
1

A Patterns System to Coordinate Mobile Collaborative

Applications

Andrés Neyem · Sergio F. Ochoa · José A. Pino

Abstract. Advances in wireless communication technologies and mobile

computing devices open new possibilities to carry out computer-supported mobile

collaborative work. However this opportunity brings also a number of challenges to

designers, since collaborative applications supporting mobile activities involve

requirements which are not present in stationary collaboration scenarios. For

example, mobile collaborative applications should not use centralized components

because it jeopardizes the autonomy required by mobile workers. In order to help

designers to deal with these new requirements, this article presents a patterns

system focused on the coordination support required for mobile collaborative work.

Such patterns represent reusable designs that help reduce design risks, cost and

time. The article also presents three mobile collaborative applications in which

proposed patterns were included in their respective designs.

Keywords. Coordination patterns · Patterns system · Mobile collaborative

applications · Mobile collaboration.

A. Neyem (�)

Department of Computer Science, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860,
Santiago, Chile

e-mail: aneyem@ing.puc.cl

S. F. Ochoa

Department of Computer Science, Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile

e-mail: sochoa@dcc.uchile.cl

J. A. Pino

Department of Computer Science, Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile
e-mail: jpino@dcc.uchile.cl

2

1 Introduction

Collaborative systems provide support for groups of persons while they

communicate and coordinate their activities to reach a common goal (Ellis et al.

1991). Both communication and coordination are required to support collaboration.

Communication refers to the information exchange among cooperating group

members, and coordination relates to bring group activities into proper relation.

Building these collaborative systems has always been a complex undertaking

because it involves issues which are irrelevant while developing single-user

systems, such as human-to-human communication and awareness, group dynamics,

users' social roles, group memory, and other organizational and social factors

(Schümmer and Lukosch 2007). Trying to deal with these issues, the CSCW

community has proposed several communication and coordination solutions for

stationary collaboration scenarios (Guerrero and Fuller 2001; Schümmer and

Lukosch 2007; Avgeriou and Tandler 2006). These solutions support effective face-

to-face (Moran 2000; Tan et al. 2000) and virtual team work (Nunamaker 2009).

Advances in wireless communication and mobile computing are opening up

several opportunities to carry out computer-supported mobile collaborative work

(Schaffers et al. 2006; Neyem et al. 2008; Dutta and Mia 2009). However, this new

collaboration scenario has also brought various challenges to software designers.

The challenges include a number of requirements which are usually present in

mobile collaboration, but are not in stationary work scenarios. For example mobile

collaborative applications must be as autonomous as possible because their

capability to access remote shared resources is uncertain and it depends on the

user’s location and work context (Neyem et al. 2007). Moreover, collaborators must

use small devices when the work involves high mobility (Tarasewich 2003);

therefore the groupware services must be lightweight because small devices have

limited computing power and hardware resources.

The main causes of these new requirements are two: (1) the communication

media supporting the collaboration process is not always present and its availability

and communication capability are usually unpredictable (Neyem et al. 2007); and

(2) mobile work is essentially loosely-coupled, and it involves sporadic on-demand

collaboration processes (Pinelle and Gutwin 2005). These particularities make

unsuitable most of the general solutions designed for stationary work scenarios.

Therefore, mobile groupware designers must conceive new communication and

coordination strategies to support mobile collaborative work.

This article proposes a design patterns system (Buschmann et al. 2007) to

support typical coordination mechanisms, but considering the particularities of the

mobile collaborative work. These patterns are general reusable solutions to a

commonly occurring problem in software design, which is present in a certain

application context (Gamma et al. 1995). The patterns system helps designers to

model the coordination services (e.g. users’ and session management) required to

support mobile collaboration, because they provide reusable and tested solutions.

The reuse of these designs relieves developers on thinking the design of these

services, and it allows them to focus on the functionality the application must

expose to mobile users.

Next section describes a list of general requirements which must be considered

by any solution supporting mobile collaborative work. Section 3 presents the related

work. Section 4 describes the proposed patterns system. Section 5 presents and

3

discusses evaluation process of the patterns system. Finally, section 6 presents the

conclusions and future work.

2 Mobile Collaboration: General Requirements

Mobile collaboration has increasingly become an important issue in CSCW. Some

application areas of mobile collaboration are the following ones: healthcare (Tentori

and Favela 2008), education (Milrad and Spikol 2007), productive activities (Ochoa

et al. 2008), mobile commerce (Tarasewich 2003) and emergency support (Monares

et al. 2009).

However, efforts to understand the implications that mobile work and mobile

collaboration have on collaborative applications design are still a research subject

(Herskovic et al. 2009; Hislop 2008; Milrad and Spikol 2007). Mobile groups are

highly varied in the ways they organize work, in the physical dispersion of mobile

workers, and in the chosen styles of collaboration among workers (Andriessen and

Vartiainen 2006; Luff and Heath 1998; Wiberg and Ljungberg 2001). While trying

to make sense of this diversity, there exist efforts to describe and classify these

variants by focusing on specific types of mobility (Kristoffersen and Ljungberg

2000), types of physical distributions occurring in mobile groups (Luff and Heath

1998), and levels of coupling among mobile collaborators (Churchill and Wakeford

2001; Pinelle and Gutwin 2005).

These research studies show mobile workers are those who have to work out of

office, move around locally or remotely. Their activities are typically performed on

an uncertain timeframe and in diverse locations. Also, workers carry with them a

“portable office” with constrained resources. Provided the actors’ mobility, the

interaction scenario for a particular mobile worker is uncertain and it also can

change in a short time period. Moreover, it is not possible to ensure availability of

communication media when mobile workers decide to collaborate. These

particularities of the mobile collaborative work impose several requirements on

mobile collaborative applications. The authors have summarized these requirements

in the following ones:

Autonomy. Collaborative mobile applications should work as autonomous solutions

in terms of access to shared resources (e.g. communication and coordination

services, and shared data) (Pinelle and Gutwin 2005). This is because the mobile

worker cannot be sure s/he will be able to get communication support in his/her

workplace at the instant s/he decides to collaborate. In addition, if s/he gets wireless

communication support, the high disconnection rate and the short communication

threshold jeopardize the access to remote shared resources (Neyem et al. 2007).

Therefore, mobile collaborative solutions must be as autonomous as possible.

Interoperability. Since mobile work could include unknown persons trying to do

casual or opportunistic collaboration, their mobile collaborative applications should

offer interoperability of data and services (Neyem et al. 2008). If two or more

mobile workers meet and decide to collaborate, then the heterogeneity of data,

services and devices should not represent a barrier to carry out the collaboration

process. This heterogeneity is usual in mobile work; therefore mobile collaborative

solutions must be as interoperable as possible.

Context-awareness. Since users are on the move to carry out their activities, their

work context can frequently change (Alarcon et al. 2006). Some variables, such as

4

communication/users availability, network topology and access to Internet/remote

servers will change from one location to the next one. A mobile worker is not able

to detect these changes in a simple way; therefore the collaborative application has

to provide this information to the user in real-time. There is also other contextual

information the mobile worker needs to know because it could affect his/her

activities; for example remaining battery life or peripheral activation status. The

strategy to deliver this information is a matter of design, and it will depend on each

case. However, a simple and fast access to this information could affect the mobile

workers’ collaboration capability and productivity.

Awareness of users’ reachability. This requirement can be seen as part of the

context-awareness requirement; however it needs a particular consideration due to

its relevance for mobile collaborative work. Since mobile workers collaborate on-

demand (Pinelle and Gutwin 2005), they need to know when a potential

collaborator is reachable. This reachability could refer to a collaborator’s physical

or virtual presence. Physical reachability involves locating a user into a physical

environment and it requires location mechanisms (Castro and Favela 2008). Virtual

reachability implies mainly communication capability with the potential

collaborator through a digital network. Herskovic et al. report awareness of users’

physical location increases the collaboration opportunities in hospital work

(Herskovic et al. 2009). Farshchian reports users’ virtual reachability promotes

informal collaboration in several scenarios (Farshchian 2003). A psychological

study carried out by Rettie indicates mobile users select, in real-time, the

collaboration variant (i.e. physical or virtual) according to the following priorities:

first, the complexity of the activity to be performed, and second, the collaborators’

type of availability (Rettie 2005). Summarizing: awareness of users’ reachability

promotes (physical or virtual) collaboration during mobile work.

Use of hardware resources. Collaborative mobile applications should be able to

operate in heterogeneous devices. Handheld devices with constrained hardware

resources are the typical equipment to be used; examples are smartphones, mobile

internet devices (MIDs) or personal digital assistants (PDAs). The ideal situation is

to count on lightweight communication and coordination services to support the

collaborative work, but this is not always possible (Alarcón et al. 2006). However it

is feasible to activate on-demand services as a way to reduce the hardware resources

overuse. The solution proposed by the collaborative applications designers to deal

with this requirement will directly affect the interoperability, and consequently, the

mobile workers’ collaboration capability.

Low coordination effort. Mobile collaborative work involves tasks, which often are

strongly partitioned among workers (Andriessen and Vartiainen 2006). This

partitioning minimizes coordination demands and it allows people to work

autonomously and in parallel. Although the coordination process among mobile

workers is usually carried out through on-demand collaboration activities (Pinelle

and Gutwin 2005), ideally it should tend towards an unattended process as much as

possible. Unattended (i.e. low cost) coordination activities reduce mobile workers’

cognitive load and improve the shared data availability. Transparent mechanisms

help improve mobile workers’ productivity and promote collaboration among them.

Otherwise, if the coordination process requires effort from mobile workers, they

will collaborate just when it is absolutely required and not when they have a

5

chance. Therefore the coordination effort for mobile workers’ activities must be as

low as possible with the goal of promoting collaboration.

The software industry has seen the design reuse as a way to deal with recurrent

requirements characterizing a problem. It has been shown to be a good idea since

the first design patterns were defined by Gamma et al. (1995). As a consequence,

this article proposes a patterns system to deal with the recurrent requirements

presented in this section. IDC has predicted the number of worldwide mobile

workers will reach one billion by 2011 (BNet 2008). This number roughly

corresponds to 30% of the worldwide task force; therefore, appropriately dealing

with these requirements could have an important impact on mobile work.

3 Related Work

Jørstad et al. have proposed a set of generic coordination services for distributed

(but stable) work scenarios (Jørstad et al. 2005). These services include locking,

presentation control, user presence management and communication control. There

are several other researchers who have also proposed similar solutions to support

coordination on wired networks (Arvola 2006; Avgeriou and Tandler 2006;

Guerrero and Fuller 2001; Schümmer and Lukosch 2007). However, the contextual

variables influencing the collaboration scenario (e.g. communication instability and

low feasibility to use servers) and the mobile work (e.g. use of context-aware

services and support for ad-hoc coordination processes) make such solutions

unsuitable to support mobile collaboration.

There are also proposals to deal with coordination services in wireless networks;

however such proposals assume signal stability and use centralized components

(Essmann and Hampel 2005; Licea 2006). These proposals were designed to

support micro-mobility or work in environments completely covered by a wireless

network (i.e., using access points). Like the previous case, these solutions do not

satisfy the requirements stated in Section 2.

Research literature reports several experiences describing the use of

collaborative mobile applications (Molina et al. 2008; Monares et al. 2009;

Tarasewich 2003; Tentori and Favela 2008; Zurita et al. 2008). Although some of

these applications are fully-distributed and seem to match the stated requirements,

they do not describe or evaluate the strategies used to support coordination in

mobile collaborative scenarios. Thus, the potential design solutions cannot be

evaluated when they are formalized through design patterns or reused in future

applications. Schümmer and Lukosch argue that collaborative systems reuse should

focus on design reuse rather than code reuse (Schümmer and Lukosch 2007).

There are also a number of collaboration patterns which can be studied in order

to try to understand the coordination mechanisms encapsulated behind those

collaboration models (de Vreede et al. 2001; Herrmann 2003; Pinelle and Gutwin

2006; Zurita et al. 2008). The analysis of these patterns could provide some insight

on how to coordinate mobile workers’ activities; however such research effort is

still pending. Next section presents the design patterns system we propose to model

the coordination services that support mobile collaboration.

6

4 Patterns System

Roberts and Johnson proposed a methodology to identify patterns and provide

reusable designs implementation for a family of applications in specific domains

(Roberts and Johnson 1996). Such methodology can also be used to evaluate

potential design patterns. The process involves developing several applications in

different scenarios for a particular domain to capture the commonalities shared by

the various solutions to a single problem (Fig. 1). The first step is to distinguish

between recurring solution ideas and those which are singular. The singular ones

may be tightly bound to their application and thus they cannot be considered as

general patterns.

Fig. 1. Building mobile collaborative applications through a patterns

On the other hand, we must consider that a pattern generally has relationships to

other patterns and we need to identify these interdependencies in order to define a

patterns network (Buschmann et al. 2007). Then, this patterns network forms a

system (or patterns system), which provides design knowledge into a specific

application domain. We use the term patterns system instead of patterns language

because the proposed patterns list is not necessarily complete (Buschmann et al.

2007). Next section presents the architectural pattern representing the framework of

this proposal. Then, section 4.2 describes the coordination patterns composing the

system. The structure used to represent each pattern is the following one: name,

context, problem, solution and related mobile collaboration requirements. Section 5

presents and discusses three case studies where these patterns were applied.

4.1 CrossLayer

Context. Collaborative applications typically separate functionality in three basic

concerns: communication, coordination and collaboration. Each layer provides

services (modeled based on the proposed patterns) and related meta-data. These

services could be different in terms of concerns and granularity. The interaction

between services related to different concerns is hierarchical: communication <->

coordination and coordination <-> collaboration. Interoperability among these

services is required to support mobile collaboration, because frequently the service

provider and the consumer run on two different computing devices.

Domain-Specific Software Development
(Mobile Collaborative Applications)

Scenarios

Solution for
specific problems

A

Develop applications with
resusable designs implementation

Identify recurrent solutions
and formalize them through design patterns

B C

Patterns System

Pattern-based
collaborative applications

Scenarios

A B C

Collaborative
applications

7

Problem. Services provided by the collaborative system must be well structured.

Otherwise, the system will be limited in terms of scalability, maintainability and

adaptability. These challenges have been addressed by stationary collaborative

systems through the use of centralized components such as a server. However, those

solutions are inappropriate to support collaboration in mobile scenarios.

Solution. The architecture of a mobile collaborative application should be fully

replicated to cope with the mobile users’ autonomy. Thus, it is possible to see the

collaboration scenario as a dynamic mesh without centralized components. This

architecture must be layered because there is a clear hierarchy among the

groupware services belonging to different concerns such as communication,

coordination and collaboration (Fig. 2). The advantages of the layered architecture

have already been recognized by the software engineering community (Avgeriou

and Zdun 2005; Clements et al. 2003).

Fig. 2. Layered architecture to support mobile collaboration

Services and public data structures of each layer should be accessible through an

API (Application Programming Interface) in order to keep the services

independence and the access control. The interaction protocol between services is

part of each layer, and it can be dynamically selected based on contextual

information. For example, mobile devices with little hardware resources require

lightweight mechanisms for data sharing or peers discovery. If an application

running on a laptop must interact with a service running on a PDA, then contextual

information about the PDA’s hardware resources (stored in a particular layer) will

be used to dynamically adapt the interaction protocol between them. This strategy

allows designers to separate the application’s concerns and increase the system

scalability, maintainability and adaptability. It also eases the implementation of a

solution to deal with data and services interoperability.

Related Mobile Collaboration Requirements. Autonomy, interoperability and use

of hardware resources.

C
ro

s
s
L

a
y
e

r

Mobile Collaborative Applications

Collaboration Layer

Solutions for Coordinate Operations
among Mobile Workers

Coordination Layer

Solutions for Messages Interchange
among Mobile Applications

Communication Layer B
a
c
k

-E
n

d

F
ro

n
t-

E
n

d

8

4.2 Coordination Patterns

The coordination patterns refer to the provision of services required by mobile

workers’ applications to coordinate the operations on the shared resources (e.g.

files, sessions and services). This coordination is made individually (per mobile

unit) and it generates a consistent view of the group activities. Figure 3 shows the

proposed patterns system. Then each particular pattern is described in the next sub-

sections.

Fig. 3. Coordination Patterns System for Mobile Collaborative Applications

4.2.1 Ad Hoc Environment

Context. Mobile collaborative applications usually require managing several work

sessions. Each session groups users and shared data and services. Mobile users need

to know which sessions are currently available in order to try to access those

relevant ones for them, or otherwise to create a new one to collaborate with

teammates.

Problem. It is not possible to use centralized components (such as the list of the

currently available work sessions) in mobile collaboration scenarios due to

autonomy reasons. It means the list of work sessions, with their participants, must

be kept in a distributed way. Therefore the ad hoc environment not only has to

manage the list of available work sessions, but it also has to do it in a distributed

way and by ensuring the sessions information integrity.

9

Solution. This pattern proposes an ad-hoc environment to deal with this problem. It

contains a fully distributed list of work sessions available to each mobile user. Each

mobile unit (and mobile user) has an instance of this list and a set of services to

reconcile the local list with the list of teammates.

The local ad hoc environment keeps the following information: environment ID,

description, creator and the list of available work sessions (Figure 4). The descriptor

also has the list of sessions where the local user is member. For those cases, each

session contains the list of users’ virtual identities (VI). This virtual identity is a

unique ID identifying the couple user - device. This environment structure allows:

• A mobile application to support several work sessions composed of various

mobile users.

• A session member’s work does not interfere with the work of other session’s

members, even if they are working on shared objects.

Fig. 4. General strategy for session management

The integrity of the information stored in each ad hoc environment can be kept

using a reconciliation service, such as the one proposed by Messeguer et al.

(Messeguer et al. 2008). This information can be used by the mobile collaborative

application to implement context-awareness mechanisms for data sharing and users’

reachability. The contextual information related to the environment may contain

data about the hardware resources of the local device. It allows managing the use of

hardware resources depending on their availability. This type of environment can

provide general services to support shared workspaces. Examples of the services are

files transfer, message delivery, peers detection and users/sessions awareness.

Related Mobile Collaboration Requirements. Autonomy, context-awareness,

awareness of users’ reachability and use of hardware resources.

4.2.2 Ad Hoc Collaborative Session

Context. Mobile users trigger on-demand collaboration instances based on several

goals, e.g. common work or similar interests. Typically they share data, knowledge

or services as part of this collaboration process. The interaction among mobile users

must be protected in order to avoid unauthorized access to resources shared among

them.

Session ID

SID 1

SID 3

SID 4

Array of VIs

Environment ID Contextual Information

10

Problem. Mobile collaborative applications need to implement a collaboration

space in which mobile workers can interact freely without interrupts or

unauthorized access to their shared resources. Similar to the ad-hoc environment,

the collaborative session has to manage list of users and shared resources in a

distributed way and keeping the integrity of the information shared by the session

members. Each session has also to implement access control to shared resources

based on each mobile user’s role. Given the users’ mobility, work sessions should

be dynamically splitable or unifiable depending on the availability of a

communication link among session members.

Solution. The solution to this problem is to use an ad-hoc collaborative session.

The management of these sessions is done in a fully distributed way; therefore each

mobile unit has to do it locally and keeping synchronized with the rest of the

session members. Similar to traditional collaborative sessions (Guerrero and Fuller

2001), ad hoc collaborative sessions have a list of supported roles (rights to access

the shared resources), members (users with roles), a session dataspace with private

and public resources, and a session type considering the access control for users

(ad-hoc, public or private session). The following figure illustrates the structure of

the solution.

Fig. 5. General structure of the solution for ad hoc collaborative session

A work session is created when the first user is registered as member of it and it

is deleted when the last user is unregistered. A session is potentially alive even if no

users are currently connected, but having users registered in it. The work session

types matching mobile collaboration are the following ones: ad-hoc, public-

subscribe and private-subscribe (Fig. 5). The ad-hoc session is an open public

resource that can be accessed by any user connected to the wireless network. The

public-subscribe session involves a simple subscription process. Typically, users

request a session subscription and automatically obtain the right to access it.

Finally, private-subscribe sessions require a subscription process triggered by an

invitation. Each invitation has associated a user role. If the mobile worker accepts

the invitation, then s/he will play such role in that session. The strategy for session

management must allow mobile users participate in more than one session and

every session must have a local private and a shared repository.

Let us consider the situation depicted in Fig. 6 where users 1 and 2 are

subscribed to session A. Once these users connect to the session, their public

resources related to session A (those in their local shared repository) become

Session
Dataspace

AdHoc
Session

Session Session Manager
manages 1.*

Subscribe
Session

Public
Subscribe

Private
Subscribe

Local
Repository

Shared
Repository

has

Role

has

Mobile User
1.* has

1.* has

11

available for any logged user. Because this process is automatic, it represents a low

cost mechanism for data sharing. While the users are connected to a session they

can replicate, into their local shared space, the remote shared resources that could

be useful for him in the future (i.e. for autonomy reasons). Of course, the users are

also able to work on those shared resources. When a user leaves a session, the local

private and shared resources are kept available for him/herself, by allowing the user

work asynchronously.

The consistency of the shared data in an ad hoc collaborative session can be kept

through two mechanisms: replication (i.e. file transfer) and reconciliation (i.e. data

synchronization). Both of them represent low cost coordination mechanisms.

Session A – Shared Resources
User 2 - Local Resources

Shared Sessions

Shared Repository

P
ri

v
a

te
 R

e
p

o
si

to
ry

Session A

User 1 - Local Resources

P
riv

a
te

 R
e

p
o

sito
ry

Shared Repository

Session A

Fig. 6. Ad hoc collaborative session management

Typically, not all users have the same rights to access shared resources. The

rights are related to the user’s role for each session s/he is working on and indicates

the user capability to carry out certain operations or processes on the shared

resources. Mobile users usually have many work sessions with certain assigned

role. Therefore, they need a mobile environment organizing and eventually

coordinating multiple working sessions or user groups playing several roles.

Sessions, users and roles management should be fully-distributed since the mobile

environment should be autonomous.

Related Mobile Collaboration Requirements. (Data) Autonomy, awareness of

users’ reachability, low coordination effort.

4.2.3 Session Dataspace

Context. Team members involved in mobile collaboration produce information as a

result of individual and collaborative work. These persons are frequently

disconnected and perform their activities autonomously and work in parallel;

therefore they need instances to share and synchronize their information.

Problem. Since mobile workers have to be autonomous, the resources required by

them during an activity should be reachable all the time and they must be managed

in a distributed way. It means some shared information will be replicated in the

mobile units used by the work session members. This partial replication adds

inconsistency to shared resources (because of the asynchronous updates), which has

to be managed by session dataspace. Besides, this dataspace must be context-aware

because it has to modify its content depending on the current composition of the

work session.

12

Solution. A solution to this problem involves the use of a session dataspace in each

mobile unit. This is a fully distributed component which provides a private and a

public data repository for each mobile user and session. The information stored in

the public repository can be accessed by any other session member; however the

information in the private space is accessible just to the local user. The integration

of all public spaces belonging to the session members represents the session shared

repository. This component can be used to provide awareness of the shared

information to all users in a work session.

The shared repository contains two types of information resources: irreconcilable

and reconcilable (Fig. 7). Irreconcilable resources are those pieces of information

on whose internal structure the system has no information. The consistency among

these resources can be kept just through replication (i.e. file transfer). On the other

hand, a reconcilable resource is a piece of information with a well-known internal

structure; therefore it can be synchronized with other instances of that resource

(from other mobile users) in order to obtain a consistent representation of it. Both

data sharing mechanisms mean a low coordination effort from the users. The

following figure illustrates the structure of the solution.

Fig. 7. General structure of the solution for shared repository

 Figure 8 presents a possible interaction scenario explaining the way the ad-hoc

shared data repository works. All users have a private and a shared repository.

Users 1, 3 and 4 are subscribed to sessions A and B, whereas user 2 is subscribed

just to session A. Let us assume users 1, 2 and 4 are logged to session A (indicated

with white background in Figure 6), and user 3 is logged to session B. The shared

space of each session shows the set of reconcilable and irreconcilable resources

which are available for the members.

Session A has three different versions of the same shared object. The

reconciliation of such object instances can be done automatically or on-demand.

The software designers have to determine which strategy fits with the type of

activity the users are carrying out. In case of irreconcilable resources, the user is in

charge of deciding (following some personal or organizational criteria) which is the

last version of a replica. The user knows the file metadata information in order to

make that decision, e.g. creation date, last update, owner, and version number.

In Figure 8, session A does not show the shared resources of user 3, because that

user is subscribed but not logged into that session. Something similar occurs with

the shared resources kept by users 1 and 4, which are linked to session B. When a

logged user leaves a session, all his/her shared resources are no longer available for

the teammates, unless one of the connected users has local replicas of those

resources.

Session
Dataspace

Session

Local
Repository

Shared
Repository

has

Resource

Irreconcilable

Reconcilable

has 1.*

has 1.*

Mobile User

h
a

s
 1

.*

13

User 4 - Local Resources

Shared Repository

Irreconcilable Reconcilable

Session A Session B

Session A – Shared Resources

Session B – Shared Resources

User 2 - Local Resources

Shared Sessions

Connect

Disconnect

Shared Repository

Irreconcilable Reconcilable

Irreconcilable Resources

Reconcilable Information

P
ri

v
a

te
 R

e
p

o
si

to
ry

Session A

User 1 - Local Resources

P
riv

a
te

 R
e

p
o

sito
ry

Shared Repository

Reconcilable Irreconcilable

Session B Session A

Irreconcilable Resources

Reconcilable Information

P
ri

v
a

te
 R

e
p

o
si

to
ry

User 3 - Local Resources

P
riv

a
te

 R
e

p
o

sito
ry

Shared Repository

Reconcilable Irreconcilable

Session B Session A

Fig. 8. Management of the ad hoc shared repository

The use of XML is recommended to specify shared resources. This description

increases the data interoperability (because it is a standard) and eases the

reconciliation process.

Related Mobile Collaboration Requirements. Autonomy, interoperability,

context-awareness, low coordination effort.

4.2.4 Replicated Resources Synchronization

Context. Mobile users work autonomously most of the time and they carry out

sporadic on-demand collaboration processes to keep updated and synchronized their

local dataspace. Even if the collaboration process is tightly coupled, the users’

mobility may cause disconnections and inconsistencies on the shared information.

Problem. Data consistency in fully distributed scenarios usually requires

synchronization processes. These processes define how to synchronize the data

replicas. When the synchronization process has to be done using a Mobile Ad hoc

Network (with dynamic topology) including heterogeneous devices, the

synchronization processes will be affected by several factors. Examples of such

factors are: bandwidth between mobile devices, computing power of the involved

devices, network topology and latency of changes. Moreover, this synchronization

process must be done in a short time period, because frequently reconciliations are

done as unattended (background) processes triggered while the user is on the move.

Since the period of contact among mobile collaborators cannot be ensured, the

reconciliation process should be as fast as possible.

14

Solution. The proposed reconciliation strategy is simple and it is based on the

XMiddle reconciliation strategy (Mascolo et al. 2002). Such process minimizes the

number of file transfers and the size of the transferred files, as a way to reduce the

synchronization process duration and the hardware resources utilization. The

algorithm transmits just the differences between data structures and, at the same

time, is able to reconstruct diverging replicas from a common previous edition on

the same host in order to reconcile them locally. Then, the result of the

reconciliation is propagated to the other hosts, communicating only the changes

done on the common latest edition.

Fig. 9. The proposed reconciliation algorithm

Figure 9 shows a synchronization example involving two replicas of the same

document. The reconciliation process starts when Host A sends a reconciliation

request to Host B. It receives the request and starts a local reconciliation using the

information sent by A. We refer to the copy of the document stored on Host A as

DocA and that maintained on Host B as DocB. Let us also assume that, after the

execution of the first part of the protocol, the document DocCE has been chosen as

Latest Common Edition, i.e., DocCE is the base document of the replicas to be

synchronized. Host A computes the XMLTreeDiff operation (Mascolo et al. 2002)

with DocCE and DocA as arguments (DocCE is the base document, whereas DocA is

the modified replica). The output of this operation is the “diff” document Docdiff,

which will be sent to Host B. After receiving Docdiff, B executes XMLTreeMerge

with DocCE and Docdiff as arguments in order to reconstruct DocA locally. Therefore,

Host B now has a local copy of DocA and, naturally, DocB. Thus, the reconciliation

between these two documents is performed on Host B without exchanging

information with Host A. This process is carried out using the XMLTreeReconcile

operation (Mascolo et al. 2002) with the following arguments: the local copy of the

Host A Host B

Doc_A Doc_CE

Doc_Diff

Doc_Diff Doc_CE

Doc_A Doc_B Doc_CE

XMLTreeDiff XMLTreeMerge

XMLTreeReconcile

Doc_CEr Doc_CE

Doc_Diffn

XMLTreeDiff

Doc_CE Doc_Diffn

XMLTreeMerge

Doc_CEr

15

document DocB, the remote copy DocA and the latest common edition DocCE. The

output is a “reconciled document” called DocCEn.

The final step is the generation of the reconciled document on Host B. This

action is executing the XMLTreeDiff again with DocCE and DocCEn as arguments, in

order to compute a new “diff” document. Afterwards, the document Docdiffn is sent

to Host A, and XMLTreeMerge executes with DocCE and Docdiffn as arguments.

Now, Hosts A and B store the reconciled copies of the shared document, which will

become the new latest common edition.

This algorithm can be used to support one-to-one and one-to-many

synchronizations. In the second case, the reconciliation process should be divided in

a set of ordered sequence of one-to-one synchronizations.

Related Mobile Collaboration Requirements. Autonomy, use of hardware

resources and low coordination effort.

4.2.5 Replicate Resources

Context. Users produce data as a result of the mobile collaboration process. This

data is stored in local files which mobile users usually share to support

collaboration. The data sharing process will need to replicate the resources

regardless of the data type: reconcilable (i.e. with a well known internal structure)

or irreconcilable (i.e. in any other case).

Problem. Users’ mobility causes high disconnection rates when replicating a file

between mobile units. This disconnection rate requires robust mechanisms to

replicate resources. Moreover, the replication process should be fast and simple

enough to run on small computing devices.

Solution. The solution to this problem is to provide a file transfer mechanism

allowing users interact in a work session, to replicate resources in a transparent way

(Fig. 10). The file transfer process is based on the distribution of a set of small

information pieces which can be sent in any order from the sender to the receiver.

When a user decides to download certain remote resource, the component creates a

download request (i.e. a FileTransferTicket). Then, the file transfer manager uses

the contextual information (i.e. hardware features of the interacting mobile

computing devices, and the distance between them) to determine the appropriate

block size in which the resource will be broken down before being transmitted. The

block size is relevant to be considered, because it directly influences the

performance of the file transfer process. This information is stored in the

FileTransferWorkItem element.

Fig. 10. General structure of the solution for replicate resources

Environment
FileTransfer

Manager

FileTransfer
Ticket

FileTransfer
WorkItem

Resource

Session Session Manager

uses

manages 0.*

manages 1.*

u
s
e

s

has 0.*

1
.* h

a
s

h
a

s

16

In case only part of the resource is needed on the remote user, partial file

transfers are allowed in either block or striped mode. Increasing the file transfer

performance is also possible with the use of multiple data channels for parallel

transfer operations.

Related Mobile Collaboration Requirements. Autonomy, use of hardware

resources and low coordination effort.

4.2.6 Mobile User

Context. Users participating in a mobile collaborative process need to be uniquely

identified regardless of the computing device they are using. Provided this is an on-

demand process, mobile users need to know the identities of the potential

collaborators who are currently available.

Problem. The user ID must be unique and it should identify a particular user

regardless of the mobile device s/he is using. A similar identification mechanism is

required for the potential collaborators (other mobile users in the same area).

Moreover, the information about users’ and neighbors’ IDs should be managed in a

fully distributed way, due to the aforementioned constraints.

Solution. The solution to this problem is to have a data structure, which we have

called mobile user, containing the local user information required to support the

mobile collaboration and to implement user presence. This structure is a

reconcilable resource which is locally stored in each mobile device. This resource is

shared among users in order to keep a common view from the users participating in

a work session.

Fig. 11. Mobile user data structure

Fig. 12. Matching VIs and RIs

The mobile user data structure contains the

mobile unit ID, the virtual (user) ID, the

user’s role, the user’s visibility attribute

and the list of neighbors (Fig. 11). The

user’s virtual identity (VI) is a unique ID

which is linked to the IP address of the

user’s device. This VI is linked to the real

identity (RI) which is the permanent user’s

ID. User sessions can be implemented as

dynamic arrays of virtual identities (Fig.

12). On the other hand, the user visibility

attribute allows implementing privacy

policies, and awareness of user roles and

user availability. The list of neighbors

includes the set of potential collaborators

available during a particular period.

Session ID

SID 1

SID 3

SID 4

Array of VIs

VI3 …

VI RI

VI6 …

VI7 …

VI9 …

… … … …

… … …

… … … … … … …

Virtual (User) ID User Role User Visibility List of Neighbors
Mobile Unit ID

(Real ID)

17

This neighbors list can be updated by two mechanisms: (1) peers discovery and

(2) list synchronization. Peers discovery involves sending a message to a peer

destination. If the destination is reached, a message is returned to the sender

indicating the list of interim visited nodes. Such data is used to update the local list

of reachable mobile units and neighbors. Then, a change-propagation mechanism

can be triggered to the rest of the session members. In that case, the list update is

done using a typical synchronization process.

Related Mobile Collaboration Requirements. Autonomy, awareness of users’

reachability and low coordination effort.

4.2.7 Role

Context. Mobile collaborative applications usually require support for mobile users

with different rights to access the shared information. Users having the same access

rights should be treated in the same way by the collaborative system. Fully

distributed access control management to shared resources is needed because

mobile collaboration processes require autonomy.

Problem. Roles support needs to keep the semantics given by client-server

collaborative systems, however the management must be fully distributed.

Moreover, the user’s role has to be kept consistent even if the user changes his/her

mobile computing device.

Solution. The solution involves assigning a role to each mobile user for each of

his/her sessions. Every private-subscribe session requires creating a role schema

which has session roles defining access rights over the shared resources. Once these

session roles have been defined, each user’s role is linked to the mobile user

through a mobile user role (Fig. 13).

Taking into account the reusability of this solution, it is possible to consider the

role as a class maintaining information related to its name, the session to which it

belongs and list of access rights to the shared resources (data and services). The role

solution has to implement methods to store an instance, erase an instance, check if a

role exists, check if a mobile user has enough rights to access a shared resource, and

request a list of roles available in certain sessions.

Fig. 13. General structure of the role pattern

Resource

Private
Subscribe
Session

Shared
Repository

Role
Schema

has

1.* has Session
Role

h
a

s
 1

.*

has

MobileUser
Role

Mobile User

h
a

s
 1

.*

has 1.*

18

Related Mobile Collaboration Requirements. Context-awareness, awareness of

users’ reachability and low coordination effort.

4.2.8 Ad Hoc View

Context. The user’s role sets the user’s access rights on the shared resources (i.e.

data and services); thus, users with the same role should have access to the same

resource list.

Problem. Since the shared resources in an ad hoc session are distributed but no

fully replicated, frequently users with the same role have access to different lists of

shared resources. Mobile collaboration requires keeping the coherence of the access

to these resources as much as possible, in order to avoid data islands (generating

unnecessary parallel work) inside a work session.

Solution. The solution to this problem is to use an ad hoc view of the shared

resources. This view contains a list of resources with their access grants, which are

available for all users having a specific role. There is a view per role. Users with the

same role should have access to the same list. These lists are reconcilable as a way

to keep the coherence of each view. The only difference being allowed between the

lists of two users having the same role is the resources availability. The following

figure illustrates the structure of the solution.

Fig. 14. General structure of the solution for ad hoc view

Although all shared resources are visible, some of them are reachable (if they are

locally stored or they are replicable from a neighbor’s dataspace) and other ones are

unreachable (if neither the current mobile unit nor its neighbors have the resource).

In order to increase the availability of the shared resources, a user can ask for a

particular view which tries to replicate (in the local shared dataspace) the remote

resources which are currently visible but unavailable for him/her.

The ad-hoc view can also be considered as a class interacting with the role class

presented in the previous section. This class should provide methods to store and

delete an instance, to check if a view exists, and to refresh and reconcile a view.

Related Mobile Collaboration Requirements. Context-awareness and low

coordination effort.

4.2.9 Ad Hoc Context Management

Context. By context we mean the variables which can influence the behavior of

mobile applications; it includes computing devices internal resources (e.g. memory,

CPU speed or screen size) and external resources (e.g. bandwidth, quality of the

Resource

Shared
Repository

Role
Schema

Session
Role

h
a

s
 1

.*

has

Filter
Resources

Resources
View

h
a

s

has 1.*

h
a

s
 1

.*

19

network connection, and mobile hosts’ location and proximity). Both types of

variables are relevant to support coordination processes. However, the external

variables are more dynamic in mobile scenarios than the internal ones; therefore, it

is usually very challenging to sense, store and appropriately use the information

they contain. Mobile applications need to be aware of the context in which they are

being used to be able to adapt to heterogeneity of hosts and networks as well as

variations in the user’s environment. The management of this context information

can help to optimize application behavior, compensating the resource scarcity.

Problem. Contextual information is changing all the time while doing mobile

collaborative work. Mobile collaborative applications have to sense it, store it and

appropriately use it to dynamically adapt its behavior. Therefore, such information

has to be available all the time and it has to be as complete as possible. Usually

there are computing devices participating in the collaboration process which are not

able to sense some context variables; however, they are able to use this information

if another device provides it to them. The challenge here is to determine how to

combine the context sensing services embedded in the mobile devices, in order to

provide a shared knowledge about the current work context of each user. Thus,

devices with sensing capability will be also able to adapt the collaborative system

behavior, depending on the changes in the local work context.

Solution. The solution to this problem involves the creation of an ad hoc context

manager. This component has to be fully distributed and it must store, share, update

and monitor current status of the context. The context status is represented through

a shareable and reconcilable data structure (i.e. Mobile Node Context).

Fig. 15. General structure of the solution for ad hoc context management

Mobile collaborative applications will adapt their functionality based on that

information to cope with the changes in the work scenario (e.g., a mobile worker

gets isolated or networking support is not available anymore). For instance, if the

software designer wants to:

� Provide a service which is dependent on the place where the user is located,

then the context manager needs to implement a model of each place as a full-

fledged object, and assign a set of command objects with corresponding

services to that object.

� Adapt the application behavior according to different time intervals; then the

context manager must use condition/action rules to support the behavioral

adaptations.

� Extend existing software to add context-aware behaviors; then the context

manager must have a functionality which wraps the corresponding class with

an object, which delegates the request to the component implementing the

adaptation (e.g. a rule object or rule manager).

Environment Context Manager

Mobile Node
Context

Mobile User
uses

manages 1.*

has

20

� Ease the interoperability among mobile units involving heterogeneous

computing devices. This context manager can activate/deactivate groupware

services on demand depending on the availability of hardware resources into

the involved mobile units.

It must be noted the context manager has to be carefully engineered in order to

reduce the use of limited resources, such as battery, CPU, memory or network

bandwidth. A service-oriented approach can be useful to design and implement this

component, because it deals with the heterogeneity of computing devices and

resources shortage. Moreover, this approach involves a standard format for

services, which helps increase the interoperability of the mobile collaborative

solution.

Related Mobile Collaboration Requirements. Autonomy, interoperability,

context-awareness and use of hardware resources.

4.3 Patterns vs. Mobile Collaboration Requirements

Figure 16 presents a correspondence matrix relating the proposed patterns and the

requirements for mobile collaboration presented in section 2. This matrix allows

developers to select one or more design patterns in order to deal with a particular

requirement.

Fig. 16. Correspondence matrix

It is important to highlight the proposed fully distributed architecture provides

autonomy to mobile collaborative applications and it helps reduce the use of

hardware resources by accessing local resources. Moreover, the separation of

design concerns in several layers (i.e. cross layer pattern) provides flexibility and

scalability to the solutions. Next section shows how these proposed patterns were

used in particular mobile collaborative applications.

Autonomy

Context-Awareness

Use of hardware resources

Low coordination effort

Awareness of users’ reachability

C
ro

s
s
L
a
y
e
r

A
d
 H

o
c
 E

n
v
ir

o
n

m
e

n
t

A
d
 H

o
c
 C

o
lla

b
o

ra
ti
v
e

S
e
s
s
io

n

A
d
 H

o
c

S

h
a
re

d
 R

e
p

o
s
it
o
ry

R
e
p
lic

a
te

d
 R

e
s
o
u

rc
e
s

S

y
n
c
h

ro
n
iz

a
ti
o
n

R
e
p
lic

a
te

 R
e
s
o
u
rc

e
s

M
o
b
ile

 U
s
e
r

R
o
le

A
d
 H

o
c
 V

ie
w

 A

d
 H

o
c
 C

o
n
te

x
t

M
a
n

a
g

e
m

e
n

t

Interoperability

Requirements

P
a
tt

e
rn

s

21

5 Patterns Evaluation Process

Several researchers highlight the difficulty of evaluating software patterns

(Buschmann et al. 2007; Roberts and Johnson 1996; Schümmer and Lukosch

2007), and it seems to be a consensus that a proposed pattern needs to be used in

many applications in order to become a valid pattern. That process typically

involves many years; therefore any evaluation we can provide represents a

preliminary one.

The evaluation strategy presented in this section adheres to the process proposed

by Roberts and Johnson (Roberts and Johnson 1996). It involves developing and

evaluating three simple applications, for different contexts, which use the proposed

patterns. The results of such analysis will indicate if the proposal can be considered

a potential pattern.

Next three sections present the mobile collaborative applications used in the

current evaluation process. These sections also show how these patterns were

embedded in the application design, and the obtained results. These applications

were developed by graduate students as part of their MSc. theses. These students

did not participate in the patterns definition process; they voluntarily used the

patterns system as support for their applications design.

5.1 COIN (COnstruction INspector)

Contractors periodically deploy inspectors at a construction site to get an updated

state of the work. Depending on the project, the number of inspectors working

simultaneously, as part of a same team, can vary considerably. Figure 17 shows the

main user interface of COIN (COnstruction INspector), a mobile collaborative

application which supports the work of inspectors in construction projects (Ochoa

et al. 2008).

Fig. 17. COIN main user interface

The inspection process typically involves three phases: registration, validation and

reporting. Inspectors review various parts of the physical infrastructure and record

the project advances through annotations on digital blueprints they have available in

their tablet PCs. The inspectors meet to synchronize annotations and resolve

22

contradictory annotations after the reviewing process. Finally, the chief inspector

reports the results to the contractor.

5.1.1 COIN Design

Figure 18 shows part of the COIN design, which implements the coordination

mechanisms supporting the inspectors work. This application has a layered

architecture that adheres to the cross-layer pattern. The COIN Environment (that

adheres to the ad hoc environment pattern) provides a space to manage multiple

work sessions (e.g. multiple inspections). Just private work sessions (i.e. a type of

ad hoc session) are supported because the information used and recorded during an

inspection is private and it cannot be shared with persons external to the team.

Fig. 18. COIN Functionality to Support Collaboration

Each session has its own shared workspace (that adheres to the session dataspace

pattern), list of mobile users (that adheres to mobile user pattern) and awareness

mechanisms. Two users’ roles were defined (i.e. inspector and chief inspector) and

also two data replication mechanisms (i.e. file transfer and reconciliation through a

synchronization process). All these components adhere to the patterns defined in the

patterns system.

The engineer in charge of designing this application found the patterns are

intuitive and easy to use. Although he did not have experience designing

coordination services for collaborative systems, he feels the use of these patterns

helped him to find a sound design option. After this experience, the designer thinks

he is able to apply these patterns to various application scenarios.

5.1.2 COIN Design Evaluation

The coordination support embedded in COIN was evaluated and reported in (Ochoa

et al. 2008). The experimentation scenario considered two inspectors recording

contingency issues in a simulated construction project. The obtained results showed

the inspectors were able to perform the three steps involved in this process in a

comfortable way.

Unfortunately, this experiment just compared the inspection process using paper-

based blueprints with a process using COIN with digital blueprints. The obtained

results show the registration activity was a little bit favorable to the COIN usage;

however in the validation and reporting stages the difference was several orders of

magnitude faster when inspectors used the application. In addition, inspectors

preferred to use the tool instead of the paper-based blueprints because of the

simplicity to handle these resources. These persons found that COIN is appropriate

23

to support this mobile collaborative activity. Although the results are still

preliminary, they indicate the proposed patterns could be appropriate to support

coordination in construction inspection scenarios.

5.2 MobileMap

Firefighters attending common emergencies (e.g. a fire or car accident) must make

decisions when traveling to the emergency place and also during the emergency

response process. Making such decisions requires knowing information about the

emergency place, the contingency situation to address and the status of the response

process. MobileMap, a mobile collaborative application, allows firefighters to share

such information not only among them in the field, but also with the command

center (Monares et al. 2009). This application is routinely used on laptops, PDAs

and smartphones.

Typically each emergency has an incident commander in the field, who is in

charge of designing, executing and monitoring the emergency response process.

Furthermore, there are several other roles involved in the response, each one with

particular responsibilities. For example, communication officers that provide

communication support in the field, the rescuers in charge of looking for and

rescuing possible victims, or response personnel who is in charge of the emergency

mitigation process. All of them require making on-demand decisions in a

distributed way based on the available shared information (Fig. 19.a); however such

decisions must be coordinated in order to keep control of the emergency response

process.

The dynamics of the response process is unpredictable, because the decisions

and actions are made depending on the evolution of the emergency situation and the

possible damages to human life and civil infrastructure. Typically, coordinated

improvisation is the common denominator in these mitigation activities.

(a) (b) (c)

(

d)

Fig. 19. MobileMap Application

Figures 19.b to 19.d show the shared information firemen get with MobileMap.

Fig. 19.b presents a city map where it is possible to identify the emergency place

(identified with a cross), the fire trucks location, and the location of interest points,

such as hospitals or police departments near the emergency place. Fig. 19.c shows a

set of files (e.g. pictures of the current emergency or maps of the affected area) that

are shared among firemen in the field and also with firefighters that are going to the

emergency place. Finally, Fig.19.d shows the list of the last emergencies and

detailed information about them.

24

5.2.1 MobileMap Design

Figure 20 shows the architecture of MobileMap, which is layered and adheres to the

cross layer pattern. The components in grey adhere to the proposed coordination

patterns and components in white are just part of the application functionality,

which does not involve coordination mechanisms.

This application uses just a shared repository and a list of users who access the

public resources depending on their roles. The environment pattern is not

implemented because the work involves just a public work session. MobileMap

does not consider that a mobile user can be working in two parallel emergencies.

The mailbox component, which implements the session dataspace pattern,

includes only the shared repository (specified in Fig. 20 as “shared file”). These

resources are shared through on-demand file transfer operations (i.e. it uses the

replicate resources pattern), because all this shared information is considered as an

irreconcilable resource. Given the high mobility of firefighters, this consideration

increases the robustness of the resource sharing process.

Fig. 20. MobileMap Architecture

The component information manager is in charge of providing access to the

shared resources, depending on the grants (i.e. role) of the user requesting such

information. This component implements the ad hoc view pattern. Users manager

implements the session pattern; therefore it keeps the record of mobile users (with

roles) connected to the session. This is managed as a public-subscribe session. The

public type of the session eases access by firemen who may belong to various fire

companies.

 Finally, users and roles components adhere to the mobile user and role patterns

respectively. The functionality implemented in these components is similar to the

previous collaborative application (i.e., COIN).

The engineer in charge of designing MobileMap had experience developing

mobile collaborative applications and also using design patterns for distributed

systems. In the design of this application, the engineer used those design solutions

he found more appropriate to support such mobile activity. It is interesting to see in

25

Fig. 20 that the coordination components adhere to the proposed patterns. However,

even more interesting is to observe that some of these components (e.g. information

and users managers) implement variants to the proposed patterns. This means that

(1) the designer was able to understand the whole meaning of the used patterns, and

(2) these patterns can be adapted to deal with variants of the stated problem. This

designer thinks the use of the proposed patterns helped him to reduce the design

effort and also to find specific coordination solutions to embed in the application.

5.2.2 MobileMap Design Evaluation

This application, and therefore the design embedded in it, has been evaluated

through two mechanisms (1) focus groups with firefighters who make decisions

during emergencies, and (2) the empirical use of the application in real

emergencies. Three focus groups have been done with firemen from several

companies; each focus group involved 5-7 persons. Most of them act periodically as

incident commanders.

The main functionality of MobileMap was explained in the focus groups.

Thereafter they were able to use the application to make decisions on a hypothetical

response process. All participants were able to enter and leave the public session

and also share information. They felt comfortable using the tool and estimated that

the information provided by MobileMap can help reduce up to 50% the use of radio

channels during emergencies. Therefore it will contribute to deal with a limitation

currently present in most fire companies around the world. Moreover, the

availability of the supporting information should reduce the time required to make a

decision and increase its quality.

The Nunoa command center and the 2nd Fire Company (both from Santiago,

Chile) were the users of the tool. The tool has been used in five typical urban

emergencies, in parallel with the focus groups. Partial results have been presented

in Monares et al. (2009). These results are similar to those envisioned by firemen

during focus groups: (1) they were able to use the application in the field, (2) the

supporting information helps to make fast (and perhaps better) decisions, (3) the

number of radio messages was reduced between 40-50% when compared with

historical values. Besides, the experimentation process showed the application helps

fire truck drivers to reduce mistakes concerning the selection of the route towards

the emergency, and also to arrive faster to the emergency place. These preliminary

results indicate the patterns embedded in MobileMap help to coordinate firemen

during urban emergencies.

5.3 MOCET

MOCET (Mobile Collaborative Examining Technique) is a mobile educational

collaborative application running on Tablet PCs. Its purpose is to help students

carry out a particular examining process (Fig. 21.a). The process has two stages: the

exam and the self-grading. These stages are carried out in two consecutive sessions.

The dynamics of the exam is similar to a traditional one; however the process

now involves the use of technology. Typically the students retrieve the exam

statement from the instructor’s computer, carry out the answering process and

submit the answers (i.e. a digital document as shown in Fig. 19.b) to the instructor

through a file transfer operation.

26

(a)

(b)

Fig. 21. MOCET Application

The students collectively discuss each item of the exam in order to build the right

answers in the next session. The instructor moderates the session. The students can

have two types of interventions during the discussion: (1) to provide a proposed

answer with the corresponding justification and (2) to provide a position (with

justification) related to the answer proposed by another student. After reviewing

each exam item, the students have to correct that item in their own exam. The

correction assigns a score to the answer and justifies the assigned score. After such

process, the instructor (or teaching assistant) reviews and grades the exam. Students

who assigned a correct score and justification (i.e. the student’s review is similar to

the instructor’s review), get extra points for the exam final score, since they

understood which were the right answers to the exam item.

5.3.1 MOCET Design

Figure 22 shows part of the MOCET architectural design. The MOCET

environment implements the ad hoc environment pattern. It was included in the tool

because the instructor could have two or more different groups doing different tests

in the same room. In that case, each group has its own session (i.e., examination)

which adheres to the ad hoc collaborative session patterns. During the exam (first

stage of the process), the application implements a private-subscribe session

between each student and the instructor. Thus, the students are able to interact with

the instructor (e.g. to retrieve and submit the exam), but do not with other students.

During the self-grading process they also use private-subscribe session in order to

avoid any attempt of illegal copy.

All sessions share a unique exam workspace that adheres to the session

dataspace pattern; however the dataspace implemented in MOCET is cross-

sessions. It means all users are able to access it depending on their roles, but these

users are not able to see each other unless they belong to the same private session.

27

Fig. 22. MOCET Architecture

The shared resources component adheres to replicate resource pattern because

the shared resources are irreconcilable. The participants’ component implements the

mobile user pattern. These participants could have one of two roles: instructor or

student. The access to shared resources (i.e. exam statement and answer) depends

on the users’ role. The Ad hoc view component, which adheres to the pattern with

the same name, is in charge of this access control process.

Similar to the COIN project, the engineer in charge of designing MOCET was

not experienced in modeling mobile collaborative applications. However he was

able to create an interesting design of the coordination services. This person

indicates the patterns system helps him to avoid thinking a solution outside his

expertise area. Provided the patterns were easy to understand, he just reused them.

He thinks it helped reduce the effort, complexity and risks of the design activity.

After using this application in a real scenario, the coordination patterns resulted to

be also a good solution.

5.3.2 MOCET Design Evaluation

MOCET has been used to support exams in software engineering courses at the

University of Chile (Ochoa et al. 2009). More than ten experiences have been

performed in such scenario. Each experience consisted of students answering the

exam using Tablet PCs and also students using paper and pencil for the same

purpose. The obtained results show both MOCET was able to support the process

and also the students preferred to answer using the tool instead of paper and pencil.

It indicates the tool not only is easy to use, but also it embeds appropriate

mechanisms to coordinate the process performed by students and the instructor.

Instructors participating in the process shared the students’ view.

All coordination mechanisms encapsulated in the answering process worked

appropriately. Probably, these results are also showing the proposed coordination

patterns are appropriate to support nomadic work with micro-mobility.

28

6 Conclusions and Further Work

Mobile collaboration has brought the opportunity to support work activities in

scenarios where workers have to be on the move to carry out a task. Several

researchers have envisioned a positive impact on productivity and quality of work

when users follow a mobile collaboration strategy (Andriessen and Vartiainen

2006; Hislop 2008; Schaffers et al. 2006). However, the features of these

collaborative activities bring new challenges to collaborative system designers.

Requirements, such as user autonomy, low coordination effort and high availability

of shared resources, impose several constraints on the communication and

coordination services required to support mobile collaboration. For example, no

centralized components can be used because the users’ mobility can make these

resources inaccessible.

This paper presented a patterns system to support the design of coordination

services required by mobile collaborative applications. These patterns have been

used to deal with the stated requirements in several mobile collaborative systems.

Particularly, section 5 showed how these patterns were used to provide coordination

services for three applications: COIN, MobileMap and MOCET. These applications

were developed by graduate computer science students as part of their MSc. theses.

All of them were able to use the patterns to support the design of these applications.

It indicates these abstract designs were specified in a way that can be reused by

other people. Typically, this type of reuse reduces the design risks, cost and time.

The experimental use of the applications embedding the proposed coordination

mechanisms is showing these patterns are at least suitable to support coordination in

such work scenarios. These patterns also serve as educational and communicative

media for developers, students or researchers on how to design coordination

mechanisms for mobile collaborative applications. They also foster the reuse of

proven solutions.

These patterns will be extended to consider additional variants of them. One

extension strategy considers the inclusion of new mechanisms to support the

coordination process in mobile work scenarios. The second strategy involves the

patterns extension to provide lightweight coordination mechanisms which can be

used by mobile devices with low computing power, e.g., cellular phones.

Acknowledgements

This work was partially supported by Fondecyt (Chile), grants Nº: 11060467,

1080352 and 11090224, VRAID-PUC No. 19/2009 and by LACCIR grant No.

R0308LAC004.

References

Alarcon, R., Guerrero, L.A., Ochoa, S.F., Pino, J.A.: Analysis and Design of Mobile

Collaborative Applications using Contextual Elements. Computing and Informatics 25

(6), 469--496 (2006)

Andriessen, J.H.E., Vartiainen, M.: Mobile virtual work: A new paradigm? Springer, Berlin

Heidelberg, Germany (2006)

Arvola, M.: Interaction Design Patterns for Computers in Sociable Use. International Journal

of Computer Applications in Technology 25(2/3), 28--139 (2006)

29

Avgeriou P., Zdun, U.: Architectural Patterns Revisited - A Pattern Language. 10th European

Conference on Pattern Languages of Programs, 1--39. UKV Konstanz, Germany (2005)

Avgeriou, P., Tandler, P.: Architectural Patterns for Collaborative Applications. International

Journal of Computer Applications in Technology 25 (2/3), 86--101 (2006)

Buschmann, F., Henney, K., Schmidt, D. C.: Pattern-Oriented Software Architecture. A

Pattern Language for Distributed Computing, vol. 4, John Wiley & Sons, (2007)

BNet.: IDC Predicts the Number of Worldwide Mobile Workers to Reach 1 Billion by 2011.

URL: http://findarticles.com/p/articles/mi_m0EIN/is_2008_Jan_15/ai_n24230213.

January (2008)

Castro, L.A., Favela J. Reducing the Uncertainty on Location Estimation of Mobile Users to

Support Hospital Work. IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Reviews 38 (6), 861-866 (2008)

Churchill, E.F., Wakeford, N.: Framing mobile collaboration and mobile technologies. In

Brown, B., Green, N., Harper, R. (Eds.): Wireless world: social and interactional

implications of wireless technology, 154--179 Springer-Verlag, New York, (2001)

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord R., Stafford, J.:

Documenting Software Architectures: Views and Beyond. Addison-Wesley, (2003)

de Vreede, G.J., Briggs, R.O.: ThinkLets: Five Examples of Creating Patterns of Group

Interaction. In: Ackermann, F., Vreede, G.J.d. (eds.): Group Decision and Negotiation,

La Rochelle, France. 199--208, (2001)

Dutta, S., Mia, I. (eds.): The Global Information Technology Report 2008–2009: Mobility in

a Networked World. World Economic Forum & INSEAD (2009)

Ellis C.A., Gibbs S., Rein G.L.: Groupware: some issues and experiences. Communications

of the ACM 43 (1), 38--58 (1991)

Essmann, B. and Hampel, T.: A design pattern for mobile-distributed knowledge spaces.

Proc. of the 2005 Symposia on Metainformatics, Esbjerg, Denmark (2005)

Farshchian, B.: Presence Technologies for Informal Collaboration. In G. Riva, F. Davide,

W.A IJsselsteijn (Eds.): Being there: concepts, effects and measurement of user

presence in synthetic environments, IOS Press, Amsterdam, The Netherlands (2003)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable

object-oriented software, Addison-Wesley Longman Publishing, MA, USA, (1995)

Guerrero, L.A., Fuller, D.: A Pattern System for the Development of Collaborative

Applications. Journal of Information and Software Technology 43 (7), 457--467 (2001)

Herrmann, T., Hoffmann, M., Jahnke, I., Kiele, A., Kunau, G., Loser, K., Menold, N.:

Concepts for Usable Patterns of Groupware Applications. Int. ACM SIGGROUP Conf.

on Supporting Group Work. ACM Press. Florida, USA. 349-358 (2003)

Herskovic, V., Mejia, D., Favela, J., Moran, A., Ochoa, S.F., Pino, J.A.: Increasing

opportunities for interaction in time-critical mobile collaborative settings. In: Carrico,

L., Baloian, N., Fonseca, B. (eds.): CRIWG 2009. LNCS, vol. 5784, 41—48 (2009)

Hislop, D.: Mobility and Technology in the Workplace. Routledge, Oxon, England, (2008)

Jørstad, I., Dustdar, S. Van Thanh, D.: Service Oriented Architecture Framework for

collaborative services. Proc. of the 14th IEEE Int. Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprise, 121--125. IEEE Press, New

York (2005)

Kristoffersen, S., Ljungberg, F.: Mobility: From Stationary to Mobile Work. In: Braa, K.,

Sorensen C., Dahlbom, B. (eds.), 137--156. Planet Internet, Lund, Sweden:

Studentlitteratur (2000)

Licea, G.: Supporting reusability in fixed and mobile groupware applications. International

Journal of Computers and Applications 28 (2), 99-111, (2006)

Luff, P., Heath, C.: Mobility in collaboration. In: ACM Conference on Computer-Supported

Cooperative Work, 305--314. ACM Press, New York (1998)

Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W.: XMIDDLE: A Data-Sharing

Middleware for Mobile Computing. Journal on Personal and Wireless Communications

21 (1), 77--103 (2002)

30

Messeguer, R., Ochoa, S.F., Pino, J.A., Navarro, L., Neyem, A.: Communication and

Coordination Patterns to Support Mobile Collaboration. In: 12th Int. Conf. on Computer

Supported Cooperative Work in Design, 565--570. IEEE CS Press, New York (2008)

Milrad, M., Spikol, D.: Anytime, anywhere learning supported by smartphones: experiences

and results from the MUSIS project. Educational Technology & Society 10(4), 62—70

(2007)

Molina, A.I., Giraldo, W.J., Jurado, F., Redondo, M.A., Ortega, M.: Model-Based Evolution

of an E-Learning Environment Based on Desktop Computer to Mobile Computing. Proc.

of the Int. Conf. on Computational Science and its Applications. LNCS 5073, 322 – 334

(2008)

Monares, A. Ochoa, S. F., Pino, J. A., Herskovic, V., Neyem, A.: MobileMap: A

Collaborative Application to Support Emergency Situations in Urban Areas. Proc. of the

13th Int. Conf. on Computer Supported Cooperative Work in Design (CSCWD'09),

IEEE Press, Los Alamitos, CA, USA, 565--570. Santiago, Chile, April (2009)

Moran, T.: Shared Environments to Support Face-to-Face Collaboration. ACM CSCW 2000:

Workshop on Shared Environments to Support Face-to-Face Collaboration.

Philadelphia, Pennsylvania, USA, December (2000)

Neyem, A., Ochoa, S.F., Pino, J.A.: Designing Mobile Shared Workspaces for Loosely

Coupled Workgroups. In: Haake, J.M., Ochoa, S.F., Cechich, A. (eds.) CRIWG 2007.

LNCS, vol. 4715173—190 (2007)

Neyem, A., Ochoa, S.F., Pino, J.A.: Integrating Service-Oriented Mobile Units to Support

Collaboration in Ad-hoc Scenarios. Journal of Universal Computer Science, 14(1), 88--

122 (2008)

Nunamaker, J.F., Reinig, B.A., Briggs, R.O.: Principles for Effective Virtual Teamwork.

Communications of the ACM 52(4), 113-117 (2009)

Ochoa, S.F., Pino, J.A., Bravo, G., Dujovne, N., Neyem, A.: Mobile Shared Workspaces to

support construction inspection activities. In (Eds.) P. Zarate, J.P. Belaud, G. Camilieri,

F. Ravat: Collaborative Decision Making: Perspectives and Challenges. IOS Press,

Amsterdam, The Netherlands, 270--280, (2008)

Ochoa, S.F., Collazos, C. Bravo, G. Neyem, A. Guerrero, L.A. Ormeño, E.: A computational

tool for supporting the evaluation as a mechanism to improve learning. Accepted in the

9th IFIP World Conference on Computers in Education (WCCE 2009), Brazil, July,

(2009)

Pinelle, D., and Gutwin, C.: A Groupware Design Framework for Loosely Coupled

Workgroups. In: 9th European Conference on Computer-Supported Cooperative Work,

65--82. Springer-Verlag, Netherlands (2005)

Pinelle, D., and Gutwin, C.: Loose coupling and healthcare organizations: adoption issues for

groupware deployments. Computer Supported Cooperative Work 15(5-6), 537--572

(2006)

Rettie, R.M.: Presence and Embodiment in Mobile Phone Communication. Psychnology

Journal, 3(1), 16--34 (2005)

Roberts, D., Johnson, R.: Evolve Frameworks into Domain-Specific Languages. Proc. of the

3th Patterns Languages of Programming Conf. (PLoP), Illinois, USA, Sept. 4-6, (1996)

Schaffers, H., Brodt, T., Pallot, M., Prinz, W.: The Future Workplace - Perspectives on

Mobile and Collaborative Working. Telematica Instituut, The Netherlands (2006)

Schümmer, T. and Lukosch, S.: Patterns for Computer-Mediated Interaction. J. Wiley &

Sons, West Sussex, England, (2007)

Tan, D., Poupyrev, I., Billinghurst, M., Kato, H., Regenbrecht, H., Tetsuani, N.: The Best of

Two Worlds: Merging Virtual and Real for Face-to-Face Collaboration. ACM CSCW

2000: Workshop on Shared Environments to Support Face-to-Face Collaboration.

Philadelphia, USA, Dec. (2000)

Tarasewich, P.: Designing Mobile Commerce Applications. Communications of the ACM

46(12), 57--60 (2003)

Tentori, M., Favela, J.: Collaboration and Coordination in Hospital Work through Activity-

Aware Computing. Int. J. on Cooperative Information Systems 17(4), 413--442, (2008)

31

Wiberg, M., Ljungberg, F.: Exploring the vision of anytime, anywhere in the context of

mobile work. In: Malhotra, Y. (ed.), Knowledge Management and Virtual

Organizations, 157--169. Idea Group Publishing (2001)

Zurita, G., Antunes, P., Baloian, N., Carriço, L., Baytelman, F., de Sá, M.: Using PDAs in

Meetings: Patterns, Architecture and Components. Journal of Universal Computer

Science 14(1): 123--147 (2008)

