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Abstract—Any sorting algorithm in the comparison model
defines an encoding scheme for permutations. As adaptive
sorting algorithms perform o(n lg n) comparisons on restricted
classes of permutations, each defines one or more compression
schemes for permutations. In the case of the compression
schemes inspired by Adaptive Merge Sort, a small amount
of additional data allows to support in good time the access
and reversed access to the compressed permutation, without
decompressing it. In this paper we explore the application
of two of these compressed succinct data-structures to the
encoding of inverted lists and of suffix arrays, and show
experimentally that they yield a practical self-index on practical
data-sets, from natural language to biological data.

I. INTRODUCTION

Building a text index is nowadays the best alternative to
work with large texts. These indexes are structures built on
top of the text that allow fast access and efficient search
for patterns in exchange for some extra space. Even if we
are able to store a large text in main memory, it is likely
that we use secondary memory to store the index, which
is a real problem as we want to perform operations over
the text efficiently. Compression techniques take advantage
of regularities in the text to build compressed text indexes,
allowing efficient queries over the text and requiring space
proportional to the compressed text. The study of Navarro
and Mäkinen [1] covered the use of compact data structures
in new compressed indexes, called self-indexes, which con-
tain enough information to reproduce any portion of the text
without accessing the original text.

Additionally, Barbay and Navarro [2] proposed compres-
sion schemes for permutations achieving better compression
when certain specificities of the text arise. In this paper
we evaluate the practical application of these compressed
representations of permutations in the encoding of text
indexes (such as inverted lists and suffix arrays) for different
kinds of texts.

The paper is organized as follows. Section II summarizes
the previous work done in sorting and representing permu-
tations. Section III describes how these techniques can be
applied as compression schemes for text indexes. Section IV
presents our empirical results. Finally, Section V presents the
conclusions and future work.

1Supported by Conicyt Grant.
2Funded in part by Fondecyt Grant 1-080019.

II. COMPRESSED REPRESENTATIONS OF PERMUTATIONS

A permutation π of the integers [1..n] = {1, . . . , n} can
be trivially represented in ndlg ne bits, within O(n) bits
of the information theory lower bound of lg(n!) bits. The
latter yields a lower bound of Ω(n lg n) comparisons to
sort a permutation in the comparison model. If we note the
results of each comparison performed by a sorting algorithm,
this sequence will uniquely identify the permutation sorted
and therefore encode it. Adaptive sorting algorithms [3]
take advantage of specificities of the permutation to sort,
which make them preferable since at the cost of losing
a constant factor on “bad” classes of permutations, they
achieve o(n lg n) comparisons on many others.

Some applications require an efficient access to both
the permutation π and to its inverse π−1. If we support
these operations over the compressed representation of the
permutation (i.e., without having to decompress it), we
can improve the functionality of previous approaches for
applications such as text compression.

Estivill-Castro and Wood [3] list previous studies that
focused on the effect of presortedness in sorting and how
to measure this difficulty. Each of these adaptive algorithms
yields a compression scheme for permutations, but the
encoding defined does not necessarily support the operations
π() and π−1() efficiently.

The techniques proposed by Barbay and Navarro [2] take
advantage of ordered subsequences in the permutation to
produce a compressed representation. For a sorting algo-
rithm such as merge sort, it is possible to speed up the
performance of the algorithm by linearly partitioning the
array into already sorted sub-arrays and later merge them in
linear time [4]. The best order for merging the sub-arrays
is obtained by the execution of Huffman’s coding algorithm
[5] over the sequence of lengths of the sub-arrays. In order
to maintain the distribution of the elements of the original
array, an alphabetic coding such as Hu-Tucker algorithm [6]
can be used instead.

The measure of the entropy of a sequence of positive
integers X = 〈n1, n2, . . . , nr〉 adding up to n is given
by H(X) =

∑r
i=1

ni

n lg n
ni

, which by convexity of the
logarithm satisfies the property r log n

n ≤ H(X) ≤ log r.
Consider a run in a permutation π as a maximal range

of consecutive positions [i..j] which does not contain any



down step (i.e., a position p such that π(p + 1) < π(p)).
There is an encoding scheme for permutations that uses at
most n(2+H(LRuns))(1+o(1))+O(ρ lg n) bits to encode
a permutation of size n covered by ρ runs of lengths LRuns
and support π(i) and π−1(i) in time O(1+lg ρ) for any i ∈
[1..n], or in time O(1+H(LRuns)) for i chosen uniformly
at random in [1..n] [2, Theorem 3.2].

In a stricter variant of the runs, a strict run is defined as a
maximal range of positions satisfying π(i+k) = π(i)+k and
the head of such runs is its first position. Strict runs allow
further compression when they arise. There is an encoding
scheme for permutations using at most τH(LHRuns)(1 +
o(1)) + 2τ lg n

τ + o(n) + O(τ + ρ lg τ) bits to encode a
permutation of size n covered by τ strict runs and ρ ≤ τ
runs, where LHRuns is the vector with the ρ run lengths
in the permutation of strict run heads. It supports π(i) and
π−1(i) in time O(1 + lg ρ) for any i ∈ [1..n], or in time
O(1 + H(LHRuns)) for i chosen uniformly at random in
[1..n] [2, Theorem 3.6].

In the next section we show how both compression
schemes can be applied to text indexes.

III. APPLICATION IN TEXT INDEXES

A text index built over the text allows fast access and
substring searching, at the cost of some additional space.
Nowadays this is the best alternative for large texts, as
otherwise it would require sequential traversals of the whole
text. The support of operations such as search, count or
locate of a given pattern allows the implementation of
more complex functions; therefore efficient indexes for this
queries are desirable.

Inverted indexes are very popular for text retrieval in
natural language [7]. We consider a text T [1, n] of n words,
and ρ the number of distinct words in T (i.e., the vocabulary
size). Since the concatenation of the ρ inverted lists can
be seen as a permutation of [1..n] with ρ runs, it can
be compressed using the schemes reviewed in Section II.
The resulting index can be considered a self-index as the
compressed index is capable of reproducing the original text.

On the other hand, when a text cannot be handled
with inverted indexes, suffix arrays are used for indexing.
Consider a text T [1, n] of n symbols and alphabet of size
ρ. The suffix array A[1, n] is defined as a permutation of
[1..n] so that T [A[i], n] is lexicographically smaller than
T [A[i + 1], n], i.e., all suffix are lexicographically ordered.
Various compressed representations of suffix array were
proposed since the space requirement of the uncompressed
index would be high. The Compressed Suffix Array (CSA) of
Sadakane [8] builds over a permutation Ψ of [1..n], where
Ψ(i) stores the position in A of the next symbol of suffix
A[i]. This permutation let us navigate one position forward
in the text. Similarly, the family of FM-index [9], [10] works
with an approach that allows a backward navigation of the
suffixes.

IV. EXPERIMENTAL RESULTS

We test two compressed representations for permutations:
runs (Runs) and strict runs (SRuns). Both techniques were
applied in two distinct scenarios: inverted indexes and suf-
fix arrays. Experiments were executed on a 2 GHz Intel
Xeon with 16 GB of main memory and running Ubuntu
GNU/Linux. The compiler used was gcc version 4.2.4. Time
results were measured in CPU user time.

A. Suffix Arrays

For general texts, we compared the proposed indexes
Runs and SRuns with existing techniques for compres-
sion of suffix arrays: Compressed Suffix Array (CSA) [8],
Succint Suffix Array (SSA) [10], Practical Succint Suffix
Array (FSSA) [11], Run-Length FM-Index (RLFMI) [12]
and the Alphabet-Friendly FM-Index (AFFMI) [10]. Four
text collections were used for the experiments: dna (DNA
sequences), proteins (proteins sequences), sources (source
program code) and xml (structured text). The text files (all
of 200 MB) were obtained from the Pizza&Chili repository
[13].

Three configurations were used for the different indexes,
corresponding to space-time tradeoffs for each technique.
For CSA, the sampling of array Ψ (SΨ) was fixed to
128, while the sampling of the suffix array (SA) used
parameters {16, 32, 64}. For SSA, the sampling of the text
(ST ) was fixed to 64 and SA used parameters {32, 64, 128}.
FSSA, RLFMI and AFFMI used sampling parameters
{32, 64, 128}.

Tables I and II summarize the statistics about the as-
cending subsequences found in the permutation Ψ of each
text. For runs, the second column of Table I shows the
total number of runs found in Ψ, the third column shows
the entropy of the distribution of the lengths of the runs
(LRuns), the fourth column shows the maximum length
of the runs, and the fifth shows the percentage of the
permutation covered by a single run on average. For strict
runs, the second column of Table II shows the total number
of strict runs found in Ψ, the third column shows the entropy
of the distribution of the run lengths in the permutation of
strict run heads, the fourth column shows the maximum
length of the strict runs in Ψ, and the fifth column shows the
average length of the strict runs since the average percentage
of coverage was negligible compared to the size of the text
(around 10−6).

Tables I and II explains the behavior of the proposed
indexes for different kinds of texts, and how the distribution
of runs and strict runs affects the final compression. For the
four scenarios the entropy values of LRuns and LHRuns in-
dicate that the strategy used for merging the runs performed
better than a balanced merge algorithm, especially for the
permutations of the dna and sources texts (as the entropy
was inferior than lg ρ). For the sources and xml texts, SRuns
index achieved better compression because the strict runs



Text # runs H(LRuns) Max. run Avg. run
length coverage

dna 17 1.97 62,457,518 5.88%
proteins 26 4.20 21,534,302 3.85%
sources 231 5.47 30,323,091 0.43%
xml 97 5.26 14,302,844 1.03%

Table I
STATISTICS OF RUNS IN PERMUTATION Ψ OF THE TEXTS.

Text # strict runs H(LHRuns) Max. strict Avg. run
run length length

dna 128,863,384 1.99 675 1.6
proteins 108,458,913 4.21 9,008 1.9
sources 47,650,638 5.74 274,529 4.4
xml 29,584,818 5.53 2,195,799 7.1

Table II
STATISTICS OF STRICT RUNS IN PERMUTATION Ψ OF THE TEXTS.

tend to be longer in comparison to the strict runs found in
the dna and proteins permutations. Working with runs, the
dna and proteins permutations were covered by few longer
runs, a favorable scenario for compression using the Runs
index. On the other hand, the sources and xml permutations
presented relatively short runs, and although sources had
more than twice the number of runs of xml, compression
ratios were similar due to their close values of H(LRuns).
Table III summarizes the memory usage of Runs and SRuns
indexes.

Figure 1 shows the space-time tradeoffs for evaluating
Ψ. We measured the average time (in microseconds) of
accessing Ψ at 100,000 random positions. In this scenario we
compared the compression techniques based on runs (Runs)
and strict runs (SRuns) to Sadakane’s CSA, as this index
compresses the suffix array via the function Ψ that captures
text regularities and allows forward navigation inside the
text. As shown in Figure 1, CSA’s times are smaller than
Runs and SRuns indexes in every scenario (this could be due
to the fact that CSA also takes advantage of the ascending
runs present in Ψ).

The distribution of ascending subsequences (runs and
strict runs) in each text is reflected in the different –
but competitive– ratios of compression. Although relatively
short, the presence of strict runs in the texts proteins and
xml let SRuns index achieve better compression than Runs,

Text Runs SRuns
dna 0.42 0.52
proteins 0.58 0.57
sources 0.74 0.44
xml 0.71 0.37

Table III
MEMORY USAGE OF RUNS AND SRUNS (FRACTION OF TEXT).

Text size (bytes) num. words voc. size
english 1,073,741,813 238,781,975 622,834

Table IV
DESCRIPTION OF THE TEXT USED FOR NATURAL LANGUAGE.

with comparable times for evaluating Ψ. For the texts dna
and proteins, where typical runs are more common, the space
requirement of the Runs index is lower than the one required
by CSA. Even when CSA performs better in time, Runs
and SRuns indexes do not depend as much on sampling
parameters as CSA does (SΨ could be modified to reduce
the space, but this would negatively affect the access time
to Ψ). In contrast to CSA, both Runs and SRuns behave
as a bidirectional index since they allow both forward and
backward navigation inside the text.

Figure 2 shows the space-time tradeoffs for evaluating
Ψ−1. We measured the average time required to evaluate
Ψ−1 at 100,000 random positions of the text. In this scenario
we compared the compression techniques based on runs
(Runs) and strict runs (SRuns) to the group of indexes
from the FM-index family [9], such as Succint Suffix Array
(SSA), Practical Succint Suffix Array (FSSA), Run-Length
FM-Index (RLFMI) and the Alphabet-Friendly FM-Index
(AFFMI), since these indexes are built using the BWT and
backward searching, allowing backward navigation inside
the text.

Besides taking advantage of the presence of runs and strict
runs, in general our indexes performed better in terms of
time and space. Within a lower space requirement, Runs
and SRuns indexes achieved faster times calculating Ψ−1.
The same observations about the runs distribution can be
noted in this scenario (indexes Runs and SRuns are the same
as in the previous experiment). Figures 1 and 2 illustrated
the superiority of Runs and SRuns indexes for bidireccional
navigation inside the text, a feature that can be used, for
example, in operations that required random access to the
text or extraction of snippets of variable lengths (lines,
paragraphs, etc.).

B. Inverted Indexes

For natural language, we applied the compression tech-
niques based on runs (Runs) and strict runs (SRuns) in
inverted indexes and compared them to WPH [14], a compet-
itive text index that improves over the Plain Huffman coder
[15]. The english text collection contains the concatenation
of English texts selected from etext02–etext05 of the Guten-
berg Project. The file was obtained from the Pizza&Chili
repository [13]. Table IV shows some statistics of the text.

Table V shows the compression ratio obtained by each
technique. Runs represents the compression using ascending
runs while SRuns represents the compression using strict
runs as seen in Section II. The amount of memory usage of
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Figure 1. Space-time tradeoffs for evaluating Ψ.
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Figure 2. Space-time tradeoffs for evaluating Ψ−1 (LF).



Text Runs SRuns WPH
english 0.32 0.38 0.36

Table V
MEMORY USAGE OF EACH INDEX (FRACTION OF THE ORIGINAL TEXT).

Query Freq. Runs SRuns WPH

Locate
1-100 0.00005 0.00004 0.00008

101-1000 0.00171 0.00190 0.00813
1001-10000 0.01260 0.01381 0.01583

>10000 0.11140 0.12830 0.09676

Snippet
1-100 0.00010 0.00015 0.00046

101-1000 0.00305 0.00486 0.02303
1001-10000 0.03110 0.03970 0.12536

>10000 0.44850 0.56300 1.36786

Table VI
PERFORMANCE OF THE INDEXES FOR DIFFERENT WORD FREQUENCIES

(TIMES IN SECONDS).

the Runs and SRuns encodings are similar to that required by
WPH; although Runs achieves a better compression, SRuns
does not achieve a good ratio because of the lack of strict
runs in the permutation (in this case, a strict run in the
permutation comes from consecutive words in the text that
are lexicographically one after another). Statistical measures
on the text showed that the average run size is 511 while the
average strict run size is 1; this explains how the presence
–or absence– of runs in the text directly affects the final
compression obtained.

Table VI shows the performance of the indexes when
searching for words. We compare the time to locate all
the text occurrences of a pattern and the time to extract
all the snippets around each of these occurrences. For both
scenarios we consider words from 4 different ranges of
frequency as shown in Table VI. We calculate the average
time per pattern from 100 randomly-chosen single-word
patterns. The snippets were obtained extracting a context
of 10 words, starting 5 words before the occurrence.

Both operations of location and extraction of snippets
are faster using our compression schemes. For the case of
locate, the resulting times of the WPH index were close,
especially for very frequent words, where WPH index was
slightly faster. For extracting snippets, the Runs and SRuns
indexes were on average 4 times faster than WPH, which is
a great advantage considering that the Runs index requires
less space to operate. In Runs and SRuns indexes, we
obtained the snippets from the inverse permutation π−1,
while locate queries were done accessing π. Since the former
is performed faster than the latter, operations of extraction
will perform very fast for both indexes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how sorting algorithms
can inspire techniques in data compression. Reducing the

text to a permutation, it is possible to take advantage of
ordered consecutive intervals and use them to improve the
compression. Our indexes have proven to be competitive in
terms of space when the runs arise, and in terms of time, the
indexes were still competitive for some basic text operations.
The bidirectional indexes obtained could allow, for example,
operations that display the context around a pattern occur-
rence without requiring extra space. More experiments are
required to exhaustively compare the performance of these
indexes for more complex operations.

In general, the compressed representation of permutations
is a promising technique for applications such as text com-
pression. Adaptive sorting algorithms suggest new schemes
for compression, with their measures of difficulty yielding
new measures of compression.

Other adaptive algorithms, such as Inv (pairs of elements
in the wrong order) or Rem (elements which have to be re-
moved to leave the list sorted), will define new compression
schemes for permutations; it is of interest to evaluate if they
can support operations (i.e., access to the permutation) in
reasonable time.

This work can also be extended to include indexes based
on Shuffled UpSequences (SUS) and Shuffled Monotone
Subsequences (SMS), which are measures of presortedness
related to the ones used in this paper. Although computing
the optimal distribution of SUS and SMS in a permutation
is more complex, these indexes might be interesting when
good distributions arise.

This research suggests the need for a deeper study of the
relation between algorithms and encodings in contexts other
than permutations, and how this time–space relation can be
exploited to develop new simple and practical techniques for
data compression.
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pressed representations of sequences and full-text indexes,”
ACM Transactions on Algorithms, vol. 3, no. 2, p. 20, 2007.

[11] F. Claude and G. Navarro, “Practical rank/select queries over
arbitrary sequences,” in Proc. 15th International Symposium
on String Processing and Information Retrieval (SPIRE), ser.
LNCS 5280. Springer, 2008, pp. 176–187.
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