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1 Department of Computer Science, Pontificia Universidad Católica de Chile
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Abstract SPARQL is now widely used as the standard query language for RDF.

Since the release of its first version in 2008, the W3C group in charge of the

standard has been working on extensions of the language to be included in the

new version, SPARQL 1.1. These extensions include several interesting and very

useful features for querying RDF.

In this paper, we survey two key features of SPARQL 1.1: Federation and navi-

gation capabilities. We first introduce the SPARQL standard presenting its syntax

and formal semantics. We then focus on the formalization of federation and nav-

igation in SPARQL 1.1. We analyze some classical theoretical problems such

as expressiveness and complexity, and discuss algorithmic properties. Moreover,

we present some important recently discovered issues regarding the normative

semantics of federation and navigation in SPARQL 1.1, specifically, on the im-

possibility of answering some unbounded federated queries and the high com-

putational complexity of the evaluation problem for queries including navigation

functionalities. Finally, we discuss on possible alternatives to overcome these is-

sues and their implications on the adoption of the standard.

1 Introduction

Jointly with the RDF release in 1998 as a W3C Recommendation, the natural problem

of querying RDF data was raised. Since then, several designs and implementations of

RDF query languages have been proposed. In 2004, the RDF Data Access Working

Group, part of the W3C Semantic Web Activity, released a first public working draft

of a query language for RDF, called SPARQL. Since then, SPARQL has been rapidly

adopted as the standard for querying Semantic Web data. In January 2008, SPARQL

became a W3C Recommendation [28]. But this recommendation is not the last step

towards the definition of the right language for querying RDF, and the W3C groups

involved in the design of the language are currently working on the new version of

the standard, the upcoming SPARQL 1.1 [16]. This new version will include several

interesting and useful features for querying RDF.

Among the multiple design issues to be considered, there are two important prob-

lems that have been in the focus of attention: Federation and Navigation. Since the

release of the first version of SPARQL, the Web has witnessed a constant growth in the

amount of RDF data publicly available on-line. Several of these RDF repositories also

provide SPARQL interfaces to directly querying their data, which has led the W3C to

standardize a set of protocols plus some language constructs to access RDF repositories



by means of what are called SPARQL endpoints. All these constructs are part of the

federation extensions of SPARQL [27], planned to be included in the new version of

the standard [16]. Somewhat orthogonally, we have the issue of navigating data. It has

been largely recognized that navigational capabilities are of fundamental importance

for data models with explicit tree or graph structure, like XML and RDF. Nevertheless,

the first release of SPARQL included very limited navigational capabilities. This is one

of the motivations of the W3C to include the property-path feature in the upcoming ver-

sion of the SPARQL standard. Property paths are essentially regular expressions, that

retrieve pairs of nodes from an RDF graph that are connected by paths conforming to

those expressions, and provide a very powerful formalism to query RDF data.

In this paper, intended to be a companion for a short course during the 8th Reasoning

Web Summer School, we survey some recent developments regarding federation and

navigation in SPARQL 1.1. We first present an introduction to the SPARQL standard

presenting its syntax and formal semantics. We then focus on the formalization of the

federation and navigation features. We analyze classical theoretical problems such as

expressiveness and complexity, and discuss some algorithmic properties.

The formalization of the SPARQL language presented in this paper is based on the

official SPARQL 1.1 specification published on January 2012 [16].3 In this paper, we

present some important recently discovered issues regarding this normative semantics,

specifically, on the impossibility of answering some unbounded federated queries [7,8]

and the high computational complexity of the evaluation problem for queries including

navigation functionalities [5,19]. It should be noticed that the semantics of SPARQL

1.1 is currently under discussion, and the standardization group is still receiving input

from the community. Hence, some of the issues surveyed in this paper will probably be

revisited in the final version of the standard, thus, we also discuss on possible alterna-

tives (some of them currently under discussion) and their implications on the adoption

of the standard.

The rest of paper is organized as follows. In Section 2, we introduce the query lan-

guage SPARQL, and we formalize its syntax and semantics including the SPARQL

1.1 federation extension. In Section 3, we study some boundedness issues associated

to this federation extension, and, in particular, we introduce the notions of service-

boundedness and service-safeness. In Section 4, we formalize the navigation function-

alities of SPARQL 1.1. In Section 5, we present some results on the complexity of

evaluating these expressions, and we also present some alternatives to deal with the

high complexity of the evaluation problem. Finally, we give some concluding remarks

in Section 6.
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2 The query language SPARQL

In this section, we give an algebraic formalization of SPARQL including the SPARQL

1.1 federation extension. For now, we do not consider other features of SPARQL 1.1

such as property paths [16], but we introduce them later in Section 4. We also consider

a set semantics for SPARQL, and extend it to a bag semantics in Section 4.

We restrict ourselves to SPARQL over simple RDF, that is, we disregard higher

entailment regimes (see [14]) such as RDFS or OWL. Our starting point is the existing

formalization of SPARQL described in [23], to which we add the operators SERVICE
and BINDINGS proposed in [27].4

We introduce first the necessary notions about RDF. Assume there are pairwise

disjoint infinite sets I , B, and L (IRIs [12], Blank nodes, and Literals, respectively).

Then a triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple, where s
is called the subject, p the predicate and o the object. An RDF graph is a set of RDF

triples. Moreover, assume the existence of an infinite set V of variables disjoint from

the above sets, and leave UNBOUND to be a reserved symbol that does not belong to

any of the previously mentioned sets.

2.1 Syntax

The official syntax of SPARQL [26] considers operatorsOPTIONAL,UNION,FILTER,

GRAPH, SELECT and concatenation via a point symbol (.), to construct graph pattern

expressions. Operators SERVICE and BINDINGS are introduced in the SPARQL 1.1

federation extension, the former for allowing users to direct a portion of a query to a par-

ticular SPARQL endpoint, and the latter for transferring results that are used to constrain

a query. The syntax of the language also considers { } to group patterns, and some im-

plicit rules of precedence and association. In order to avoid ambiguities in the parsing,

we follow the approach proposed in [23], and we first present the syntax of SPARQL

graph patterns in a more traditional algebraic formalism, using operators AND (.),

UNION (UNION), OPT (OPTIONAL), FILTER (FILTER), GRAPH (GRAPH) and

SERVICE (SERVICE), then we introduce the syntax of BINDINGS queries, which

use the BINDINGS operator (BINDINGS), and we conclude by defining the syntax

of SELECT queries, which use the SELECT operator (SELECT). More precisely, a

SPARQL graph pattern expression is defined recursively as follows:

(1) A tuple from (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ) is a graph pattern (a triple

pattern).

(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),
and (P1 UNION P2) are graph patterns.

(3) If P is a graph pattern and R is a SPARQL built-in condition, then the expression

(P FILTER R) is a graph pattern.

(4) If P is a graph pattern and a ∈ (I ∪ V ), then (GRAPH a P ) is a graph pattern.

(5) If P is a graph pattern and a ∈ (I ∪ V ), then (SERVICE a P ) is a graph pattern.

4 It is important to notice that SPARQL 1.1 is still under development, and BINDINGS will

likely be renamed to VALUES in future specifications.



As we will see below, despite the similarity between the syntaxes of GRAPH and

SERVICE operators, they behave semantically quite differently.

For the exposition of this paper, we leave out further more complex graph patterns

from SPARQL 1.1 including aggregates, and subselects (property paths will be for-

malized in Section 4), but only mention one additional feature which is particularly

relevant for federated queries, namely, BINDINGS queries. A SPARQL BINDINGS

query is defined as follows:

(6) If P is a graph pattern, W ∈ V n is a nonempty sequence of pairwise distinct

variables of length n > 0 and {A1, . . . ,Ak} is a nonempty set of sequences

Ai ∈ (I ∪ L ∪ {UNBOUND})n, then (P BINDINGS W {A1, . . . ,Ak}) is

a BINDINGS query.

Finally, a SPARQL SELECT query is defined as:

(7) If P is either a graph pattern or a BINDINGS query, and W is a set of variables,

then (SELECT W P ) is a SELECT query.

It is important to notice that the rules (1)–(4) above were introduced in [23], while

rules (5)–(7) were introduced in [7,8] to formalize the federation extension of SPARQL

proposed in [27].

We used the notion of built-in conditions for the FILTER operator above. A

SPARQL built-in condition is constructed using elements of the set (I ∪ L ∪ V ) and

constants, logical connectives (¬, ∧, ∨), the binary equality predicate (=) as well as

unary predicates like bound, isBlank, isIRI, and isLiteral.5 That is: (1) if ?X, ?Y ∈ V
and c ∈ (I ∪ L), then bound(?X), isBlank(?X), isIRI(?X), isLiteral(?X), ?X = c
and ?X =?Y are built-in conditions, and (2) if R1 and R2 are built-in conditions, then

(¬R1), (R1 ∨R2) and (R1 ∧R2) are built-in conditions.

Let P be either a graph pattern or a BINDINGS query or a SELECT query. In what

follows, we use var(P ) to denote the set of variables occurring in P . In particular, if t
is a triple pattern, then var(t) denotes the set of variables occurring in the components

of t. Similarly, for a built-in condition R, we use var(R) to denote the set of variables

occurring in R.

2.2 Semantics

To define the semantics of SPARQL queries, we need to introduce some extra termi-

nology from [23]. A mapping µ from V to (I ∪ B ∪ L) is a partial function µ : V →
(I ∪ B ∪ L). Abusing notation, for a triple pattern t, we denote by µ(t) the pattern

obtained by replacing the variables in t according to µ. The domain of µ, denoted by

dom(µ), is the subset of V where µ is defined. We sometimes write down concrete

mappings in square brackets, for instance, µ = [?X → a, ?Y → b] is the mapping with

dom(µ) = {?X, ?Y } such that, µ(?X) = a and µ(?Y ) = b. Two mappings µ1 and

µ2 are compatible, denoted by µ1 ∼ µ2, when for all ?X ∈ dom(µ1) ∩ dom(µ2), it is

5 For simplicity, we omit here other features such as comparison operators (‘<’, ‘>’,‘≤’,‘≥’),

data type conversion and string functions, see [26, Section 11.3] for details. It should be noted

that the results of the paper can be easily extended to the other built-in predicates in SPARQL



the case that µ1(?X) = µ2(?X), i.e. when µ1 ∪ µ2 is also a mapping. Intuitively, µ1

and µ2 are compatible if µ1 can be extended with µ2 to obtain a new mapping, and vice

versa [23]. We will use the symbol µ∅ to represent the mapping with empty domain

(which is compatible with any other mapping).

Let Ω1 and Ω2 be sets of mappings. Then the join of, the union of, the difference

between and the left outer-join between Ω1 and Ω2 are defined as follows [23]:

Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1,

µ2 ∈ Ω2 and µ1 ∼ µ2},

Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 rΩ2 = {µ ∈ Ω1 | ∀µ′ ∈ Ω2 : µ 6∼ µ′},

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 rΩ2).

Next we use these operators to give semantics to graph pattern expressions, BINDINGS

queries and SELECT queries. More specifically, we define this semantics in terms of an

evaluation function J · KG, which takes as input any of these types of queries and returns

a set of mappings, depending on the active dataset DS and the active graph G within

DS.

Here, we use the notion of a dataset from SPARQL, i.e. a dataset

DS = {(def , G), (g1, G1), . . . , (gk, Gk)},

with k ≥ 0 is a set of pairs of symbols and graphs associated with those symbols,

where the default graph G is identified by the special symbol def 6∈ I and the re-

maining so-called “named” graphs (Gi) are identified by IRIs (gi ∈ I). Without loss

of generality (there are other ways to define the dataset such as via explicit FROM
and FROM NAMED clauses), we assume that any query is evaluated over a fixed

dataset DS and that any SPARQL endpoint that is identified by an IRI c ∈ I evaluates

its queries against its own dataset DSc = {(def , Gc), (gc,1, Gc,1), . . . , (gc,kc
, Gc,kc

)}.

That is, we assume given a partial function ep from the set I of IRIs such that for

every c ∈ I , if ep(c) is defined, then ep(c) = DSc is the dataset associated with

the endpoint accessible via IRI c. Moreover, we assume (i) a function graph(g,DS)
which – given a dataset DS = {(def , G), (g1, G1), . . . , (gk, Gk)} and a graph name

g ∈ {def , g1, . . . , gk} – returns the graph corresponding to symbol g within DS, and

(ii) a function names(DS) which given a dataset DS as before returns the set of names

{g1, . . . , gk}.

The evaluation of a graph pattern P over a dataset DS with active graph G, denoted

by JP KG, is defined recursively as follows:

(1) If P is a triple pattern t, then JP KG = {µ | dom(µ) = var(t) and µ(t) ∈ G}.

(2) If P is (P1 AND P2), then JP KG = JP1KG ⋊⋉ JP2KG.

(3) If P is (P1 OPT P2), then JP KG = JP1KG JP2KG.

(4) If P is (P1 UNION P2), then JP KG = JP1KG ∪ JP2KG.



(5) If P is (GRAPH c P1) with c ∈ I ∪ V , then

JP KG =































JP1K
DS
graph(c,DS) if c ∈ names(DS)

{µ∅} if c ∈ I \ names(DS)
{

µ ∪ µc | ∃g ∈ names(DS) :

µc = [c → g],

µ ∈ JP1K
DS
graph(g,DS) and µc ∼ µ

}

if c ∈ V

(6) If P is (SERVICE c P1) with c ∈ I ∪ V , then

JP KG =































JP1K
ep(c)
graph(def ,ep(c)) if c ∈ dom(ep)

{µ∅} if c ∈ I \ dom(ep)
{

µ ∪ µc | ∃s ∈ dom(ep) :

µc = [c → s],

µ ∈ JP1K
ep(s)
graph(def ,ep(s)) and µc ∼ µ

}

if c ∈ V

(7) If P is (P1 FILTER R), then JP KG = {µ ∈ JP1KG | µ |= R}.

In the previous definition, the semantics of the FILTER operator is based on the

definition of the notion of satisfaction of a built-in condition by a mapping. More pre-

cisely, given a mapping µ and a built-in condition R, we say that µ satisfies R, denoted

by µ |= R, if: 6

- R is bound(?X) and ?X ∈ dom(µ);
- R is isBlank(?X), ?X ∈ dom(µ) and µ(?X) ∈ B;

- R is isIRI(?X), ?X ∈ dom(µ) and µ(?X) ∈ I;

- R is isLiteral(?X), ?X ∈ dom(µ) and µ(?X) ∈ L;

- R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;
- R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y );
- R is (¬R1), and it is not the case that µ |= R1;

- R is (R1 ∨R2), and µ |= R1 or µ |= R2;

- R is (R1 ∧R2), µ |= R1 and µ |= R2.

Moreover, the semantics of BINDINGS queries is defined as follows. Given a sequence

W = [?X1, . . . , ?Xn] of pairwise distinct variables, where n ≥ 1, and a sequence

A = [a1, . . . , an] of values from (I ∪ L ∪ {UNBOUND}), let µW 7→A be a mapping

with domain {?Xi | i ∈ {1, . . . , n} and ai ∈ (I∪L)} and such that µW 7→A(?Xi) = ai
for every ?Xi ∈ dom(µW 7→A). Then

(8) If P = (P1 BINDINGS W {A1, . . . ,Ak}) is a BINDINGS query:

JP KG = JP1KG ⋊⋉ {µW 7→A1
, . . . , µW 7→Ak

}.

6 For the sake of presentation, we use here the two-valued semantics for built-in conditions from

[23], instead of the three-valued semantics including errors used in [26]. It should be noticed

that the results of the paper can be easily extended to this three-valued semantics.



Finally, the semantics of SELECT queries is defined as follows. Given a mapping µ :
V → (I ∪B ∪ L) and a set of variables W ⊆ V , the restriction of µ to W , denoted by

µ|W , is a mapping such that dom(µ|W ) = (dom(µ) ∩W ) and µ|W (?X) = µ(?X) for

every ?X ∈ (dom(µ) ∩W ). Then

(9) If P = (SELECT W P1) is a SELECT query, then:

JP KG = {µ|W | µ ∈ JP1KG}.

It is important to notice that the rules (1)–(5), (7) and (9) were introduced in [23], while

rules (6) and (8) were proposed in [7,8] to formalize the semantics for the operators

SERVICE and BINDINGS introduced in [27]. Intuitively, if c ∈ I is the IRI of a

SPARQL endpoint, then the idea behind the definition of (SERVICE c P1) is to eval-

uate query P1 in the SPARQL endpoint specified by c. On the other hand, if c ∈ I is

not the IRI of a SPARQL endpoint, then (SERVICE c P1) leaves all the variables in

P1 unbound, as this query cannot be evaluated in this case. This idea is formalized by

making µ∅ the only mapping in the evaluation of (SERVICE c P1) if c 6∈ dom(ep). In

the same way, (SERVICE ?X P1) is defined by considering that variable ?X is used to

store IRIs of SPARQL endpoints. That is, (SERVICE ?X P1) is defined by assigning

to ?X all the values s in the domain of function ep (in this way, ?X is also used to store

the IRIs from where the values of the variables in P1 are coming from). Finally, the idea

behind the definition of (P1 BINDINGS W {A1, . . . ,Ak}) is to constrain the values

of the variables in W to the values specified in A1, . . ., Ak.

The goal of the rules (6) and (8) is to define in an unambiguous way what the re-

sult of evaluating an expression containing the operators SERVICE and BINDINGS
should be. As such, these rules should not be considered as a straightforward basis for

an implementation of the language. In fact, a direct implementation of the rule (6),

that defines the semantics of a pattern of the form (SERVICE ?X P1), would involve

evaluating a particular query in every possible SPARQL endpoint, which is obviously

infeasible in practice. In the next section, we face this issue and, in particular, we intro-

duce a syntactic condition on SPARQL queries that ensures that a pattern of the form

(SERVICE ?X P1) can be evaluated by only considering a finite set of SPARQL end-

points, whose IRIs are actually taken from the RDF graph where the query is being

evaluated.

3 Federation

As we pointed out in the previous section, the evaluation of a pattern of the form

(SERVICE ?X P ) is infeasible unless the variable ?X is bound to a finite set of

IRIs. This notion of boundedness is one of the most significant and unclear concepts

in the SPARQL federation extension. In fact, since agreement on such a bounded-

ness notion could not yet be found, the current version of the specification of this

extension [27] does not specify a formalization of the semantics of queries of the

form (SERVICE ?X P ). Here, we present the formalization of this concept proposed

in [7,8], and we study the complexity issues associated with it.



3.1 The notion of boundedness

Assume that G is an RDF graph that uses triples of the form (a, service address, b) to

indicate that a SPARQL endpoint with name a is located at the IRI b. Moreover, let P
be the following SPARQL query:

(

SELECT {?X, ?N, ?E}

(

(?X, service address, ?Y ) AND (SERVICE ?Y (?N, email, ?E))

))

.

Query P is used to compute the list of names and email addresses that can be retrieved

from the SPARQL endpoints stored in an RDF graph. In fact, if µ ∈ JP KG, then µ(?X)
is the name of a SPARQL endpoint stored in G, µ(?N) is the name of a person stored

in that SPARQL endpoint and µ(?E) is the email address of that person. It is impor-

tant to notice that there is a simple strategy that ensures that query P can be evaluated

in practice: first compute J(?X, service address, ?Y )KG, and then for every µ in this

set, compute J(SERVICE a (?N, email, ?E))KG with a = µ(?Y ). More generally,

SPARQL pattern (SERVICE ?Y (?N, email, ?E)) can be evaluated over DS in this

case as only a finite set of values from the domain of G need to be considered as the

possible values of ?Y . This idea naturally gives rise to the following notion of bound-

edness for the variables of a SPARQL query. In the definition of this notion, dom(G)
refers to the domain of a graph G, that is, the set of elements from (I ∪ B ∪ L) that

are mentioned in G; dom(DS) refers to the union of the domains of all graphs in the

dataset DS; and finally, dom(P ) refers to the set of elements from (I ∪ L) that are

mentioned in P .

Definition 1 (Boundedness [7,8]). Let P be a SPARQL query and ?X ∈ var(P ).
Then ?X is bound in P if one of the following conditions holds:

– P is either a graph pattern or a BINDINGS query, and for every dataset DS,

every RDF graph G in DS and every µ ∈ JP KG: ?X ∈ dom(µ) and µ(?X) ∈
(dom(DS) ∪ names(DS) ∪ dom(P )).

– P is a SELECT query (SELECT W P1) and ?X is bound in P1.

In the evaluation of a graph pattern (GRAPH ?X P ) over a dataset DS, variable ?X
necessarily takes a value from names(DS). Thus, the GRAPH operator makes such

a variable ?X to be bound. Given that the values in names(DS) are not necessarily

mentioned in the dataset DS, the previous definition first imposes the condition that

?X ∈ dom(µ), and then not only considers the case µ(?X) ∈ dom(DS) but also the

case µ(?X) ∈ names(DS). In the same way, the BINDINGS operator can make a

variable ?X in a query P to be bound by assigning to it a fixed set of values. Given

that these values are not necessarily mentioned in the dataset DS where P is being

evaluated, the previous definition also considers the case µ(?X) ∈ dom(P ). As an

example of the above definition, we note that variable ?Y is bound in the graph pattern

P1 = ((?X, service address, ?Y ) AND (SERVICE ?Y (?N, email, ?E))),



as for every dataset DS, every RDF graph G in DS and every mapping µ ∈ JP1KG,

we know that ?Y ∈ dom(µ) and µ(?Y ) ∈ dom(DS). Moreover, we also have that

variable ?Y is bound in (SELECT {?X, ?N, ?E} P1) as ?Y is bound in graph pattern

P1.

A natural way to ensure that a SPARQL query P can be evaluated in practice is by

imposing the restriction that for every sub-pattern (SERVICE ?X P1) of P , it holds

that ?X is bound in P . However, the following theorem shows that such a condition is

undecidable and, thus, a SPARQL query engine would not be able to check it in order

to ensure that a query can be evaluated.

Theorem 1 ([7,8]). The problem of verifying, given a SPARQL queryP and a variable

?X ∈ var(P ), whether ?X is bound in P is undecidable.

The fact that the notion of boundedness is undecidable prevents one from using it

as a restriction over the variables in SPARQL queries. To overcome this limitation, it

was introduced in [7,8] a syntactic condition that ensures that a variable is bound in a

pattern and that can be efficiently verified.

Definition 2 (Strong boundedness [7,8]). Let P be a SPARQL query. Then the set of

strongly bound variables in P , denoted by SB(P ), is recursively defined as follows:

– if P = t, where t is a triple pattern, then SB(P ) = var(t);
– if P = (P1 AND P2), then SB(P ) = SB(P1) ∪ SB(P2);
– if P = (P1 UNION P2), then SB(P ) = SB(P1) ∩ SB(P2);
– if P = (P1 OPT P2), then SB(P ) = SB(P1);
– if P = (P1 FILTER R), then SB(P ) = SB(P1);
– if P = (GRAPH c P1), with c ∈ I ∪ V , then

SB(P ) =

{

∅ c ∈ I,

SB(P1) ∪ {c} c ∈ V ;

– if P = (SERVICE c P1), with c ∈ I ∪ V , then SB(P ) = ∅;

– if P = (P1 BINDINGS W {A1, . . . ,An}), then

SB(P ) = SB(P1) ∪

{?X | ?X is included in W and for

every i ∈ {1, . . . , n} : ?X ∈ dom(µW 7→Ai
)};

– if P = (SELECT W P1), then SB(P ) = (W ∩ SB(P1)).

The previous definition recursively collects from a SPARQL query P a set of vari-

ables that are guaranteed to be bound in P . For example, if P is a triple pattern t, then

SB(P ) = var(t) as one knows that for every variable ?X ∈ var(t), every dataset DS
and every RDF graphG in DS, if µ ∈ JtKG, then ?X ∈ dom(µ) and µ(?X) ∈ dom(G)
(which is a subset of dom(DS)). In the same way, if P = (P1 AND P2), then SB(P ) =
SB(P1) ∪ SB(P2) as one knows that if ?X is bound in P1 or in P2, then ?X is bound

in P . As a final example, notice that if P = (P1 BINDINGS W {A1, . . . ,An})



and ?X is a variable mentioned in W such that ?X ∈ dom(µW 7→Ai
) for every

i ∈ {1, . . . , n}, then ?X ∈ SB(P ). In this case, one knows that ?X is bound in P since

JP KG = JP1KG ⋊⋉ {µW 7→A1
, . . . , µW 7→An

} and ?X is in the domain of each one of

the mappings µW 7→Ai
, which implies that µ(?X) ∈ dom(P ) for every µ ∈ JP KG. In

the following proposition, it is formally shown that our intuition about SB(P ) is correct,

in the sense that every variable in this set is bound in P .

Proposition 1 ([7,8]). For every SPARQL query P and variable ?X ∈ var(P ), if

?X ∈ SB(P ), then ?X is bound in P .

Given a SPARQL query P and a variable ?X ∈ var(P ), it can be efficiently verified

whether ?X is strongly bound in P . Thus, a natural and efficiently verifiable way to en-

sure that a SPARQL query P can be evaluated in practice is by imposing the restriction

that for every sub-pattern (SERVICE ?X P1) of P , it holds that ?X is strongly bound

in P . However, this notion still needs to be modified in order to be useful in practice, as

shown by the following examples.

Example 1. Assume first that P1 is the following graph pattern:

P1 =

[

(?X, service description, ?Z) UNION

(

(?X, service address, ?Y ) AND

(SERVICE ?Y (?N, email, ?E))

)]

.

That is, either ?X and ?Z store the name of a SPARQL endpoint and a description

of its functionalities, or ?X and ?Y store the name of a SPARQL endpoint and the

IRI where it is located (together with a list of names and email addresses retrieved

from that location). Variable ?Y is neither bound nor strongly bound in P1. How-

ever, there is a simple strategy that ensures that P1 can be evaluated over a dataset

DS and an RDF graph G in DS: first compute J(?X, service description, ?Z)KG, then

compute J(?X, service address, ?Y )KG, and finally for every µ in the set of mappings

J(?X, service address, ?Y )KG, compute J(SERVICE a (?N, email, ?E))KG with a =
µ(?Y ). In fact, the reason why P1 can be evaluated in this case is that ?Y is bound (and

strongly bound) in the following sub-pattern of P1:

((?X, service address, ?Y ) AND (SERVICE ?Y (?N, email, ?E))).

As a second example, assume that DS is a dataset and G is an RDF graph in DS that

uses triples of the form (a1, related with, a2) to indicate that the SPARQL endpoints lo-

cated at the IRIs a1 and a2 store related data. Moreover, assume that P2 is the following



graph pattern:

P2 =

[

(?U1, related with, ?U2) AND

(

SERVICE ?U1

(

(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F ))

))]

.

When this query is evaluated over the dataset DS and the RDF graph G in DS, it

returns for every tuple (a1, related with, a2) in G, the list of names and email addresses

that that can be retrieved from the SPARQL endpoint located at a1, together with the

phone number for each person in this list for which this data can be retrieved from the

SPARQL endpoint located at a2 (recall that pattern (SERVICE ?U2 (?N, phone, ?F ))
is nested inside the first SERVICE operator in P2). To evaluate this query over an RDF

graph, first it is necessary to determine the possible values for variable ?U1, and then

to submit the query ((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F ))) to each

one of the endpoints located at the IRIs stored in ?U1. In this case, variable ?U2 is

bound (and also strongly bound) in P2. However, this variable is not bound in the graph

pattern ((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F ))), which has to be

evaluated in some of the SPARQL endpoints stored in the RDF graph where P2 is

being evaluated, something that is infeasible in practice. It is important to notice that

the difficulties in evaluating P2 are caused by the nesting of SERVICE operators (more

precisely, by the fact that P2 has a sub-pattern of the form (SERVICE ?X1 Q1), where

Q1 has in turn a sub-pattern of the form (SERVICE ?X2 Q2) such that ?X2 is bound

in P2 but not in Q1). ⊓⊔

In the following section, the concept of strongly boundedness is used to define a notion

that ensures that a SPARQL query containing the SERVICE operator can be evalu-

ated in practice, and which takes into consideration the ideas presented in the above

examples.

3.2 The notion of service-safeness: Considering sub-patterns and nested

SERVICE operators

The goal of this section is to provide a condition that ensures that a SPARQL query con-

taining the SERVICE operator can be safely evaluated in practice. To this end, we first

need to introduce some terminology. Given a SPARQL query P , define T (P ) as the

parse tree of P . In this tree, every node corresponds to a sub-pattern of P . An example

of a parse tree of a pattern Q is shown in Figure 1. In this figure, u1, u2, u3, u4, u5, u6

are the identifiers of the nodes of the tree, which are labeled with the sub-patterns of

Q. It is important to notice that in this tree we do not make any distinction between the

different operators in SPARQL, we just use the child relation to store the structure of

the sub-patterns of a SPARQL query.

Tree T (P ) is used to define the notion of service-boundedness, which extends the

concept of boundedness, introduced in the previous section, to consider variables that



u6 : (?Y, a, ?Z)

u1 : ((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))))

u2 : (?Y, a, ?Z) u3 : ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))

u4 : (?X, b, c) u5 : (SERVICE ?X (?Y, a, ?Z))

Figure 1. Parse tree T (Q) for the graph pattern Q =
((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))))

are bound inside sub-patterns and nested SERVICE operators. It should be noticed that

these two features were identified in the previous section as important for the definition

of a notion of boundedness (see Example 1).

Definition 3 (Service-boundedness [7,8]). A SPARQL query P is service-bound if

for every node u of T (P ) with label (SERVICE ?X P1), it holds that:

(1) there exists a node v of T (P ) with label P2 such that v is an ancestor of u in T (P )
and ?X is bound in P2;

(2) P1 is service-bound.

For example, query Q in Figure 1 is service-bound. In fact, condition (1) of Definition 3

is satisfied as u5 is the only node in T (Q) having as label a SERVICE graph pattern, in

this case (SERVICE ?X (?Y, a, ?Z)), and for the node u3, it holds that: u3 is an ances-

tor of u5 in T (P ), the label of u3 is P = ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))
and ?X is bound in P . Moreover, condition (2) of Definition 3 is satisfied as the sub-

pattern (?Y, a, ?Z) of the label of u5 is also service-bound.

The notion of service-boundedness captures our intuition about the condition that a

SPARQL query containing the SERVICE operator should satisfy. Unfortunately, the

following theorem shows that such a condition is undecidable and, thus, a SPARQL

query engine would not be able to check it in order to ensure that a query can be evalu-

ated.

Theorem 2 ([7,8]). The problem of verifying, given a SPARQL query P , whether P is

service-bound is undecidable.

As for the case of the notion of boundedness, the fact that the notion of service-boundedness

is undecidable prevents one from using it as a restriction over the variables used in

SERVICE calls. To overcome this limitation, in the definition of service-boundedness,

the restriction that the variables used in SERVICE calls are bound is replaced by the

decidable restriction that they are strongly bound. In this way, one obtains a syntactic

condition over SPARQL queries that ensures that they are service-bound, and which

can be efficiently verified.



Definition 4 (Service-safeness [7,8]). A SPARQL query P is service-safe if for every

node u of T (P ) with label (SERVICE ?X P1), it holds that:

(1) there exists a node v of T (P ) with label P2 such that v is an ancestor of u in T (P )
and ?X ∈ SB(P2);

(2) P1 is service-safe.

As a corollary of Proposition 1, one obtains the following proposition.

Proposition 2 ([7,8]). If a SPARQL query P is service-safe, then P is service-bound.

The notion of service-safeness is used in the system presented in [7,8] to verify that a

SPARQL query can be evaluated in practice. More precisely, that system uses a bottom-

up algorithm over the parse tree T (Q) of a SPARQL query Q for validating the service-

safeness condition. This procedure traverses the parse tree T (Q) twice for ensuring

that Q can be correctly evaluated. In the first traversal, for each node identifier u of

T (Q), the algorithm computes the set of strongly bound variables for the label P of

u. For example, in the parse tree shown in Figure 1, the variable ?X is identified as

the only strongly bound variable for the label of the node with identifier u3. In the

second traversal, the bottom-up algorithm uses these sets of strongly bound variables

to check two conditions for every node identifier u of T (Q) with label of the form

(SERVICE ?X P ): whether there exists a node v of T (Q) with label P ′ such that v
is an ancestor of u in T (Q) and ?X is strongly bound in P ′, and whether P is itself

service-safe. If these two conditions are fulfilled, then the algorithm returns true to

indicate that Q is service-safe. Otherwise, the procedure returns no.

4 Navigation

Navigational features have been largely recognized as fundamental for graph database

query languages. This fact has motivated several authors to propose RDF query lan-

guages with navigational capabilities [22,1,18,4,2], and, in fact, it was the motivation

to include the property-path feature in the upcoming version of the SPARQL standard,

SPARQL 1.1 [16]. Property paths are essentially regular expressions, that are used to

retrieve pairs of nodes from an RDF graph if they are connected by paths conforming

to those expressions. In the following two sections, we introduce the syntax of property

paths, and some of the main results on the semantics and complexity of these expres-

sions.

We focus on the semantics for property paths presented in the last published version

of the specification [16] (January 2012), and that has been considered as the semantics

for property paths since early stages of the standardization process (first introduced in

October 2010). As a disclaimer, it should be noticed that recently (beginning of 2012),

the normative semantics of property paths is being heavily discussed in the W3C mail-

ing lists [38], and, thus, this semantics will probably change in the future. This discus-

sion was initiated by two recently published articles on this subject [5,19], which show

some efficiency problems in the original design of property paths. Thus, although this

design may change, from a pedagogical point of view, as well as from a historical point

of view, it is important and interesting to present the semantics that have lasted for more



than a year as the official semantics of property paths, the rationale behind its definition

and its main features, and the issues that may lead to its replacement in the near future.

The normative semantics of property paths in SPARQL 1.1 poses several interest-

ing research issues. Although property paths are syntactically nothing else but classical

regular expressions, SPARQL 1.1 defines a bag (or multiset) semantics for these ex-

pressions. That is, when evaluating property-path expressions, one can obtain several

duplicates for the same solution, essentially one duplicate for every different path in

the graph satisfying the expression. Since RDF graphs containing cycles may lead to

an infinite number of paths satisfying a particular expression, the official specification

defines the semantics of property paths by means of a particular counting procedure,

which handles cycles in a way that ensures that the final count is finite. In this section,

we consider the formalization of this procedure that was presented in [5].

In order to formally introduce the semantics of property paths, we first formalize the

bag semantics of SPARQL operators in Section 4.1. Then based on this formalization,

we introduce in Section 4.2, the semantics of property paths in SPARQL 1.1.

4.1 Bag semantics for SPARQL 1.1

In this section, we introduce a bag (or multiset) semantics for SPARQL, that is, the eval-

uation of a query is defined as a set of mappings in which every element µ is annotated

with a positive integer that represents the cardinality of µ in the bag. As we will see,

cardinality of solutions is a crucial part of the normative semantics of property paths in

SPARQL 1.1 [16].

Formally, we represent a bag of mappings as a pair (Ω, cardΩ), where Ω is a set

of mappings and cardΩ is a function such that cardΩ(µ) is the cardinality of µ in

Ω (we assume that cardΩ(µ) > 0 for every µ ∈ Ω, and cardΩ(µ
′) = 0 for every

µ′ 6∈ Ω). With this notion, we have the necessary ingredients to define the semantics

of SPARQL 1.1 queries. For the sake of readability, we repeat here the definitions pre-

sented in Section 2.2 but now including the computation of cardinalities. Since our main

focus in this section are the navigational features in SPARQL 1.1, we do not consider

GRAPH and SERVICE operators. Thus, we focus on points (1), (2), (3), (4), and (7)

presented in Section 2.2. More precisely, let G be an RDF graph and P a graph pattern:

(1) If P is a triple pattern t, then JP KG = {µ | dom(µ) = var(t) and µ(t) ∈ G}.

Moreover, for every µ ∈ JP KG, it holds that cardJP KG(µ) = 1.

(2) If P is (P1 AND P2), then JP KG = JP1KG ⋊⋉ JP2KG. Moreover, for every µ ∈
JP KG we have that cardJP KG(µ) is given by the expression:

∑

µ1∈JP1KG





∑

µ2∈JP2KG :µ=µ1∪µ2

(

cardJP1KG(µ1) · cardJP2KG(µ2)

)



 .

(3) If P is (P1 OPT P2), then JP KG = JP1KG JP2KG. Moreover, for every µ ∈
JP KG, if µ ∈ J(P1 AND P2)KG, then cardJP KG(µ) = cardJ(P1 AND P2)KG(µ), and

if µ 6∈ J(P1 AND P2)KG, then cardJP KG(µ) = cardJP1KG(µ).



(4) If P is (P1 UNION P2), then JP KG = JP1KG ∪ JP2KG. Moreover, for every µ ∈
JP KG, it holds that cardJP KG(µ) = cardJP1KG(µ) + cardJP2KG(µ).

The evaluation of a SPARQL 1.1 query Q over an RDF graph G, denoted by JQKG,

is defined as follows. If Q is a SPARQL 1.1 query (SELECT W P ), then JQKG =
{µ|W | µ ∈ JP KG} and for every µ ∈ JQKG:

cardJQKG(µ) =
∑

µ′∈JP KG :µ=µ′
|W

cardJP KG(µ
′).

If Q is a SPARQL 1.1 query (SELECT * P ), then JQKG = JP KG and

cardJQKG(µ) = cardJP KG(µ) for every µ ∈ JQKG. If Q is a SPARQL 1.1 query

(SELECT DISTINCT W P ), then JQKG = {µ|W | µ ∈ JP KG} and for every

µ ∈ JQKG, we have that cardJQKG(µ) = 1. Finally, if Q is a SPARQL 1.1 query

(SELECT DISTINCT * P ), then JQKG = JP KG and for every µ ∈ JQKG, we have

that cardJQKG(µ) = 1.

To conclude the definition of the semantics of SPARQL 1.1, we need to define the

semantics of filter expressions. Given an RDF graph G and a graph pattern expression

P = (P1 FILTER R), we have that JP KG = {µ ∈ JP1KG | µ |= R}, and for every

µ ∈ JP KG, we have that cardJP KG(µ) = cardJP1KG(µ).

4.2 Syntax and Semantics of SPARQL 1.1 Property Paths

In this section, we use the framework presented in the previous section to formalize the

semantics of property paths. According to [16], a property paths is recursively defined

as follows: (1) if a ∈ I , then a is a property path, and (2) if p1 and p2 are property

paths, then p1|p2, p1/p2 and p∗1 are property paths. Thus, from a syntactical point of

view, property paths are regular expressions over the vocabulary I , being | disjunction,

/ concatenation and ( )∗ the Kleene star. It should be noticed that the definition of

property paths in [16] includes some additional features that are common in regular

expressions, such as p? (zero or one occurrences of p) and p+ (one or more occurrences

of p). In this paper, we focus on the core operators |, / and ( )∗, as they suffice to prove

the infeasibility of the evaluation of property paths in SPARQL 1.1.

A property-path triple is a tuple t of the form (u, p, v), where u, v ∈ (I∪V ) and p is

a property path. SPARQL 1.1 includes as atomic formulas triple patterns and property-

path triples. Thus, to complete the definition of the semantics of SPARQL 1.1, we need

to specify how property-path triples are evaluated over RDF graphs, that is, we need to

extend the definition of the function J·KG to include property-path triples.

To define the semantics of property-path triples, we follow closely the standard

specification [16]. Assume that u, v ∈ (I ∪ V ), W = ({u, v} ∩ V ) and p is a prop-

erty path. Notice that if u, v ∈ I , then W = ∅. Then the evaluation of property-path

triple t = (u, p, v) over an RDF graph G, denoted by JtKG, is defined recursively

as follows. If p = a, where a ∈ I , then (u, p, v) is a triple pattern and JtKG and

cardJtKG(·) are defined as in Section 4.1. Otherwise, we have that either p = p1|p2 or

p = p1/p2 or p = p∗1, where p1, p2 are property paths, and JtKG is defined as follows.



First, if p = p1|p2, then JtKG is defined in [16] as the result of evaluating the pattern

((u, p1, v) UNION (u, p2, v)) over G. Thus, we have that:

JtKG = {µ | µ ∈ J(u, p1, v)KG or µ ∈ J(u, p2, v)KG},

and for every µ ∈ JtKG, we have that:

cardJtKG(µ) = cardJ(u,p1,v)KG(µ) + cardJ(u,p2,v)KG(µ).

Second, if p = p1/p2, then assuming that ?X is a variable such that ?X 6∈ W , we have

that JtKG is defined in [16] as the result of first evaluating the pattern ((u, p1, ?X) AND
(?X, p2, v)) overG, and then projecting over the variables of property-path triple t (and,

thus, projecting out the variable ?X). Thus, we have that:

JtKG = {(µ1∪µ2)|W | µ1 ∈ J(u, p1, ?X)KG, µ2 ∈ J(?X, p2, v)KG and µ1 ∼ µ2},

and for every µ ∈ JtKG, we have that:

cardJtKG(µ) =

∑

µ1∈J(u,p1,?X)KG

[

∑

µ2∈J(?X,p2,v)KG
µ=(µ1∪µ2)|W

(

cardJ(u,p1,?X)KG(µ1) · cardJ(?X,p2,v)KG(µ2)

)]

.

Finally, if p = p∗1, then JtKG is defined in [16] in terms of the procedures COUNT and

ALP shown in Figure 2. More precisely,

JtKG = {µ | dom(µ) = W and COUNT(µ(u), p1, µ(v), G) > 0}.

Moreover, for every µ ∈ JtKG, it holds that

cardJtKG(µ) = COUNT(µ(u), p1, µ(v), G).

Procedure ALP in Figure 2 is taken from [16]. It is important to notice that lines 5

and 6 in ALP formalize, in our terminology, the use of a procedure call eval in the

definition of ALP in [16]. According to [16], procedure ALP has to be used as follows

to compute cardJtKG(µ), where t = (u, p∗1, v). Assuming that Result is the empty list

and Visited is the empty set, first one has to invoke ALP(µ(u), p, Result, Visited, G),
then one has to check whether µ(v) appears in the resulting list Result, and if this is the

case then cardJtKG(µ) is set as the number of occurrences of µ(v) in the list Result. For

the sake of readability, we have encapsulated in the auxiliary procedure COUNT these

steps to compute cardJtKG(µ) from procedure ALP, and we have defined JtKG by using

COUNT, thus formalizing the semantics proposed by the W3C in [16].

The idea behind algorithm ALP is to incrementally construct paths that conform to

a property path of the form p∗1, that is, to construct sequences of nodes a1, a2, . . ., an
from an RDF graph G such that each node ai+1 is reachable from ai in G by following

the path p1, but with the important feature (implemented through the use of the set

Visited) that each node ai is distinct from all the previous nodes aj selected in the

sequence (thus avoiding cycles in the sequence a1, a2, . . ., an).



Function COUNT(a, path, b, G)

Input: a, b ∈ I , path is a property path and G is an RDF graph.

1: Result := empty list

2: Visited := empty set

3: ALP(a, path, Result, Visited, G)

4: n := number of occurrences of b in Result

5: return n

Procedure ALP(a, path, Result, Visited, G)

Input: a ∈ I , path is a property path, Result is a list of elements from I , Visited is a set of

elements from I and G is an RDF graph.

1: if a ∈ Visited then

2: return

3: end if

4: add a to Visited, and add a to Result

5: Ω := J(a, path, ?X)KG
6: let Next be the list of elements b = µ(?X) for µ ∈ Ω, such that the number of occurrences

of b in Next is cardΩ(µ)
7: for each c ∈ Next do

8: ALP(c, path, Result, Visited, G)

9: end for

10: remove a from Visited

Figure 2. Procedures used in the evaluation of property-path triples of the form (u, path∗, v)

5 The complexity of evaluating property-path SPARQL queries

In this section, we show some of the results presented in [5,19] on the complexity of

evaluating property paths according to the semantics proposed by the W3C, as well

as several other alternative semantics. We first present in Section 5.1 an experimental

study on the impact of counting property paths. As observed in [5,19], current imple-

mentations of SPARQL 1.1 show a strikingly poor performance when evaluating even

the most simple queries. Then in Section 5.2, the computational complexity of the eval-

uation problem for property paths is studied, providing a formal explanation on the

poor performance of the implementations. Later in Section 5.3, we present some alter-

native semantics for property paths based on more classical ways of navigating graph

databases. Finally, in Section 5.4, we show some results stating that when repeated so-

lutions are not considered, then one can obtain efficient evaluation methods for property

paths.

5.1 Experimental evaluation

This section is based on the experimental study performed in [5]. The idea is to pro-

vide the reader with a sense of the practical impact in query evaluation of using prop-

erty paths, by comparing the performance of several important implementations of

SPARQL.

The SPARQL 1.1 engines considered in the evaluation are the following [5]:



@prefix : <http://example.org/> .

:a0 :p :a1, :a2, :a3, :a4, :a5, :a6, :a7 .

:a1 :p :a0, :a2, :a3, :a4, :a5, :a6, :a7 .

:a2 :p :a0, :a1, :a3, :a4, :a5, :a6, :a7 .

:a3 :p :a0, :a1, :a2, :a4, :a5, :a6, :a7 .

:a4 :p :a0, :a1, :a2, :a3, :a5, :a6, :a7 .

:a5 :p :a0, :a1, :a2, :a3, :a4, :a6, :a7 .

:a6 :p :a0, :a1, :a2, :a3, :a4, :a5, :a7 .

:a7 :p :a0, :a1, :a2, :a3, :a4, :a5, :a6 .

Figure 3. RDF graph representing a clique with 8 nodes

– ARQ – version 2.8.8, 21 April 2011 [33]: ARQ is a java implementation of SPARQL

for the Jena Semantic Web Framework [10].

– RDF::Query – version 2.907, 1 June 2011 [35]: RDF::Query is a perl module that

implements SPARQL 1.1.

– KGRAM – version 3.0, September 2011 [34]: KGRAM is an implementation of an

abstract machine that unifies graph match and SPARQL 1.1 [11]. The engine is ac-

cessed via the Corese (COnceptual REsource Search Engine) libraries implemented

in java.

– Sesame – version 2.5.1, 23 September 2011 [36]: Sesame is a framework for pro-

cessing RDF data implemented in java, and provides a set of libraries to access data

and execute SPARQL 1.1 queries.

The tests were run in a dedicated machine with the following configuration: Debian

6.0.2 Operating System, Kernel 2.6.32, CPU Intel Xeon X3220 Quadcore with 2.40GHz,

and 4GB PC2-5300 RAM. All tests were run considering main memory storage. This

should not be considered as a problem since the maximum size of the input RDF graphs

that we used was only 25.8 KB. A timeout of 60 minutes was considered. For each test,

the number reported is the average of the results obtained by executing the test (at least)

4 times. No experiment showed a significant standard deviation [5].

The clique experiment. The first experiment reported in [5] considered cliques (com-

plete graphs) of different sizes, from a clique with 2 nodes (containing 2 triples) to a

clique with 13 nodes (156 triples). For example, a clique with 8 nodes in N3 notation is

shown in Figure 3. The first query to be tested, is the following query

Cliq-1: SELECT * WHERE { :a0 (:p)* :a1 }.

This query essentially tests if the nodes :a0 and :a1 are connected. Since this query has

no variables, the solution is an empty tuple, which, for example, in ARQ is represented

by the string | |, and in Sesame by the string [] (when the query solution is printed

to the standard output). RDF::Query does not support queries without variables, thus

for this implementation the following query was tested:

CliqF-1: SELECT * WHERE { :a0 (:p)* ?x FILTER (?x = :a1) }.

Table 1 shows the result obtained for this experiment in terms of the time (in seconds)

and the number of solutions produced as output, when the input is a clique with n nodes.



n ARQ RDFQ Kgram Sesame Solutions

5 1.18 0.90 0.57 0.76 16

6 1.19 1.44 0.60 1.24 65

7 1.37 5.09 0.95 2.36 326

8 1.73 34.01 1.38 9.09 1,957

9 2.31 295.88 5.38 165.28 13,700

10 4.15 2899.41 228.68 – 109,601

11 31.21 – – – 986,410

12 1422.30 – – – 9,864,101

13 – – – – –

Table 1. Time in seconds and number of solutions for query Cliq-1 (CliqF-1 for RDF::Query)
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Figure 4. Time in seconds for processing Cliq-1 w.r.t. the clique size n (time axis in log-scale)

The symbol “–” in the table means timeout of one hour. Figure 4 shows a plot of the

same data.

The impact of using nested stars was also tested [5]. In particular, the following

queries were tested:

Cliq-2: SELECT * WHERE { :a0 ((:p)*)* :a1 }

Cliq-3: SELECT * WHERE { :a0 (((:p)*)*)* :a1 }

For these expressions containing nested stars, Sesame produces a run-time error (we

have reported this bug in the Sesame’s mailing list), and KGRAM does not produce

the expected output according to the official SPARQL 1.1 specification [16]. Thus, for

these cases it is only meaningful to test ARQ and RDF::Query (we use FILTER for

RDF::Query, as we did for the case of query CliqF-1). The results are shown in Table 2.

As described in [5], the experimental results show the infeasibility of evaluating

property paths including the star operator in the the four tested implementations. We

emphasize only here the unexpected impact of nesting stars: for query Cliq-3 both im-

plementations tested fail for an RDF graph representing a clique with only 4 nodes,

which contains only 12 triples and has a size of 126 bytes in N3 notation. Although

in this example the nesting of the star operator does not seem to be natural, it is well



n ARQ RDFQ Solutions n ARQ RDFQ Solutions

2 1.40 0.76 1 2 1.20 0.77 1

3 1.19 0.84 6 3 1.42 6.85 42

4 1.65 19.38 305 4 – – –

5 97.06 – 418,576

6 – – –

Table 2. Time in seconds and number of solutions for queries Cliq-2 (left) and Cliq-3 (right)

known that nesting is indeed necessary to represent some regular languages [13]. It is

also notable how the number of solutions increase w.r.t. the input size. For instance, for

query Cliq-1, ARQ returns more than 9 million solutions for a clique with 12 nodes

(ARQ’s output in this case has more than 9 million lines containing the string | |).

We show in Section 5 that the duplication of solutions is indeed the main source of

complexity when evaluating property paths.

The foaf experiment. The second experiment presented in [5] use real data crawled

from the Web. It considered the foaf:knows property, as it has been used as a paradig-

matic property for examples regarding path queries (notice that it is in several of the

examples used to describe property paths in the official SPARQL 1.1 specification [16]).

The dataset for this experiment is constructed using the SemWeb Client Library [40],

which is part of the Named Graph API for Jena. This library provides a command-line

tool semwebquery that can be used to query the Web of Linked Data. The tool receives

as input a SPARQL query Q, an integer value k and a URI u. When executed, it first

retrieves the data from u, evaluates Q over this data, and follows the URIs mentioned

in it to obtain more data. This process is repeated k times (see [17] for a description

of this query approach). The data is constructed by using a CONSTRUCT query to re-

trieve URIs linked by foaf:knows properties with Axel Polleres’ foaf document as

the starting URI7. The parameter k was set as 3, which already produce a file of 1.5MB

containing more than 33,000 triples. To obtain a file of reasonable size, the data was

filtered by removing all triples that mention URIs from large Social Networks sites (in

particular, URIs from MyOpera.com and SemanticTweet.com were removed), and then

the strongly connected component to which Axel Polleres’ URI belongs was extracted,

obtaining a file of 25.8 KB. From this file, the authors constructed several test cases

by deleting subsets of nodes and then recomputing the strongly connected component.

With this process 8 different test cases from 9.2 KB to 25.8 KB were constructed. The

descriptions of these files are shown in Table 3. Just as an example of the construc-

tion process, file D is constructed from file E by deleting the node corresponding to

Richard Cyganiack’s URI, and then computing the strongly connected component to

which Axel’s URI belong.

The following query is used in this experiment:

Foaf-1: SELECT * WHERE { axel:me (foaf:knows)* ?x }.

7 http://www.polleres.net/foaf.rdf



File #nodes #triples size (N3 format)

A 38 119 9.2KB

B 43 143 10.9KB

C 47 150 11.4KB

D 52 176 13.2KB

E 54 201 14.8KB

F 57 237 17.2KB

G 68 281 20.5KB

H 76 360 25.8KB

Table 3. Description of the files (name, number of nodes, number of RDF triples, and size in

disk) used in the foaf experiment

File ARQ RDFQ Kgram Sesame Solutions Size (ARQ)

A 5.13 75.70 313.37 – 29,817 2MB

B 8.20 325.83 – – 122,631 8.4MB

C 65.87 – – – 1,739,331 120MB

D 292.43 – – – 8,511,943 587MB

E – – – – – –

Table 4. Time in seconds, number of solutions, and output size for query Foaf-1

which asks for the network of friends of Axel Polleres. Since the graphs in the test

cases are strongly connected, this query retrieves all the nodes in the graph (possibly

with duplicates). The time to process the query, the number of solutions produced, and

the size of the output produced by ARQ are shown in Table 4 (file E is the last file

shown in the table, as all implementations exceed the timeout limit for the larger files).

As for the case of the clique experiment, one of the most notable phenomenon is the

large increase in the output size.

5.2 Intractability of SPARQL 1.1 in the presence of property paths

In this section, we study the computational complexity of the problem of evaluating

SPARQL 1.1 queries containing property paths. Specifically, we study the complexity

of computing the function cardJtKG(·), as this computation embodies the main task

needed to evaluate a property-path triple. For the sake of readability, we focus here on

computing such functions for property-path triples of the form (a, p, b) where a, b ∈
I . Notice that this is not a restriction, as for every property path triple t and every

mapping µ whose domain is equal to the set of variables mentioned in t, it holds that

cardJtKG(µ) = cardJµ(t)KG(µ∅) (recall that µ∅ is the mapping with empty domain).

Thus, we study the following counting problem:

PROBLEM : COUNTW3C

INPUT : an RDF graph G, elements a, b ∈ I and a property path p
OUTPUT : cardJ(a,p,b)KG(µ∅).



It is important to notice that property paths are part of the input of the previous problem

and, thus, we are formalizing the combined complexity of the evaluation problem [31].

As it has been observed in many scenarios, and, in particular, in the context of evalu-

ating SPARQL [24], when computing a function like cardJ(a,p,b)KG(·), it is natural to

assume that the size of p is considerably smaller than the size of G. This assumption is

very common when studying the complexity of a query language. In fact, it is named

data complexity in the database literature [31], and it is defined in our context as the

complexity of computing cardJ(a,p,b)KG(·) for a fixed property-path p. More precisely,

assume given a fixed property path p, and consider the following counting problem:

PROBLEM : COUNTW3C(p)
INPUT : an RDF graph G, elements a, b ∈ I

OUTPUT : cardJ(a,p,b)KG(µ∅).

To pinpoint the complexity of COUNTW3C and COUNTW3C(p), where p is a property

path, we need to consider the complexity class #P (we refer the reader to [30] for its

formal definition). A function f is said to be in #P if there exists a non-deterministic

Turing Machine M that works in polynomial time such that for every string w, the value

of f on w is equal to the number of accepting runs of M with input w. A prototypi-

cal #P-complete problem is the problem of computing, given a propositional formula

ϕ, the number of truth assignments satisfying ϕ. Clearly #P is a class of intractable

computation problems [30].

In [5], the authors prove the following complexity result stating the intractability of

property path evaluation.

Theorem 3 ([5]). The problem COUNTW3C(p) is in #P for every property path p.

Besides, COUNTW3C(c∗) is #P-complete, where c ∈ I .

Theorem 3 shows that the problem of evaluating property paths under the semantics

proposed by the W3C is intractable in data complexity. In fact, it shows that one will

not be able to find efficient algorithms to evaluate even simple property paths such as

c∗, where c is an arbitrary element of I .

The proof of Theorem 3 reveals that the complexity of the problem COUNTW3C(p)
depends essentially on the way the star symbol is used in p. More precisely, the star

height of a property path p, denoted by sh(p), is the maximum depth of nesting of

the star symbols appearing in p [13], that is: (1) sh(p) = 0 if p ∈ I , (2) sh(p) =
max{sh(p1), sh(p2)} if p = p1|p2 or p = p1/p2, and (3) sh(p) = sh(p1)+1 if p = p∗1.

Then for every positive integer k, define SHk as the class of property paths p such that

sh(p) ≤ k, and define COUNTW3C(SHk) as the problem of computing, given an RDF

graph G, elements a, b ∈ I and a property path p ∈ SHk, the value cardJ(a,p,b)KG(µ∅).
Then Theorem 3 can be generalized as follows:

Theorem 4 ([5]). COUNTW3C(SHk) is #P-complete for each k ≥ 1.

We now move to the study of the combined complexity of the problem COUNTW3C.

In [5], the authors formalized the clique experiment presented in Section 5.1, and then

provided lower bounds in this scenario for the number of occurrences of a mapping in



the result of the procedure (ALP) used by the W3C to define the semantics of property

paths [16]. Interestingly, these lower bounds show that the poor behavior detected in the

experiments is not a problem with the tested implementations, but instead a character-

istic of the semantics of property paths proposed in [16]. These lower bounds provide

strong evidence that evaluating property paths under the semantics proposed by the

W3C is completely infeasible, as they show that COUNTW3C is not even in #P.

Fix an element c ∈ I and an infinite sequence {ai}i≥1 of pairwise distinct elements

from I , which are all different from c. Then for every n ≥ 2, let clique(n) be an RDF

graph forming a clique with nodes a1, . . . , an and edge label c, that is, clique(n) =
{(ai, c, aj) | i, j ∈ {1, . . . , n} and i 6= j}. Moreover, for every property path p, define

COUNTCLIQUE(p, n) as cardJ(a1,p,an)Kclique(n)
(µ∅).

Lemma 1 ([5]). For every property path p and n ≥ 2:

COUNTCLIQUE(p∗, n) =

n−1
∑

k=1

(n− 2)! · COUNTCLIQUE(p, n)k

(n− k − 1)!

Let p0 = c and ps+1 = p∗s , for every s ≥ 0. For example, p1 = c∗ and p3 = ((c∗)∗)∗.
From Lemma 1, we obtain that:

COUNTCLIQUE(ps+1, n) =
n−1
∑

k=1

(n− 2)! · COUNTCLIQUE(ps, n)
k

(n− k − 1)!
, (1)

for every s ≥ 0. This formula can be used to obtain the number of occurrences of the

mapping with empty domain in the answer to the property-path triple (a1, ps, an) over

the RDF graph clique(n). For instance, the formula states that if a system implements

the semantics proposed by the W3C [16], then with input clique(8) and (a1, (c
∗)∗, a8),

the empty mapping would have to appear more than 79 · 1024 times in the output.

Thus, even if a single byte is used to store the empty mapping8, then the output would

be of more than 79 Yottabytes in size! Table 5 shows more lower bounds obtained with

formula (1). Notice that these numbers coincide with the results obtained in the reported

experiments (Tables 1 and 2). Also notice that, for example, for n = 6 and s = 2 the

lower bound is of more than 28 billions, and for n = 4 and s = 3 is of more than

56 millions, which explains why the tested implementations exceeded the timeout for

queries Cliq-2 and Cliq-3 (Table 2).

Most notably, Table 5 allows one to provide a cosmological lower bound for eval-

uating property paths: if one proton is used to store the mapping with empty domain,

with input clique(6) (which contains only 30 triples) and the property-path triple

(a1, (((c
∗)∗)∗)∗, a6),

every system implementing the semantics proposed by the W3C [16] would have to

return a file that would not fit in the observable universe!

From Lemma 1, the following double-exponential lower bound can be provided for

the complexity of COUNTCLIQUE(ps, n).

8 Recall that the empty mapping µ∅ is represented as the four-bytes string | | in ARQ, and as

the two-bytes string [] in Sesame.



s n COUNTCLIQUE(ps, n) s n COUNTCLIQUE(ps, n)

1 3 2 1 5 16

2 3 6 2 5 418576

3 3 42 3 5 > 1023

4 3 1806 4 5 > 1093

1 4 5 1 6 65

2 4 305 2 6 28278702465

3 4 56931605 3 6 > 1053

4 4 > 1023 4 6 > 10269

Table 5. Number of occurrences of the mapping with empty domain in the answer to property-

path triple (a1, ps, an) over the RDF graph clique(n), according to the semantics for property

paths proposed by the W3C in [16]

Lemma 2 ([5]). For every n ≥ 2 and s ≥ 1:

COUNTCLIQUE(ps, n) ≥ (n− 2)!(n−1)s−1

From this bound, we obtain that COUNTW3C is not in #P. Besides, from the proof

of Theorem 3, it can be shown that COUNTW3C is in the complexity class #EXP,

which is defined as #P but considering non-deterministic Turing Machines that work in

exponential time.

Theorem 5 ([5]). COUNTW3C is in #EXP and not in #P.

It is open whether COUNTW3C is #EXP-complete.

The complexity of the entire language. We consider now the data complexity of the

evaluation problem for the entire language. More precisely, we use the results presented

in the previous section to show the major impact of using property paths on the com-

plexity of evaluating SPARQL 1.1 queries. The evaluation problem is formalized as

follows. Given a fixed SPARQL 1.1 query Q, define EVALW3C(Q) as the problem of

computing, given an RDF graph G and a mapping µ, the value cardJQKG(µ).

It is easy to see that the data complexity of SPARQL 1.1 without property paths is

polynomial. However, from Theorem 3, we obtain the following corollary that shows

that the data complexity is considerably higher if property paths are included, for the

case of the semantics proposed by the W3C [16]. The following corollary states that

EVALW3C(Q) is in the complexity class FP#P , which is the class of functions that can

be computed in polynomial time if one has access to an efficient subroutine for a #P-

complete problem (or, more formally, one has an oracle for a #P-complete problem).

Corollary 1 ([5]). EVALW3C(Q) is in FP#P , for every SPARQL 1.1 query Q. More-

over, there exists a SPARQL 1.1 query Q0 such that EVALW3C(Q0) is #P-hard.



5.3 Intractability for alternative semantics that count paths

In [5,19], the authors consider some alternative semantics for property paths that take

into account the cardinality of solutions. In this section, we focus on the two alternative

semantics proposed in [5], showing that both leads to intractability.

The usual graph theoretical notion of path has been extensively and successfully

used when defining the semantics of queries including regular expressions [21,9,2,25,6].

Nevertheless, given that the W3C SPARQL 1.1 Working Group is interested in counting

paths, the classical notion of path in a graph cannot be naively used to define a seman-

tics for property-path queries, given that cycles in an RDF graph may lead to an infinite

number of different paths. In this section, we consider two alternatives to deal with this

problem that were introduced in [5]. We consider a semantics for property paths based

on classical paths that is only defined for acyclic RDF graphs, and we consider a general

semantics that is based on simple paths (which are paths in a graph with no repeated

nodes). In both cases, the query evaluation based on counting is intractable [5]. Next

we formalize these two alternative semantics and present their complexity.

A path π in an RDF graph G is a sequence a1, c1, a2, c2, . . . , an, cn, an+1 such that

n ≥ 0 and (ai, ci, ai+1) ∈ G for every i ∈ {1, . . . , n}. Path π is said to be from a
to b in G if a1 = a and an+1 = b, it is said to be nonempty if n ≥ 1, and it is said

to be a simple path, or just s-path, if ai 6= aj for every distinct pair i, j of elements

from {1, . . . , n + 1}. Finally, given a property path p, path π is said to conform to p if

c1c2 · · · cn is a string in the regular language defined by p.

Classical paths over acyclic RDF graphs. We first define the semantics of a property-

path triple considering classical paths, that we denote by J·KpathG . Notice that we have

to take into consideration the fact that the number of paths in an RDF graph may be

infinite, and thus we define this semantics only for acyclic graphs. More precisely, an

RDF graph G is said to be cyclic if there exists an element a mentioned in G and a

nonempty path π in G from a to a, and otherwise it is said to be acyclic. Then assuming

that G is acyclic, the evaluation of a property-path triple t over G in terms of classical

paths, denoted by JtKpathG , is defined as follows. Let t = (u, p, v) andW = ({u, v}∩V ),
then

JtKpathG = {µ | dom(µ) = W and there exists a

path from µ(u) to µ(v) in G that conforms to p},

and for every µ ∈ JtKpathG , the value cardJtKpath
G

(µ) is defined as the number of paths

from µ(u) to µ(v) in G that conform to p.

Similarly as we defined the problem COUNTW3C in Section 5.2, we define the

problem COUNTPATH as the following counting problem.

PROBLEM : COUNTPATH

INPUT : an acyclic RDF graph G, elements a, b ∈ I and a property path p
OUTPUT : cardJ(a,p,b)Kpath

G

(µ∅).



We also define, given a fixed property path p, the problem COUNTPATH(p) as the the

problem of computing, given an acyclic RDF graph G and elements a, b ∈ I , the value

cardJ(a,p,b)Kpath
G

(µ∅).

To pinpoint the exact complexity of the problems COUNTPATH and COUNTPATH(p),
we need to consider two counting complexity classes: #L and SPANL. We introduce

these classes here, and we refer the reader to [3] for their formal definitions. #L is the

counting class associated with the problems that can be solved in logarithmic space in a

non-deterministic Turing Machine (NTM). In fact, a function f is said to be in this class

if there exists an NTM M that works in logarithmic space such that for every string w,

the value of f on w is equal to the number of accepting runs of M with input w. A

prototypical #L-complete problem is the problem of computing, given a deterministic

finite automaton A and a string w, the number of strings that are accepted by A and

whose length is smaller than the length of w [3]. SPANL is defined in a similar way to

#L, but considering logarithmic-space NTMs with output. More precisely, a function

f is said to be in this class if there exists such TM M such that for every string w,

the value of f on w is equal to the number of different outputs of M with input w.

A prototypical SPANL-complete problem is the problem of computing, given a non-

deterministic finite automaton A and a string w, the number of strings that are accepted

by A and whose length is smaller than the length of w [3]. Although classes #L and

SPANL look alike, they are quite different in terms of complexity: #L is known to be

included in FP, the class of functions that can be computed in polynomial time, while

it is known that SPANL is a class of intractable computation problems, if SPANL ⊆ FP,

then P = NP.

It was proved in [5] that even for the simple case considered in this section, the

problem of evaluating property paths is intractable.

Theorem 6 ([5]). COUNTPATH is SPANL-complete.

Interestingly, one can show that at least in terms of data complexity, the problem of

evaluating property paths is tractable if their semantics is based on the usual notion of

path.

Theorem 7 ([5]). COUNTPATH(p) is in #L for every property path p. Moreover, there

exists a property path p0 such that COUNTPATH(p0) is #L-complete.

Although COUNTPATH(p) is tractable, it only considers acyclic RDF graphs, and thus

leaves numerous practical cases uncovered.

Simple paths. We continue our investigation by considering the alternative semantics

for property paths that is defined in terms of simple paths. Notice that even for cyclic

RDF graphs, the number of simple paths is finite, and thus, this semantics is properly

defined for every RDF graph. Formally, assume that G is an RDF graph, t = (u, p, v)
is a property-path triple and W = ({u, v} ∩ V ). The evaluation of t over G in terms of

s-paths, denoted by JtKs-path
G , is defined as:

JtKs-path
G = {µ | dom(µ) = W and there exists an s-path

from µ(u) to µ(v) in G that conforms to p},



and for every µ ∈ JtKs-path
G , the value cardJtKs-path

G

(µ) is defined as the number of s-

paths from µ(u) to µ(v) in G that conform to p. For the case of s-paths, we define the

problem COUNTSIMPLEPATH as follows.

PROBLEM : COUNTSIMPLEPATH

INPUT : an RDF graph G, elements a, b ∈ I and a property path p
OUTPUT : cardJ(a,p,b)Ks-path

G

(µ∅).

As for the previous cases, we define the counting problem COUNTSIMPLEPATH(p) as

COUNTSIMPLEPATH for a fixed property path p. The following result shows that these

problems are also intractable.

Theorem 8 ([5,19]). The problem COUNTSIMPLEPATH is in #P. Moreover, if c ∈ I ,

then the problem COUNTSIMPLEPATH(c∗) is #P-complete.

Notice that the data complexity of evaluating property paths according to the s-path se-

mantics is the same as evaluating them according to the W3C semantics. The difference

is in the combined complexity that is radically higher for the W3C semantics: for the

case of the semantics based on s-paths the combined complexity is in #P, while for the

W3C semantics it is not in #P (Theorem 5).

5.4 An existential semantics for evaluating property paths

We have shown in the previous section that evaluating property-path triples according

to the semantics proposed in [16] is essentially infeasible, being the core of this prob-

lem the necessity of counting different paths. We have also shown that the version in

which one counts simple-paths is infeasible too. As described in [5], a possible solution

to this problem is to not use a semantics that requires counting paths, but instead a more

traditional existential semantics for property-path triples. That is, one just checks if two

nodes are connected (or not) by a path that conforms to a property-path expression,

without considering whether there are several paths connecting two nodes. This exis-

tential semantics has been used for years in graph databases [21,9,6], in XML [20,15],

and even on RDF [2,25] previous to SPARQL 1.1. In this section, we introduce this

semantics and study the complexity of evaluating property paths, and also SPARQL 1.1

queries, under it based on the results presented in [5]. We also compare this proposal

with the current official semantics for property paths, and present some experimental

results.

The most natural way to define an existential semantics for property paths is to

consider the existential version of the semantics J·KpathG . More precisely, assume that

u, v ∈ (I ∪ V ), W = ({u, v} ∩ V ), t = (u, p, v) is a property-path triple, and G is an

RDF graph. Then define JtK
∃(path)
G as:

JtK
∃(path)
G = {µ | dom(µ) = W and there exists a path

from µ(u) to µ(v) in G that conforms to p}.



Moreover, define the cardinality of every mapping µ in JtK
∃(path)
G just as 1. Notice

that with the semantics JtK
∃(path)
G , we are essentially discarding all the duplicates from

JtKpathG . This allows us to consider general graphs (not necessarily acyclic graph as in

Section 5). To study the complexity of evaluating property paths under this semantics,

we define the decision problem EXISTSPATH.

PROBLEM : EXISTSPATH

INPUT : an RDF graph G, elements a, b ∈ I and a property path p
OUTPUT : is card

J(a,p,b)K
∃(path)
G

(µ∅) = 1?

That is, the problem EXISTSPATH is equivalent to checking if µ∅ is in J(a, p, b)K
∃(path)
G .

Notice that with EXISTSPATH, we are measuring the combined complexity of evalu-

ating paths under the existential semantics. The following result shows that EXISTSPATH

is tractable. This is a corollary of some well-known results on graph databases (e.g. see

Section 3.1 in [25]). In the result, we use |G| to denote the size of an RDF graph G and

|p| to denote the size of a property-path p.

Proposition 3. EXISTSPATH can be solved in time O(|G| · |p|).

Discarding duplicates from the standard and simple-paths semantics. A natural

question at this point is whether there exists a relationship between the existential se-

mantics defined in the previous section and the semantics that can be obtained by dis-

carding duplicates from JtKG and JtKs-path
G for a property-path triple t. As shown in [5],

a relationship does exists, which can be considered as an important step towards the

optimization of property-paths evaluation.

Assume that G is an RDF graph and t is a property-path triple. Then we define

JtK∃G as having exactly the same mappings as in JtKG, but with the cardinality of every

mapping in JtK∃G defined just as 1. Similarly, we define JtK
∃(s-path)
G as having exactly the

same mappings as in JtKs-path
G , but with the cardinality of every mapping in JtK

∃(s-path)
G

defined as 1. Thus, in this section, we study the decision problems EXISTSW3C and

EXISTSSIMPLEPATH, which are defined as follows:

PROBLEM : EXISTSW3C

INPUT : an RDF graph G, elements a, b ∈ I and a property path p
QUESTION : is cardJ(a,p,b)K∃

G

(µ∅) = 1?

PROBLEM : EXISTSSIMPLEPATH

INPUT : an RDF graph G, elements a, b ∈ I and a property path p
QUESTION : is card

J(a,p,b)K
∃(s-path)
G

(µ∅) = 1?

The following result shows that, somehow surprisingly, the semantics J·K∃G coincides

with J·K
∃(path)
G . Thus, even though the official semantics of property paths is given in

terms of a particular procedure [16], when one does not count paths, it coincides with

the classical existential semantics based on the usual notion of path.



Theorem 9 ([5]). For every RDF graph G, mapping µ and property-path triple t it

holds that µ ∈ JtK∃G if and only if µ ∈ JtK
∃(path)
G .

As a corollary of Propositions 3 and Theorem 9, one obtains that:

Theorem 10 ([5]). EXISTSW3C can be solved in time O(|G| · |p|).

The situation is radically different for the case of simple paths. From some well-known

results on graph databases [21], one can prove that EXISTSSIMPLEPATH is an in-

tractable problem, even for a fixed property-path. More precisely, for a fixed property-

path p, the decision problem EXISTSSIMPLEPATH(p) has as input an RDF graph G and

elements a, b ∈ I , and the question is whether card
J(a,p,b)K

∃(s-path)
G

(µ∅) = 1.

Proposition 4 ([21,5,19]). The problem EXISTSSIMPLEPATH is in NP. Moreover, the

problem EXISTSSIMPLEPATH((c/c)∗) is NP-complete, where c ∈ I .

Existential semantics and SPARQL 1.1. We have shown that when bags are consid-

ered for the semantics of property paths, the evaluation becomes intractable, even in

data complexity. However, the previous version of SPARQL, that did not include path

queries, considered a bag semantics for the mapping operators (AND, OPT, UNION,

FILTER and SELECT), which has proved to be very useful in practice. Thus, a nat-

ural question is whether one can construct a language with functionalities to express

interesting queries about paths in RDF graphs, with bag semantics for the mappings

operators, and that, at the same time, can be efficiently evaluated. In this section, we

give a positive answer to this question. It was shown in [5] that if one combines exis-

tential semantics for property paths and bag semantics for the SPARQL 1.1 operators,

one obtains the best of both worlds and still has tractable data complexity. Moreover, it

was also shown in [5] that considering simple paths is not an option as the evaluation

problem is still intractable in data complexity.

We start by formalizing this alternative way of evaluating SPARQL 1.1 queries that

considers existential semantics for property-path triples. Given a SPARQL 1.1 query

Q, define JQK∃G exactly as JQKG is defined in Sections 4.1 and 4.2, but evaluating

property-paths triples according to the semantics J·K∃G defined in Section 5.4 (that is,

JtKG is replaced by JtK∃G if t is a property-path triple), and likewise for JQK
∃(s-path)
G and

JQK
∃(path)
G . Notice that for the three semantics JQK∃G, JQK

∃(path)
G and JQK

∃(s-path)
G , we

are not discarding all duplicates but only the duplicates that are generated when eval-

uating property paths. Thus, these semantics are still bag semantics and, therefore, we

consider the computation problems associated to them to study their complexity.

Let Q be a SPARQL 1.1 query. We define first the following computation problem.

PROBLEM : EVALEXISTSW3C(Q)

INPUT : an RDF graph G, and a mapping µ
OUTPUT : cardJQK∃

G

(µ)

Moreover, we also consider the computation problems EVALEXISTSSIMPLEPATH(Q)
and EVALEXISTSPATH(Q), defined as EVALEXISTSW3C(Q) but consider as output

the values card
JQK

∃(s-path)
G

(µ) and card
JQK

∃(path)
G

(µ), respectively.



PROBLEM : EVALEXISTSSIMPLEPATH(Q)

INPUT : an RDF graph G, and a mapping µ
OUTPUT : card

JQK
∃(s-path)
G

(µ)

PROBLEM : EVALEXISTSPATH(Q)

INPUT : an RDF graph G, and a mapping µ
OUTPUT : card

JQK
∃(path)
G

(µ)

Notice that in these three problems, we are considering the data complexity of SPARQL

1.1 under the respective semantics.

Notably, the next result shows that the just defined semantics J·K∃G and J·K
∃(path)
G are

tractable, in terms of data complexity. This result is a consequence of Theorem 10 and

Proposition 3. In the formulation of this result we use the class FP, which is defined as

the class of all functions that can be computed in polynomial time (and thus, it is a class

of tractable functions).

Theorem 11 ([5]). EVALEXISTSW3C(Q) and EVALEXISTSPATH(Q) are in FP for

every SPARQL 1.1 query Q.

We conclude this section by showing that for the case of the semantics J·K
∃(s-path)
G , the

data complexity is unfortunately still high. To study this problem we need the complex-

ity classes FP‖NP and FPNP[O(log n)], which are defined in terms of oracles as for the

case of the complexity class FP#P used in Corollary 1. More precisely, the class FP‖NP

contains all the functions that can be computed in polynomial time by a procedure that

is equipped with an efficient subroutine (oracle) for an NP-complete problem, with the

restriction that all the calls to the subroutine should be made in parallel, that is, no call

to the subroutine can depend on the result of a previous call to this subroutine [32].

The class FPNP[O(log n)] is defined in the same way, but with the restriction that the

subroutine for an NP-complete problem can be called only a logarithmic number of

times. Both classes FPNP[O(logn)] and FP‖NP are considered to be intractable. More-

over, it is known that FPNP[O(logn)] ⊆ FP‖NP , but it is open whether this containment

is strict [29].

Theorem 12 ([5]). EVALEXISTSSIMPLEPATH(Q) is in FP‖NP for every SPARQL 1.1

query Q. Moreover, there exists a query Q0 such that Q0 mentions only operators AND
and SELECT, and EVALEXISTSSIMPLEPATH(Q0) is FPNP[O(logn)]-hard.

Theorem 12 shows that simple paths are not a good option even if duplicates are not

considered. The exact complexity of EVALEXISTSSIMPLEPATH(Q) is an open prob-

lem [5].

5.5 Optimizing property path queries with DISTINCT

As discussed in the previous section, SPARQL 1.1 is tractable in terms of data com-

plexity if one considers the existential semantics J·K∃G and J·K
∃(path)
G for property paths.

The goal of this section is to show the impact of using these semantics in practice,



Input ARQ RDFQ Kgram Sesame Psparql Gleen

A 2.24 47.31 2.37 – 0.29 1.39

B 2.60 204.95 6.43 – 0.30 1.32

C 6.88 3222.47 80.73 – 0.30 1.34

D 24.42 – 394.61 – 0.31 1.38

E – – – – 0.33 1.38

F – – – – 0.35 1.42

G – – – – 0.44 1.50

H – – – – 0.45 1.52

Table 6. Time in seconds for processing Foaf-1D

n ARQ RDFQ Kgram Sesame Psparql Gleen

8 1.68 32.61 1.39 9.08 0.18 1.24

9 2.00 213.99 5.34 166.82 0.20 1.23

10 3.65 2123.90 227.66 – 0.20 1.25

11 29.71 – – – 0.23 1.25

12 1394.06 – – – 0.24 1.24

13 – – – – 0.27 1.24

Cliq-1D

n ARQ RDFQ Psparql Gleen

2 1.40 0.76 0.14 1.23

3 1.19 0.84 0.14 1.23

4 1.65 19.38 0.14 1.23

5 97.06 – 0.15 1.22

6 – – 0.16 1.23

7 – – 0.16 1.23

Cliq-2D

n ARQ RDFQ Psparql Gleen

2 1.18 0.77 0.14 1.24

3 1.41 6.78 0.14 1.23

4 – – 0.15 1.24

5 – – 0.15 1.24

6 – – 0.16 1.24

7 – – 0.16 1.24

Cliq-3D

Table 7. Time in seconds for queries Cliq-1D, Cliq-2D, and Cliq-3D

by reporting on some experimental results obtained with two implementations that

extends SPARQL 1.0 with existential path semantics: Psparql (version 3.3) [37], and

Gleen (version 0.6.1) [39]. These two implementations evaluate SPARQL queries ac-

cording to J·K
∃(path)
G , although they use a slightly different syntax for path queries. We

also show that SPARQL 1.1 queries can be highly optimized by making use of the

SELECT DISTINCT feature. This result is of highly practical interest since, as shown

by the experiments, no current implementation of SPARQL 1.1 is taking advantage of

queries that use SELECT DISTINCT.

We begin by stating the relationship between the existential semantics and the stan-

dard semantics in the presence of DISTINCT. It is important to notice that in the

following result we consider the fragment of SPARQL 1.1 introduced in Section 4. In

particular, we do not consider some features of SPARQL 1.1 introduced in [16], such

as subqueries and aggregates.



Theorem 13 ([5]). Let P be a SPARQL 1.1 graph pattern, G an RDF graph and W a

set of variables. Then we have that:

J(SELECT DISTINCT W P )KG = J(SELECT DISTINCT W P )K
∃(path)
G

J(SELECT DISTINCT * P )KG = J(SELECT DISTINCT * P )K
∃(path)
G

In view of this theorem, in [5] the authors present an experimental evaluation consider-

ing all the queries presented in Section 5.1, but using the SELECT DISTINCT feature,

that is:

Cliq-1D: SELECT DISTINCT * WHERE { :a0 (:p)* :a1 }

Cliq-2D: SELECT DISTINCT * WHERE { :a0 ((:p)*)* :a1 }

Cliq-3D: SELECT DISTINCT * WHERE { :a0 (((:p)*)*)* :a1 }

Foaf-1D: SELECT DISTINCT * WHERE { axel:me (foaf:knows)* ?x }

Tables 6 and 7, taken from [5], show the results of this experiment. Although all the

tested systems return the same results for these queries, the differences in efficiency be-

tween the SPARQL 1.1 implementations and the implementations that use an existential

semantics are dramatic.

6 Concluding Remarks

SPARQL is now widely used as the standard RDF query language. The new version of

the language, SPARQL 1.1, has been in the process of standardization since 2009, and

it is going to include several features not presented in the previous version. Even before

SPARQL 1.1 becomes a standard, the research community has been investigating some

properties of the language, providing valuable feedback to the groups in charge of the

standardization process.

In this paper, we have focused on two of the most interesting and useful features

introduced in SPARQL 1.1: federation and navigation. These features not only add ex-

pressiveness to the language but also pose several interesting and challenging research

questions. We presented a formalization of these new features and studied their ex-

pressiveness and complexity, showing some theoretical and empirical results. We also

presented some recently discovered issues that can have a significant impact on the

adoption of the new standard, and we discussed on possible alternatives and their im-

plications. As of the beginning of year 2012, these issues are being carefully discussed

in the groups in charge of the standard.
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3. Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor. Comput. Sci.,

107(1):3–30, 1993.



4. Kemafor Anyanwu, Angela Maduko, and Amit P. Sheth. Sparq2l: towards support for sub-

graph extraction queries in rdf databases. In WWW, pages 797–806, 2007.

5. Marcelo Arenas, Sebastián Conca, and Jorge Pérez. Counting beyond a yottabyte, or how
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