
SQL Nested Queries in SPARQL

Renzo Angles1 and Claudio Gutierrez2

1 Department of Computer Science, Universidad de Talca
2 Department of Computer Science, Universidad de Chile

Abstract. SPARQL currently does not include any form of nested queries.
In this paper we present a proposal to incorporate nested queries into
SPARQL along the design philosophy of SQL nested queries. We present
rewriting algorithms and show that all the proposed nested queries can
be expressed in a natural and simple extension of SPARQL syntax.

1 Introduction

One of the most powerful features of a query language is the nesting of queries,
that is, the possibility of writing in a single expression a query which uses the
output of other queries. The current W3C recommendation of SPARQL [13] does
not include any form of nesting, although it has been considered as an issue by
the RDF Data Access Working Group, and has been gradually incorporated into
SPARQL engines.

For SPARQL, the incorporation of nested queries has several motivations.
One of the most important is the reuse of queries. Once a query is executed, the
user may presumably direct the output to some storage medium, assign an IRI
to it and then run a query against that extract. Also, with the right interface,
the user might be able to just cut-and-paste a query that was debugged into
ad-hoc queries. Hence, this feature would allow to build queries incrementally
from separately debugged pieces. Another important motivation, as SPARQL
was thought of to work on a distributed environment like the Web, is the notion
of distributed queries. A SPARQL user will have access to vast and time-varying
input RDF graphs, containing huge volumes of data that is not of interest to the
user. Hence the query computation can be distributed and only relevant data
used to compute the final query. For example, AllegroGraph supports queries
with distributed databases. A third and important motivation is query rewriting.
Complex queries can be structured in a way more intuitive and understandable
for the user. Examples of these uses are provided in the paper.

Introducing nesting in a coherent form, that is, providing a clean syntax and
semantics, is a delicate task. There are several models and “philosophies”, the
most widely known those of SQL and XQuery. Based on the similarities between
SQL and SPARQL [1,4], it seems natural to investigate how the SQL nesting
model can be introduced into SPARQL. In this paper, we address this challenge
by investigating systematically the behavior of SQL nesting operators in the
context of SPARQL.

There have been several proposals for introducing nesting in SPARQL. In-
deed, it has been considered as an issue by the RDF Data Access Working Group.
It was raised on July 2004 and was denominated cascadedQueries1. Currently,
the W3C Working Group of SPARQL is working on new features for the lan-
guage [9]. Among them, the notion of Subqueries (to nest a query within another
query) is a required feature. As a possible type of subquery, the working draft of
SPARQL 1.1 [7] introduces the notion of subselect, that is to allow a SELECT
query to be a graph pattern.

Regarding real-life practice, some implementations of SPARQL provide ex-
tensions that include support for some types of nested queries. ARQ, the query
engine for Jena, supports a type of nested SELECT which uses aggregate func-
tions2. Virtuoso has also included some extensions3 related to nested queries.
Among them, an embedded select query in the place of a triple pattern, and
filter conditions of the form “exists (<scalar subquery>)”. None of these pro-
posals and/or implementations present systematic covering and analysis of these
extensions, nor a formal semantics for them. It is important to note that all of
them introduce nested queries as a new pattern of the form (SELECT).
This approach introduces several design decisions that are either non-desirable
or not necessary at this level. Minor problems are the creation of values at
the pattern level by allowing patterns like (SELECT ?X ?Y AS 5 ...), and
the introduction of projection in patterns by allowing patterns of the form
(SELECT ?X ?Y WHERE P(?X)) where ?Y does not appear in the pattern P.
A more relevant problem is introduced once correlation of variables with sub-
queries is accepted, a desirable and necessary functionality when dealing with
nesting. Either the original SPARQL unorder evaluation strategy of patterns or
the standard semantics of correlation would need to be reworked. For example,
consider the graph pattern P(?X) AND (SELECT ?Y WHERE R(?X,?Y)), where
?X is a correlated variable. The standard semantics would evaluate first P and
then for each value of ?X the corresponding instance of the SELECT pattern. In the
proposals presented it is not clear how to deal with this issue. Additionally, we
do not consider the orthogonal functionality of composition which in SPARQL
would correspond to the discussion of how to nest queries in the FROM and
FROM NAMED clauses. Schenk [14] proposes the use of views as parts of a
dataset, that is, the inclusion of CONSTRUCT queries in FROM clauses. We
do not address this topic in this paper.

An alternative approach to the introduction of SELECT as a new type of pat-
tern, is to incorporate nesting as a filtering device. An early attempt in this
direction is Polleres [12], where it is suggested that boolean SPARQL queries
(i.e., queries having ASK query form) can be safely allowed within filter con-
straints, but the extension is not developed. In this paper we develop this design
philosophy to its end based on the design philosophy of SQL nested queries,

1 http://www.w3.org/2001/sw/DataAccess/issues#cascadedQueries
2 http://jena.sourceforge.net/ARQ/sub-select.html
3 http://www.w3.org/2009/sparql/wiki/Extensions_Proposed_By_OpenLink#

Nested_Queries

2

which restrict the nested queries to a form of filtering in the WHERE condition.
This approach allows to have a clean semantics for correlated variables, permits
to modularly extend the language, and naturally extend the original SPARQL
semantics. We develop this feature through the inclusion of SQL-like nested
queries in usual SPARQL filter constraints. In particular, we present the follow-
ing contributions. First, we present a proposal to incorporate nested queries to
SPARQL along the design philosophy of SQL, by presenting the syntax and a
formal semantics completely compatibles to the current one, and discuss design
features. Second, we show, via illustrative examples, that all SQL facilities are
also relevant in SPARQL, and present a set of equivalences and rewriting rules
among them. Third, we prove that all classical SQL nesting operators (i.e., IN,
SOME/ANY, ALL and EXISTS) can be reduced into one of them (i.e., EX-
ISTS), hence proving that all standard nesting constructs can be expressed with
the standard filter part of a SPARQL query.

The paper is organized as follows: Section 2 presents the syntax and the
semantics of the extension of SPARQL with nested queries. Section 3 presents
examples of nested queries. Section 4 presents the algorithms to rewrite among
nested queries. Finally, Section 5 presents some conclusions.

1.1 Nested queries in SQL

SQL is a paradigmatic example of the power of nested queries. In fact, this
feature plays and important role in SQL for several reasons [16]. SQL (as defined
in the ANSI/ISO SQL-92) allows nesting of query blocks in FROM and WHERE
clauses, in any level of nesting. In the FROM clause, a subquery is imported and
used to conform the set of relations to be queried. A subquery in the WHERE
clause can be either aggregate (it returns a single value due to an aggregate
operator) or non-aggregate (it returns either a set of values or empty, i.e., a
SELECT query).

Let QA be an aggregate query, QS and Q∗ be non-aggregate queries where QS

returns one-column relation (i.e., it has a single projection predicate), and � be
a scalar comparison operator (<,≤, >,≥=, ∕=). A selection predicate containing
nested queries can be of the form:

(1) ⟨value ∣ attribute⟩ � (QA) (value-set comparison predicate).
(2) ⟨value ∣ attribute⟩ IN ∣ NOT-IN (QS) (set-membership predicate).
(3) ⟨value ∣ attribute⟩ � SOME ∣ ALL(QS) (quantified predicate).
(4) EXISTS ∣ NOT-EXISTS(Q∗) (existential predicate).

For example, consider the relations EMPLOYEES(EMP#,NAME,SAL,DEPT) and
DEPARTMENTS(DEPT#,NAME,LOCATION). The following expression shows a
SQL nested query Q1 with aggregate (Q2) and non-aggregate (Q3) subqueries.

SELECT E.NAME FROM EMPLOYEES E (Q1)
WHERE E.SAL >

(SELECT AVG(F.SAL) FROM EMPLOYEES F (Q2)
WHERE F.DEPT IN

(SELECT D.DEPT# FROM DEPARTMENTS D (Q3)
WHERE D.LOCATION = ’DENVER’));

3

2 Syntax and Semantics of nested queries

In this section we extend the syntax and semantics of SPARQL to support nested
queries. This extension, is based on the ideas and syntax of SQL nested queries
as presented above. Considering that aggregate operators for SPARQL have not
been defined yet, we are only considering non-aggregate queries (i.e., SELECT
and ASK queries) as nested queries. Hence, we have not included the value-set
comparison predicates of SQL as defined before. The definition of this extension
follows the formalization presented in [11].

2.1 Preliminaries: The RDF Model and RDF Datasets

Assume there are pairwise disjoint infinite sets I, B, L (IRIs, blank nodes, and
RDF literals respectively). We denote by T the union I ∪ B ∪ L (RDF terms).
A tuple (v1, v2, v3) ∈ (I ∪ B) × I × T is called an RDF triple, where v1 is the
subject, v2 the predicate, and v3 the object. An RDF Graph [10] (just graph from
now on) is a set of RDF triples. Given a graph G, we denote by term(G) the set
of elements of T appearing in G and by blank(G) the set of blank nodes in G.
If G is referred to by an IRI u, then graph(u) returns the graph available in u,
i.e, G = graph(u).

We define two operations on two graphs G1 and G2. The union of graphs,
denoted G1∪G2, is the set theoretical union of their sets of triples. The merge of
graphs, denoted G1 +G2, is the graph G1 ∪G′2 where G′2 is the graph obtained
from G2 by renaming its blank nodes to avoid clashes with those in G1.

An RDF dataset is a set D = {G0, ⟨u1, G1⟩, . . . , ⟨un, Gn⟩} where each Gi is a
graph and each uj is an IRI. G0 is called the default graph and each pair ⟨ui, Gi⟩
is called a named graph. Every dataset satisfies that: (i) it always contains one
default graph, (ii) there may be no named graphs, (iii) each uj is distinct, and
(iv) blank(Gi) ∩ blank(Gj) = ∅ for i ∕= j. Given D, we denote by term(D) the
set of terms occurring in the graphs of D. The default graph of D is denoted
dg(D). For a named graph ⟨ui, Gi⟩ define name(Gi)D = ui and graph(ui)D = Gi;
otherwise name(Gi)D = ∅ and graph(ui)D = ∅. We denote by names(D) the set
of IRIs {u1, . . . , un}. Although name(G0) = ∅, we sometimes will use g0 when
referring to G0. Finally, the active graph of D is the graph Gi used for querying
the dataset.

2.2 Syntax of nested queries

Assume the existence of an infinite set V of variables disjoint from T . Let var(�)
the function which returns the set of variables occurring in the structure �.

A triple pattern is a tuple in (T ∪ V)× (I ∪ V)× (T ∪ V). A nested query is
a tuple (R,F, P)4 where R is a result query form, F is a set –possibly empty–
of dataset clauses, and P is a graph pattern. Next we define each component.

4 In this paper we do not consider the solution modifiers defined in [13].

4

(1) If W ⊂ V is a set of variables and H is a set of triple patterns (called a graph
template) then the expressions SELECTW , CONSTRUCTH, and ASK are
result query forms.

(2) If u ∈ I and QC is a query of the form (CONSTRUCTH,F, P), then the
expressions FROMu and FROM NAMEDu are dataset clauses.

(3) A filter constraint is defined recursively as follows:

– If ?X, ?Y ∈ V and v ∈ I ∪ L then ?X = v, ?X = ?Y , and bound(?X)
are (atomic) filter constraints5.

– If u ∈ T , � is a scalar comparison operator (=, ∕=, <,<=, >,>=), and
Q?X is a query of the form (SELECT ?X,F, P), then the expressions
(u � SOME(Q?X)), (u � ALL(Q?X)) and (u IN (Q?X)) are filter con-
straints.

– IfQA is a query of the form (ASK, F, P), then the expression EXISTS(QA)
is a filter constraint.

– If C1 and C2 are filter constraints, then (¬C1), (C1 ∧C2), and (C1 ∨C2)
are (complex) filter constraints.

(4) A graph pattern is defined recursively as follows:

– A triple pattern is a graph pattern.
– If P1 and P2 are graph patterns then the expressions (P1 ANDP2),

(P1 OPTP2), (P1 UNIONP2), and (P1 MINUSP2) are graph patterns.6

– If P is a graph pattern and u ∈ I ∪V then the expression (uGRAPHP)
is a graph pattern.

– If P is a graph pattern and C is a filter constraint then the expression
(P FILTERC) is a graph pattern.

Let Q = (R,F, P) be a query. A query Q′ is nested in Q if and only if Q′

occurs in the graph pattern P , i.e., when Q′ is nested in P . In such case, Q is
known as the outer query and Q′ is known as the inner query. If Q does not
contain nested queries then Q is called a flat query.

Note that, nested queries in SPARQL have been defined by extending the
definition of filter constraints with SQL-like predicates for nesting, specifically
by including the IN, SOME, ALL and EXISTS operators. The corresponding
opposite operators of nesting can be represented by using the negation of filter
constraints, i.e., NOT-IN and NOT-EXISTS are expressed as (¬(u IN(Q?X)))
and (¬EXISTS(QA)) respectively.

We have defined two explicit restrictions about inner queries. On the one
hand, filter expression using IN, ALL and SOME are restricted to use SELECT
queries with a single projection-variable. On the other hand, filter expressions
using EXISTS are restricted to use ASK queries. The latter condition has been
included for simplicity. In practice, EXISTS filters could have queries having any
result query form (e.g. SELECT), because the EXISTS condition does not really
use the results of the inner query at all.

5 For a complete list of atomic filter constraints see the SPARQL specification [13]
6 The MINUS operator is not defined in the SPARQL specification, however it can be

simulated by a combination of the OPT and FILTER operators [1].

5

Similar to SQL, the extension presents two features inherent to query nesting.
First, the language allows queries with any level of nesting. However, it is well-
known that queries with more than two levels of nesting are not recommended
in practice because makes the query more difficult to read, understand, maintain
and increases the execution time [16]. Second, variables from an outer query block
can be accessed inside a nested query block. Such variables, called correlated
variables, perform as outer references from the inner query to the outer query.
A subquery containing correlated variables is called a correlated subquery.

2.3 Semantics of nested queries

A mapping � is a partial function � : V → T . The domain of �, dom(�),
is the subset of V where � is defined. The empty mapping �0 is a mapping
such that dom(�0) = ∅. Given a triple pattern t and a mapping � such that
var(t) ⊆ dom(�), �(t) is the triple obtained by replacing the variables in t
according to �. Abusing notation, for a query Q, we denote by �(Q) the query
resulting from replacing variables in Q according to �.

Two mappings �1 and �2 are compatible when for all ?X ∈ dom(�1)∩dom(�2)
it satisfies that �1(?X) = �2(?X), i.e., when �1∪�2 is also a mapping. The oper-
ations of join, union, difference and left outer-join between two sets of mappings

1 and
2 are defined as follows:

–
1 ⋊⋉
2 = {�1 ∪ �2 ∣ �1 ∈
1, �2 ∈
2, �1 and �2 are compatible}
–
1 ∪
2 = {� ∣ � ∈
1 or � ∈
2}
–
1 ∖
2 = {�1 ∈
1 ∣ for all �2 ∈
2, �1 and �2 are not compatible}
–
1┐┘⋊⋉
2 = (
1 ⋊⋉
2) ∪ (
1 ∖
2)

The answer for a query Q = (R,F, P), denoted ans(Q), is a function which
returns: (i) a set of mappings when R is a SELECT query; (ii) an RDF graph
when R is a CONSTRUCT query; and (iii) a boolean value (true / false) when
R is an ASK query. We will use this informal definition of ans(⋅) to define the
semantics for the components of a query.

(1) Semantics of result query forms. Let � be a mapping and R be a result query
form. The result of R given �, denoted result(R,�), is defined as follows:

– If R is SELECTW then result(R,�) is the restriction of � to W , that
is the mapping denoted �∣W such that dom(�∣W) = dom(�) ∩W and
�∣W (?X) = �(?X) for every ?X ∈ dom(�∣W).

– If R is CONSTRUCTH then result(R,�) is the set of RDF triples (i.e.
an RDF graph) {�(t) ∣ t ∈ H and �(t) ⊂ (I ∪B)× I × T}.

– If R is ASK then result(R,�) is false if � = ∅ and true otherwise.
(2) Semantics of dataset clauses. Let F be a set of dataset clauses. The dataset

resulting from F , denoted dataset(F), contains:
(i) a default graph consisting of the merge of the graphs referred in clauses

FROMu. If there is no FROMu, then the default graph is an empty
graph G0 = ∅; and

6

(ii) a named graph ⟨u, graph(u)⟩ for each dataset clause “FROM NAMEDu”.
(3) Semantics of filter constraints. Let � be a mapping and C be a filter con-

straint. We say that � satisfies C, denoted � ∣= C, if:
– C is ?X = v, ?X ∈ dom(�), and �(?X) = v;
– C is ?X = ?Y , ?X ∈ dom(�), ?Y ∈ dom(�), and �(?X) = �(?Y);
– C is bound(?X) and ?X ∈ dom(�);
– C is (¬C1) and it is not the case that � ∣= C1;
– C is (C1 ∨ C2) and � ∣= C1 or � ∣= C2;
– C is (C1 ∧ C2), � ∣= C1 and � ∣= C2.

– C is (u � SOME(Q?X)) and there exists a mapping �′ ∈ ans(�(Q?X))
satisfying that either u � �′(?X) when u ∈ I ∪L or �(u) � �′(?X) when
u ∈ V .

– C is (u � ALL(Q?X)) and for every mapping �′ ∈ ans(�(Q?X)) it holds
that either u � �′(?X) when u ∈ I ∪ L or �(u) � �′(?X) when u ∈ V .

– C is (u IN (Q?X)) and there exists a mapping �′ ∈ ans(�(Q?X)) sat-
isfying that either u � �′(?X) when u ∈ I ∪ L or �(u) � �′(?X) when
u ∈ V .

– C is EXISTS(QA) and ans(�(QA)) is true.

(4) Semantics of graph patterns. The evaluation of a graph pattern P over a
dataset D with active graph G, denoted J⋅KDG , is defined recursively as follows:

– P is a triple pattern then JP KDG = {� ∣ dom(�) = var(P) and �(P) ⊆ G}
– J(P1 ANDP2)KDG = JP1KDG ⋊⋉ JP2KDG .

– J(P1 OPTP2)KDG = JP1KDG┐┘⋊⋉ JP2KDG .

– J(P1 UNIONP2)KDG = JP1KDG ∪ JP2KDG .

– J(P1 MINUSP2)KDG = JP1KDG ∖ JP2KDG .

– If u ∈ I then J(uGRAPHP1)KDG = JP1KDgraph(u)D .

– If ?X ∈ V and �?X→v is a mapping such that dom(�) = {?X} and
�(?X) = v, then
J(?X GRAPHP1)KDG =

∪
v ∈ names(D)(JP1KDgraph(v)D ⋊⋉ {�?X→v}).

– J(P1 FILTERC)KDG = {� ∣ � ∈ JP1KDG and � ∣= C}
– If P is a SELECT query QS then JP KDG = ans(QS).

Definition 1 (Answer for a query). Let Q = (R,F, P) be a query, D be the
dataset obtained from F , and G be the default graph of D. The answer to Q,
denoted ans(Q), is defined as follows:

– if R is SELECTW then ans(Q) = {result(R,�) ∣ � ∈ JP KDG}.
– if R is CONSTRUCTH and blank(H) is the set of blank nodes appearing

in H, then ans(Q) = {�i(result(R,�i)) ∣ �i ∈ JP KDG} where �i : blank(H)→
(B ∖ blank(H) is a blank renaming function satisfying that for each pair of
mappings �j , �k ∈ JP KDG , range(�j) ∩ range(�k) = ∅.

– if R is ASK then ans(Q) = false when JP KDG = ∅ (i.e., there exists no
mapping � ∈ JP KDG) and ans(Q) = true otherwise.

7

The semantics for correlated queries as defined above follows the nested iter-
ation method [8], i.e., the inner query is performed once for each solution of the
outer query (it is because the results of the inner query are correlated with each
individual solution of the outer query). This procedure is attained by replacing
variables in the inner query with the corresponding values given by the current
mapping of the outer query (e.g., by applying �(Q?X)). For example, consider
the graph pattern

(((?X name ?N) OPT(?X knows ?Y)) FILTER EXISTS(ASK(?Y email ?E))).

The method establishes that the graph pattern (?Y email ?E)) (i.e., the sub-
query) is evaluated over and over again, once for each result mapping of the
OPTIONAL graph pattern (i.e., the outer query).

We have identified two issued related to the use of correlated variables. First,
loss of correlation due to unbounded variables. Consider that P is the the OP-
TIONAL graph pattern in the above example. If � is a mapping in JP K such
that �(?X) = a, �(?N) = b and �(?Y) is unbounded (i.e., there was no solution
for the OPTIONAL part), then there is no value to replace the variable ?Y in
the inner query, and consequently there exists no correlation. This loss of cor-
relation results in an undesirable evaluation because, when the inner query has
at least one solution, the filter condition is true and the mapping is accepted
as a solution. Clearly, it is not what the query intuitively means such that the
evaluation of the inner graph pattern depends directly on the evaluation of the
outer graph pattern. This problem, produced by correlated variables that could
be evaluated to unbounded, is intrinsic to the language because the semantics
of the UNION and OPTIONAL operators (i.e., they can generate unbounded
variables). Hence, we restrict our study by avoiding graph patterns of this type.

Another issue concerns the use of correlated variables in the projection part
of a nested SELECT query. Consider the graph pattern

((?X p ?Y) FILTER ?Y = SOME (SELECT ?Y WHERE (?Z q ?Y))).

Note that, the use of variable ?Y as a projected-variable in the nested SELECT
query, generates ambiguity about its scope. In fact, it is not clear whether ?Y
must be considered local to the inner query or it occurs as correlated with the
outer query. To minimize the possibility of confusion, the scope of a variable
will be interpreted using the nearest result query form possible (i.e., the nearest
SELECT). Hence, variable ?Y is local in the inner query of the example.

3 Examples of nested queries in SPARQL

Let G1, G2 be two RDF graphs identified by IRIs foaf and bib respectively.
G1 contains personal information using the FOAF vocabulary 7. G2 contains
bibliographic information using the bibTex Vocabulary 8. Consider the following
examples of nested queries.

7 http://xmlns.com/foaf/spec/
8 http://zeitkunst.org/bibtex/0.1/

8

Example 1. The oldest people.

SELECT ?Per1 FROM foaf
WHERE ((?Per1 foaf:age ?Age1)

FILTER (¬(?Age1 < SOME (SELECT ?Age2 FROM foaf
WHERE (?Per2 foaf:age ?Age2)))))

Example 2. The youngest people.

SELECT ?Per1 FROM foaf
WHERE ((?Per1 foaf:age ?Age1)

FILTER (?Age1 ≤ ALL (SELECT ?Age2 FROM foaf
WHERE (?Per2 foaf:age ?Age2))))

Example 3. Mails of people being part of at least one group.

SELECT ?Mail FROM foaf
WHERE ((?Per foaf:mbox ?Mail)

FILTER (?Per IN (SELECT ?Mem FROM foaf
WHERE (?Mem foaf:member ?Group))))

Example 4. Mails of people having at least one publication.

SELECT ?Mail FROM foaf
WHERE ((?Per foaf:mbox ?Mail)

FILTER (EXISTS (ASK FROM bib
WHERE (?Art bib:has-author ?Per)))))

The above examples deserve several comments. IN expressions are less ex-
pressive than SOME expressions because the former are restricted to equality of
values, whereas the latter allows all scalar comparison operators. Nested queries
with SOME /ALL operators without correlated variables are better for query
composition, i.e., simple and direct copy/paste of queries. The use of EXISTS is
not adequate for distributed queries because it needs correlated variables to make
sense. This helps the user to express complex queries but makes the evaluation
harder (because the application of the nested iteration method).

4 Equivalences among nested queries

In this section we present transformations among nested queries. We will show
that all types of nested queries can be simulated by filter conditions with the
EXISTS operator. Several equivalences presented in this section are well know
in SQL [3].

4.1 Normalization

In order to simplify the transformations, we will avoid complex filter constraints,
i.e., expressions of the form C1 ∧ C2 and C1 ∨ C2 where C1 and C2 are filter
constraints. This assumption is supported by the following lemma.

9

Lemma 1. Every graph pattern having complex filter constraints can be trans-
formed in a graph pattern without complex filter constraints 9.

Proof. Let P be a graph pattern and C, C1, C2 be filter constraints. The lemma
is supported by the following equivalences:

(P FILTER(C1 ∧ C2)) ≡ ((P FILTERC1) FILTERC2) (1)

(P FILTER(C1 ∨ C2)) ≡ ((P FILTERC1) UNION(P FILTERC2)) (2)

(P FILTER(¬C)) ≡ (P MINUS(P FILTERC)) (3)

Is not hard to see that the equivalences holds.

4.2 Transformations

Consider the following definition of query equivalence.

Definition 2 (Equivalence of queries). Two graph patterns P1 and P2 are
equivalent, denoted P1 ≡ P2, if and only if JP1KDG = JP2KDG for every RDF
dataset D with active graph G. Additionally, given two queries Q = (R,F, P)
and Q′ = (R,F, P ′), we say that Q and Q′ are equivalent, denoted Q ≡ Q′, if
and only if P ≡ P ′.

Next we will define transformations among several types of nested queries.
Based on transformations defined in Section 4.1, we assume that queries do not
contain complex filter constraints.

Proposition 1 (Transforming IN queries). Let P be a pattern of the form
(P1 FILTER(u IN {Q2})) where u ∈ T . Then, P is equivalent to expression:

(P1 FILTER(u = SOME{Q2})) (4)

Proposition 2 (Transforming SOME queries). Let P be a pattern of the
form (P1 FILTER(u � SOME(Q2))) where u ∈ T , Q2 = (SELECT ?X2, F2, P2),

and �̂ is the inverse operator to �. Then, P is equivalent to the following expres-
sions:

(P1 FILTER(¬(u �̂ ALL(Q2)))) (5)

(P1 FILTER EXISTS(ASK, F2, (P2 FILTER(u � ?X2)))) (6)

Proposition 3 (Transforming ALL queries). Let P be a pattern of the form

(P1 FILTER(u � ALL(Q2))) where u ∈ T , Q2 = (SELECT ?X2, F2, P2), and �̂
is the inverse operator to �. Then, P is equivalent to the following expressions:

(P1 FILTER(¬(u �̂ SOME(Q2)))) (7)

(P1 FILTER(¬EXISTS(ASK, F2, (P2 FILTER(u �̂ ?X2))))) (8)

9 Lemma 1 is true under set semantics. The inclusion of bag semantics, as defined for
SPARQL, introduces complexity issues which are not discussed here.

10

For example, the following queries show the application of transformations
(7) and (8) to the query of Example 2.

Example 5. The youngest people (using the SOME operator).

SELECT ?Per1 FROM foaf
WHERE ((?Per1 foaf:age ?Age1)

FILTER (¬(?Age1 > SOME (SELECT ?Age2 FROM foaf
WHERE (?Per1 foaf:age ?Age2)))))

Example 6. The youngest people (using the EXISTS operator).

SELECT ?Per1 FROM foaf
WHERE ((?Per1 foaf:age ?Age1)

FILTER (¬EXISTS (ASK FROM foaf
WHERE ((?Per2 foaf:age ?Age2)

FILTER (?Age1 > ?Age2)))))))

From the transformations defined above we can present the following result.

Theorem 1. Nested queries using SOME, ALL and IN can be simulated by
using nested queries with the EXISTS operator.

5 Conclusions

We have studied how to extend SPARQL to support nesting along the design
philosophy of SQL. We showed that there is a simple syntax and semantics for
such extensions in SPARQL. We have shown that incorporating ASK queries
in FILTERS (through the EXISTS operator) gives the full power and flexibility
of SQL nesting, allowing additionally to extend the semantics of SPARQL in
a clean and modular form. The proposal presented here permits a simple and
direct implementation of nested queries as known in the relational world (and
hence by known translation results) in the SPARQL world.

Future work. An interesting problem studied in the database literature is
the efficient implementation of nested queries, where a well known approach is
the development of algorithms which transform nested queries into equivalent
non-nested queries which can be processed more efficiently by query-processing
subsystems [8,5]. On this line, most results are concentrated on aggregate sub-
queries; optimization of non-aggregate subqueries has some limitations, specially
for queries with multiple subqueries and null values [2].

Although decorrelation often results in cheaper non-nested plans, decorrela-
tion is not always applicable, and even if applicable may not be the best choice
in all situations since decorrelation carries a materialization overhead [15,6]. In
this direction, the issue of efficient methods of processing nested queries is one
of the main problems to be addressed in future works on this topic.

Acknowledgments. C. Gutierrez was supported by FONDECYT projects No.
1070348 and No. 1090565. The authors wish to thank the reviewers for their
comments.

11

References

1. R. Angles and C. Gutierrez. The Expressive Power of SPARQL. In Proceedings of
the 7th International Semantic Web Conference (ISWC), number 5318 in LNCS,
pages 114–129, 2008.

2. B. Cao and A. Badia. A nested relational approach to processing SQL subqueries.
In Proc. of the 2005 ACM SIGMOD international conference on Management of
data, pages 191–202, New York, NY, USA, 2005. ACM Press.

3. S. Ceri and G. Gottlob. Translating SQL into relational algebra: optimization,
semantics, and equivalence of SQL queries. IEEE Transactions on Software Engi-
neering, 11(4):324–345, 1985.

4. R. Cyganiak. A relational algebra for SPARQL. Technical Report HPL-2005-170,
HP Labs, 2005.

5. R. A. Ganski and H. K. T. Wong. Optimization of nested SQL queries revisited. In
Proceedings of the 1987 ACM SIGMOD international conference on Management
of data, pages 23–33, New York, NY, USA, 1987. ACM Press.

6. R. Guravannavar, H. S. Ramanujam, and S. Sudarshan. Optimizing nested queries
with parameter sort orders. In Proc. of the 31st Int. Conf. on Very large Data
Bases (VLDB), pages 481–492. VLDB Endowment, 2005.

7. S. Harris and A. Seaborne. SPARQL 1.1 Query. W3C Working Draft.
http://www.w3.org/TR/2009/WD-sparql11-query-20091022/, October 22 2009.

8. W. Kim. On optimizing an SQL-like nested query. ACM Transactions on Database
Systems (TODS), 7(3):443–469, 1982.

9. K. Kjernsmo and A. Passant. SPARQL New Features and Rationale. W3C Working
Draft. http://www.w3.org/TR/2009/WD-sparql-features-20090702/, July 2 2009.

10. G. Klyne and J. Carroll. Resource Description Framework (RDF) Concepts and
Abstract Syntax. http://www.w3.org/TR/2004/REC-115-concepts-20040210/,
February 2004.

11. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
Proceedings of the 5th International Semantic Web Conference (ISWC), number
4273 in LNCS, pages 30–43. Springer-Verlag, 2006.

12. A. Polleres. From SPARQL to Rules (and back). In Proceedings of the 16th
International World Wide Web Conference (WWW), pages 787–796. ACM, 2007.

13. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
Recommendation 15 January. http://www.w3.org/TR/2008/REC-115-sparql-
query-20080115/, 2008.

14. S. Schenk. A SPARQL Semantics Based on Datalog. In 30th Annual German
Conference on Advances in Artificial Intelligence (KI), volume 4667 of LNCS,
pages 160–174. Springer, 2007.

15. P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query decorrelation. In
Proc. of the 12th Int. Conf. on Data Engineering (ICDE), pages 450–458. IEEE
Computer Society, 1996.

16. P. Weinberg, J. Groff, and A. Oppel. SQL, The Complete Reference. McGraw-Hill,
2010.

12

