theory of RDF and SPARQL from a database perspective. We first
provide a formal definition of RDF that includes the features that distinguish
this model from other database models. We then move into the fundamental
issue of querying RDF data with SPARQL. We provide an algebraic syntax and
a compositional semantics for this language, study the complexity of the eval-
uation problem for different fragments of SPARQL, and consider the problem
of optimizing the evaluation of SPARQL queries, showing that a natural frag-
ment of this language has some good properties in this respect. We furthermore

study the expressive power of SPARQL, by comparing it with some well-known
query languages such as relational algebra. We conclude by considering the is-
sue of querying RDF data in the presence of RDFS vocabulary. In particular, we
present a recently proposed extension of SPARQL with navigational capabilities,
and show that this language is expressive enough to deal with the semantics of
the RDFS vocabulary.

The paper is organized as follows. In Section 2, we introduce RDF as a data
model. In Section 3, we provide a formalization of the syntax and semantics of
SPARQL. In Section 4, we study the complexity of the evaluation problem for
SPARQL and some optimization results for this language. In Section 5, we study
the expressiveness of SPARQL. Finally, we present in Section 6 an extension of
SPARQL that gives navigational capabilities to the language and allows to deal
with the RDFS vocabulary.

Acknowledgments

This paper is a survey of well-known results on the theory of RDF, which com-
piles and summarizes results of papers of the authors and their colleagues Renzo
Angles, Carlos Hurtado, Alberto Mendelzon and Sergio Muñoz. The authors
were supported by: Arenas - Fondecyt grant 1090565; Gutierrez - Fondecyt grant
1070348; Pérez - Conicyt Ph.D. Scholarship; Arenas, Gutierrez and Pérez - grant
P04-067-F from the Millennium Nucleus Center for Web Research.

2 The RDF Data Model

The Semantic Web is a proposal to build an infrastructure of machine-readable
semantics for the data on the Web. In 1998, the W3C issued a recommendation
of a metadata model and language to serve as the basis for such infrastructure,
the Resource Description Framework (RDF) [32]. As RDF evolves, it is increas-
ingly gaining attraction from both researchers and practitioners, and is being
implemented in world-wide initiatives such as the Open Directory Project [39],
Dublin Core [48], FOAF [49], and RSS [46].

RDF follows the W3C design principles of interoperability, extensibility, evo-
lution and decentralization. Particularly, the RDF model was designed to have
a simple data model, with a formal semantics and provable inference, with an
extensible URI-based vocabulary, and which allows anyone to make statements
about any resource. In the RDF model, the universe to be modeled is a set
of resources, essentially anything that can have a universal resource identifier,
URI [50]. The language to describe them is a set of properties, technically bi-
nary predicates. Descriptions are statements very much in the subject-predicate-
object structure, where predicate and object are resources or strings. Both sub-
ject and object can be anonymous objects, known as blank nodes. In addition,
the RDF specification includes a built-in vocabulary with a normative seman-
tics (RDFS). This vocabulary deals with inheritance of classes and properties,
as well as typing, among other features [11].

The RDF model is specified in a series of W3C documents [32,27,11,34]. In
this section, we introduce an abstract version of the RDF data model, which
is both a fragment following faithfully the original specification, and also an
abstract version suitable to do formal analysis. What is left out are features of
RDF dealing with some implementation issues, such as detailed typing issues,
some distinguish vocabulary which has no particular semantics, and all topics
involved with the XML-based syntax and serialization. The original formulation
of this fragment was introduced in [23], and enriched and corrected in [37]. The
main goal of isolating such a fragment is to have a simple and stable core over
which to discuss theoretical issues, dealing with RDF from a database point of
view.

2.1 RDF graphs

Assume there are pairwise disjoint infinite sets U (RDF URI references) and B
(Blank nodes) 3. Through the paper we assume U and B fixed, and for simplic-
ity we denote unions of these sets simply concatenating their names. A tuple
(s, p, o) ∈ UB × U × UB is called an RDF triple. In this tuple, s is the subject,
p the predicate, and o the object.

Definition 1. An RDF graph (or simply a graph) is a set of RDF triples. A
graph is ground if it has no blank nodes.

Graphically, we represent RDF graphs as follows: each triple (s, p, o) is repre-

sented by a labeled edge s
p
−→ o. Notice that the set of arc labels can have a

non-empty intersection with the set of node labels. Thus, technically speaking,
and “RDF graph” is not a graph in the classical sense (for further discussion on
this issue see [26]).

In what follows, we need the fundamental notion of homomorphism. Given
two RDF graphs G1 and G2, a homomorphism h : G1 → G2 is a mapping from
UB to UB such that h(u) = u for every element u ∈ U , and for every triple
(s, p, o) in G1, it holds that (h(s), h(p), h(o)) ∈ G2. We denote by h(G1) the
RDF graph {(h(s), h(p), h(o)) | (s, p, o) ∈ G1}. Thus, a homomorphism h from
G1 to G2 is such that h(G1) ⊆ G2.

2.2 RDFS

The RDF specification includes a set of reserved words, the RDFS vocabulary
(RDF Schema [11]), which is designed to describe relationships between resources
and properties like attributes of resources (traditional attribute-value pairs).
Roughly speaking, this vocabulary can be conceptually divided into the following
groups:

3 For the sake of simplicity, here we do not make a special distinction between URIs
and Literals, and we assume that RDF graphs are constructed by using only URIs
and Blank nodes. The inclusion of literals does not change any of the results of this
paper.

(a) A set of properties, which are binary relations between subject resources
and object resources: rdfs:subPropertyOf (denoted by sp in this paper),
rdfs:subClassOf (sc), rdfs:domain (dom), rdfs:range (range) and rdf:type
(type).

(b) A set of classes, that denote set of resources. Elements of a class are known
as instances of that class. To state that a resource is an instance of a class,
the reserved word type may be used.

(c) Other functionalities, like a system of classes and properties to describe lists,
and a system for doing reification.

(d) Utility vocabulary used to document, comment, etc. (the complete vocabu-
lary can be found in [11]).

The groups in (b), (c) and (d) have a light semantics, essentially describing their
internal relationships in the ontological design of the system of classes of RDFS.
Their semantics is defined by a set of “axiomatic triples” [27], which express
the relationships among these reserved words. All axiomatic triples are “struc-
tural”, in the sense that do not refer to external data. Much of this semantics
corresponds to what in standard languages is captured via typing.

On the contrary, the group (a) is formed by predicates whose intended mean-
ing is non-trivial, and is designed to relate individual pieces of data external to
the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by actual data). For example, rdfs:subClassOf (sc)
is a reflexive and transitive binary property; and when combined with rdf:type
(type) specify that the type of an individual (a class) can be lifted to that of a
superclass.

The group (a) forms the core of the RDF language and, from a theoretical
point of view, it has been shown to be a very stable core to work with. (the
detailed arguments supporting this claim are given in [37]). Thus, throughout
the paper we focused on the fragment of RDFS given by the set of keywords
{sp, sc, type, dom, range}.

2.3 Semantics of RDF graphs

In this section, we present the formalization of the semantics of RDF given in
[27,37]. The normative semantics for RDF graphs given in [27] follows a stan-
dard logical treatment, including classical notions such as model, interpretation,
entailment, and so on. We present the simplification of the normative semantics
proposed in [37]. It is important to notice that these two approaches were shown
to be equivalent for the fragment of the RDFS vocabulary considered in this
paper [37].

An RDF interpretation is a tuple I = (Res ,Prop,Class ,PExt ,CExt , Int),
where (1) Res is a nonempty set of resources, called the domain or universe of
I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class ⊆ Res is a distinguished subset of Res identifying if a resource denotes
a class of resources; (4) PExt : Prop → 2Res×Res, a mapping that assigns an
extension to each property name; (5) CExt : Class → 2Res a mapping that

assigns a set of resources to every resource denoting a class; (6) Int : U →
Res ∪Prop, the interpretation mapping, is a mapping that assigns a resource or
a property name to each element of U .

Intuitively, a ground triple (s, p, o) in a graph G is true under the inter-
pretation I, if p is interpreted as a property name, s and o are interpreted as
resources, and the interpretation of the pair (s, o) belongs to the extension of the
property assigned to p. Formally, we say that I satisfies the ground triple (s, p, o)
if Int(p) ∈ Prop and (Int(s), Int(o)) ∈ PExt(Int(p)). An interpretation must also
satisfy additional conditions induced by the usage of the RDFS vocabulary. For
example, an interpretation satisfying the triple (c1, sc, c2) must interpret c1 and
c2 as classes of resources, and must assign to c1 a subset of the set assigned to
c2. More formally, we say that I satisfies (c1, sc, c2) if Int(c1), Int(c2) ∈ Class
and CExt(c1) ⊆ CExt(c2).

Blank nodes work as existential variables. Intuitively, a triple (x, p, o) would
be true under I, where x is a blank node, if there exists a resource s such that
(s, p, o) is true under I. An arbitrary element can be chosen when interpreting a
blank node, with the restriction that all the occurrences of the same blank node in
an RDF graph must be replaced by the same value. To formally deal with blank
nodes, an extension of the interpretation mapping Int is used. Let A : B → Res
be a function between blank nodes and resources. Then IntA : UB → Res
is defined as the extension of function Int : IntA(x) = A(x) for x ∈ B, and
IntA(x) = Int(x) for x ∈ U .

We next formalize the notion of model for an RDF graph [27,37]. We say
that the RDF interpretation I = (Res ,Prop,Class ,PExt ,CExt , Int) is a model
of (is an interpretation for) an RDF graph G, denoted by I |= G, if the following
conditions hold:

Simple Interpretation:

– there exists a function A : B → Res such that for each (s, p, o) ∈ G, it
holds that Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ PExt(Int(p)).

Properties and Classes :

– Int(sp), Int(sc), Int(type), Int(dom), Int(range) ∈ Prop,

– if (x, y) ∈ PExt(Int(dom)) ∪ PExt(Int(range)), then x ∈ Prop and y ∈
Class .

Sub-property:

– PExt(Int(sp)) is transitive and reflexive over Prop,

– if (x, y) ∈ PExt(Int(sp)), then x, y ∈ Prop and PExt(x) ⊆ PExt(y).

Sub-class :

– PExt(Int(sc)) is transitive and reflexive over Class ,

– if (x, y) ∈ PExt(Int(sc)), then x, y ∈ Class and CExt(x) ⊆ CExt(y).

Typing:

– (x, y) ∈ PExt(Int(type)) if and only if y ∈ Class and x ∈ CExt(y),

– if (x, y) ∈ PExt(Int(dom)) and (u, v) ∈ PExt(x), then u ∈ CExt(y),

– if (x, y) ∈ PExt(Int(range)) and (u, v) ∈ PExt(x), then v ∈ CExt(y).

2.4 A deductive system for RDFS

The notion of entailment has shown to be of fundamental importance for many
tasks in the database context, and as such it also plays a fundamental role in
the context of RDF. Indeed, this notion has been present since the beginning of
the Semantics Web initiative. In this section, we study this concept in detail.

Given RDF graphs G1 and G2 , we say that G1 entails G2, denoted by
G1 |= G2, if for every interpretation I such that I |= G1, it holds that I |= G2.
In [37], the authors showed that this entailment notion between RDF graphs is
equivalent to the W3C normative notion of entailment [27], for the fragment of
the RDFS vocabulary considered in this paper. In Table 1, we present a deductive
system for this notion. This system was given in [37], and is based on a set of
rules for |= introduced in [27].

1. Existential:

G

G′
for a homomorphism h : G′ → G

2. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

3. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

4. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B) (C,sp,A) (X ,C,Y)
(X ,type,B)

(b) (A,range,B) (C,sp,A) (X ,C,Y)
(Y,type,B)

6. Subproperty Reflexivity:

(a) (X ,A,Y)
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c)
(p,sp,p)

for p ∈ {sp, sc, dom, range, type}

(d) (A,p,X)
(A,sp,A)

for p ∈ {dom, range}

7. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B)

(b) (X ,p,A)
(A,sc,A)

for p ∈ {dom, range, type}

Table 1. RDFS inference rules

The first rule in Tab. 1 captures the semantics of blank nodes. In every rule
(2)-(7), letters A, B, C, X , and Y, stand for variables to be replaced by actual
terms. More formally, an instantiation of a rule (2)-(7) is a replacement of the
variables occurring in the triples of the rule by elements of UB , such that all the
triples obtained after the replacement are well formed RDF triples, that is, not
assigning blank nodes to variables in predicate positions.

An application of a rule to a graph G is defined as follows. For rule (1), if
h is a homomorphism from G′ to G, then G′ is the result of an application of
rule (1) to G. If r is any of the rules (2)-(7), and there is an instantiation R

R′
of

r such that R ⊆ G, then the graph G′ = G ∪ R′ is the result of an application
of r to G. We say that a graph G′ is deduced from G, if G′ is obtained from G
by successively applying the rules in Tab. 1.

In [37], the authors proved that the set of rules in Tab. 1 is sound and
complete for the inference problem for the fragment of RDFS consisting of the
reserved words sc, sp, range, dom and type. That is, it captures the semantics
of the normative RDF specification when one focuses on the fragment of the
RDFS vocabulary considered in this paper.

Theorem 1 (Soundness and completeness [37]). Let G and H be RDF
graphs, then G |= H iff H is deduced from G by applying rules in Tab. 1.

It is worth mentioning that the set of rules presented in [27] is not complete for |=
(this was pointed out by Marin in [35]). The problem with the system proposed
in [27] is that a blank node x can be implicitly used as a property in triples
like (a, sp, X), (X, dom, b), and (X, range, c). This problem was solved in [37] by
following the approach proposed by Marin [35]. In fact, the rules (5a)-(5b) were
added to the system given in [27] to deal with this problem.

In [37], the authors showed that the deductive system of Tab. 1 can be
simplified by imposing some syntactic restrictions on RDF graphs. The most
simple case is obtained when G and H are graphs that do not have blank nodes,
and do not mention RDFS vocabulary. In that case, the entailment relation
G |= H is reduced to just testing whether H ⊆ G. On the other hand, if G
and H are RDF graphs that do not mention RDFS vocabulary (but possibly
blank nodes), then G |= H if and only if H can be obtained from G by using
rule (1), that is, if and only if there exists a homomorphism h : H → G 4. Another
important simplification is obtained if one forbids the presence of reflexive triples.
A triple t is reflexive if t is of the form (x, sp, x) or (x, sc, x) for x ∈ UB . We
formalize two of these special cases in the following proposition.

Proposition 1 ([37]).

1. If G and H are RDF graphs that do not mention RDFS vocabulary, then
G |= H iff there exists a homomorphism h : H → G.

2. If G and H are RDF graphs that have neither blank nodes nor reflexive
triples, then G |= H iff H can be deduced from G by using rules (2)-(4).

4 Notice that this result is also a corollary of [16].

In the following sections, we study the fundamental problem of querying RDF
data. There is no yet consensus in the Semantic Web community on how to
define a query language for RDF that includes all the features of the RDF data
model, in particular blank nodes and the RDFS vocabulary. The specification of
SPARQL, the standard language for RDF, currently considers RDF data without
RDFS vocabulary and with no special semantics for blank nodes. Thus, we study
SPARQL in the next sections focusing on ground RDF graphs with no RDFS
vocabulary. In Section 6.3, we explore the possibility of having an RDF query
language capable of dealing with the special semantics of the RDFS vocabulary.

3 The RDF Query Language SPARQL

In 2004, the RDF Data Access Working Group, part of the W3C Semantic Web
Activity, released a first public working draft of a query language for RDF, called
SPARQL [45] 5. Since then, SPARQL has been rapidly adopted as the standard
for querying Semantic Web data. In January 2008, SPARQL became a W3C
Recommendation.

RDF is a directed labeled graph data format and, thus, SPARQL is essentially
a graph-matching query language. SPARQL queries are composed by three parts.
The pattern matching part, which includes several interesting features of pattern
matching of graphs, like optional parts, union of patterns, nesting, filtering values
of possible matchings, and the possibility of choosing the data source to be
matched by a pattern. The solution modifiers, which once the output of the
pattern has been computed (in the form of a table of values of variables), allow
to modify these values applying classical operators like projection, distinct, order
and limit. Finally, the output of a SPARQL query can be of different types:
yes/no queries, selections of values of the variables which match the patterns,
construction of new RDF data from these values, and descriptions of resources.

The definition of a formal semantics for SPARQL has played a key role in
the standardization process of this query language. Although taken one by one
the features of SPARQL are intuitive and simple to describe and understand, it
turns out that the combination of them makes SPARQL into a complex language.
Reaching a consensus in the W3C standardization process about a formal se-
mantics for SPARQL was not an easy task. The initial efforts to define SPARQL
were driven by use cases, mostly by specifying the expected output for par-
ticular example queries. In fact, the interpretations of examples and the exact
outcomes of cases not covered in the initial drafts of the SPARQL specification,
were a matter of long discussions in the W3C mailing lists. In [40], the authors
presented one of the first formalizations of a semantics for a fragment of the
language. Currently, the official specification of SPARQL [45], endorsed by the
W3C, formalizes a semantics based on [40].

A formalization of a semantics for SPARQL is beneficial for several reasons,
including to serve as a tool to identify and derive relations among the con-

5 The name SPARQL is a recursive acronym that stands for SPARQL Protocol and
RDF Query Language.

structors that stay hidden in the use cases, identify redundant and contradicting
notions, to drive and help the implementation of query engines, and to study the
complexity, expressiveness, and further natural database questions like rewriting
and optimization. In this section, we present a streamlined version of the core
fragment of SPARQL with precise algebraic syntax and a formal compositional
semantics based on [40].

One of the delicate issues in the definition of a semantics for SPARQL is
the treatment of optional matching and incomplete answers. The idea behind
optional matching is to allow information to be added if the information is avail-
able in the data source, instead of just failing to give an answer whenever some
part of the pattern does not match. This feature of optional matching is crucial
in Semantic Web applications, and more specifically in RDF data management,
where it is assumed that every application have only partial knowledge about
the resources being managed. The semantics of SPARQL is formalized by using
partial mappings between variables in the patterns and actual values in the RDF
graph being queried. This formalization allows one to deal with partial answers
in a clean way, and is based on the extension of some classical relational algebra
operators to work over sets of partial mappings.

A SPARQL query is of the form head ← body , where the body of the query,
is a complex RDF graph pattern expression that may include RDF triples with
variables, conjunctions, disjunctions, optional parts and constraints over the val-
ues of the variables, and the head of the query is an expression that indicates
how to construct the answer to the query. The evaluation of a query Q against
an RDF graph G is done in two steps: the body of Q is matched against G to
obtain a set of bindings for the variables in the body, and then using the informa-
tion on the head of Q, these bindings are processed applying classical relational
operators (projection, distinct, etc.) to produce the answer to the query.

It should be noticed that the normative specification of SPARQL [45] is
defined over RDF graphs without RDFS vocabulary, and not considering the
special semantics of blank nodes. In this section, we work over the same setting.

3.1 Syntax and semantics of SPARQL graph patterns

We first concentrate on the body of SPARQL queries, i.e. in the graph pattern
matching facility.

The official syntax of SPARQL [45] considers operators OPTIONAL, UNION,
FILTER, and concatenation via a point symbol (.), to construct graph pattern
expressions. The syntax also considers { } to group patterns, and some im-
plicit rules of precedence and association. For example, the point symbol (.) has
precedence over OPTIONAL, and OPTIONAL is left associative. In order to avoid
ambiguities in the parsing of expressions, we present the syntax of SPARQL
graph patterns in a more traditional algebraic formalism, using binary opera-
tors AND (.), UNION (UNION), OPT (OPTIONAL), and FILTER (FILTER). We
fully parenthesize expressions making explicit the precedence and association of
operators.

Assume the existence of a set of variables V disjoint from U . A SPARQL
graph pattern expression is defined recursively as follows:

1. A tuple from (U∪V)×(U∪V)×(U∪V) is a graph pattern (a triple pattern).
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),

and (P1 UNION P2) are graph patterns (conjunction graph pattern, optional
graph pattern, and union graph pattern, respectively).

3. If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).

A SPARQL built-in condition is constructed using elements of the set U ∪V and
constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the
equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus other
features (see [45] for a complete list). In this paper, we restrict to the fragment
where the built-in condition is a Boolean combination of terms constructed by
using = and bound, that is:

1. If ?X, ?Y ∈ V and c ∈ U , then bound(?X), ?X = c and ?X =?Y are built-in
conditions.

2. If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2)
are built-in conditions.

Let P be a SPARQL graph pattern. In the rest of the paper, we use var(P) to
denote the set of variables occurring in P . In particular, if t is a triple pattern,
then var(t) denotes the set of variables occurring in the components of t. Sim-
ilarly, for a built-in condition R, we use var(R) to denote the set of variables
occurring in R.

To define the semantics of SPARQL graph pattern expressions, we need to
introduce some terminology. A mapping µ from V to U is a partial function
µ : V → U . Abusing notation, for a triple pattern t we denote by µ(t) the triple
obtained by replacing the variables in t according to µ. The domain of µ, denoted
by dom(µ), is the subset of V where µ is defined. Two mappings µ1 and µ2 are
compatible when for all x ∈ dom(µ1)∩dom(µ2), it is the case that µ1(x) = µ2(x),
i.e. when µ1 ∪ µ2 is also a mapping. Intuitively, µ1 and µ2 are compatibles if
µ1 can be extended with µ2 to obtain a new mapping, and vice versa. Note that
two mappings with disjoint domains are always compatible, and that the empty
mapping µ∅ (i.e. the mapping with empty domain) is compatible with any other
mapping.

Let Ω1 and Ω2 be sets of mappings. We define the join of, the union of and
the difference between Ω1 and Ω2 as [40]:

Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible mappings},

Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 rΩ2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 rΩ2).

Intuitively, Ω1 ⋊⋉ Ω2 is the set of mappings that result from extending mappings
in Ω1 with their compatible mappings in Ω2, and Ω1 rΩ2 is the set of mappings
in Ω1 that cannot be extended with any mapping in Ω2. The operationΩ1∪Ω2 is
the usual set theoretical union. A mapping µ is in Ω1 Ω2 if it is the extension
of a mapping of Ω1 with a compatible mapping of Ω2, or if it belongs to Ω1

and cannot be extended with any mapping of Ω2. These operations resemble
relational algebra operations over sets of mappings (partial functions) [52].

We are ready to define the semantics of graph pattern expressions as a func-
tion J · KG which takes a pattern expression and returns a set of mappings. We
follow the approach in [23] defining the semantics as the set of mappings that
matches the graph G. For the sake of readability, the semantics of filter expres-
sions is presented in a separate definition.

Definition 2. The evaluation of a graph pattern P over an RDF graph G, de-
noted by JP KG, is defined recursively as follows:

1. if P is a triple pattern t, then JP KG = {µ | dom(µ) = var(t) and µ(t) ∈ G}.
2. if P is (P1 AND P2), then JP KG = JP1KG ⋊⋉ JP2KG.
3. if P is (P1 OPT P2), then JP KG = JP1KG JP2KG.
4. if P is (P1 UNION P2), then JP KG = JP1KG ∪ JP2KG.

The idea behind the OPT operator is to allow for optional matching of patterns.
Consider pattern expression (P1 OPT P2) and let µ1 be a mapping in JP1KG.
If there exists a mapping µ2 ∈ JP2KG such that µ1 and µ2 are compatible, then
µ1 ∪ µ2 belongs to J(P1 OPT P2)KG. But if no such a mapping µ2 exists, then
µ1 belongs to J(P1 OPT P2)KG. Thus, operator OPT allows information to be
added to a mapping µ if the information is available, instead of just rejecting
µ whenever some part of the pattern does not match. This feature of optional
matching is crucial in Semantic Web applications, and more specifically in RDF
data management, where it is assumed that every application have only partial
knowledge about the resources being managed.

The semantics of filter expressions goes as follows. Given a mapping µ and a
built-in condition R, we say that µ satisfies R, denoted by µ |= R, if:

1. R is bound(?X) and ?X ∈ dom(µ);
2. R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;
3. R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y);
4. R is (¬R1), R1 is a built-in condition, and it is not the case that µ |= R1;
5. R is (R1 ∨R2), R1 and R2 are built-in conditions, and µ |= R1 or µ |= R2;
6. R is (R1 ∧R2), R1 and R2 are built-in conditions, µ |= R1 and µ |= R2.

Definition 3. Given an RDF graph G and a filter expression (P FILTER R),

J(P FILTER R)KG = {µ ∈ JP KG | µ |= R}.

In the normative semantics of SPARQL [45], there is an additional feature of
graph patterns that allows to query several different RDF graphs with a single

pattern. This is accomplished with the GRAPH operator that allows to dynam-
ically change the graph being used in the evaluation of a pattern. For the sake
of readability, we do not include here the GRAPH operator. We refer the reader
to [42] for a formalization of SPARQL graph patterns including GRAPH, and
to [9] for some tutorial material.

In the rest of the paper, we usually represent sets of mappings as tables where
each row represents a mapping in the set. We label every row with the name
of a mapping, and every column with the name of a variable. If a mapping is
not defined for some variable, then we simply leave empty the corresponding
position. For instance, the table

?X ?Y ?Z ?V ?W
µ1 : a b
µ2 : c d
µ3 : e

represents the set Ω = {µ1, µ2, µ3} where

- dom(µ1) = {?X, ?Y }, µ1(?X) = a, and µ1(?Y) = b,
- dom(µ2) = {?Y, ?W}, µ2(?Y) = c, and µ2(?W) = d,
- dom(µ3) = {?Z}, and µ3(?Z) = e.

Sometimes we use notation {{?X → a, ?Y → b}, {?Y → c, ?W → d}, {?Z → e}}
for a set of mappings as the one above.

Example 1. Consider an RDF graph G storing information about professors in
a university:

G = { (B1, name, paul), (B1, phone, 777-3426),
(B2, name, john), (B2, email, john@acd.edu),
(B3, name, george), (B3, webPage, www.george.edu),
(B4, name, ringo), (B4, email, ringo@acd.edu),
(B4, webPage, www.starr.edu), (B4, phone, 888-4537) }

The following are graph pattern expressions and their evaluations over G:

- P1 = ((?A, email, ?E) AND (?A, webPage, ?W)). Then

JP1KG =
?A ?E ?W

µ1 : B4 ringo@acd.edu www.starr.edu

- P2 = ((?A, email, ?E) OPT (?A, webPage, ?W)). Then

JP2KG =
?A ?E ?W

µ1 : B2 john@acd.edu
µ2 : B4 ringo@acd.edu www.starr.edu

- P3 = (((?A, name, ?N) OPT (?A, email, ?E)) OPT (?A, webPage, ?W)).
Then

JP3KG =

?A ?N ?E ?W
µ1 : B1 paul
µ2 : B2 john john@acd.edu
µ3 : B3 george www.george.edu
µ4 : B4 ringo ringo@acd.edu www.starr.edu

- P4 = ((?A, name, ?N) OPT ((?A, email, ?E) OPT (?A, webPage, ?W))).
Then

JP4KG =

?A ?N ?E ?W
µ1 : B1 paul
µ2 : B2 john john@acd.edu
µ3 : B3 george
µ4 : B4 ringo ringo@acd.edu www.starr.edu

Notice the difference between JP2KG and JP3KG. These two examples show
that J((A OPT B) OPT C)KG 6= J(A OPT (B OPT C))KG in general.

- P5 = ((?A, name, ?N) AND ((?A, email, ?E) UNION (?A, webPage, ?W))).
Then

JP5KG =

?A ?N ?E ?W
µ1 : B2 john john@acd.edu
µ2 : B3 george www.george.edu
µ3 : B4 ringo ringo@acd.edu
µ4 : B4 ringo www.starr.edu

- P6 = (((?A, name, ?N) OPT (?A, phone, ?P)) FILTER ?N = paul). Then

JP6KG =
?A ?N ?P

µ1 : B1 paul 777-3426
⊓⊔

Simple algebraic properties We say that two graph patterns P1 and P2 are
equivalent, denoted by P1 ≡ P2, if JP1KG = JP2KG for every RDF graph G. The
following simple lemma states some simple algebraic properties of AND and
UNION operators. These properties are direct consequence of the semantics of
AND and UNION, both based on set-theoretical union.

Lemma 1 ([40]). The operators AND and UNION are associative and com-
mutative and the operator AND distribute over UNION. That is, if P1, P2 and
P3 are graph patterns, then it holds that:

– (P1 AND P2) ≡ (P2 AND P1)
– (P1 UNION P2) ≡ (P2 UNION P1)
– (P1 AND (P2 AND P3)) ≡ ((P1 AND P2) AND P3)
– (P1 UNION (P2 UNION P3)) ≡ ((P1 UNION P2) UNION P3)
– (P1 AND (P2 UNION P3)) ≡ ((P1 AND P2) UNION (P1 AND P3))

The above lemma permits us to avoid parenthesis when writing sequences of ei-
ther AND operators or UNION operators. This is consistent with the definitions
of Group Graph Pattern and Union Graph Pattern in [45]. We use Lemma 1 to
simplify the notation in the following sections.

3.2 Query result forms

The normative specification of SPARQL [45] considers four query forms. These
query forms use the mappings obtained after the evaluation of a graph pattern
to construct result sets or RDF graphs. The query forms are: (1) SELECT, that
performs a projection over a set of variables in the evaluation of a graph pat-
tern, (2) CONSTRUCT, that returns an RDF graph constructed by substituting
variables in a template, (3) ASK, that returns a truth value indicating whether
the evaluation of a graph pattern produces at least one mapping, and (4) DE-
SCRIBE, that returns an RDF graph that describes the resources found. In this
paper, we only consider the SELECT query form. We refer the reader to [42] for
a formalization of the remaining query forms.

Given a mapping µ : V → U and a set of variables W ⊆ V , the restriction of
µ to W , denoted by µ|W , is a mapping such that dom(µ|W) = dom(µ) ∩W and
µ|W (?X) = µ(?X) for every ?X ∈ dom(µ) ∩W .

Definition 4. A SPARQL SELECT query is a tuple (W,P), where P is a graph
pattern and W is a set of variables such that W ⊆ var(P). The answer of (W,P)
over an RDF graph G, denoted by J(W,P)KG, is the set of mappings:

J(W,P)KG = {µ|W | µ ∈ JP KG}.

Example 2. Consider the RDF graph G and the graph pattern P3 in Example 1.
Then we have that:

J({?N, ?E}, P3)KG =

?N ?E
µ1 : paul
µ2 : john john@acd.edu
µ3 : george
µ4 : ringo ringo@acd.edu

⊓⊔

In the following sections, we study some fundamental issues regarding the query
language SPARQL. The first of that issues is the complexity of the evaluation
problem for SPARQL. In Section 4, we focus on studying the complexity of the
evaluation problem for SPARQL graph patterns. Then in Section 5, we consider
SPARQL SELECT queries to compare the expressive powers of SPARQL and
the Relational Algebra.

4 Complexity and Optimization of SPARQL

A fundamental issue in every query language is the complexity of query evalua-
tion and, in particular, what is the influence of each component of the language
in this complexity.

In this section, we present a thorough study of the complexity of the eval-
uation of SPARQL graph patterns based on [40]. In this study, we consider

several fragments of SPARQL built incrementally, and present complexity re-
sults for each such fragment. Among other results, we show that the complex-
ity of the evaluation problem for general SPARQL graph patterns is PSPACE-
complete [40], and that this high complexity is obtained as a consequence of
unlimited use of nested optional parts.

Given the high complexity of the evaluation problem for general SPARQL
graph patterns, an important question is whether one can find interesting classes
of patterns where the query evaluation problem can be solved more efficiently.
In [40,41], the authors identified a large class of patterns with the previous
characteristic that is defined by a simple and natural syntactic restriction. This
class is obtained by forbidding a special form of interaction between variables
appearing in optional parts. Patterns satisfying this condition are called well-
designed [40,41]. Well-designed patterns form a natural fragment of SPARQL
that is very common in practice, and has several interesting features. On the
one hand, the complexity of the evaluation problem for well-designed patterns is
considerably lower, namely coNP-complete. On the other hand, the property of
being well designed has important consequences for the optimization of SPARQL
queries. We present some rewriting rules for well-designed patterns whose appli-
cation may have a considerable impact in the cost of evaluating SPARQL queries,
and prove the existence of a normal form for well-designed patterns based on
the application of these rewriting rules.

4.1 Complexity of evaluating graph pattern expressions

In this section, we review some the results in the literature regarding the com-
plexity of evaluating SPARQL graph pattern expressions. The first study about
this problem was published in [40], and some refinements of the complexity re-
sults of [40] were presented in [47]. This section focuses on the complexity results
proved in these two papers.

As is customary when studying the complexity of the evaluation problem for
a query language [51], we consider its associated decision problem. We denote
this problem by Evaluation and we define it as follows:

INPUT : An RDF graph G, a graph pattern P and a mapping µ.
QUESTION : Is µ ∈ JP KG?

It is important to notice that the evaluation problem that we study considers
the mapping as part of the input. That is, we study the complexity by measuring
how difficult it is to verify whether a given mapping is a solution for a pattern
evaluated over an RDF graph. This is the standard decision problem considered
when studying the complexity of a query language [51], as opposed to the compu-
tation problem of actually listing the set of solutions (finding all the mappings).
To focus on the associated decision problem allows us to obtain a fine grained
analysis of the complexity of the evaluation problem, classifying the complexity
for different fragments of SPARQL in terms of standard complexity classes. Also

notice that the pattern and the graph are both input for Evaluation. Thus,
we study the combined complexity of the query language [51].

We start this study by considering the fragment consisting of graph pattern
expressions constructed by using only AND and FILTER operators. This simple
fragment is interesting as it does not use the two most complicated operators in
SPARQL, namely UNION and OPT. Given an RDF graph G, a graph pattern
P in this fragment and a mapping µ, it is possible to efficiently check whether
µ ∈ JP KG by using the following simple algorithm [40]. First, for each triple t in
P , verify whether µ(t) ∈ G. If this is not the case, then return false. Otherwise,
by using a bottom-up approach, verify whether the expression generated by
instantiating the variables in P according to µ satisfies the FILTER conditions
in P . If this is the case, then return true, else return false.

Theorem 2. Evaluation can be solved in time O(|P | · |D|) for graph pattern
expressions constructed by using only AND and FILTER operators.

We continue this study by adding the UNION operator to the AND-FILTER
fragment. It is important to notice that the inclusion of UNION in SPARQL
is one of the most controversial issues in the definition of this language. The
following theorem proved in [40], shows that the inclusion of the UNION operator
makes the evaluation problem for SPARQL considerably harder.

Theorem 3 ([40]). Evaluation is NP-complete for graph pattern expressions
constructed by using only AND, FILTER and UNION operators.

In [47], the authors strengthen the above result by showing that the complexity
of evaluating graph pattern expressions constructed by using only AND and
UNION operators is already NP-hard. Thus, we have the following result.

Theorem 4 ([47]). Evaluation is NP-complete for graph pattern expressions
constructed by using only AND and UNION operators.

We now consider the OPT operator, which is the most involved operator in graph
pattern expressions and, definitively, the most difficult to define. The following
theorem proved in [40] shows that when considering all the operators in SPARQL
graph patterns, the evaluation problem becomes considerably harder.

Theorem 5 ([40]). Evaluation is PSPACE-complete.

To prove the PSPACE-hardness of Evaluation, the authors show in [40] how
to reduce in polynomial time the quantified boolean formula problem (QBF) to
Evaluation. An instance of QBF is a quantified propositional formula ϕ of the
form:

∀x1∃y1∀x2∃y2 · · · ∀xm∃ym ψ,

where ψ is a quantifier-free formula of the form C1 ∧ · · · ∧Cn, with each Ci (i ∈
{1, . . . , n}) being a disjunction of literals, that is, a disjunction of propositional

variables xi and yj , and negations of propositional variables. Then the problem
is to verify whether ϕ is valid. It is known that QBF is PSPACE-complete [22].
In the encoding presented in [40], the authors use a fixed RDF graph G and a
fixed mapping µ. Then they encode formula ϕ with a pattern Pϕ that uses nested
OPT operators to encode the quantifier alternation of ϕ, and a graph pattern
without OPT to encode the satisfiability of formula ψ. By using a similar idea,
it is shown in [47] how to encode formulas ϕ and ψ by using only the OPT
operator, thus strengthening Theorem 5.

Theorem 6 ([47]). Evaluation is PSPACE-complete for graph pattern ex-
pressions constructed by using only the OPT operator.

When verifying whether µ ∈ JP KG, it is natural to assume that the size of P
is considerably smaller than the size of G. This assumption is very common
when studying the complexity of a query language. In fact, it is named data
complexity in the database literature [51], and it is defined as the complexity of
the evaluation problem for a fixed query. More precisely, for the case of SPARQL,
given a graph pattern expression P , the evaluation problem for P , denoted by
Evaluation(P), has as input an RDF graph G and a mapping µ, and the
problem is to verify whether µ ∈ JP KG.

Theorem 7 ([40]). Evaluation(P) is in LOGSPACE for every graph pattern
expression P .

An important question is whether one can find interesting classes of graph pat-
terns, constructed by imposing simple and natural syntactic restrictions, such
that one can obtain lower complexity bounds for the evaluation problem on that
classes. In the following section, we introduce a first such restriction.

4.2 A simple normal form for graph patterns

We say that a pattern P is UNION-free if P is constructed by using only opera-
tors AND, OPT and FILTER. In [40], the authors proved the following normal-
form result.

Proposition 2 ([40]). Every graph pattern P is equivalent to a pattern of the
form:

(P1 UNION P2 UNION P3 UNION · · · UNION Pn), (1)

where each Pi (1 ≤ i ≤ n) is UNION-free.

Notice that we omit the parenthesis in the expression (1) given the associativity
of UNION. We say that a graph pattern is in UNION normal form if the pattern
is in the form (1) 6.

6 In the conference version of [40], the proof of the existence of a
UNION normal form used the equivalence (P1 OPT (P2 UNION P3)) ≡
((P1 OPT P2) UNION (P1 OPT P3)) (see Proposition 1 in [40]). Unfortunately,
this rule does not hold in general [47]. In the errata of [40] (that can be downloaded
from http://www.ing.puc.cl/~ marenas/publications/errata-iswc06.pdf), the
authors provide a proof of Proposition 2 without using this rule.

The following result shows that for graph patterns in UNION normal form
that do not use the OPT operator, the evaluation problem can be solved effi-
ciently. It is a direct consequence of Theorem 2.

Corollary 1. Evaluation can be solved in time O(|P | · |G|) for graph patterns
in UNION normal form constructed by using only AND, FILTER, and UNION
operators.

We have managed to lower the complexity of the AND-FILTER-UNION frag-
ment by imposing a simple normal form. However, Theorem 6 implies that when
the OPT operator is allowed in graph patterns, the complexity of the evaluation
problem is PSPACE-hard even if we restrict to patterns in UNION normal form.
In the following section, we introduce a simple and natural syntactic condition
that patterns usually satisfy in practice. Under this condition, the complexity
of the evaluation of graph patterns in UNION normal form is lower even if the
OPT operator is allowed.

4.3 Well-designed graph patterns

The exact semantics of graph pattern expressions has been extensively discussed
on the mailing list of the W3C. One of the most delicate issues in the definition of
a semantics for graph pattern expressions is the semantics of the OPT operator.
The idea behind the OPT operator is to allow for optional matching of patterns,
that is, to allow information to be added if it is available, instead of just rejecting
whenever some part of a pattern does not match. However, this intuition fails in
some simple, but unnatural, examples. For instance, consider the graph pattern:

P = ((?X, name, john) OPT ((?Y, name, mick) OPT (?X, email, ?Z))). (2)

What is unnatural about graph pattern P is the fact that (?X, email, ?Z) is
giving optional information for (?X, name, john), but in P appears as giving
optional information for (?Y, name, mick). For example, (B2, name, john) and
(B2, email, john@ac.edu) are triples in the graph G of Example 1, but the eval-
uation of P results in the set {{?X → B2}} (since J(?Y, name, mick)KG = ∅)
without giving information about the email of john.

A careful examination of the examples that produce conflicts reveals a com-
mon pattern: A graph pattern P mentions an expression P ′ = (P1 OPT P2) and
a variable ?X occurring both inside P2 and outside P ′ but not occurring in P1.
In general, graph pattern expressions satisfying this condition are not natural.

In [40], the authors considered a special class of patterns that they called
well-designed patterns, obtained by forbidding the form of interaction between
variables appearing in optional parts discussed above. To present the formal
definition of well-designed patterns, we need to introduce some terminology. We
say that a graph pattern Q is safe if for every sub-pattern (P FILTER R) of
Q, it holds that var(R) ⊆ var(P). This safety condition is a usual restriction in
many database query languages.

Definition 5 ([40]). A UNION-free graph pattern P is well designed if P is
safe and, for every sub-pattern P ′ = (P1 OPT P2) of P and for every variable
?X occurring in P , the following condition holds:

if ?X occurs both inside P2 and outside P ′, then it also occurs in P1.

For instance, pattern (2) above is not well designed. One can extend Definition 5
to patterns in UNION normal form; a pattern (P1 UNION P2 UNION · · ·
UNION Pn) is well designed if every Pi (1 ≤ i ≤ n) is a UNION-free well-
designed graph pattern.

It should be noticed that to prove the PSPACE lower bound of Theorem 5,
it is used in [40] a graph pattern that is not well designed. Thus, an immediate
question is whether the complexity of evaluating well-designed graph pattern ex-
pressions is lower than in the general case. In [41] (the extended version of [40]),
the authors showed that this is indeed the case, in fact, they proved a coNP upper
bound for the case of well-designed graph patterns. In [40,41], the authors also
considered the problem of optimizing well-designed graph patterns. Since the be-
ginning of the relational model, several techniques for optimizing the evaluation
of relational algebra expressions have been developed. In fact, one of the reasons
why relational algebra is so extensively used to implement SQL is the existence
of simple reordering and optimization rules for this language. Unfortunately, the
development of this type of rules for SPARQL is limited by the presence of the
OPT operator. However, it was shown in [40,41] that well-designed patterns are
suitable for reordering and optimization, demonstrating the significance of this
class of queries from the practical point of view. In the rest of this section, we
review some of the results in [40,41] regarding well-designed patterns.

We note first that the property of being well-designed can be checked ef-
ficiently by a straightforward procedure. Let P be a pattern. Then for every
sub-pattern P ′ of P of the form (P1 OPT P2), we construct three sets: sets VP1

and VP2
, containing the variables occurring in P1 and P2, respectively, and set

OP ′ containing the variables that occur outside P ′. To construct VP1
, we collect

variables by making a bottom-up traversal of the sub-patterns of P1. We repeat
this procedure in P2 to construct VP2

. To construct OP ′ , we make a bottom-up
traversal of the entire pattern P , but not taking into consideration P ′. Having
these three sets, we check whether VP2

∩ OP ′ ⊆ VP1
, that is, we check whether

every variable that occurs inside P2 and outside P ′ also occurs inside P1, which
is exactly the well-designed condition. We must repeat this test for every OPT
sub-pattern of P . Notice that the test for every OPT sub-pattern takes linear
time in the size of P , and then, the entire process takes time proportional to the
size of P times the number of OPT sub-patterns of P . We can then state the
following proposition:

Proposition 3 ([41]). Testing if a pattern P is well designed can be done in
time O(|P |2).

4.4 Complexity of evaluating well-designed patterns

Intuitively, if we delete some optional parts of a pattern P to obtain a new
pattern P ′, the mappings in the evaluation of P ′ over a graph G could not be
more informative than the mappings in the evaluation of P over G. That is,
the optional matchings of a pattern must only serve to extend solutions with
new information, but not to reject solutions if some information is not provided.
In [41], the authors showed that the intuition is indeed correct for the case of
well-designed graph patterns. In this section, we present the formalization of this
intuition given in [41], and use it to develop a characterization of the evaluation
of well-designed graph patterns.

We say that a mapping µ is subsumed by a mapping µ′, denoted by µ ⊑ µ′,
if µ and µ′ are compatible and dom(µ) ⊆ dom(µ′). That is, µ is subsumed by µ′

if µ agrees with µ′ in every variable for which µ is defined. For sets of mappings
Ω and Ω′, we write Ω ⊑ Ω′ if for every mapping µ ∈ Ω, there exists a mapping
µ′ ∈ Ω′ such that µ ⊑ µ′.

We say that a pattern P ′ is a reduction of a pattern P , if P ′ can be obtained
from P by replacing a sub-formula (P1 OPT P2) of P by P1, that is, if P ′ is
obtained by deleting some optional part of P . For example,

P ′ = (t1 AND (t2 OPT (t3 AND t4)))

is a reduction of

P = ((t1 OPT t2) AND (t2 OPT (t3 AND t4)))

since P ′ can be obtained from P by replacing (t1 OPT t2) by t1. The reflexive and
transitive closure of the reduction relation is denoted by E. Thus, for example,
if P ′′ = (t1 AND t2), then P ′′ E P since P ′′ is a reduction of P ′ and P ′ is a
reduction of P . We note that if P ′ E P and P is well designed, then P ′ is well
designed.

We can now state the result that formalizes the intuition mentioned at the
beginning of this section.

Lemma 2 ([41]). Let P be a UNION-free well-designed graph pattern, and P ′

a pattern such that P ′ E P . Then JP ′KG ⊑ JP KG for every graph G.

It should be noticed that the property stated in Lemma 2 does not hold for
patterns that are not well designed. For example, consider a graph G = {(1, a, 1),
(2, a, 2), (3, a, 3)} and non well-designed pattern:

P = ((?X, a, 1) OPT ((?Y, a, 2) OPT (?X, a, 3))).

The evaluation of P results in the set {{?X → 1}}. By deleting the optional
part (?X, a, 3) of P , we obtain the reduction P ′ = ((?X, a, 1) AND (?Y, a, 2)) of
P . The evaluation of P ′ results in the set {{?X → 1, ?Y → 2}}. Thus, we have
that JP ′KG 6⊑ JP KG.

We have mentioned that, when evaluating an optional part of a pattern,
one is trying to extend mappings with optional information. Another intuition
behind the OPT operator is that, when a pattern has several optional parts, one
wants to extend the solutions as much as possible, that is, one does not want
to lose information when the information is present. We formalize this intuition
with the notion of partial solution for a pattern. Informally, a partial solution for
a pattern P is a mapping that is an exact match for some P ′ such that P ′ E P .
We show then, in Proposition 4, that the evaluation of a well-designed graph
pattern P is exactly the set of maximal partial solutions for P w.r.t. ⊑, that
is, the solutions that retrieve as much information as possible. This proposition
gives an alternative characterization of the evaluation of well-designed graph
patterns.

Given a pattern P , define and(P) to be the pattern obtained from P by
replacing every OPT operator in P by an AND operator. For example, if P is
the pattern:

P = ((t1 OPT t2) AND (t2 OPT (t3 AND t4))),

then we have that:

and(P) = ((t1 AND t2) AND (t2 AND (t3 AND t4))).

Notice that, by the semantics of the OPT operator, for every (not necessarily
well designed) pattern P and every graph G, we have that Jand(P)KG ⊆ JP KG.

A mapping µ is a partial solution for a pattern P over a graph G if µ ∈
Jand(P ′)KG, for some P ′ E P . Partial solutions and the notion of subsumption
of mappings give the following characterization of the evaluation of well-designed
graph patterns.

Proposition 4 ([41]). Given a UNION-free well-designed graph pattern P , a
graph G, and a mapping µ, we have that µ ∈ JP KG if and only if µ is a maximal
(w.r.t. ⊑) partial solution for P over G.

In [41], the authors use this characterization to prove that the complexity of the
evaluation problem for well-designed patterns is lower than for general patterns.

Theorem 8 ([41]). Evaluation is coNP-complete for the case of UNION-free
well-designed graph pattern expressions.

The characterization of the evaluation of well-designed graph patterns in Propo-
sition 4 can be extended to patterns in UNION normal form. For a well-designed
pattern P = (P1 UNION P2 UNION · · · UNION Pn) in UNION normal form, a
mapping µ, and a dataset D, it holds that µ ∈ JP KG if and only if µ is a maximal
partial solution (w.r.t. ⊑) for some Pi (1 ≤ i ≤ n). Then the evaluation problem
for well-designed patterns in UNION normal form is still in coNP.

Corollary 2 ([41]). Evaluation is coNP-complete for well-designed graph
pattern expressions in UNION normal form.

4.5 Optimization of well-designed patterns

Due to the evident similarity between certain operators of SPARQL and rela-
tional algebra, a natural question is whether the classical results of normal forms
and optimization for relational algebra are applicable in the SPARQL context.
The answer is not straightforward, at least for the case of optional patterns and
its relational counterpart, the left outer join. The classical results about outer-
join query reordering and optimization by Galindo-Legaria and Rosenthal [21]
are not directly applicable in the SPARQL context, as they assume constraints
on the relational queries that are rarely satisfied in SPARQL. The first, and most
problematic issue, is the assumption on predicates used for joining/outer-joining
relations to be null-rejecting [21]. A predicate p is null-rejecting if it evaluates to
false (or undefined) whenever a null value is used in p. In SPARQL, those predi-
cates are implicit in the variables that graph patterns share and, by the definition
of compatible mappings, they are never null-rejecting. In fact, people who have
developed algorithms for translating SPARQL queries into relational algebra and
SQL queries (e.g. [20]) have used NULL to represent unbound variables, IS NULL

in predicates for joining/outer-joining, and COALESCE for merging the values of
different columns into a single column. These features are explicitly prohibited
in [21] since they may imply a violation of the null-rejecting requirement.

Since the application of classical results in relational query optimization is
not straightforward, it would be desirable to develop specific techniques in the
SPARQL context. In [40], the authors proved that the property of being well
designed has important consequences for the study of normalization and opti-
mization for SPARQL.

Proposition 5 ([40]). Let P1, P2 and P3 be graph pattern expressions and R
a built-in condition. Consider the rewriting rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2), (3)

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3), (4)

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2). (5)

Let P be a UNION-free well-designed pattern, and assume that P ′ is a pattern
obtained from P by applying either Rule (3), or Rule (4), or Rule (5). Then P ′

is a UNION-free well-designed pattern equivalent to P .

It is worth mentioning that the previous rules are not applicable to non well-
designed graph patterns. For example, consider dataset D = {(1, a, 1), (2, a, 2),
(3, a, 3)} and non well-designed pattern:

P = ((?X, a, 1) AND ((?Y, a, 2) OPT (?X, a, 3))).

The evaluation of P results in the empty set of mappings. If we apply rule (4)
to P , we obtain pattern P ′ = (((?X, a, 1) AND (?Y, a, 2)) OPT (?X, a, 3)). The
evaluation of P ′ results in the set {{?X → 1, ?Y → 2}} and, thus, we have that
JP KG 6= JP ′KG.

We say that a UNION-free graph pattern P is in OPT normal form if either:
(1) P is constructed by using only the AND and FILTER operators, or (2)
P = (O1 OPT O2), with O1 and O2 patterns in OPT normal form. For example,
consider a pattern P :

[(

((t1 AND t2) FILTER R1)

OPT (t3 OPT ((t4 FILTER R2) AND t5))

)

OPT

(

t6 FILTER R3

)]

,

where every ti is a triple pattern, and every Rj is a built-in condition. Then P is
in OPT normal form. The following theorem shows that for every well-designed
graph pattern, an equivalent pattern in OPT normal form can be efficiently
obtained.

Theorem 9 ([41]). For every UNION-free well-designed pattern P , an equiva-
lent pattern in OPT normal form can be obtained after O(|P |2) applications of
Rules (3)-(5).

The application of Rules (3)-(5) may have a considerable impact in the cost
of evaluating graph patterns. One can measure this impact by analyzing the
intermediate sizes of the sets of mappings produced when evaluating a pattern.
By the semantics of the OPT operator, when evaluating an expression of the
form (P1 OPT P2) over a dataset D, the number of mappings obtained is at
least the number of mappings obtained when evaluating P1 over D. That is,
the application of the OPT operator never implies a reduction in the size of the
intermediate results in the evaluation of a graph pattern expression. In contrast,
it is clear that operators AND and FILTER may imply a reduction in the size of
intermediate results. Thus, for optimization purposes, it would be convenient to
perform all the AND and FILTER operations first, delaying the OPT operations
to the last step of the evaluation. A pattern in OPT normal form has its operators
ordered in a way that, the bottom-up evaluation of the pattern follows exactly
this strategy: AND and FILTER operations are executed prior to the execution
of the OPT operations.

5 On the Expressiveness of SPARQL

Determining the expressive power of a query language is crucial for understand-
ing its capabilities, that is, what types of queries a user can pose in this language,
and how complex the evaluation of such queries is. In this section, we study the
expressive power of SPARQL. The main goal is to show that SPARQL is equiv-
alent, from an expressive-power point of view, to Relational Algebra.

In order to determine the expressive power of a query language L, one usually
chooses a well-studied query language L′, and then compares the expressiveness
of L and L′. In particular, one says that two query languages have the same
expressive power if they express exactly the same set of queries. In this section,

we present an overview of the results in [7], that show that the query language
SPARQL SELECT has the same expressiveness as non-recursive Datalog with
negation (nr-Datalog¬) and Relational Algebra.

We start with an overview of Datalog (for further details see [1,33]). A term is
either a variable or a constant. An atom is either a predicate formula p(x1, ..., xn),
where p is a predicate name and each xi is a term, or an equality formula t1 = t2,
where t1 and t2 are terms. A literal is either an atom (a positive literal), or the
negation of an atom (a negative literal). A fact is a predicate formula containing
only constants. A substitution θ for variables x1, . . . , xk is a set of assignments
{x1 → t1, . . . , xk → tk} where each ti is a term. Given a literal L, we denote by
θ(L) the literal that results by replacing in L each variable xi by the term ti.

A Datalog rule is an expression H ← L1, . . . , Ln, where H is a predicate
formula containing only variables and each Li is a literal. H is called the head
of the rule, and the sequence L1, . . . , Ln is called its body. A Datalog program
Π is a finite set of Datalog rules. A predicate is extensional in Π if it does not
occur in the head of any rule of Π , otherwise it is called intensional. A Datalog
program is non-recursive if there is some ordering r1, . . . , rm of its rules so that,
the predicate name in the head of ri does not occur in the body of a rule rj
for every j ≤ i. We further impose the following safety condition to rules: every
variable occurring in a rule r must occur in at least one (positive) predicate
formula in the body of r. In what follows, we only consider non-recursive and
safe programs. Moreover, we may assume that all heads of rules in a program
have distinct variables, since repeated variables can always be replaced by adding
equalities. For example, the rule p(X,X)← t(X) can be replaced by p(X,Y)←
t(X), t(Y), X = Y .

Let D be a set of facts over the extensional predicates of a Datalog program
Π . We define the meaning of Π given D, denoted by facts∗(Π,D), as the set of
facts that results from the following process. Fix an order r1, . . . , rm of the rules
that satisfies the aforementioned non-recursive property. The set facts∗(Π,D)
is obtained evaluating the rules by following that order. Formally, we denote
by factsi(Π,D) the total set of facts obtained after evaluating rule ri. Initially,
facts0(Π,D) = D. In order to compute factsi+1(Π,D), assume that rule ri+1 is
H ← L1, . . . Ln. Then factsi+1(Π,D) is obtained by adding to factsi(Π,D) all
the facts of the form θ(H), where θ is a substitution such that θ(L1), . . . , θ(Ln)
hold in factsi(Π,D). The process stops when all rules have been considered.

A Datalog query Q is a pair (Π,L) where Π is a Datalog program and
L is a predicate formula (the goal of the program). The answer to a Datalog
query Q = (Π,L) over a database D, denoted by answer(Q,D), is the set of all
substitutions θ for the variables occurring in L, such that θ(L) ∈ facts∗(Π,D).

5.1 From SPARQL to nr-Datalog¬

In this section, we show that nr-Datalog¬ is at least as expressive as SPARQL
SELECT, that is, we show that every SPARQL SELECT query can be expressed
as an nr-Datalog¬ program. More specifically, we first define a one-to-one trans-
formation T1 that assigns to every RDF graph G a set of Datalog facts T1(G).

We then define a one-to-one transformation T2 that assigns to every SPARQL
SELECT query Q, a Datalog query T2(Q), and show that for every SPARQL
SELECT query Q and RDF graph G, the evaluation of Q over G corresponds
to the evaluation of the Datalog query T2(Q) over the set of facts T1(G).

The transformation T1 from RDF graphs into Datalog facts essentially trans-
form triples into facts, but taking special care of encoding unbounded values as
nulls. Formally, given an RDF graph G, the transformation T1(G) works as fol-
lows: every element a occurring in G is encoded by a fact term(a); each triple
(s, p, o) is encoded by a fact triple(s, p, o); additionally, we include a special fact
N(null), where null is a constant value used to represent unbounded variables.

We now have to show how graph patterns are transformed into Datalog rules.
We show here some examples of this transformation to highlight the intuition
of the process. We refer the reader to [44,7] for the details on the general trans-
formation. Consider first the graph pattern P1 = ((?X, a, 1) OPT (?X, b, ?Z)).
Then the transformation T2 generates the following Datalog program with goal
predicate p to express P1:

p(?X, ?Z)← triple(?X, a, 1), triple(?X, b, ?Z) (6)

p(?X, ?Z)← triple(?X, a, 1),N(?Z),¬q(?X) (7)

q(?X)← triple(?X, b, ?V) (8)

The first rule is encoding the join operation between sets of mappings, while
the second and third rules are encoding the difference. The left outer-join, which
defines the semantics of the OPT operator, is then obtained by considering rules
(6), (7) and (8), that is, considering the union between the results of the join
and the difference. Notice that predicate N is used in the second rule to encode
unbounded variables.

Second, consider SPARQL SELECT query ({?Z}, P1), where P1 is the pat-
tern defined above. To express the SELECT operator, one only needs to perform
a projection in Datalog, that is, one can express query ({?Z}, P1) by using rules
(6), (7), (8) and the following projection rule:

r(?Z)← p(?X, ?Z).

Notice that in this case r is the new goal predicate.
Finally, consider SPARQL pattern:

P2 =

(

(?X, a, 1) AND

(

(?X, b, 1) UNION (?Y, c, 1)

))

.

The main difficulty in translating P2 into an nr-Datalog¬ program is the encoding
of the notion of compatible mapping. To see why this is the case, first notice
that one can easily express pattern P ′

2 = ((?X, b, 1) UNION (?Y, c, 1)) as an
nr-Datalog¬ program:

p′(?X, ?Y)← triple(?X, b, 1),N(?Y),

p′(?X, ?Y)← triple(?Y, c, 1),N(?X).

But if we now want to translate pattern P2 = ((?X, a, 1) AND P ′
2), one cannot

directly use the previous two rules together with a rule like the following:

p(?X, ?Y)← triple(?X, a, 1), p′(?X, ?Y),

as this rule does not take into consideration the fact that the occurrence of ?X
in p′ could be instantiated with value null . In fact, if this is the case, then the
rule does not generate any facts as either there is no value d ∈ U such that
triple(d, a, 1) holds, or there is such a value d but then d is different from null .
Notice that this failure is due to the fact that the previous rule does not correctly
encode the notion of compatible mapping. To solve this problem, one needs to
replace the previous rule by:

p(?X, ?Y)← triple(?X, a, 1), p′(?U, ?Y), compatible(?X, ?U),

where compatible(·, ·) is defined as:

compatible(?X, ?Y)← term(?X), term(?Y), ?X =?Y

compatible(?X, ?Y)← term(?X),N(?Y)

compatible(?X, ?Y)← N(?X), term(?Y)

compatible(?X, ?Y)← N(?X),N(?Y)

To conclude this section, it only remains to show how SPARQL mappings are
represented as Datalog substitutions. Notice that a mapping µ is a partial func-
tion. To represent the fact that a mapping is not defined for some variables, we
use the special value null . Given a mapping µ and a set of variables W such that
dom(µ) ⊆W , we define θ(µ,W) as a substitution for variables in W such that (1)
θ(µ,W)(?X) = µ(?X) for every variable ?X ∈ dom(µ), and (2) θ(µ,W)(?X) = null
for every variable ?X such that ?X ∈W and ?X 6∈ dom(µ).

With the above transformations, we can show that nr-Datalog¬ is at least as
expressive as the language SPARQL SELECT. More precisely, let G be an RDF
graph and Q = (W,P) a SPARQL SELECT query, with W a set of variables
and P a SPARQL graph pattern. Then a mapping µ is in JQKG if and only if
the substitution θ(µ,W) is in answer(T1(Q), T2(G)). Thus, we have that:

Theorem 10 ([44,7]). nr-Datalog¬ is at least as expressive as the language
SPARQL SELECT.

5.2 From Datalog to SPARQL

In this section, we show that SPARQL is at least as expressive as nr-Datalog¬,
that is, we provide transformations from Datalog facts into RDF graphs, Datalog
substitutions into SPARQL mappings, and nr-Datalog¬ programs into SPARQL
graph patterns. But before presenting these transformations, we give a technical
result that is used to encode negated literals of Datalog rules. Let MINUS be

a binary operator defined as follows. Given SPARQL graph patterns P1, P2 and
an RDF graph G:

J(P1 MINUS P2)KG = JP1KG r JP2KG,

where r denotes the difference between sets of mappings defined in Section 3.
Then the following proposition shows that the MINUS operator can be expressed
in SPARQL:

Proposition 6. Let P1 and P2 be graph patterns. Then pattern (P1 MINUS P2)
is equivalent to:

((

P1 OPT (P2 AND (?X1, ?X2, ?X3))

)

FILTER ¬bound(?X1)

)

, (9)

where ?X1, ?X2, ?X3 are fresh variables mentioned neither in P1 nor in P2.

Thus, from now on we use SPARQL patterns including the operator MINUS, as
they can be translated into usual SPARQL patterns.

We now describe the transformations used to show that nr-Datalog¬ is con-
tained in SPARQL. Given a fact f = p(c1, ..., cn), let desc(f) be the set of
triples {(b, predicate, p), (b, 1, c1), . . . , (b, n, cn)}, where b is a fresh value in
U . Moreover, given a set of facts D, define a one-to-one transformation T ′

1 as
T ′

1 (D) = {desc(f) | f ∈ D}.
Transformation T ′

1 allows one to represent a set of facts as an RDF graph.
Thus, to show that SPARQL SELECT is at least as expressive as nr-Datalog¬,
it remains to provide a one-to-one mapping T ′

2 that transforms nr-Datalog¬

programs into SPARQL SELECT queries. As we did for the other direction, we
show the intuition of the transformation with an example, and refer the reader
to [7] for a detailed description of this transformation. Let Π be an nr-Datalog¬

program, and L a predicate formula p(x1, . . . , xn). For the sake of readability,
we assume that all the variables in Π are in V (that is, they can be used as
variables in SPARQL graph patterns). We define gp(Π,L) as a function which
returns a graph pattern that encodes the program (Π,L). The function gp(Π,L)
works as follows:

(a) If predicate p is extensional in Π , then gp(Π,L) returns the graph pattern
((?Y, predicate, p) AND (?Y, 1, x1) AND · · · AND (?Y, 1, xn)), where ?Y is
a fresh variable.

(b) If predicate p is intensional inΠ , then for each rule L← L1, · · · , Ls,¬K1, · · · ,
¬Kt, L

eq
1 , · · · , L

eq
u in Π having p in its head, where each Li is a positive lit-

eral and each Leq
j is a literal of the form t1 = t2 or ¬(t1 = t2), the following

SPARQL pattern is generated:
[((

· · ·

((

gp(Π,L1) AND · · · AND gp(Π,Ls)

)

MINUS gp(Π,K1)

)

· · ·

)

MINUS gp(Π,Kt)

)

FILTER

(

Leq
1 ∧ · · · ∧ L

eq
u

)]

.

Assume that there are k rules in Π having p in their heads, and that P1,
. . ., Pk are the SPARQL patterns generated from these rules as above. Then
gp(Π,L) is defined as (P1 UNION · · · UNION Pk).

Function gp(·, ·) is used to define transformation T ′
2 . More precisely, if the set of

variables mentioned in L is W , then T ′
2 ((Π,L)) is the SPARQL SELECT query

(W, gp(Π,L)).

Example 3. Consider the following Datalog program Π :

p(?X, ?Y)← r(?X, ?Y, ?Z),¬s(?X, ?X)

p(?X, ?Y)← t(?X, ?Y)

In order to translate this program into a SPARQL SELECT query, the first rule
is transformed into the pattern:

P1 =

[(

(?U, predicate, r) AND (?U, 1, ?X) AND (?U, 2, ?Y) AND (?U, 3, ?Z)

)

MINUS

(

(?V, predicate, s) AND (?V, 1, ?X) AND (?V, 2, ?X)

)]

,

and the second rule is transformed into the pattern:

P2 =

(

(?W, predicate, t) AND (?W, 1, ?X) AND (?W, 2, ?Y)

)

.

Thus, we have that gp(Π, p(?X, ?Y)) is the pattern (P1 UNION P2), from
which we conclude that T ′

2 ((Π, p(?X, ?Y))) is the SPARQL SELECT query
({?X, ?Y }, (P1 UNION P2)). ⊓⊔

To conclude this section, it only remains to show how Datalog substitutions
are represented as SPARQL mappings. Given a substitution θ over a set W of
variables, define µθ as a mapping such that: (1) ?X ∈ dom(µθ) if and only if
?X → t is in θ and t 6= null , and (2) for every ?X ∈ dom(µθ), mapping µθ assigns
to ?X the value assigned by θ to this variable. This transformation together with
T ′

1 and T ′
2 can be used to show that the language SPARQL SELECT is at least as

expressive as nr-Datalog¬. More precisely, given a set D of Datalog facts and an
nr-Datalog¬ query Q = (Π,L), we have that a substitution θ is in answer(Q,D)
if and only if the mapping µθ is in JT ′

2 (Q)KT ′

1
(D). Thus, we have that:

Theorem 11 ([7]). The language SPARQL SELECT is at least as expressive
as nr-Datalog¬.

From Theorems 10 and 11, and using the well-known fact that Relational Algebra
has the same expressive power as nr-Datalog¬ [1], we obtain that SPARQL
SELECT and Relational Algebra have the same expressive power.

Corollary 3 ([7]). The language SPARQL SELECT has the same expressive
power as Relational Algebra.

6 A Query Language for RDFS Data

The RDF specification includes a set of reserved keywords with its own se-
mantics, the RDFS vocabulary. This vocabulary is designed to describe special
relationships between resources like typing and inheritance of classes and prop-
erties [11]. As with any data structure designed to model information, a natural
question that arises is what the desiderata are for an RDFS query language.
Among the multiple design issues to be considered, it has been largely rec-
ognized that navigational capabilities are of fundamental importance for data
models with explicit tree or graph structure (like XML and RDF [12,6]).

SPARQL has been designed much in the spirit of classical relational lan-
guages such as SQL. In particular, it has been noted that, although RDF is a
directed labeled graph data format, SPARQL only provides limited navigational
functionalities. This is more notorious when one considers the RDFS vocabu-
lary (which current SPARQL specification does not cover [45]), where testing
conditions like being a subclass of or a subproperty of naturally requires navi-
gating the RDF data. A good illustration of this is shown by the following query,
which cannot be expressed in SPARQL without some navigational capabilities.
Consider the RDF graph shown in Fig. 1. This graph stores information about
cities, transportation services between cities, and further relationships among
those transportation services (in the form of RDFS annotations). For instance,
in the graph we have that a “Seafrance” service is a subproperty of a “ferry”
service, which in turn is a subproperty of a general “transport” service. Assume
that we want to test whether a pair of cities A and B are connected by a se-
quence of transportation services, but without knowing in advance what services
provide those connections. We can answer such a query by testing whether there
is a path connecting A and B in the graph, such that every edge in that path
is connected with “transport” by following a sequence of subproperty relation-
ships. For instance, for “Paris” and “Calais” the condition holds, since “Paris”
is connected with “Calais” by an edge with label “TGV”, and “TGV” is a sub-
property of “train”, which in turn is a subproperty of “transport”. Notice that
the condition also holds for “Paris” and “Dover”.

In this section, we present a language for navigating RDF data grounded
on paths expressed with regular expressions, which was proposed in [43]. This
language takes advantage of the special features of RDF, and besides regular
expressions, it borrows the notion of branching from XPath [17], to obtain what
is called nested regular expressions. We also show how these navigational capa-
bilities can be incorporated into SPARQL, which gives rise to the query language
nSPARQL [43].

Furthermore, in this section we consider two fundamental questions about
these new navigational capabilities and the language nSPARQL. First, we deal
with the problem of whether these new navigational capabilities can be im-
plemented efficiently. In this section, we present the evaluation algorithm for
nested regular expressions that was proposed in [43], and which works in time
O(|G| · |E|) for an RDF graph G and a nested regular expression E. Second,
we consider the issue of whether nSPARQL is a good query language from an

range

CalaisParis Dover

sp sp sp

sp

TGV Seafrance NExpress

Dijon

train ferry bus

transport

sp

Hastings

London

sp

dom

Figure 1. An RDF graph storing information about transportation services between
cities.

expressiveness point of view. In this section, we provide evidence that the capa-
bilities of nSPARQL can be used to pose many interesting and natural queries
over RDF data. For the sake of presentation, in this section we consider RDF
graphs constructed by using only elements from U , that is, we do not consider
blank nodes.

6.1 Nested regular expressions for RDF data

As usual for graph query languages [36,14,6], the language presented in this
section uses regular expressions to define paths on graph structures, but taking
advantage of the special features of RDF graphs.

The navigation of a graph is usually done by using an operator next, which
allows one to move from one node to an adjacent one. In our setting, we have RDF
“graphs”, which are sets of triples, not classical graphs. In particular, instead of
classical edges (pair of nodes), we have directed triples of nodes (hyperedges).
Hence, a language for navigating RDF graphs should be able to deal with this
type of objects. In this section, we present the notion of nested regular expression
to navigate through an RDF graph, which was introduced in [43]. This notion
takes into account the special features of the RDF data model. In particular,
nested regular expressions use three different navigation axes next, edge and
node, and their inverses next-1, edge-1 and node-1, to move through an RDF
triple. These axes are shown in the following figure:

edge-1

b aa

p p

b

edge node

next next-1

node-1

r2

p1

p5

a3 a4

p4

a1 a2

a5 a6

p2 p3

r1

Figure 2. Nodes a1 and a6 are connected by a path that follows the sequence of
navigational axes next/next/edge/next/next-1/node.

A navigation axis allows one to move one step forward (or backward) in an RDF
graph. Thus, a sequence of these axes defines a path in an RDF graph. For
instance, in the graph of Fig. 2, the sequence of axes:

next/next/edge/next/next-1/node

defines a path between nodes a1 and a6 (the path is shown with dashed lines in
the figure). Moreover, one can use classical regular expressions over these axes
to define a set of paths that can be used in a query. The language proposed in
[43] considers an additional axis self that is used not to actually navigate, but
instead to test the label of a specific node in a path. The language also allows
nested expressions that can be used to test for the existence of certain paths
starting at any axis. The following grammar defines the syntax of nested regular
expressions:

exp := axis | axis::a (a ∈ U) | axis::[exp] |

exp/exp | exp|exp | exp∗ (10)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Before introduc-
ing the formal semantics of nested regular expressions, we give some intuition
about how these expressions are evaluated in an RDF graph. The most natu-
ral navigation axis is next::a, with a an arbitrary element from U . Given an
RDF graph G, the expression next::a is interpreted as the a-neighbor relation
in G, that is, the pairs of nodes (x, y) such that (x, a, y) ∈ G. Given that in the
RDF data model, a node can also be the label of an edge, the language allows
one to navigate from a node to one of its leaving edges by using the edge axis.
More formally, the interpretation of edge::a is the pairs of nodes (x, y) such that
(x, y, a) ∈ G. The nesting construction [exp] is used to check for the existence
of a path defined by expression exp. For instance, when evaluating nested ex-
pression next::[exp] in a graph G, we retrieve the pairs of nodes (x, y) such that
there exists z with (x, z, y) ∈ G, and such that there is a path in G that follows
expression exp starting in z.

The evaluation of a nested regular expression exp in a graph G is formally
defined as a binary relation JexpKG, denoting the pairs of nodes (x, y) such that

JselfKG = {(x, x) | x ∈ voc(G)}
Jself::aKG = {(a, a)}

JnextKG = {(x, y) | there exists z s.t. (x, z, y) ∈ G}
Jnext::aKG = {(x, y) | (x, a, y) ∈ G}

JedgeKG = {(x, y) | there exists z s.t. (x, y, z) ∈ G}
Jedge::aKG = {(x, y) | (x, y, a) ∈ G}

JnodeKG = {(x, y) | there exists z s.t. (z, x, y) ∈ G}
Jnode::aKG = {(x, y) | (a, x, y) ∈ G}

Jaxis-1KG = {(x, y) | (y, x) ∈ JaxisKG} with axis ∈ {next, node, edge}
Jaxis-1::aKG = {(x, y) | (y, x) ∈ Jaxis::aKG} with axis ∈ {next, node, edge}

Jexp1/exp2KG = {(x, y) | there exists z s.t. (x, z) ∈ Jexp1KG and (z, y) ∈ Jexp2KG}
Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪ Jexp/exp/expKG ∪ · · ·
Jself::[exp]KG = {(x, x) | x ∈ voc(G) and there exists z s.t. (x, z) ∈ JexpKG}
Jnext::[exp]KG = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G and (z,w) ∈ JexpKG}
Jedge::[exp]KG = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G and (z,w) ∈ JexpKG}
Jnode::[exp]KG = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G and (z,w) ∈ JexpKG}

Jaxis-1::[exp]KG = {(x, y) | (y, x) ∈ Jaxis::[exp]KG} with axis ∈ {next, node, edge}

Table 2. Formal semantics of nested regular expressions.

y is reachable from x in G by following a path that conforms to exp [43]. The
formal semantics of the language is shown in Tab. 2. In this table, G is an RDF
graph, a ∈ U , voc(G) is the set of all the elements from U that are mentioned
in G, and exp, exp1, exp2 are nested regular expressions.

Example 4. Let G be the graph in Fig. 1, and consider expression

exp1 = next::[next::sp/self::train].

The expression next::sp/self::train defines the pairs of nodes (z, w) such that
from z one can reach w by following an edge labeled sp, and furthermore the
label of w is train (expression self::train is used to perform this test). Thus,
the nested expression [next::sp/self::train] performs an existential test; it is
satisfied by the nodes in G from which there exists a path that follows an edge
labeled sp and reaches a node labeled train. TGV is the only such node in G
and, thus, we have that Jexp1KG = {(Paris, Calais), (Paris, Dijon)}. ⊓⊔

6.2 An efficient algorithm for evaluating nested regular expressions

In [43], it was introduced the language nSPARQL that combines the operators
of SPARQL with the navigational capabilities of nested regular expressions. As
pointed out in that paper, an essential requirement to use nSPARQL in large
applications is that nested regular expressions could be evaluated efficiently.
In this section, we present an efficient algorithm for this task, which works in
time proportional to the size of the input graph times the size of the expression
being evaluated. As is customary when studying the complexity of the evaluation

problem for a query language [51], we consider its associated decision problem.
For nested regular expressions, this problem is defined as:

Problem : Evaluation problem for nested regular expressions.
Input : An RDF graph G, a nested regular expression exp, and a pair

(a, b).
Question : Is (a, b) ∈ JexpKG?

It is important to note that the evaluation problem that we study considers
the pair of nodes (a, b) as part of the input. That is, we study the complexity
by measuring how difficult it is to verify whether a given pair of nodes is in
the evaluation of a nested regular expression over an RDF graph. This is the
standard decision problem considered when studying the complexity of a query
language [51], as opposed to the computation problem of actually listing the
pairs of nodes (finding all the solutions).

Following the terminology introduced in [43], we assume that an RDF graph
G is stored as an adjacency list that makes explicit the navigation axes (and their
inverses). Thus, every u ∈ voc(G) is associated with a list of pairs α(u), where
every pair contains a navigation axis and the destination node. For instance,
if (s, p, o) is a triple in G, then (next::p, o) ∈ α(s) and (edge-1::o, s) ∈ α(p).
Moreover, we assume that (self::u, u) ∈ α(u) for every u ∈ voc(G). Notice
that if the number of triples in G is N , then the adjacency list representation
uses space O(N). Thus, when measuring the size of G, we use |G| to denote
the size of its adjacency list representation. We further assume that given an
element u ∈ voc(G), we can access its associated list α(u) in time O(1). This is
a standard assumption for graph data-structures in a RAM model [19].

Example 5. The following figure shows an example of an adjacency-list repre-
sentation of an RDF graph.

b

c

ed

a

e

next-1::c, aself::b, b node-1::a, c

next::c, b edge::b, c

next::d, eself::c, c edge::e, d edge-1::b, a node::a, b

edge-1::e, cself::d, d node::c, e

next-1::d, cself::e, e node-1::c, d

self::a, aa

b

c

d

⊓⊔

The algorithm in [43] for the evaluation of nested regular expressions was inspired
by some of the algorithms for the evaluation of temporal logics [18] and propo-
sitional dynamic logic [2,24]. To present this algorithm, we need to introduce

some terminology. An expression exp′ is a nested subexpression of an expression
exp if axis::[exp′] occurs in exp, with axis ∈ {self, next, next-1, edge, edge-1,
node, node-1}. Given an RDF graph G and a nested regular expression exp, the
algorithm proceeds by recursively considering the nested subexpressions of exp,
labeling every node u of G with a set label(u) of nested expressions. Initially,
label(u) is the empty set. Then at the end of the execution of the algorithm, it
holds that exp ∈ label(u) if and only if there exists z such that (u, z) ∈ JexpKG.
Before giving any technical details, let us show the general idea of this process
with an example. Figure 3 exemplifies the process for a graph G and the nested
expression:

β = next::a/(next::[next::b/self::c])∗/(edge::[next::d] | next::a)+. (11)

The process first considers the nested subexpressions γ = next::b/self::c and
λ = next::d, and marks the nodes in G according to which ones of these subex-
pressions they satisfy. Thus, after this stage we have that γ ∈ label(r3) since
(r3, c) ∈ JγKG, and λ ∈ label(r6) since (r6, r7) ∈ JλKG (see Fig. 3). Using
this information, the nodes are marked according to whether they satisfy β,
but considering the previously computed labels (γ and λ) and the expression
β′ = next::a/(next::γ)∗/(edge::λ | next::a)+. In the example of Fig. 3, we have
that (r1, r5) ∈ JβKG and, thus, β ∈ label(r1).

a d

b

r4 r6r1 r7

c

r2

self::c

next::d

next::b

next::a next::γ

edge::λβ
γ

λ

G :

r3 r5

Figure 3. Example of the labeling process of the RDF graph G according to ex-
pression β = next::a/(next::[next::b/self::c])∗/(edge::[next::d] | next::a)+. First,
node r3 is marked with label γ = next::b/self::c (since (r3, c) ∈ JγKG), and node
r6 with label λ = next::d (since (r6, r7) ∈ JλKG). Finally, node r1 is labeled with
β (since (r1, r5) ∈ JβKG). This last label is obtained by considering the expression
β′ = next::a/(next::γ)∗/(edge::λ | next::a)+.

We now explain how to efficiently carry out the labeling process by using
some tools from automata theory (here we assume some familiarity with this
theory). A key idea in the algorithm presented in [43] is to associate to each
nested regular expression a nondeterministic finite automaton with ε-transitions
(ε-NFA). Given a nested regular expression exp, the set of depth-0 terms of exp,
denoted by D0(exp), is recursively defined as follows:

D0(exp) = {exp} if exp is either axis, or axis::a, or axis::[exp′],
D0(exp1/exp2) = D0(exp1|exp2) = D0(exp1) ∪D0(exp2),
D0(exp

∗) = D0(exp),

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. For instance, for
the nested expression β in (11), we have that:

D0(β) = { next::a, next::[next::b/self::c], edge::[next::d] }.

Notice that a nested regular expression exp can be viewed as a classical regular
expression over the alphabet D0(exp). We denote byAexp the ε-NFA that accepts
the language generated by the regular expression exp over the alphabet D0(exp).
For example, Fig. 4 shows an ε-NFA Aβ that accepts the language generated by
expression β in (11) over the alphabet D0(β). As for the case of RDF graphs,
ε-NFAs are stored using an adjacency-list representation.

next::a

q1 q2

q3 qf

edge::[next::d]ε

next::[next::a/self::c]

q0

Aβ :

ε

ε

next::a ε

G×Aβ :

r1, q0 r2, q1 r4, q1 r4, q2

r5, qf

r5, q3 r5, q2

r4, q3r2, q2 r2, q3

next::a next::[next::a/self::c] ε

ε

εε

ε edge::[next::d]ε

Figure 4. Automaton Aβ for the nested regular expression β in (11), and product
automaton G ×Aβ .

An essential ingredient in the algorithm presented in [43] is the use of the
product automaton G ×Aexp , which is constructed as follows. Assume that we
have the graph G labeled with respect to the nested subexpressions of exp, that
is, for every node u of G and nested subexpression exp′ of exp, we have that
exp′ ∈ label(u) if and only if there exists a node v such that (u, v) ∈ Jexp′KG.

Let Q be the set of states of Aexp , and δ : Q × (D0(exp) ∪ {ε}) → 2Q the
transition function of Aexp . Then the set of states of G × Aexp is voc(G) × Q,
and its transition function δ′ : (voc(G) × Q) × (D0(exp) ∪ {ε}) → 2voc(G)×Q is
defined as follows. For every (u, p) ∈ voc(G)×Q and s ∈ D0(exp), we have that
(v, q) ∈ δ′((u, p), s) if and only if q ∈ δ(p, s) and one of the following cases hold:

– s = axis and there exists a such that (axis::a, v) ∈ α(u),
– s = axis::a and (axis::a, v) ∈ α(u),
– s = axis::[exp] and there exists b such that (axis::b, v) ∈ α(u) and exp ∈

label(b),

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Additionally,
if q ∈ δ(p, ε) we have that (u, q) ∈ δ′((u, p), ε) for every u ∈ voc(G). That is,
G×Aexp is the standard product automaton of G and Aexp if G is viewed as an
ε-NFA over the alphabet D0(exp). Figure 4 shows the product automatonG×Aβ

for the nested expression β in (11) and the graphG of Fig. 3 (labeled with respect
to the nested subexpressions of β). In this figure, we have only depicted the states
of G ×Aβ that are reachable from the initial state. For instance, we have that
there is a transition from (r2, q1) to (r4, q1) with symbol next::[next::a/self::c]
since: (i) there is a transition from q1 to q1 with next::[next::a/self::c] in Aβ ,
and (ii) (next::r3, r4) ∈ α(r2) and γ = next::a/self::c ∈ label(r3).

Two key observations about the product automaton defined above should be
made. Let G be a graph labeled with respect to the nested subexpressions of exp,
and Aexp an ε-NFA for exp. Assume that q0 is the initial state of Aexp and qf is
one of its final states. The first observation is that if there exists two elements
u, v ∈ voc(G) such that from (u, q0) one can reach state (v, qf) in G×Aexp , then
(u, v) ∈ JexpKG. In the example of Fig. 4, we have that (r1, r5) ∈ JβKG since we
can reach state (r5, qf) from state (r1, q0) in G×Aβ . The second observation is
that given a nested regular expression exp, one can construct in linear time an
ε-NFA for exp by using standard techniques [28]. Thus, given a nested regular
expression exp and an RDF graph G that has been labeled with respect to the
nested subexpressions of exp, it is easy to see that automaton G×Aexp can be
constructed in time O(|G| · |Aexp |).

Now we have all the necessary ingredients to present the algorithm for the
evaluation problem for nested regular expressions given in [43]. This algorithm is
split in two procedures: Label labels G according to the nested subexpressions
of exp as explained above, and Eval returns Yes if (a, b) ∈ JexpKG and No

otherwise.

Label(G, exp):
1. for each axis::[exp ′] ∈ D0(exp) do

2. call Label(G, exp ′)
3. construct Aexp , and assume that q0 is its initial state and F is its set of final states
4. construct G ×Aexp

5. for each (u, q0) that is connected to a state (v, qf) in G ×Aexp , with qf ∈ F do

6. label(u) := label(u) ∪ {exp}

Eval(G, exp, (a, b)):
1. for each u ∈ voc(G) do

2. label(u) := ∅
3. call Label(G, exp)
4. construct Aexp , and assume that q0 is its initial state and F is its set of final states
5. construct G ×Aexp

6. if a state (b, qf), with qf ∈ F , is reachable from (a, q0) in G ×Aexp

7. then return Yes

8. else return No

In [43], it is formally proved that procedure Eval can be implemented efficiently.
More precisely, assuming that |exp| denotes the size of a nested regular expression
exp, it is shown in [43] that:

Theorem 12 ([43]). Procedure Eval solves the evaluation problem for nested
regular expressions in time O(|G| · |exp|).

6.3 The navigational language nSPARQL

We conclude this section by presenting the query language nSPARQL introduced
in [43], and showing that the navigational capabilities of nSPARQL can be used
to pose many interesting and natural queries over RDF data. In particular, we
formally show that these capabilities can be used to evaluate queries according
to the semantics of the RDFS vocabulary.

The language nSPARQL (nested SPARQL) is obtained by using triple pat-
terns with nested regular expressions in the predicate position, plus SPARQL op-
erators AND, OPT, UNION, and FILTER. Formally, a nested-regular-expression
triple (or just nre-triple) is a tuple t of the form (x, exp, y), where x, y ∈ U ∪ V
and exp is a nested regular expression. nSPARQL patterns are recursively de-
fined from nre-triples:

– An nre-triple is an nSPARQL pattern.
– If P1 and P2 are nSPARQL patterns and R is a built-in condition, then

(P1 AND P2), (P1 OPT P2), (P1 UNION P2), and (P1 FILTER R) are
nSPARQL patterns.

To define the semantics of nSPARQL, we just need to define the semantics of
nre-triples. The evaluation of an nre-triple t = (?X, exp, ?Y) over an RDF graph
G is defined as the following set of mappings:

JtKG = {µ | dom(µ) = {?X, ?Y } and (µ(?X), µ(?Y)) ∈ JexpKG}.

Similarly, the evaluation of an nre-triple t = (?X, exp, a) over an RDF graph G,
where a ∈ U , is defined as {µ | dom(µ) = {?X} and (µ(?X), a) ∈ JexpKG}, and
likewise for (a, exp, ?X) and (a, exp, b) with b ∈ U .

Notice that every SPARQL triple (?X, p, ?Y) with p ∈ U is equivalent to
nSPARQL triple (?X, next::p, ?Y). Also notice that, since variables are not al-
lowed in nested regular expressions, the occurrence of variables in the predi-
cate position of triple patterns is forbidden in nSPARQL. Nevertheless, every

SPARQL triple of the form (?X, ?Y, a), with a ∈ U , is equivalent to nSPARQL
pattern (?X, edge::a, ?Y), and every triple of the form (a, ?X, ?Y) is equivalent
to (?X, node::a, ?Y). Thus, what one loses in nSPARQL is only the possibility
of using variables in the three positions of a triple pattern [43].

In the following examples, we show that the navigational capabilities of
nSPARQL can be used to pose queries that are likely to occur in the Semantic
Web, and which cannot be expressed in SPARQL without using nested regular
expressions.

Example 6. Assume that we want to obtain the pairs of cities (?X, ?Y) such that
there is a way to travel from ?X to ?Y by using either Seafrance or NExpress,
with an intermediate stop in a city that has a direct NExpress trip to London.
Consider nested expression:

exp1 = (next::Seafrance | next::NExpress)+/

self::[next::NExpress/self::London]/

(next::Seafrance | next::NExpress)+

Then pattern P = (?X, exp1, ?Y) answers our initial query. Notice that expres-
sion self::[next::NExpress/self::London] is used to perform the intermediate
existential test of having a direct NExpress trip to London. ⊓⊔

Example 7. Let G be the graph in Fig. 1 and P1 the following pattern:

P1 = (?X, next::[(next::sp)∗/self::transport], ?Y). (12)

Pattern P1 defines the pairs of cities (?X, ?Y) such that, there exists a triple
(?X, p, ?Y) in the graph and a path from p to transport where every edge has la-
bel sp. Thus, nested expression [(next::sp)∗/self::transport] is used to emulate
the process of inference in RDFS; it retrieves all the nodes that are sub-properties
of transport. Hence, pattern P1 retrieves the pairs of cities that are connected by
a direct transportation service, which could be a train, ferry, bus, etc. In general,
if we want to obtain the pairs of cities such that there is a way to travel from
one city to the other, we can use the following nSPARQL pattern:

P2 = (?X, (next::[(next::sp)∗/self::transport])+, ?Y). (13)

⊓⊔

The previous example shows that nSPARQL can be used to emulate some of
the inference rules of RDFS. In [43], it is shown that this is not a particular
phenomenon, that is, it is formally proved that if one wants to answer a SPARQL
query P according to the semantics of RDFS, then one can rewrite P into an
nSPARQL query Q such that Q retrieves the answer to P by directly traversing
the input graph. In the remaining of this section, we show how this is done.

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query
treats RDFS vocabulary without considering its predefined semantics. For exam-
ple, consider the RDF graph G in Fig. 5, which stores information about soccer

sportsman works in

Everton

company

Sorace

plays in

sp

range

Barcelona

soccer team

type

soccer player

Ronaldinho

person

sc

sc

type

dom

dom range

Figure 5. An RDF graph storing information about soccer players.

players, and consider the graph pattern P = (?X , works in, ?C). Note that,
although the triples (Ronaldinho, works in, Barcelona) and (Sorace, works in,
Everton) can be deduced from G, one obtains the empty set as the result of
evaluating P over G as there is no triple in G with works in in the predicate
position.

We are interested in defining the semantics of SPARQL over RDFS, that is,
taking into account not only the explicit RDF triples of a graph G, but also
the triples that can be derived from G according to the semantics of RDFS.
We make an initial restriction. In the rest of the paper we assume that RDFS
vocabulary cannot occur in subject or object position in RDF triples. Supported
on Proposition 1 (2), we only consider rules (2)-(4) for the semantics of RDFS.
Let the closure of an RDF graph G, denoted by cl(G), be the graph obtained
from G by successively applying rules (2)-(4) in Tab. 1 until the graph does not
change. For instance, Fig. 6 shows the closure of the RDF graph of Fig. 5. The
solid lines in Fig. 6 represent the triples in the original graph, and the dashed
lines the additional triples in the closure.

The most direct way to define the semantics of the RDFS evaluation of
SPARQL patterns is by considering not the original graph but its closure. Thus,
if we now evaluate pattern P = (?X , works in, ?C) over the RDF graph in Fig. 6,
we obtain the mappings {?X → Ronaldinho, ?C → Barcelona} and {?X →
Sorace, ?C → Everton}. The theoretical formalization of such an approach was
studied in [23]. The following definition formalizes this notion.

Definition 6 ([43]). Given a SPARQL graph pattern P , the RDFS evaluation
of P over G, denoted by JP Krdfs

G , is defined as the set of mappings JP Kcl(G), that
is, as the evaluation of P over the closure of G.

sc works in

Everton

company

Sorace

plays in

sp

range

Barcelona

soccer team

type

type

type

type

sportsman

soccer player

Ronaldinho

person

sc

sc

type

type

type

type

type

type

dom

dom range

Figure 6. The closure of the RDF graph of Fig. 5.

Let us show with an example how nSPARQL can be used to obtain the RDFS
evaluation of some patterns by directly traversing the input graph.

Example 8. Let G be the RDF graph in Fig. 5, and assume that we want to
obtain the type information of Ronaldinho. This information can be obtained
by computing the RDFS evaluation of the pattern (Ronaldinho, type, ?C). By
simply inspecting the closure of G in Fig. 6, we obtain that the RDFS evaluation
of (Ronaldinho, type, ?C) is the set of mappings:

{{?C → soccer player}, {?C → sportsman}, {?C → person}}.

However, if we directly evaluate this pattern over G, we obtain a single mapping
{?C → soccer player}. Consider now the nSPARQL pattern:

P = (Ronaldinho, next::type/(next::sc)∗, ?C).

The expression next::type/(next::sc)∗ is intended to obtain the pairs of nodes
such that there is a path between them that starts with label type followed
by zero or more labels sc. When evaluating this expression in G, we obtain the
set of pairs {(Ronaldinho, soccer player), (Ronaldinho, sportsman), (Ronaldinho,
person), (Barcelona, soccer team)}. Thus, the evaluation of P results in the set
of mappings:

{{?C → soccer player}, {?C → sportsman}, {?C → person}}.

In this case, pattern P is enough to obtain the type information of Ronaldinho
in G according to the RDFS semantics, that is,

J(Ronaldinho, type, ?C)Krdfs
G = J(Ronaldinho, next::type/(next::sc)∗, ?C)KG.

Although the expression next::type/(next::sc)∗ is enough to obtain the type
information for Ronaldinho in G, it cannot be used in general to obtain the
type information of a resource. For instance, in the same graph, assume that we
want to obtain the type information of Everton. In this case, if we evaluate the
pattern (Everton, next::type/(next::sc)∗, ?C) over G, we obtain the empty set.
Consider now the nSPARQL pattern:

Q = (Everton, node-1/(next::sp)∗/next::range, ?C).

With the expression node-1/(next::sp)∗/next::range, we follow a path that first
navigates from a node to one of its incoming edges by using node-1, and then
continues with zero or more sp edges and a final range edge. The evaluation of
this expression over G results in the set {(Everton, soccer team), (Everton, com-
pany), (Barcelona, soccer team), (Barcelona, company)}. Thus, the evaluation
of Q in G is the set of mappings:

{{?C → soccer team}, {?C → company}}.

By looking at the closure of G in Fig. 6, we see that pattern Q obtains exactly
the type information of Everton in G, that is, J(Everton, type, ?C)Krdfs

G = JQKG.
⊓⊔

Next we show how the ideas in Examples 7 and 8 were generalized in [43] to
obtain a way to evaluate a SPARQL query according to the RDFS semantics.
More precisely, we show that if a SPARQL pattern P is constructed by using
triple patterns having at least one position with a non-variable element, then the
RDFS evaluation of P can be obtained by directly traversing the input graph
with an nSPARQL pattern.

Consider the following translation function from elements in U to nested
regular expressions:

trans(sc) = (next::sc)+

trans(sp) = (next::sp)+

trans(dom) = next::dom
trans(range) = next::range
trans(type) = (next::type/(next::sc)∗ |

edge/(next::sp)∗/next::dom/(next::sc)∗ |
node-1/(next::sp)∗/next::range/(next::sc)∗)

trans(p) = next::[(next::sp)∗/self::p] for p /∈ {sc, sp, range, dom, type}.

Notice that this translation function has been implicitly used in Examples 7
and 8. In the following lemma, it is shown that given an RDF graph G and a
triple pattern t not containing a variable in the predicate position, the above
translation function can be used to obtain the RDFS evaluation of t over G by
navigating G through a nested regular expression.

Lemma 3 ([43]). Let (x, p, y) be a SPARQL triple pattern with x, y ∈ U ∪ V
and p ∈ U . Then J(x, p, y)Krdfs

G = J(x, trans(p), y)KG for every RDF graph G.

Suppose now that we have a SPARQL triple pattern t with a variable in the
predicate position, but such that the subject and object of t are not both vari-
ables. Next it is shown how to construct an nSPARQL pattern Pt such that
JtKrdfs

G = JPtKG [43]. Assume that t = (x, ?Y, a) with x ∈ U ∪ V , ?Y ∈ V , and
a ∈ U , that is, t does not contain a variable in the object position. Consider for
every p ∈ {sc, sp, dom, range, type}, the pattern Pt,p defined as:

((x, trans(p), a) AND (?Y, self::p, ?Y)).

Then define pattern Pt as follows:

Pt = ((x, edge::a/(next::sp)∗, ?Y) UNION Pt,sc UNION Pt,sp UNION
Pt,dom UNION Pt,range UNION Pt,type).

In a similar way, it is possible to define pattern Pt for a triple pattern t =
(a, ?Y, x), where a ∈ U , ?Y ∈ V and x ∈ U ∪ V . By using this construction, it is
shown in [43] that:

Lemma 4 ([43]). Let t = (x, ?Y, z) be a triple pattern such that ?Y ∈ V and
x /∈ V or z /∈ V . Then JtKrdfs

G = JPtKG for every RDF graph G.

Let T be the set of triple patterns of the form (x, y, z) such that x /∈ V or
y /∈ V or z /∈ V . We have shown how to translate every triple pattern t ∈ T into
an nSPARQL pattern Pt such that JtKrdfs

G = JPtKG. Moreover, for every triple
pattern t, its translation is of size linear in the size of t. Given that the semantics
of SPARQL is defined from the evaluation of triple patterns, the following results
follows:

Theorem 13 ([43]). Let P be a SPARQL pattern constructed from triple pat-
terns in T . Then there exists an nSPARQL pattern Q such that JP Krdfs

G = JQKG

for every RDF graph G. Moreover, the size of Q is linear in the size of P .

7 Future Work: Dealing with Blank Nodes

Blank nodes, that is, existential objects, are not new in the classical treatment
of databases [29,52]. And not only that, they have also been present in the RDF
data model since the beginning of the Semantic Web initiative [34]. However,
the design of SPARQL was made to keep the efficiency of the language and,
in this direction, the current definition of this language does not consider the
semantics of blank nodes recommended by the W3C [27]. To see why this is the
case, let G1 and G2 be the RDF graphs in Figures 1 and 7, respectively, and P
the following SPARQL query:

((

(?X, sp, ?V) AND (?V, sp, ?Y) AND

(?X, sp, ?W) AND (?W, sp, ?Y)

)

FILTER¬(?V =?W)

)

.

Query P evaluated over an RDF graph G retrieves mappings {?X → a, ?Y →
b, ?V → c, ?W → d} such that (a, sp, c), (c, sp, b), (a, sp, d) and (d, sp, b) are all
triples in G and c, d are distinct elements. Notice that the clause FILTER¬(?V =
?W) is used to indicate that ?V and ?W must take distinct values. Under the
W3C semantics for blank nodes [27], G1 and G2 are equivalent as blank node B
in G2 can be identified with node train. Therefore, one would expect that the
answer to P over G1 is the same as over G2. However, this is not the case; B and
train are considered to be distinct values under the semantics for SPARQL pro-
posed in [45] and, thus, mapping {?X → TGV, ?Y → transport, ?V → sp, ?W →
B} is in the answer of P over G2 but not in the answer of P over G1.

sp

CalaisParis Dover

sp sp sp

sp

TGV Seafrance NExpress

Dijon

train ferry bus

transport

sp

Hastings

London

sp

dom

range

B

sp

Figure 7. An RDF graph with RDFS vocabulary and blank nodes.

Evaluating queries which involve blank nodes is challenging, and there is not
yet consensus in the Semantic Web community on how to define a query language
for this type of data. As an important problem for future work, we identify the
issue of extending SPARQL to consider RDF data with blank nodes. In practice,
a considerable number of RDF databases include this type of nodes and, thus,
this project is driven by the need to extend SPARQL to cope with this data. We
hope that a project like this will help in bridging the gap between the current
specification of SPARQL [45] and both the definition of the semantics of RDF
data [27] and the way RDF data is used in real life.

We conclude this section by pointing out that blank nodes are used not only
on RDF graphs but also in SPARQL patterns. They were introduced to make
SPARQL compatible with future logical extensions. Nevertheless, they play no
major role in the current semantics. In fact, it can be shown that each SPARQL
query Q can be simulated by a SPARQL query Q′ not mentioning any blank
nodes. More precisely, it follows from the definitions of RDF instance mapping,
solution mapping, and the order of evaluation of solution modifiers (see [45]),

that if Q′ is obtained from Q by replacing each blank node B by a fresh variable
?XB, then Q and Q′ give the same results.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. N. Alechina, N. Immerman. Reachability Logic: An Efficient Fragment of Transitive
Closure Logic. Logic Journal of the IGPL 8(3) (2000), 325–338.

3. F. Alkhateeb. Querying RDF(S) with Regular Expressions. PhD Thesis, Université
Joseph Fourier, Grenoble (FR), 2008.

4. F. Alkhateeb, J. Baget, J. Euzenat. RDF with regular expressions. Research Report
6191, INRIA (2007).

5. F. Alkhateeb , J. Baget, J. Euzenat. Constrained regular expressions in SPARQL,
In SWWS 2008, pages 91–99.

6. R. Angles, C. Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1): 1–39 (2008).

7. R. Angles, C. Gutierrez. The Expressive Power of SPARQL. In ISWC 2008, LNCS
5318, pp. 114–129, 2008.

8. K. Anyanwu, A. Maduko, A. Sheth. SPARQ2L: Towards Support for Subgraph
Extraction Queries in RDF Databases. In WWW 2007, pages 797–806.

9. M. Arenas, C. Gutierrez, B. Parsia, J. Pérez, A. Polleres, A. Seaborne. SPARQL -
Where are we? Current state, theory and practice. Unit-2: SPARQL Formalization.
Tutorial given at ESWC 2007, Innsbruck, Austria, June 2007.
http://axel.deri.ie/~axepol/sparqltutorial/

10. M. Arenas, C. Gutierrez, J. Pérez. An Extension of SPARQL for RDFS. In
SWDB-ODBIS 2007, pages 1–20.

11. D. Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-schema/

12. M. Benedikt, C. Koch. XPath leashed. ACM Computing Surveys 41(1), 2008.
13. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture

for storing and querying RDF and RDF schema. In ISWC 2002, pages 54–68.
14. D. Calvanese, G. De Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of Regular

Expressions and Regular Path Queries. J. Comput. Syst. Sci. (JCSS) 64(3):443–
465, 2002.

15. J. J. Carroll, C. Bizer, P. Hayes, P. Stickler. Named graphs. Journal of Web
Semantics vol. 3, 2005, pp. 247–267.

16. A. K. Chandra, P. M. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Data Bases. In STOC 1977, pages 77–90.

17. J. Clark, S. DeRose. XML Path Language (XPath). W3C Recommendation,
November 1999. http://www.w3.org/TR/xpath

18. E. Clarke, O. Grumberg, D. Peled. Model Checking. The MIT Press 2000.
19. T. Cormen, C. Leiserson, R. Rivest, C. Stein Introduction to Algorithms. McGraw-

Hill, 2003.
20. R. Cyganiak. A relational algebra for SPARQL. Tech. Rep. HPL-2005-170, HP-

Labs, 2005. http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.
21. C. A. Galindo-Legaria, A. Rosenthal Outerjoin simplification and reordering for

query optimization. TODS. 22, 1, 43–73, 1997.

22. M.R. Garey, D.S. Johnson, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1979. W. H. Freeman.

23. C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations of Semantic Web Databases.
In PODS 2004, pages 95–106.

24. D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA
(2000).

25. S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage. In PSSS 2003, pages
1–15.

26. J. Hayes, C. Gutierrez. Bipartite Graphs as Intermediate Model for RDF. In ISWC
2004, pages 47–61.

27. P. Hayes. RDF Semantics. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-mt/

28. J. E. Hopcroft, R. Motwani, J. D. Ullman Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2006.

29. T. Imielinski, W. Lipski Jr. Incomplete Information in Relational Databases. J.
ACM 31(4): 761–791 (1984).

30. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: a declarative query language for RDF. In WWW 2002, pages 592–603.

31. K. Kochut, M. Janik. SPARQLeR: Extended SPARQL for Semantic Association
Discovery. In ESWC 2007, pages 145–159.

32. O. Lassila, R. Swick. Resource description framework (RDF) model
and syntax specification W3C Recommendation, February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

33. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, 1999.

34. F. Manola, E. Miller, B. McBride. RDF Primer, W3C Recommendation 10 Febru-
ary 2004. http://www.w3.org/TR/REC-rdf-syntax/

35. D. Marin. RDF Formalization, Santiago de Chile, 2004.
Technical Report Universidad de Chile, TR/DCC-2006-8.
http://www.dcc.uchile.cl/~cgutierr/ftp/draltan.pdf

36. A. Mendelzon, P. Wood. Finding Regular Simple Paths in Graph Databases. In
SIAM J. Comput. 24(6): 1235–1258 (1995).

37. S. Muñoz, J. Pérez, C. Gutierrez. Minimal Deductive Systems for RDF. In ESWC
2007, pages 53–67.

38. M. Olson, U. Ogbuji. The Versa Specification.
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml.

39. ODP - Open Directory Project. http://www.dmoz.org/.
40. J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. In

ISWC 2006, pages 30–43.
41. J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. Sub-

mitted for publication.
42. J. Pérez, M. Arenas, C. Gutierrez. Semantics of SPARQL. Tech Report Universidad

de Chile 2006, TR/DCC-2006-17.
43. J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A Navigational Language for RDF.

In ISWC 2008, pages 66–81.
44. A. Polleres. From SPARQL to rules (and back). In Proceedings of the 16th Inter-

national World Wide Web Conference (WWW), pages 787–796. ACM, 2007.
45. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C

Recommendation, January 2008.
http://www.w3.org/TR/rdf-sparql-query/.

46. RDF Site Summary (RSS) 1.0. http://web.resource.org/rss/1.0/.
47. M. Schmidt, M. Meier, G. Lausen. Foundations of SPARQL Query Optimization.

arXiv.org paper arXiv:0812.3788v1, December 19, 2008.
48. The Dublin Core Metadata Initiative http://dublincore.org/.
49. The Friend of a Friend (FOAF) project. http://www.foaf-project.org/.
50. Uniform Resource Identifier (URI): Generic Syntax.

http://tools.ietf.org/html/rfc3986.
51. M. Y. Vardi. The Complexity of Relational Query Languages (Extended Abstract).

In STOC 1982, pages 137–146.
52. C. Zaniolo. Database Relations with Null Values. J. Comput. Syst. Sci. 28(1):

142–166 (1984).

