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Bringing the benefits of gradual typing to a language with parametric polymorphism like System F, while pre-
serving relational parametricity, has proven extremely challenging: first attempts were formulated a decade
ago, and several designs have been recently proposed, with varying syntax, behavior, and properties. Starting
from a detailed review of the challenges and tensions that affect the design of gradual parametric languages,
this work presents an extensive account of the semantics and metatheory of GSF, a gradual counterpart of
System F. In doing so, we also report on the extent to which the Abstracting Gradual Typing methodology
can help us derive such a language. Among gradual parametric languages that follow the syntax of System F,
GSF achieves a unique combination of properties. We clearly establish the benefits and limitations of the
language, and discuss several extensions of GSF towards a practical programming language.
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1 INTRODUCTION

There are many approaches to integrate static and dynamic type checking [Abadi et al. 1991; Bier-
man et al. 2010; Cartwright and Fagan 1991; Matthews and Findler 2007; Tobin-Hochstadt and
Felleisen 2006]. In particular, gradual typing supports the smooth integration of static and dynamic
type checking by introducing the notion of imprecision at the level of types, which induces a notion
of consistency between plausibly equal types [Siek and Taha 2006]. A gradual type checker treats
imprecision optimistically, and the runtime of the gradual language detects when optimistic static
assumptions are invalid. Such detection is usually achieved by compilation to an internal language
with explicit casts, called a cast calculus. In addition to being type safe, a gradually-typed language
is expected to satisfy a number of properties that characterize the static-to-dynamic checking spec-
trum supported by the language [New and Ahmed 2018; Siek et al. 2015a].

Since its early formulation in a simple functional language [Siek and Taha 2006], gradual typ-
ing has been explored in a number of increasingly challenging settings such as subtyping [Garcia
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et al. 2016; Siek and Taha 2007], references [Herman et al. 2010; Siek et al. 2015b], effects [Baña-
dos Schwerter et al. 2014, 2016], ownership [Sergey and Clarke 2012], typestates [Garcia et al. 2014;
Wolff et al. 2011], information-flow typing [Disney and Flanagan 2011; Fennell and Thiemann 2013;
Toro et al. 2018], session types [Igarashi et al. 2017b], refinements [Lehmann and Tanter 2017],
dependent types [Eremondi et al. 2019], set-theoretic types [Castagna and Lanvin 2017], Hoare
logic [Bader et al. 2018], separation logic [Wise et al. 2020], and, most relevant to this article, para-
metric polymorphism [Ahmed et al. 2011, 2017; Igarashi et al. 2017a; Ina and Igarashi 2011; New
et al. 2020; Xie et al. 2018].

In the case of parametric polymorphism, a long-standing challenge has been to prove that the
gradual language preserves a rich semantic property known as relational parametricity [Reynolds
1983], which dictates that a polymorphic value must behave uniformly for all possible instantia-
tions. Building upon work on dynamic enforcement of parametricity [Guha et al. 2007; Matthews
and Ahmed 2008; Pierce and Sumii 2000; Sumii and Pierce 2004], a first version of a parametric cast
calculus1 was proposed, albeit without any proof of parametricity [Ahmed et al. 2011]. Years later,
a variant of this cast calculus, λB [Ahmed et al. 2017], did come with a proof of parametricity. λB
extends the archetypal polymorphic lambda calculus also known as System F with casts and a dy-
namic (or unknown) type. λB is also used as a target language by Xie et al. [2018], who explore the
treatment of implicit polymorphism. Another recent effort is System FG , a gradual source language
that is compiled to a cast calculus akin to λB, called System FC [Igarashi et al. 2017a]. These efforts
highlight several key challenges and tensions in the design of a gradually parametric language, and
leave some questions unanswered, most notably the possibility to satisfy both parametricity and
the dynamic gradual guarantee [Siek et al. 2015a] (or graduality [New and Ahmed 2018]). Inspired
by these challenges, New et al. [2020] propose a different design that forgoes the familiar syntax
of System F and instead relies on explicit terms for sealing and unsealing values. This change of
perspective allows the language PolyGν to satisfy both parametricity and graduality, but at the
cost of a different programming model with its own limitations (Section 3).

Contributions. This work starts from the identification of several design issues in existing grad-
ual languages, and studies a gradual parametric language in the style of System F by applying a
general methodology to gradualize programming languages. The resulting language, called GSF

(for Gradual System F), embodies a number of important design choices. The first is in its name:
it is an extension of System F, and therefore sticks to the traditional syntax of the polymorphic
lambda calculus, where terms need not bother with sealing explicitly as in PolyGν . Two major char-
acteristics differentiate GSF from other gradual parametric languages based on System F. First, GSF
ensures that type instantiations on imprecise types are faithfully supported, thereby soundly sup-
porting higher-order polymorphic programming patterns. Second, System F polymorphic values
in GSF can flow into imprecise code while preserving their original behavior, because imprecise
ascriptions are harmless.

We introduce gradual parametricity informally (Section 2) and discuss its challenges by review-
ing closely related work (Section 3), and present a quick tour of GSF, including its design principles
and main properties (Section 4). We then explain how we derive GSF from a variant of System F
called SF (Section 5), by following the Abstracting Gradual Typing methodology (AGT) [Garcia

1The difference between a gradual (source) language and a cast calculus is that a cast calculus demands explicit use of casts
in order to exploit the flexibility of runtime checking—whether a cast calculus is meant to be used directly by programmers
is in the eyes of the beholder. A gradual source language is usually defined by a type-directed translation to a cast calculus,
with its own typing and reduction rules. In the AGT methodology reduction is instead defined directly for the gradual
source language, in terms of the reduction of enriched typing derivations [Garcia et al. 2016]. Toro and Tanter [2017, 2020]
prove that both approaches are equivalent in a standard, simply-typed setting.
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et al. 2016]. While mostly standard, SF is peculiar in that its dynamic semantics rely on runtime type
generation. This choice comes in anticipation of the gradualization of SF, informed by prior work
that has used runtime type generation to enforce parametricity dynamically [Ahmed et al. 2011,
2017; Matthews and Ahmed 2008]. The statics of GSF then follow naturally from those of SF using
the AGT methodology (Section 6), but the dynamics are more challenging (Section 7/Section 8).
In particular, satisfying parametricity forces us to sacrifice the dynamic gradual guarantee in cer-
tain scenarios. We study this tension in detail and expose a weaker form of the dynamic gradual
guarantee that GSF does satisfy (Section 9). While weaker than the dynamic gradual guarantee
as originally intended, this guarantee is stronger than what other gradual parametric languages
based on System F achieve; in particular, it implies that imprecise ascriptions are harmless. We then
review the notions of gradual parametricity from the literature and present the gradual parametric-
ity that GSF satisfies, along with gradual free theorems [Wadler 1989] (Section 10). We show that
although the notion of parametricity enjoyed by GSF is based on and similar to that of λB, some
polymorphic programs behave differently, due to differences in the dynamic semantics of each
language. We then study the dynamic end of the gradual typing spectrum supported by GSF, and
show that beyond a standard dynamically-typed language, GSF can faithfully embed a language
with dynamic sealing primitives [Sumii and Pierce 2004] (Section 11). The embedding is built using
a general seal/unseal generator, which is expressed as a GSF term. The proposed term is a poly-
morphic pair of functions of type ∀X .(X → ?) × (? → X ). The first component of the pair serves
a sealing function, producing an opaque value as result, and the second component serves as the
corresponding unsealing function, returning the original unsealed value. Finally, we study an ex-
tension of GSF with existential types, which are the core of data abstraction mechanisms [Mitchell
and Plotkin 1988] (Section 12).

Prior publication. This article substantially revises and extends a prior publication [Toro et al.
2019]. First of all, the presentation of related approaches (Section 2) has been largely revised, with
novel illustrations and analysis, and also includes the recent work on PolyGν [New et al. 2020].
This revised article presents several novel technical contributions compared to the prior article:
the detailed analysis of the dynamic gradual guarantee violation is new, and so is the development
of the weaker guarantee that GSF satisfies (Section 9). The presentation of gradual parametric-
ity (Section 10) includes a new comparison between the approaches of Ahmed et al. [2017] and
New et al. [2020], shedding light on the current design space. The results that follow from both
parametricity and the weaker guarantee subsume those presented in the prior publication. Addi-
tionally, the last two sections on embedding dynamic sealing and gradual existential types in GSF
are completely novel developments.

Supplementary material. Auxiliary definitions and proofs of the main results can be found in
the companion technical report. Additionally, an interactive prototype of GSF is available, which
exhibits both typing derivations and reduction traces, and comes with all the examples mentioned
in this paper, among others. The supplementary material can be found at https://pleiad.cl/gsf.

2 GRADUAL PARAMETRICITY: BACKGROUND AND BASICS

We start with a quick introduction to parametric polymorphism and parametricity, as well as grad-
ual typing. We then briefly motivate gradual parametricity through a basic example.

2.1 Parametric Polymorphism

Parametric polymorphism enables the definition of terms that can operate over any type, with the
introduction of type variables and universally-quantified types. For instance, a function of type
∀X .X → X can be used at any type, and returns a value of the same type as its actual argument.
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For the sake of this work, it is important to recall two crucial distinctions that apply to languages
with parametric polymorphism, one syntactic—whether polymorphism is explicit or implicit—and
one semantic—whether polymorphic types impose strong behavioral guarantees or not.

Explicit vs Implicit. In a language with explicit polymorphism, such as the Girard-Reynolds poly-
morphic lambda calculus (a.k.a. System F) [Girard 1972; Reynolds 1974], the term language includes
explicit type abstraction ΛX .e and explicit type application e [T ], as illustrated next:

let f : ∀X .X → X = ΛX.λx:X.x in f [Int] 10

The function f has the polymorphic (or universal) type ∀X .X → X . By applying f to type Int (we
also say that f is instantiated to Int), the resulting function has type Int → Int; it is then passed
the number 10. Hence, the program evaluates to 10.

In contrast to this explicit, Church-style formulation, the Curry-style presentation of polymor-
phic type assignment [Curry et al. 1972] does not require type abstraction and type application to
be reflected in terms. This approach, known as implicit polymorphism, has inspired many lan-
guages such as ML and Haskell, which use the traditional Damas-Milner type system [Damas and
Milner 1982]. This type system can generalize the type of a term and can give a term of poly-
morphic type a (partially) instantiated type. Alternatively, implicit polymorphism can be seen as
inducing a notion of subtyping relating polymorphic types to their instantiations [Mitchell 1988;
Odersky and Läufer 1996]; e.g., ∀X .X → X <: Int → Int. Implicitly-polymorphic languages are
often compiled into an explicitly-polymorphic language. For instance, the use of the subtyping
judgment ∀X .X → X <: Int → Int is materialized by introducing an explicit instantiation [Int],
and vice-versa, the use of the judgment Int → Int <: ∀X .Int → Int is materialized by inserting a
type abstraction constructor ΛX .

Genericity vs. Parametricity. Some languages with universal type quantification also support
intensional type analysis or reflection, which allows a function to behave differently depending on
the type to which it is instantiated. For instance, in Java, a generic method of type ∀X .X → X can
use instanceof to discriminate the actual type of the argument, and behave differently for String,
say, than for Integer. Therefore these languages only support genericity, i.e., the fact that a value
of a universal type can be safely instantiated at any type.2

Parametricity is a much stronger interpretation of universal types, which dictates that a poly-
morphic value must behave uniformly for all possible instantiations [Reynolds 1983]. This implies
that one can derive interesting theorems about the behavior of a program by just looking at its
type, hence the name “free theorems” coined by Wadler [1989]. For instance, one can prove using
parametricity that any polymorphic function of type ∀X .ListX → ListX commutes with the poly-
morphic map function. Technically, parametricity is expressed in terms of a (type-indexed) logical
relation that denotes when two terms behave similarly when viewed at a given type. All well-typed
terms of System F are related to themselves in this logical relation, meaning in particular that all
polymorphic terms behave uniformly at all instantiations [Reynolds 1983].

Simply put, if a value f has type ∀X .X → X , then—modulo divergence if admitted in the consid-
ered language—genericity only tells us that f [Int] 10 reduces to some integer, while parametricity
tells the much stronger result that f [Int] 10 necessarily evaluates to 10, i.e., f has to be the identity
function. In the context of gradual typing, Ina and Igarashi [2011] have explored genericity with
a gradual variant of Java. All other work has focused on the challenge of enforcing parametric-
ity [Ahmed et al. 2011, 2017; Igarashi et al. 2017a; New et al. 2020; Xie et al. 2018].

2We call this property genericity, by analogy to the name generics in use in object-oriented languages like Java and C#.
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2.2 Gradual Typing

Static and dynamic typechecking have dual advantages and limitations. For instance, adopting a
static discipline provides early detection of errors at the expense of conservatively rejecting some
programs that would go right. On the other hand, adopting a dynamic discipline provides flexibility
at the cost of extra checks (and errors!) at runtime. Gradual typing is a specific approach to com-
bine static and dynamic checking within the same language, letting programmers control which
checking discipline is used where, and supporting the convenient evolution between both [Siek
and Taha 2006]. Specifically, programmers can use the unknown type ? to denote the absence of
statically-known type information. Hence, a program without any ? is a statically-typed program,
and a program where all binders and constants have type ? is a dynamically-typed program. In
between, there is a whole spectrum of flexibility according to the programmer’s needs.

Precision and consistency. To support the transition between static and dynamic type-checking,
gradual languages rely on an important relation between types called (im)precision, which intu-
itively denotes how much is known about a given type. Of course ? is the least precise type. In the
gradually-typed lambda calculus GTLC, type precision is defined as [Siek and Taha 2006; Siek
et al. 2015a]:

B � B

G1 � G2 G ′
1 � G ′

2

G1 → G ′
1 � G2 → G ′

2 G � ?

Where B stands for base types such as Int and Bool, andG stands for gradual types. For instance,
Int → Bool � ? → Bool � ? → ? � ?. Observe that, unlike subtyping, precision is covariant for
both the domain and codomain of function types. Precision on terms, noted t1 � t2, is the natural
lifting of type precision to terms:

b � b x � x

G1 � G2 t1 � t2

λx : G1.t1 � λx : G2.t2

t1 � t2 t ′1 � t ′2

t1 t
′
1 � t2 t

′
2

For instance, λx : Int.x � λx : ?.x .
A gradual type system optimistically deals with imprecision, thereby relaxing standard relations

on types. For instance, type equality is relaxed as type consistency ∼. Two types are consistent
if they agree on their known parts. For instance Int → ? ∼ ? → Bool, but Int � Bool. Type
consistency can be formally defined as [Siek and Taha 2006]:

B ∼ B

G1 ∼ G2 G ′
1 ∼ G ′

2

G1 → G ′
1 ∼ G2 → G ′

2 ? ∼ G G ∼ ?

Regarding the dynamics semantics, the standard approach consists in elaborating gradual source
terms via a typed-driven translation to a cast calculus, a core language with explicit runtime type-
checks. The translation inserts casts at the boundaries between static and dynamic typing, ensuring
at runtime that violations of static assumptions are detected and manifest as errors.

Illustration. Let us consider the following three programs A, B and C.

A) let x:? = true in B) let x:? = true in C) let x:Bool = true in

(λy:?.y + 1) x (λy:Int.y + 1) x (λy:Int.y + 1) x

All three programs first bind true to x and then pass x as argument to a function that adds one to
its argument. They only differ in their precision: i.e., the type annotations range from all statically
unknown (A) to all known (C). Program A typechecks and fails at runtime when trying to add 1 to
true. Program B is a more precise variant in which the function argument type is now declared
to be Int. This program also fails at runtime, but it does so earlier than Program A: the error is
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detected when trying to apply the function to true. Finally, Program C is fully static, and is ill-
typed. So, by augmenting the precision of a program, we may go from failing at runtime to failing
statically.

Properties of gradual languages. To characterize the static-to-dynamic checking spectrum af-
forded by gradual typing, Siek et al. [2015a] summarized and extended the expected properties of
gradual languages, recalled hereafter:

• Type safety establishes that well-typed programs cannot get stuck, although they can pro-
duce runtime errors due to actual violations of (optimistic) assumptions made during type
checking.

• Conservative extension of a static discipline means that fully-precise terms typecheck and
evaluate exactly as they would in the static language. Of course, this criterion is relative to
which language is considered as the “static end” of the spectrum.

• Embedding of a dynamic discipline characterizes the capability of the gradual language to ac-
commodate (possibly through a syntactic translation) terms of a dynamically-checked lan-
guage. Like conservative extension, this criterion is relative, this time with respect to the
“dynamic end” of the spectrum.

• Gradual guarantees. The gradual guarantees capture the smoothness of the static-to-dynamic
checking spectrum, requiring both typing (SGG) and evaluation (DGG) to be monotonic with
respect to imprecision. Specifically, if a program is well typed, then a less precise version
should also be well typed; likewise, if a program runs to completion without errors, so should
a less precise version.

In addition to these key formal properties, there are other interesting aspects not explicitly
addressed by Siek et al. [2015a] that are worth considering.

• Harmless imprecise ascriptions. New and Ahmed [2018] give a semantic account of the dy-
namic gradual guarantee, called graduality, based on the notion that imprecision induces
embedding-projection pairs. A particular consequence of their formulation is that imprecise
ascriptions are harmless: given a term t : A and A � B, then t :: B :: A is equivalent to t .3

Observe that this property is weaker than the DGG, as the latter is not restricted to outer
ascriptions.

• Expressiveness of imprecision. A gradual language soundly augments the expressiveness of
the original static type system. Let us illustrate what we mean in a simply-typed setting
(STLC refers to the simply-typed lambda calculus with base types), and how imprecision
allows bridging the gap towards System F:

(1) Consider the STLC term t = λx : T .x , i.e., the identity function for values of some type T .
The term t is operationally valid at different types, but it cannot be given a general type
in STLC. Its type has to be fixed at either Int → Int, Bool → Bool, etc.

(2) Intuitively, a proper characterization of t requires going from simple types to paramet-
ric polymorphism, such as System F. In System F, we could use the type ∀X .X → X to
precisely specify that t can be applied with any argument type and return the same type.

(3) With a gradual variant of STLC, we can give term t the imprecise type ? → ? to statically
capture the fact that t is definitely a function, without committing to specific domain and
codomain types.

(4) This lack of precision is soundly backed by runtime enforcement, such that the term (t 3) 1
evaluates to a runtime type error.

3In this article, we write t :: G for a type ascription.
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2.3 Gradual Parametricity in a Nutshell

Gradual parametricity ought to support imprecise type information while ensuring that assump-
tions about parametricity are enforced at runtime whenever they are not definitely provable stati-
cally. To illustrate, consider the following program:

let g: ? = �λa.λb.if b then a else a + 1� in

let f: ∀X.X→X = ΛX.λx:X.g x v in

f [Int] 10

Function f is given the polymorphic type ∀X .X → X , and is therefore expected to behave paramet-
rically. It is then instantiated at type Int, and applied to the value 10. Note that f is implemented
using a function g of unknown type, which is the result of embedding ( �·�) untyped code into the
gradual language. We write v to stand for the value true or false.

While this program is gradually well-typed, the compliance of f with respect to its declared
parametric behavior is unknown statically. By parametricity, f should behave as the identity func-
tion (Section 2.1). But g itself behaves as an identity function only if its second argument v is true.
Conversely, if v is false, a runtime error is raised to report the parametricity violation.

This example highlights two key characteristics of gradual parametricity. First, to enforce para-
metricity gradually requires more than tracking type safety. If we let the program reduce to 11
when v is false, then type safety is not endangered; only type soundness (i.e., parametricity) is.
Second, the statement of free theorems must account for the possible effects of the gradual lan-
guage: gradual programs can produce runtime errors—and usually can also diverge even if the
corresponding static language is strongly normalizing [Siek and Taha 2006].

Also, gradualizing a language with parametric polymorphism requires extending the notion
of precision to account for both type variables and polymorphic types. The natural definition of
precision simply proceeds congruently:

X � X

G1 � G2

∀X .G1 � ∀X .G2

and likewise for terms:

t � t ′

ΛX .t � ΛX .t ′
t � t ′ G � G ′

t [G] � t ′ [G ′]

As we will see, this natural extension of precision to System F is not the only one that has been (and
will be) considered, as it exposes a deep tension between parametricity and the gradual guarantees.

3 GRADUAL PARAMETRICITY: CHALLENGES

While the basics of gradual parametricity illustrated above are uncontroversial, the devil is in the
details. There are fundamental tensions in the design of gradual parametricity that arise from the
desirable metatheoretical properties—both of parametricity and of gradual typing—which do not
seem to be simultaneously satisfiable. We now explain how existing languages in the gradual para-
metricity design space differ, covering each desirable property described in the previous section,
plus a few properties previously not covered. Section 4.4 describes how GSF is situated in this
space.

Parametricity. Establishing that a gradual parametric language enforces parametricity has been a
long-standing open issue: early work on the polymorphic blame calculus did not prove parametric-
ity [Ahmed et al. 2009b, 2011; Matthews and Ahmed 2008], and the first parametricity result was
established several years later for a variant of that calculus, λB [Ahmed et al. 2017]. In fact, λB is
a cast calculus, not a gradual source language, meaning that explicit casts should be sprinkled in
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the program above to achieve the same result. Igarashi et al. [2017a] develop a gradual source lan-
guage, System FG , whose semantics are given by translation to a cast calculus, System FC , which
is a close cousin of λB. Igarashi et al. do not prove parametricity, but conjecture that due to the
similarity between System FC and λB, parametricity should hold. Xie et al. [2018] develop a lan-
guage (here referred to as CSA) with implicit polymorphism, which compiles to λB and therefore
inherits its parametricity result. More recently, New et al. [2020] explore a radically different point
in the design space with PolyGν , a language that requires explicit sealing and unsealing terms. This
choice sidesteps some tensions and yields a notion of gradual parametricity that is stronger and
more faithful to the original presentation of Reynolds than that of prior work. We come back to the
discussion of different notions of gradual parametricity, which gets fairly technical, in Section 10.

Conservative Extension of System F. Most work on gradual parametricity—λB,4 System FG ,
CSA, as well as the present work—consider System F as the starting point, meaning that System F
programs should be valid programs in these languages, and behave as they would in System F.
System FG is a conservative extension of System F, and CSA of an implicitly-polymorphic variant
of System F [Damas and Milner 1982]. λB is a cast calculus whose syntax of fully-precise cast-
free terms also coincides with System F. For such terms, λB is also a conservative extension of
System F. However, its compatibility relation for types is not a conservative extension of type
equality in System F. For instance, the polymorphic type ∀X .X → X is not only compatible with
Int → Int—a defining feature of implicit polymorphism—it is also compatible with Int → Bool.

PolyGν departs from the syntax of System F and so is not a conservative extension of it. For
instance, the following System F program defines a function f, which is the identity function, and
instantiates it at type Int, applies it to 1, and then adds 1 to the result, yielding 2.

let f : ∀X .X → X = ΛX.λx:X.x in (f [Int] 1) + 1

This program is rejected statically in PolyGν , because the sealing and unsealing that implicitly un-
derlies polymorphic behavior in System F must happen explicitly in the syntax of terms, resulting
in the more verbose program:

let f : ∀X .X → X = ΛX.λx:X.x in unsealX(f [X=Int] (sealX 1)) + 1

PolyGν forces an outward scoping of type variables, i.e., [X=Int] above puts X in scope for subse-
quent use by sealX and unsealX. While not addressed by the authors, it seems reasonable to con-
jecture that PolyGν is a conservative extension of such an unusual static source language with
explicit sealing.

Embedding of a Dynamic Language. Because a polymorphic language includes a simply-typed
core, one naturally expects an untyped lambda calculus to be embeddable in a gradual polymorphic
language [Ahmed et al. 2011]. As we will see in Section 11, and previously explored by Siek and
Wadler [2016], the dynamic end of the spectrum for a gradual parametric language can be even
more interesting, accommodating dynamic sealing primitives [Sumii and Pierce 2004].

Gradual Guarantees. A major tension faced by gradual parametric languages in the past decade
has been to attempt to reconcile the gradual guarantees with parametricity. While this article will
dive into this question repeatedly and at a quite technical level, let us present here what happens
on the surface, for a programmer. Consider this program, which is the same as above, except that
the return type of the function f is now unknown:

let f : ∀X .X → ? = ΛX.λx:X.x in (f [Int] 1) + 1

4Although λB is a polymorphic cast calculus, we include it in the discussion of gradual languages in this work since all
other gradual languages like System FG and CSA translate to λB to establish their dynamic semantics and properties.
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Following the motto that imprecision is harmless, a programmer might expect this program to both
typecheck and run without errors, yielding 2. However, in λB and System FC , the (elaboration with
casts of the) above program fails with a runtime error, because the result of f [Int] 1 is sealed,
and therefore unusable directly.

This failure is a violation of the dynamic gradual guarantee (DGG). But in fact, technically,
this behavior only is a violation if we consider the program above to actually be a more imprecise
variant of the System F program where the return type of f is X instead of ?. Faced with this tension
between the gradual guarantees and parametricity, Igarashi et al. [2017a] introduce a stricter notion
of precision in System FG , which does not allow losses of precision in parametric positions of
a polymorphic type. For instance, in System FG , ∀X .X → Int is considered more precise than
∀X .X → ?, but ∀X .X → X is not. Igarashi et al. [2017a] prove the static gradual guarantee for
System FG based on this more restrictive notion of precision, but leave the corresponding dynamic
gradual guarantee as a conjecture.

PolyGν addresses this tension between parametricity and the dynamic gradual guarantee by
uncoupling sealing and precision, using a syntax with explicit sealing and unsealing. If we start
with the following fully-static program:

let f : ∀X .X → X = ΛX.λx:X.x in unsealX(f [X=Int] (sealX 1)) + 1

then making the return type of f unknown yields a program that still typechecks and runs success-
fully. This is clear because the sealing behavior that was causing problems is now explicit in the
terms, and therefore not affected by a loss of precision in types. However, this choice of syntax is
not innocuous. Consider the following imprecise program, where the body of f has been elided:

let f : ∀X .X → ? = body in unsealX(f [X=Int] (sealX 1)) + 1

If body is ΛX.λx:X.x, then the program evaluates to 2 as expected. However, if f is a constant

function, e.g., body is ΛX.λx:X.1, then this PolyGν program fails because the call-site unsealing
of the value returned by f is now invalid. If one removes unsealX around the application of f, the
program evaluates to 2, i.e., f behaves as a constant function. But now, the case where body is
the polymorphic identity function fails, when trying to add 1 to a sealed value. This means that in
PolyGν , the decision to use unsealing or not at a call site cannot be done modularly: one needs to
know the implementation of f to decide.

Faithful Type Instantiations. What should type instantiations on terms of unknown type mean?
Below, the polymorphic identity function ends up instantiated to Int and passed a Bool value:

let g : ? = ΛX.λx:X.x in g [Int] true

This program in System FG , and a possible adaptation to λB (following the translation proposed
by Igarashi et al. [2017a]), both return true despite the explicit instantiation to Int. Internally, this
happens because g is first consistently considered to be of type ∀X .? in order to accommodate the
type instantiation, but then the instantiation yields a substitution of Int for X in ?, which in both
languages is just ?. There is no tracking of the decision to instantiate the underlying value to Int.

In contrast, if we try to write a similar program in PolyGν :

let g : ? = ΛX.λx:X.x in g [X=Int] (sealX true)

then this program does not even typecheck, because sealing true with X requires the types to
coincide. If we ascribe true to the unknown type before sealing it, then the program typechecks
but fails at runtime, thereby respecting the type instantiation to Int.

Expressiveness of Imprecision. We can unfold the exact same line of reasoning presented in
Section 2.2, but this time starting from System F and bridging the gap towards System Fω :
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(1) Consider the System F term t = λx : T .(x [Int]), which behaves as an instantiation function
to Int. The term t is operationally valid at different types, but cannot be given a general type
in System F. Its type has to be fixed at either (∀X .X → X ) → (Int → Int), (∀XY .X → Y →

X )→(∀Y .Int→Y → Int), etc.
(2) Intuitively, a proper characterization of t requires going from System F to higher-order poly-

morphism, such as System Fω . In System Fω , we could use the type ∀P .(∀X .P X ) → (P Int)
to precisely specify that t instantiates any polymorphic argument to Int. Term t can be ex-
pressed in System Fω as tω = ΛP .λx : (∀X .P X ).x [Int].

(3) With a gradual variant of System F, we ought to be able to give term t the imprecise type
(∀X .?) → ? to statically capture the fact that t is definitely a function that operates on
a polymorphic argument, without committing to a specific domain scheme and codomain
type.

(4) This lack of precision ought to be soundly backed by runtime enforcement, such that, given
id : ∀X .X → X , the term (t id) true should evaluate to a runtime type error. (Observe that
in System Fω , (tω [∀X .X → X ] id) true is ill-typed.)

The fact that λB and System FC do not respect type instantiations on imprecise types mean that
in these systems, the term (t id) true does not raise any error.5 Therefore, while these higher-order
polymorphic patterns can be expressed, they are unsound.

Now consider the same example adapted to PolyGν :

let t : (∀X .?) → ? = λx:(∀X .?). x [X=Int] in (t id) (sealX true)

This program does not typecheck in PolyGν because the type variable X used explicitly in the
body of the function is no longer in scope at the use site to seal the value true. Recall that [X=Int]

puts X in scope for the rest of the lexical scope of the instantiation, but it does not cross func-
tion boundaries. So, in addition to the modularity issues presented in the previous section, the ex-
plicit (un)sealing mechanism of PolyGν cannot accommodate higher-order patterns like the above,
which requires abstracting over type applications.

Polymorphic Interoperability. λB, System FG , and PolyGν are languages with explicit polymor-
phism, i.e., with explicit type abstraction and type application terms. Despite this, λB and Sys-
tem FG accommodate some form of implicit polymorphism, with different flavors. The underlying
motivation is to support interoperability between typed and untyped code, considering that type ab-
straction and application are meaningless terms in an untyped language. The archetypal example
is the System F polymorphic identity function, which one would like to be able to use in untyped
code as standard function, or vice versa, using the untyped identity function as a polymorphic one.
λB features two type compatibility rules to support this kind of implicit polymorphism:

(Comp-AllR)
Σ; Δ,X � T1 <: T2 X � T1

Σ; Δ � T1 <: ∀X .T2
(Comp-AllL)

Σ; Δ � T1[?/X ] <: T2

Σ; Δ � ∀X .T1 <: T2

These rules permit ∀X .X → X to be compatible with ? → ?, but as first identified by Xie et al.
[2018] and recalled above, these rules also imply that the type ∀X .X → X is compatible with both
∀X .Int → Bool and Int → Bool. System FG does not relate ∀X .X → X with any of its static instan-
tiations. However, it does relate that type with ? → ?, considered to be quasi-polymorphic, on the
basis that using the unknown type should bring some of the flexibility of implicit polymorphism.

Xie et al. [2018] argue that it is preferable to clearly separate the subtyping relation induced by
implicit polymorphism from the consistency relation induced by gradual types. As a result, CSA

5In System FC , (t id ) true fails because ∀X .? is not deemed consistent with ∀X .X → X . Consequently, t must be
declared to take an argument of type ? instead of ∀X .?. The result is the same as in λB however: no runtime error is raised.
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Table 1. Comparison of Approaches to Gradual Parametricity

Polym SF TS Param CE ED SGG DGG HIA FTI EI PI
λB mixed ✓ ✓ ✓ ✓ ✓σ - ✗ ✗ ✗ ✗ ✓

System FG mixed ✓ ✓ c ✓ ✓ w c (w) - ✗ ✗ ✓
CSA implicit ✗ ✓ c ✓s - ✓ ✗ - - - ✓

PolyGν explicit ✗ ✓ ✓ na - - ✓ ✓ ✓ ✗ ✗

GSF explicit ✓ ✓ ✓ ✓ ✓σ ✓ w ✓ ✓ ✓ ✗

Polym: form of polymorphism. SF: System F syntax. TS: type safety. Param: parametricity. CE: conservative
extension. ED: embedding of dynamic language. SGG: static gradual guarantee. DGG: dynamic gradual
guarantee. HIA: harmless imprecise ascriptions. FTI: faithful type instantiations. EI: expressiveness of
imprecision. PI: polymorphic interoperability. ✓: the property has been proven. ✗: the property is not satisfied.
-: the property is not studied. na: the property does not apply. ✓s : proved only for the static semantics. ✓σ : can
embed untyped lambda calculus with dynamic sealing. c: the property is explicitly conjectured but not proven.
w: guarantees stated wrt a restricted precision.

features intuitive and straightforward definitions of precision and consistency, while accommo-
dating the flexibility of implicit polymorphism in full.

Summary. Table 1 summarizes the different approaches we reviewed. The last line corresponds to
our proposal, GSF, which is informally described in the next section and then formally developed
throughout this article. A check denotes a property that is proven. A cross denotes a property
that is not satisfied. A question mark is used for results that are explicitly conjectured, while a
dash is used for results that are not studied. For the conservative extension result (CE) for CSA,
the “s” signals that the result is only established with respect to typing, not reduction. For the
embedding of a dynamic language (ED), we annotate with a “σ ” when the language has been
shown to embed an untyped lambda calculus with sealing primitives (Siek and Wadler [2016] for
λB, and Section 11.3 for GSF). We use “w” (weak) to denote gradual guarantees stated with respect
to a stricter notion of precision than the natural one.

4 GSF, INFORMALLY

This paper presents the design, semantics and metatheory of GSF, a gradual counterpart of Sys-
tem F. Here, we briefly introduce the methodology and principles we follow to design GSF, and
briefly review its properties (summarized in Table 1) and examples of use.

4.1 Design Methodology

In order to assist language designers in crafting new gradual languages, Garcia et al. [2016] pro-
posed the Abstracting Gradual Typing methodology (AGT, for short). The promise of AGT is
that, starting from a specification of the meaning of gradual types in terms of the set of possible
static types they represent, one can systematically derive all relevant notions, including precision,
consistent predicates (e.g., consistency and consistent subtyping), consistent functions (e.g., con-
sistent meet and join), as well as a direct runtime semantics for gradual programs, obtained by
reduction of gradual typing derivations augmented with evidence for consistent judgments.

The AGT methodology has so far proven effective to assist in the gradualization of a number of
disciplines, including effects [Bañados Schwerter et al. 2014, 2016], record subtyping [Garcia et al.
2016], set-theoretic types [Castagna and Lanvin 2017], union types [Toro and Tanter 2017], refine-
ment types [Lehmann and Tanter 2017], and security types [Toro et al. 2018]. The applicability
of AGT to gradual parametricity is an open question repeatedly raised in the literature—see for
instance the discussions of AGT by Igarashi et al. [2017a] and Xie et al. [2018]. Considering the
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variety of successful applications of AGT, and the complexity of designing a gradual parametric
language, in this work we decide to adopt this methodology, and report on its effectiveness.

4.2 Design Principles

Considering the many concerns involved in developing a gradual language with parametric poly-
morphism, we should be very clear about the principles, goals and non-goals of a specific design.
In designing GSF, we respect the following design principles:

System F syntax: GSF is meant to be a gradual version of System F, and as such, adopts its syn-
tax of both terms and types. Types are only augmented with the unknown type ? to introduce the
imprecision that is at the core of gradual typing. In particular, this precludes the use of unconven-
tional syntactic constructs like the explicit (un)sealing terms of PolyGν .
Explicit polymorphism: GSF is a gradual counterpart to System F, and as such, is a fully explic-
itly polymorphic language: type abstraction and type application are part of the term language,
reflected in types. GSF gradualizes type information, not term structure.
Simple statics: GSF embodies the complexity of dynamically enforcing parametricity solely in
its dynamic semantics; its static semantics is as straightforward as possible.
Natural precision: Precision is intended to capture the level of static typing information of a
gradual type, with ? as the most imprecise, and static types as the most precise [Siek et al. 2015a].
GSF preserves this simple intuition.

4.3 Properties

Regarding the challenges and properties discussed previously, here is where GSF stands (Table 1):

Type safety: GSF is type safe, meaning all programs either evaluate to a value, halt with a runtime
error, or diverge. Well-typed GSF terms do not get stuck.
Parametricity: GSF enforces a notion of gradual parametricity (Section 10), directly inspired by
λB [Ahmed et al. 2017].
Conservative extension: GSF is a conservative extension of System F: both languages coincide
in their static and dynamic semantics for fully static programs.
Embedding of a dynamic language: We show that a standard dynamically-typed language can
be embedded in GSF. While novel, this result is not particularly surprising. More interestingly, we
prove that GSF can embed a dynamically-typed language with runtime sealing primitives [Sumii
and Pierce 2004] (Section 11).
Static gradual guarantee: By virtue of the simple statics principle stated above, GSF satisfies
the static gradual guarantee, i.e., typeability is monotonic with respect to the natural notion of
precision.
Dynamic gradual guarantee: GSF does not satisfy the dynamic gradual guarantee (DGG) for
the natural notion of precision, but it does satisfy a weaker DGG (Section 9).
Harmless imprecise ascriptions: The weak DGG satisfied by GSF, in particular, implies that
imprecise ascriptions are harmless.
Faithful type instantiations: GSF enforces type instantiations of imprecise types.
Expressive imprecision: GSF soundly supports imprecise higher-order polymorphic patterns,
bridging the gap towards System Fω .
Polymorphic interoperability: GSF, like System F and PolyGν , only supports explicit polymor-
phism. This means that certain desirable interoperability scenarios are not supported.

As will be clear by the end of this article, the conflict between the DGG and parametricity in a
setting that respects the type-driven approach to sealing seems extremely challenging to address,
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if at all possible. Doing so would require significant changes to the semantics of GSF. In contrast,
we believe that the limitation regarding polymorphic interoperability is minor—see illustration
and discussion below.

4.4 GSF in Action

We now briefly illustrate GSF in action with a number of examples that correspond to the main
properties of the language. Other illustrative examples are available with the online interactive
prototype. The different sections of the rest of this paper also come back to such representative
examples as needed.

First, System F programs are GSF programs, and behave as expected:

let f : ∀X .X → X = ΛX.λx:X.x in (f [Int] 1) + 1 ----> 2

GSF enforces gradual parametricity. Recall the example from Section 2.3:

let g: ? = λa:?.λb:?.if b then a else a + 1 in

let f: ∀X.X→X = ΛX.λx:X.g x v in

f [Int] 10

As expected, if v is true, the program reduces to 10, and if v is false, the program fails with a
runtime error when the body of the function g attempts to perform an addition, since this type-
specific operation is a violation of parametricity.

In GSF, the natural notion of precision is used for typing, meaning that the following program
is a less precise version than the System F program given at the beginning of this section. Also,
imprecise ascriptions on values are harmless:

let f : ∀X .X → ? = ΛX.λx:X.x in (f [Int] 1) + 1 ----> 2

However, as pointed out in the introduction, GSF does not satisfy the dynamic gradual guarantee
relative to the natural notion of precision. Consider the following programs:

(ΛX.λx:X.x :: X) [Int] 1 ----> 1

(ΛX.λx:?.x :: X) [Int] 1 ----> error

Using the natural notion of term precision, the former is more precise than the latter. Therefore, the
dynamic gradual guarantee mandates that less precise term should also reduce to a value, instead
of failing. Section 9.1 explains the reason for this behavior, after having presented the dynamic
semantics of GSF in detail.

GSF enforces type instantiations even when applied to an imprecisely-typed value:

let g : ? = ΛX.λx:X.x in g [Int] true ----> error

GSF soundly augments the expressiveness of System F to higher-order polymorphic code:

let t : (∀X .?) → ? = λx:(∀X .?).x [Int] in (t id) 1 ----> 1

let t : (∀X .?) → ? = λx:(∀X .?).x [Int] in (t id) true ----> error

In GSF, we can exploit the underlying runtime sealing mechanism used to enforce gradual
parametricity in order to emulate the runtime sealing primitives of the cryptographic lambda
calculus [Sumii and Pierce 2004] (Section 11). Indeed, we can define a pair of functions of type
∀X .(X → ?) × (? → X ). The first component of the pair is a function of type X → ?, which intu-
itively justifies sealing the argument (of type X ) at runtime, but not unsealing the returned value
(of type ?). Dually, the type of the second component is ? → X , which only justifies unsealing the
returned value. The underlying mechanism ensures that the unsealing function only succeeds if
its argument was sealed by the first function:
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let p : ∀X .(X → ?) × (? → X ) = ΛX. 〈λx:X.x::?, λx:?.x::X 〉 in

let su = p [?] in let seal = fst su in let unseal = snd su in

(unseal (seal 1)) + 1 ----> 2

On the second line, p [?] creates a fresh pair of functions with an underlying type name that
acts as the runtime sealing key: therefore, seal seals the value 1, and unseal unseals it. The whole
program reduces to 2. Unsealing the sealed value with any other generated unsealing function, or
attempting to add directly to the sealed value, yields a runtime error.

Another extension of GSF studied in this article is that of existential types (Section 12), which are
the foundation of data abstraction and information hiding [Mitchell and Plotkin 1988]. As an exam-
ple, consider a semaphore abstract datatype (ADT) with operations: bit to create a semaphore,
flip to produce a semaphore in the inverted state, and read to consult the state of the semaphore.
This interface can be expressed with the existential type Sem � ∃X .{X ,X → X ,X → Bool}. Con-
sider the embedding of an untyped implementation of a semaphore, u, which is then declared to
have the static existential type Sem, using the unknown type ? as the representation type:

let u : ? = �{bit = true ,flip = λx.not x,read = λx.x}� in

let t : Sem = pack 〈?, t 〉 as Sem in

unpack 〈X,x 〉 = t in x.read (x.flip arg )

If arg is x.bit, then the program runs properly without error, yields false. But, if the programmer
tries to violate type abstraction by passing a boolean value such as true for arg , a runtime error
is raised. Gradual existential types accommodate a variety of scenarios, including both imprecise
ADT signatures and implementations. As we will see, gradual parametricity also allows proving
representation independence results between gradual ADTs.

Regarding the limitation of GSF regarding polymorphic interoperability, the following program
fails at runtime:

let g : ? = λx:(∀.X .X → X ).x [Int] 1

let h : ? = λx:?.x

g h

The runtime error is raised when g is applied to h, because ? → ? (the “underlying type” of h) is not
consistent with the polymorphic function type ∀X .X → X . In certain simple scenarios, it is possi-
ble to address this limitation by manually introducing type abstractions or applications, however
a more systematic and generally applicable mechanism is definitely desirable. We are studying an
extension of GSF with a dynamic adaptation mechanism that addresses polymorphic interoperabil-
ity. In essence, in the scenario above, the runtime system automatically wraps a type abstraction
around h instead of failing at the application. A dual adaptation occurs for missing type applica-
tions. We conjecture that this mechanism would enable GSF to smoothly support interaction with
untyped code, but the full development of this technique is left for future work.

5 PRELIMINARY: THE STATIC LANGUAGE SF

We systematically derive GSF by applying AGT to a largely standard polymorphic language similar
to System F, called SF (Figure 1). In addition to the standard System F types and terms, SF includes
base types B inhabited by constants b, typed using the auxiliary function ty, and primitive n-ary
operations op that operate on base types and are given meaning by the function δ . SF also includes
pairs 〈t1, t2〉, and the associated projection operations πi (t),6 as well as type ascriptions t :: T .

The statics are standard. The typing judgment is defined over three contexts: a type name store Σ
(explained below), a type variable set Δ that keeps track of type variables in scope, and a standard

6We omit the constraint i ∈ { 1, 2 } when operating on pairs throughout this paper.
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Fig. 1. SF: Static polymorphic language with runtime type generation.
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type environment Γ that associates term variables to types. We adopt the convention of using
partial type functions to denote computed types in the rules: dom and cod for domain and codomain
types, inst for the resulting type of an instantiation, and proji for projected types. These partial
functions are undefined if the argument is not of the appropriate shape. We also make the use of
type equality explicit as a premise whenever necessary. These conventions are helpful for lifting
the static semantics to the gradual setting [Garcia et al. 2016]. For closed terms, we write ·; ·; · � t :
T , or simply � t : T .

The dynamics are standard call-by-value semantics, specified using reduction frames. The only
peculiarity is that they rely on runtime type generation. The decision of using type names instead
of the traditional substitution semantics is in anticipation of gradualization, and based on prior
work that has shown that runtime type generation is key in order to be able to dynamically distin-
guish between different type variables instantiated with the same type [Ahmed et al. 2011, 2017;
Matthews and Ahmed 2008]. We follow the approach already in SF because we want the dynamics
and type soundness argument of the static language to help us with GSF, as afforded by AGT [Gar-
cia et al. 2016]. Specifically, upon type application, a fresh type name α is generated and bound
to the instantiation type T in a global type name store Σ . A type name store Σ maps type names
to types; source terms before reduction are typechecked with an empty name store. The notion of
reduction and reduction rules all carry along the type name store. While type names only occur at
runtime, and not in source programs, reasoning about SF terms as they reduce requires accounting
for programs with type names in them. This is why the typing rules are defined relative to a type
name store as well. Similarly, type equality is relative to a type name store: a type name α is con-
sidered equal to its associated type in the store. The recursive definition of equality modulo type
names is necessary to derive equalities [Igarashi et al. 2017a]. For instance, in the reduction of the
well-typed program (id [Int → Int]) (id [Int]), where id is the polymorphic identity function, the
equality α := Int → Int, β := Int; Δ � α = β → β should be derivable.

Rules in Figure 1 appeal to auxiliary well-formedness judgments, omitted for brevity. A type
T is well-formed (Σ; Δ � T ) if it only contains type variables in the type variable environment Δ,
and type names bound in a well-formed type name store. A type name store is well-formed (� Σ)
if all type names are distinct, and associated to types that are well-formed with respect to Σ and
the empty type variable environment. A type environment Γ binds term variables to types, and is
well-formed (Σ; Δ � Γ) if all types are well-formed.

Unsurprisingly, SF is type safe, and all well-typed terms are parametric. These results also follow
from the properties of GSF, and the strong relation between both languages.

6 GSF: STATICS

The first step of the Abstracting Gradual Typing methodology (AGT) is to define the syntax
of gradual types and give them meaning through a concretization function to the set of static
types they denote. Then, by finding the corresponding abstraction function to establish a Galois
connection, the static semantics of the static language can be lifted to the gradual setting.

6.1 Syntax and Syntactic Meaning of Gradual Types

We introduce the syntactic category of gradual typesG ∈ GType, by admitting the unknown type
in any position, namely:

G ::= B | G → G | ∀X .G | G ×G | X | α | ?

Observe that static types T are syntactically included in gradual types G.
The syntactic meaning of gradual types is straightforward: the unknown type represents

any type, and a precise type (constructor) represents the equivalent static type (constructor).
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Fig. 2. Type concretization (C) and abstraction (A).

For example, Int → ? denotes the set of all function types from Int to any static type. Perhaps
surprisingly, we can simply extend this syntactic approach to deal with universal types, type
variables, and type names; the concretization function C is defined in Figure 2. Note that the
definition is purely syntactic and does not even consider well-formedness (? stands for any static
type); notions built above concretization, such as consistency, will naturally embed the necessary
restrictions (Section 6.2). Crucially, choosing to let ? stand for any static type means that ? can in
particular stand for a type variable X (because X ∈ C (?)). Therefore, the gradual type ∀X .? → X
includes in its denotation the static types ∀X .X → X (the identity function), ∀X .Int → X (a
function that always fails when applied), ∀X .(X ∗ X ) → X (a function that given a pair returns
the first or second projection), and so on.

Following the abstract interpretation framework, the notion of precision is not subject to tailor-
ing: precision coincides with set inclusion of the denoted static types [Garcia et al. 2016].

Definition 6.1 (Type Precision). G1 � G2 if and only if C (G1) ⊆ C (G2).

Proposition 6.2 (Precision, Inductively). The inductive definition of type precision given in
Figure 3 is equivalent to Definition 6.1.

Observe that both ∀X .X → ? and ∀X .? → X are more precise than ∀X .? → ?, and less precise
than ∀X .X → X , thereby reflecting the original intuition about precision [Siek and Taha 2006;
Siek et al. 2015a]. Also ∀X .? → ? and ? → ? are unrelated by precision, since they correspond
to different constructors (and GSF is a language with explicit polymorphism); they are both more
precise than ?, of course.

Dual to concretization is abstraction, which produces a gradual type from a non-empty set of
static types.7 The abstraction function A is direct (Figure 2): it preserves type constructors and
falls back on the unknown type whenever a heterogeneous set is abstracted. A is both sound and
optimal: it produces the most precise gradual type that over-approximates a given set of static types.

Proposition 6.3 (Galois Connection). 〈C,A〉 is a Galois connection, i.e.:
(a) (Soundness) for any non-empty set of static types S = {T }, we have S ⊆ C (A(S))
(b) (Optimality) for any gradual type G, we have A(C (G)) � G.

The notion of precision induces a notion of precision meet between gradual types, which coin-
cides with the abstraction of the intersection of both concretizations [Garcia et al. 2016].

Definition 6.4 (Precision Meet). G1 �G2 � A(C (G1) ∩C (G2)).

7There is no gradual type that denotes an empty set of static types; rather, the empty set corresponds to an error [Garcia
et al. 2016].
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Proposition 6.5 (Meet, Inductively). The inductive definition of meet below is equivalent to
Definition 6.4.

B � B = B X � X = X

G1 �G ′
1 = G

′′
1 G2 �G ′

2 = G
′′
2

(G1 → G2) � (G ′
1 → G ′

2) = G
′′
1 → G ′′

2

G1 �G ′
1 = G

′′
1

(∀X .G1) � (∀X .G ′
1) = ∀X .G ′′

1

G1 �G ′
1 = G

′′
1 G2 �G ′

2 = G
′′
2

(G1 ×G2) � (G ′
1 ×G ′

2) = G
′′
1 ×G ′′

2
α � α = α

G � ? = G ? �G = G

6.2 Lifting the Static Semantics

The key point of AGT is that once the meaning of gradual types is agreed upon, there is no space
for ad hoc design in the static semantics of the language. The abstract interpretation framework
provides us with the definitions of type predicates and functions over gradual types, for which we
can then find equivalent inductive or algorithmic characterizations.

In particular, a predicate on static types induces a counterpart on gradual types through existen-
tial lifting. Our only predicate in SF is type equality, whose existential lifting is type consistency:

Definition 6.6 (Consistency). Ξ; Δ � G1 ∼ G2 if and only if Σ; Δ � T1 = T2 for some Σ ∈ C (Ξ),
Ti ∈ C (Gi ).

For closed types we write G1 ∼ G2. This definition uses a gradual type name store Ξ, which
binds type names to gradual types. Its concretization is the pointwise concretization:

C (·) = ∅ C (Ξ,α := G) = { Σ,α := T | Σ ∈ C (Ξ),T ∈ C (G) }

Note that because consistency is the consistent lifting of static type equality, which does impose
well-formedness, consistency is only defined on well-formed types (i.e., ·; · � X ∼ X does not hold).

Proposition 6.7 (Consistency, Inductively). The inductive definition of type consistency given
in Figure 3 is equivalent to Definition 6.6.

Again, observe that the resulting definition of consistency relates any two types that only differ
in unknown type components, without any restriction. Also, because of explicit polymorphism,
top-level constructors must match, so ? → ? is not consistent with ∀X .? → ?. However, in line
with gradual typing, both are consistent with ?, as expected. Therefore GSF does not treat ? → ? as
a special “quasi-polymorphic” type, unlike System FG [Igarashi et al. 2017a]. Rather, consistency
in GSF coincides with that of CSA [Xie et al. 2018].

Lifting type functions such as dom requires abstraction: a lifted function is the abstraction of
the results of applying the static function to all the denoted static types [Garcia et al. 2016]:

Definition 6.8 (Consistent Lifting of Functions). Let Fn be a function of type Typen → Type. Its

consistent lifting F �
n , of type GTypen → GType, is defined as: F �

n (G) = A({ Fn(T ) | T ∈ C (G) })

The abstract interpretation framework allows us to prove the following definitions:

Proposition 6.9 (Consistent Type Functions). The definitions of dom� , cod� , inst� , and proj�i
given in Figure 3 are consistent liftings, as per Definition 6.8, of the corresponding functions from
Figure 1.
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Fig. 3. GSF: Syntax and static semantics.

The gradual typing rules of GSF (Figure 3) are obtained by replacing type predicates and func-
tions with their corresponding liftings. Note that in (Gapp), the premise Ξ; Δ � dom�(G1) ∼ G2 is
a compositional lifting of the corresponding premise in (Tapp), as justified by Garcia et al. [2016].
Of particular interest here is the fact that a term of unknown type can be optimistically treated
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as a polymorphic term and hence instantiated, yielding ? as the result type of the type applica-
tion (inst�(?,G ′) = ?). In contrast, a term of function type, even imprecise, cannot be instantiated
because the known top-level constructor does not match (e.g., inst�(? → ?,G ′) is undefined).

6.3 Static Properties of GSF

As established by Siek and Taha [2006] in the context of simple types, we can prove that the GSF
type system is equivalent to the SF type system on fully-static terms. We say that a gradual type
is static if the unknown type does not occur in it, and a term is static if it is fully annotated with
static types. Let �S denote the typing judgment of SF.8

Proposition 6.10 (Static Eqivalence for Static Terms). Let t be a static term andG a static
type (G = T ). We have �S t : T if and only if � t : T .

The second important property of the static semantics of a gradual language is the static gradual
guarantee, which states that typeability is monotonic with respect to precision [Siek et al. 2015a].

Type precision (Definition 6.1) extends to term precision. A term t is more precise than a term
t ′ if they both have the same structure and t is more precisely annotated than t ′. This means that
term precision is essentially syntactic, instead of semantic as considered by New et al. [2020]. For
example, t �� t :: ? syntactically, because the two terms do not have the same syntactic structure,
but t :: G � t :: ?, where � t : G.

The static gradual guarantee ensures that removing type annotations does not introduce type
errors (or dually, that gradual type errors cannot be fixed by making types more precise).

Proposition 6.11 (Static Gradual Guarantee). Let t and t ′ be closed GSF terms such that
t � t ′ and � t : G. Then � t ′ : G ′ and G � G ′.

7 GSF: EVIDENCE-BASED DYNAMICS

We now turn to the dynamic semantics of GSF. As anticipated, this is where the complexity of
gradual parametricity manifests. Still, in addition to streamlining the design of the static semantics,
AGT provides effective (though incomplete) guidance for the dynamics. In this section, we first
briefly recall the main ingredients of the AGT approach to dynamic semantics, namely evidence
for consistent judgments and consistent transitivity. We then describe the reduction rules of GSF
by treating evidence as an abstract datatype. This allows us to clarify a number of key operational
aspects before turning in Section 8 to the details of the representation and operations of evidence
that enable GSF to satisfy parametricity while adequately tracking type instantiations.

7.1 Background: Evidence-Based Semantics for Gradual Languages

For obtaining the dynamic semantics of a gradual language, AGT augments a consistent judgment
(such as consistency or consistent subtyping) with the evidence of why such a judgment holds.
Then, reduction mimics proof reduction of the type preservation argument of the static language,
combining evidences through steps of consistent transitivity, which either yield a more precise
evidence, or fail if the evidences to combine are incompatible.9 A failure of consistent transitivity
corresponds to a cast error in a traditional cast calculus [Garcia et al. 2016].

Consider the gradual typing derivation of (λx : ?.x + 1) false. In the inner typing derivation
of the function, the consistent judgment ? ∼ Int supports the addition expression, and at the top-
level, the judgment Bool ∼ ? supports the application of the function to false. When two types

8As usual, the main propositions are stated over closed terms, but are proven as corollaries of statements over open terms.
All statements over open terms can be found in the companion technical report.
9In this paper, we refer to the evidence of a consistent judgment as a countable entity. Therefore, we use the plural evidences,
following the accepted use in academic English [Oxford 2021], instead of writing pieces of evidence or evidence objects.
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are involved in a consistent judgment, we learn something about each of these types, namely the
justification of why the judgment holds. This justification can be captured by a pair of gradual
types, ε = 〈G1,G2〉, which are at least as precise as the types involved in the judgment [Garcia
et al. 2016]. (Throughout this article, we use the blue color for evidence ε to enhance readability
of the structure of terms.)

ε � G1 ∼ G2 ⇐⇒ ε � A2({〈T1,T2〉 | T1 ∈ C (G1),T2 ∈ C (G2),T1 = T2})

where A2({〈Ti1,Ti2〉}) = 〈A({Ti1}),A({Ti2})〉

i.e., if evidence 〈G ′
1,G

′
2〉 justifies the consistency judgmentG1 ∼ G2, thenG ′

1 � G1 andG ′
2 � G2. For

instance, by knowing that ? ∼ Int holds, we learn that the first type can only possibly be Int, while
we do not learn anything new about the right-hand side, which is already fully static. Therefore
the evidence of that judgment is ε1 = 〈Int, Int〉. Similarly, the evidence for the second judgment is
ε2 = 〈Bool,Bool〉. Types in evidence can be gradual, e.g., 〈? → ?, ? → ?〉 justifies that (? → ?) ∼ ?.
Note that with the lifting of simple static type equality, both components of the evidence always
coincide, so evidence can be represented as a single gradual type. But for an asymmetric relation
such as subtyping, both components are not the same [Garcia et al. 2016]; e.g., suppose A <: B,
then 〈A,B〉 justifies thatA is a consistent subtype of B. Similarly, type equality in SF is more subtle
because it is relative to a type name store (Section 5), so the general presentation of evidence as
pairs is also required. As an informal example, 〈Int,α〉 justifies that Int ∼ α relative to a store in
which α is instantiated to Int; this will be explained in detail in Section 8.1.

At runtime, reduction rules need to combine evidences in order to either justify or refute a use
of transitivity in the type preservation argument. In our example, we need to combine ε1 and ε2

in order to (try to) obtain a justification for the transitive judgment, namely that Bool ∼ Int. The
combination operation, called consistent transitivity �, determines whether two evidences support
the transitivity: here, ε2 � ε1 = 〈Bool,Bool〉 � 〈Int, Int〉 is undefined, so a runtime error is raised.

The evidence approach is very general and scales to disciplines where consistent judgments
are not symmetric, involve more complex reasoning, and even other evidence combination opera-
tions [Garcia et al. 2016; Lehmann and Tanter 2017]. All the definitions involved are justified by the
abstract interpretation framework. Also, both type safety and the dynamic gradual guarantee be-
come straightforward to prove. In particular, the dynamic gradual guarantee follows directly from
the monotonicity (in precision) of consistent transitivity. In fact, the generality of the approach
even admits evidence to range over other abstract domains; for instance, for gradual security typ-
ing with references, evidence is defined with label intervals, not gradual labels [Toro et al. 2018].

7.2 Reduction for GSF

In order to denote reduction of (evidence-augmented) gradual typing derivations, Garcia et al.
[2016] use intrinsic terms as a notational device; while appropriate, the resulting description
is fairly hard to comprehend and unusual, and it does implicitly involve a (presentational)
transformation from source terms to their intrinsic representation. In this work, we simplify the
exposition by avoiding the use of intrinsic terms; instead, we rely on a type-directed, straightfor-
ward translation to GSFε , a simple variant of GSF in which all values are ascribed, and ascriptions
carry evidence. The translation, described formally below (Section 7.3), inserts explicit ascriptions
everywhere consistency is used—very much in the spirit of the coercion-based semantics of
subtyping [Pierce 2002].

For instance, the small program of Section 7.1 above, (λx : ?.x + 1) false, is translated to:

(ε?→Int(λx : ?.(ε1x :: Int) + (εInt1 :: Int)) :: ? → Int) (ε2(εBoolfalse :: Bool) :: ?)
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where εG is the evidence of the reflexive judgment G ∼ G (e.g., εInt supports Int ∼ Int). Evidences
ε1 = 〈Int, Int〉 and ε2 = 〈Bool,Bool〉 are the ones from Section 7.1. Recall that ε1 is evidence of
the consistency judgment ? ∼ Int, where ? is the type of x , and Int comes from the ascription;
likewise ε2 is evidence of the consistency judgment Bool ∼ ?. Such initial evidences are computed
by means of an interior function I, given by the abstract interpretation framework [Garcia et al.
2016]: in this setting, the interior coincides with the precision meet (Section 6.1), i.e., I(G1,G2) =

〈G1 �G2,G1 �G2〉.
This translation preserves the essence of the AGT dynamics approach in which evidence

and consistent transitivity drive the runtime monitoring aspect of gradual typing. Furthermore,
by making the translation explicitly ascribe all base values to their base type, GSFε can fea-
ture a uniform syntax and greatly simplified reduction rules, compared to the original AGT
exposition. This presentation also streamlines the proofs by reducing the number of cases to
consider.

Figure 4 presents the syntax and semantics of GSFε , a simple variant of GSF in which all values
are ascribed, and ascriptions carry evidence. Key changes with respect to Figure 3 are highlighted
in gray. Here, we treat evidence as a pair of elements of an abstract datatype; we define its actual
representation (and operations) in the next section.

As we will see in Section 7.3, the translation from GSF to GSFε introduces explicit ascriptions
everywhere consistency is used, leaving rule (Easc) as the only remaining use of consistency in
the typing rules. The evidence of the term itself supports the consistency judgment in the premise.
All other rules require types to match exactly; the translation inserts ascriptions to ensure that
top-level constructors match in every elimination form.

The notion of reduction for GSFε terms deals with evidence propagation and composition with
consistent transitivity. Rule (Rasc) specifies how an ascription around an ascribed value reduces
to a single value if consistent transitivity holds: ε1 justifies that Gu ∼ G1, where Gu is the type
of the underlying simple value u, and ε2 is evidence that G1 ∼ G2. The composition via consistent
transitivity � justifies thatGu ∼ G2; if the composition is undefined, reduction steps to error. Rule
(Rop) simply strips the underlying simple values, applies the primitive operation, and then wraps
the result in an ascription, using a canonical base evidence εB (which trivially justifies that B ∼ B).
Rule (Rapp) combines the evidence from the argument value ε2 with the domain evidence of the
function value dom(ε1) in an attempt to transitively justify that Gu ∼ G11. Failure to justify that
judgment, as in our example in Section 7.1, produces error. The return value is ascribed to the
expected return type, using the codomain evidence of the function cod(ε1). Rule (Rpair) produces
a pair value when the subterms of a pair have been reduced to values themselves, using the
product operator on evidences ε1 × ε2. This rule is necessary to enforce a uniform presentation
of all values as ascribed values, which simplifies technicalities. Dually, Rule (Rproji) extracts
a component of a pair and ascribes it to the projected type, using the corresponding evidence
obtained with pi (ε) (not to be confused with πi (ε), which refers to the first or second projection
of evidence, itself a metalanguage pair).

Apart from the presentational details, the above rules are standard for an evidence-based re-
duction semantics. Rule (RappG) is the rule that specifically deals with parametric polymorphism,
reducing a type application.

Ξ � (εΛX .t :: ∀X .G) [G ′] −−→ Ξ ′ � εout(ε[α̂]t[α̂/X ] :: G[α/X ]) :: G[G ′/X ]

where Ξ ′ � Ξ,α := G ′ for some α � dom(Ξ) and α̂ = liftΞ′ (α)

This is where most of the complexity of gradual parametricity concentrates. Observe that there
are two ascriptions in the produced term:
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Fig. 4. GSFε : Syntax, static and dynamic semantics.

• The inner ascription (to G[α/X ]) is for the body of the polymorphic term, asserting that
substituting a fresh type name α for the type variable X preserves typing. The associated
evidence ε[α̂] is the result of instantiating ε (which justifies that the actual type of ΛX .t is
consistent with ∀X .G) with the fresh type name, hence justifying that the body after substi-
tution is consistent with G[α/X ]. The operator liftΞ′ (α), and substitution operations t[α̂/X ]

and ε[α̂] are left abstract for now (as evidence is abstract) and defined later in Section 8.2.
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• The outer ascription asserts that G[α/X ] is consistent with G[G ′/X ], witnessed by evidence
εout . We define εout in Section 8.2 below, once the representation of evidence is introduced.

Instead of using these two evidences, we could have used directly their composition, ε[α̂] � εout .
But the approach used here makes the definition of the logical relation clearer and the proofs easier.

The use of α̂ is a technicality: because so far we treat evidence as an abstract datatype from
an as-yet-unspecified domain, say pairs of EType, we cannot directly use gradual types (GType)
inside evidences. The connection between GType and EType is specified by lifting operators, liftΞ :
GType → EType and unlift : EType → GType.10 We define these operators later (Figure 6), after
the structure of evidences has been explained in detail. Because type names have meaning related
to a store, the lifting is parameterized by the store Ξ. Type substitution in terms is mostly standard:
it uses unlift to recover α , and is extended to substitute recursively in evidences. Substitution
in evidence, also triggered by evidence instantiation, is simply component-wise substitution on
evidence types. Both substitution operators are formally defined later (Figure 7).

Finally, the evaluation frames and associated reduction rules in Figure 4 are straightforward; in
particular (Rerr) and (Rf err) propagate error to the top-level.

7.3 Elaborating GSF to GSFε

Figure 5 defines the type-preserving translation from GSF to GSFε by using two mutually-defined
translations: � translates GSF terms to GSFε terms, and �v translates GSF values to GSFε raw
values. Raw values are treated separately as they are not values (and thus not terms) and must be
ascribed upon translation. The translation follows naturally from the typing rules of GSF. We use
metavariablev in GSF to range over constants, functions, type abstractions and pairs ofv , and use
�v to translate them to raw values u. Rule (Gu) and (Gascu) translate a value v and an ascribed
value in GSF, respectively, to a GSFε value, using�v , producing a new ascribed raw value, i.e., a
value. Note that we could have translated GSF values v to GSFε values directly but it would have
generated redundant ascriptions such as b :: Bool � εBool(εBoolb :: Bool) :: Bool. Note that these
rules use the interior I to calculate the initial evidence. The rule (Gasct) is similar to (Gascu), but
it uses� to translate GSF terms that are not values. Rules (Gapp), (GappG) and (Gpairi) use type
matching � [Cimini and Siek 2016] to ascribe subterms of type ? in elimination positions to the
corresponding top-level type constructor, e.g., ∀X .? for a type application, and ? → ? for a function
application. For subterms of a more precise type, type matching is the identity. Note that in (Gapp),
the argument is also ascribed to the type of the domain G ′

1 obtained during type matching.
We can show straightforwardly by induction on typing judgments that the translation preserves

typing (Lemma 7.1).

Lemma 7.1 (Translation Preserves Typing). Let t be a GSF term. If Δ; Γ � t : G then Δ; Γ �

t � tε : G and Δ; Γ � tε : G.

8 EVIDENCE FOR GRADUAL PARAMETRICITY

As highlighted in Section 7, AGT provides effective (though incomplete) guidance for the dynam-
ics. The dynamic semantics obtained by applying AGT ensure type safety, but unfortunately not
parametricity. Ensuring parametricity requires a refined representation of evidence and definition
of consistent transitivity. This can be considered as a shortcoming of the AGT methodology, al-
ready observed in the context of security typing [Toro et al. 2018]: some properties of the static
language may not be preserved by gradualization. We first explain in Section 8.1 why the standard
representation of evidence as pair of gradual types is insufficient for gradual parametricity. We

10In standard AGT [Garcia et al. 2016] the lifting is simply the identity, i.e., EType = GType.
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Fig. 5. Translation from GSF to GSFε .

then introduce the refined representation of evidence to enforce parametricity (Section 8.2), and
basic properties of the language. Richer properties of GSF are discussed in Sections 9 and 10.

8.1 Simple Evidence, and Why It Fails

In standard AGT [Garcia et al. 2016], evidence is simply represented as a pair of gradual types:
an evidence ε is of the form 〈G1,G2〉. The two constituents of an evidence are not necessarily the
same, e.g., when considering non-symmetric judgments such as subtyping. Consistent transitivity
is defined through the abstract interpretation framework. Write ε � J to denote that ε justifies the
consistent judgment J . The definition of consistent transitivity for simple types is as follows:

Definition 8.1 (Consistent Transitivity for Simple Type Equality [Garcia et al. 2016]). Suppose εab �
Ga ∼ Gb and εbc � Gb ∼ Gc . Evidence for consistent transitivity is deduced as (εab �εbc ) � Ga ∼ Gc ,
where:

〈G1,G21〉 � 〈G22,G3〉 = A2({〈T1,T3〉 ∈ C (G1) ×C (G3) | ∃T2 ∈ C (G21) ∩C (G22),T1 = T2 ∧T2 = T3})

In words, if defined, the evidence that supports the transitive judgment is obtained by abstracting
over the pairs of static types denoted by the outer evidence types (G1 and G3) such that they are
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connected through a static type common to both middle evidence types (G21 and G22). Note that
for consistent transitivity to be defined,C (G21)∩C (G22) must not be empty. This definition can be
proven to be equivalent to an inductive definition that proceeds in a syntax-directed manner on
the structure of types [Garcia et al. 2016].

Consistent transitivity satisfies some important properties. First, it is associative. Second, the
resulting evidence is more precise than the outer evidence types, reflecting that during evaluation,
typing justification only gets more precise (or fails). Violating this property breaks type safety.
Third, it is monotonic; this property is key for establishing the dynamic gradual guarantee [Garcia
et al. 2016]. Here, an evidence ε is more precise that ε ′, written ε � ε ′, if π1(ε) � π1(ε

′) and
π2(ε) � π2(ε

′).

Lemma 8.2 (Properties of Consistent Transitivity).
(a) Associativity. (ε1 � ε2) � ε3 = ε1 � (ε2 � ε3), or both are undefined.
(b) Optimality. If ε = ε1 � ε2 is defined, then π1(ε) � π1(ε1) and π2(ε) � π2(ε2).
(c) Monotonicity. If ε1 � ε ′1 and ε2 � ε ′2 and ε1 � ε2 is defined, then ε ′1 � ε ′2 is defined and ε1 � ε2 � ε ′1 � ε ′2.

Unfortunately, systematically following the AGT methodology and simply extending the con-
sistent transitivity definition to deal with GSF types and consistency judgments yields a gradual
language that breaks parametricity.11 Let us first adapt the simple definition of consistent transi-
tivity (Definition 8.1) to the GSF consistency judgment, which is stated relative to type names and
type variables environments:

Definition 8.3 (Consistent Transitivity for GSF—Simple Attempt). Suppose εab � Ξ; Δ � Ga ∼ Gb

and εbc � Ξ; Δ � Gb ∼ Gc . Evidence for consistent transitivity is deduced as (εab � εbc ) � Ξ; Δ �

Ga ∼ Gc , where:

〈G1,G21〉 � 〈G22,G3〉 = A2({〈T1,T3〉 ∈ C (G1) ×C (G3) |

∃T2 ∈ C (G21) ∩C (G22) ∧ Σ ∈ C (Ξ) ∧ Σ; Δ � T1 = T2 ∧ Σ; Δ � T2 = T3})

where Σ is the static counterpart of Ξ, i.e., a mapping from type names to static types (Section 6.2).
As previously mentioned, type equality in SF (Figure 1) is more subtle than the simple static type
equality. The general representation of evidence as pairs is required (as opposition to use evidence
as a single type) because each type in the evidence corresponds to each type in the judgment,
which can be different. For example, suppose that α is equal to Int in the store (Ξ = α := Int).
Then 〈Int,α〉 is evidence that Int is consistent with α , given Ξ, i.e.,

〈Int,α〉 � Ξ; · � Int ∼ α

Evidence as a pair of types is crucial in the representation of the outer evidence εout during re-
duction. Remember that if a type abstraction with type ∀X .G is applied to G ′, the resulting εout

justifies that G[α/X ] is consistent with G[G ′/X ], where α is the generated fresh type name. Infor-
mally, if εout � Ξ,α := G ′ � G[α/X ] ∼ G[G ′/X ], then εout is computed as 〈G[α/X ],G[G ′/X ]〉. Thus,
if a type abstraction with type ∀X .X → X is applied to Int, εout is computed as 〈α → α , Int → Int〉,
where εout justifies that (X → X )[α/X ] = α → α is consistent with (X → X )[Int/X ] = Int → Int.
An evidence such as 〈Int,α〉 can be obtained from the domain information of εout , namely dom(εout)

(Section 8.2, Figure 8). Taking this definition of εout into account, we can now illustrate the problem
of the consistent transitivity definition derived by the AGT methodology. Consider the following
simple program:

11The obtained language is type safe, and satisfies the dynamic gradual guarantee. This novel design could make sense to
gradualize impure polymorphic languages, which do not enforce parametricity.
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1 (ΛX.(λx:X.(x :: ? :: ?) + 1)) [Int] 1

The function above is not parametric because it ends up adding 1 to its argument—although it does
so after two intermediate ascriptions to the type ?. Without further precaution, the parametricity
violation of this program would not be detected at runtime. Note that two ascriptions are needed in
order to elaborate the evidence 〈?, ?〉, used below to illustrate the problem. The following reduction
trace illustrates all the important aspects of reduction (assuming that the type application in the
program below generates the fresh name α , bound to Int in the store):

· � (ε∀X .X→Int(ΛX .λx : X .(ε?(εX x :: ?) :: ?) + εInt1 :: Int) :: ∀X .X → Int) [Int] (εInt1 :: Int)
�−−→∗ α := Int � εout (εα→α (λx : α .(ε?(εα x :: ?) :: ?) + εInt1 :: Int) :: α → α ) :: Int → Int (εInt1 :: Int)
�−−→∗ α := Int � εout (λx : α .(ε?(εα x :: ?) :: ?) + εInt1 :: Int) :: Int → Int (εInt1 :: Int)
�−−→∗ α := Int � cod(εout )((ε?(εα ((εInt � dom(εout ))1 :: α ) :: ?) :: ?) + εInt1 :: Int) :: Int
But dom(εout ) = 〈Int, α 〉 and cod(εout ) = 〈Int, Int〉
= α := Int � 〈Int, Int〉((ε?(εα (〈Int, α 〉1 :: α ) :: ?) :: ?) + εInt1 :: Int) :: Int

�−−→∗ α := Int � 〈Int, Int〉((ε?(〈Int, α 〉1 :: ?) :: ?) + εInt1 :: Int) :: Int
�−−→∗ α := Int � 〈Int, Int〉(〈Int, ?〉1 :: ? + εInt1 :: Int) :: Int
�−−→∗ α := Int � 〈Int, Int〉(〈Int, Int〉2 :: Int) :: Int
�−−→∗ α := Int � 〈Int, Int〉2 :: Int

The summary below illustrates the main evidences that arise in the above reduction, showing
the judgment they justify in each case:

ε∀X .X→Int = 〈∀X .X → Int,∀X .X → Int〉 � ·; · � ∀X .X → Int ∼ ∀X .X → Int
εInt = 〈Int, Int〉 � ·; · � Int ∼ Int

ε? = 〈?, ?〉 � ·;X � ? ∼ ?
εX = 〈X ,X 〉 � ·;X � X ∼ ?

εout = 〈α → Int, Int → Int〉 � α := Int; · � α → Int ∼ Int → Int
εα→α = 〈α → α ,α → α〉 � α := Int; · � α → α ∼ α → α

εα = 〈α ,α〉 � α := Int; · � α ∼ ?
〈Int,α〉 � α := Int; · � Int ∼ α
〈Int, ?〉 � α := Int; · � Int ∼ ?

Initially, the first ascription to variable x , namely εXx :: ?, is deemed well-typed thanks to the
following consistent judgment:

εX = 〈X ,X 〉 � ·;X � X ∼ ?

Then, after type application, εout = 〈α → Int, Int → Int〉 justifies that (X → Int)[α/X ] = α →

Int is consistent with (X → Int)[Int/X ] = Int → Int, i.e.,

〈α → Int, Int → Int〉 � α := Int; · � α → Int ∼ Int → Int

Upon application, the argument εInt1 :: Int is ascribed to the expected type of the function α by
combining εInt (εInt � .; . � Int ∼ ?) with the domain information of εout (dom(εout) � .; . � Int ∼ α ).
Using the definition of consistent transitivity (Definition 8.3), 〈Int, Int〉 � 〈Int,α〉 = 〈Int,α〉 � α :=
Int; · � Int ∼ α .12 This operation corresponds to a sealing of the value. The sealed value is then
substituted for x inside the body of the function.

12Following Definition 8.3: Let Ξ = α := Int, 〈Int, Int〉 � 〈Int, α 〉 = A2({ 〈T1, T2 〉 ∈ C (Int) × C (α ) | ∃T2 ∈ C (Int) ∩

C (Int) ∧ Σ ∈ C (Ξ) ∧ Σ ; Δ � T1 = T2 ∧ Σ ; Δ � T2 = T3 }), but C (Int) = {Int} C (α ) = {α }, and C (Ξ) = α := Int. Then
〈Int, Int〉 � 〈Int, α 〉 = A2({ 〈Int, α 〉 | Σ ∈ C (Ξ) ∧ Σ ; Δ � Int = Int ∧ Σ ; Δ � Int = α }) = A2({ 〈Int, α 〉 }) = 〈Int, α 〉.
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For justifying that the value bound to x can be ascribed to ?, we need evidence for Int ∼ ? by
composing the two judgments below using consistent transitivity:

〈Int,α〉 � α := Int; · � Int ∼ α 〈α ,α〉 � α := Int; · � α ∼ ?

Note that the second judgment is obtained by substituting α for X in εX .
Using the definition of consistent transitivity (Definition 8.3), 〈Int,α〉 � 〈α ,α〉 = 〈Int,α〉. Simi-

larly, for justifying the second ascription to ?, 〈Int,α〉 must be combined with the evidence of the
judgment for the second ascription:

〈?, ?〉 � α := Int; · � ? ∼ ?

By Definition 8.3, 〈Int,α〉 � 〈?, ?〉 = A2({ 〈Int, Int〉, 〈Int,α〉 }) = 〈Int, ?〉. This evidence can sub-
sequently be used to produce evidence to justify that the addition is well-typed, since 〈Int, ?〉 �
〈Int, Int〉 = 〈Int, Int〉. Therefore, the program produces 2, without errors: parametricity is violated.

8.2 Refining Evidence

For gradual parametricity, evidence must do more than just ensure type safety. It needs to safeguard
the sealing that type variables are meant to represent, also taking care of unsealing as necessary.
First of all, we need to define evidence to adequately represent consistency judgments of GSF.

Evidence Types. Instead of using gradual types in the representation of evidence, we introduce
evidence types E ∈ EType with the following syntax:

E ::= B | E → E | ∀X .E | E × E | αE | X | ?

Then, we define an evidence ε as a pair of evidence types 〈E1,E2〉. The only difference between
gradual types and evidence types is in type names (highlighted in gray above). SF equality judg-
ments, and hence GSF consistency judgments, are relative to a store. It is therefore not enough
to use type names in evidence: we need to keep track of their associated types in the store. An
evidence type name αE captures the type associated to the type name α through the store. For
instance, evidence that a variable has a polymorphic type X is initially 〈X ,X 〉. When X is instan-
tiated, say to Int, and a fresh type name α is introduced, the evidence becomes 〈α Int,α Int〉. An
evidence type name does not only record the end type to which it is bound, but the whole path.

For instance, α β Int
is a valid evidence type name that embeds the fact that α is bound to β , which

is itself bound to Int.
Note that as a program reduces, evidence can not only become more precise than statically-

used types, but also more than the global store. For instance, it can be the case that α := ? in the
global store Ξ, but that locally, the evidence for α has gotten more precise, such as α Int. We use
the definition liftΞ(G) to enrich a type G with the type information in Ξ (Figure 6), returning an
evidence type E. For instance, a type name is enriched recursively with the type that is instantiated
in the store, liftΞ(α) = α liftΞ (Ξ(α )). Dually, unlifting (unlift(E)) forgets the additional information
related to type instantiations, receiving an evidence type E and returning a gradual type G. For
example, unlift(αE ) = α . In all other cases, both operations recur structurally (Figure 6).

It is crucial to understand the intuition behind the position of type names in a given evidence.
The position of αE in an evidence can correspond to a sealing, an unsealing, or neither. If αE is only
on the right side, e.g., 〈Int,α Int〉, then the evidence is a sealing (here, of Int with α ). Dually, if αE

is only on the left side, e.g., 〈α Int, Int〉, the evidence is an unsealing (here, of Int from α ). Sealing
and unsealing evidences arise through reduction, as will be illustrated later in this section.

Armed with the precise definition of evidence, Figure 7 defines the term, evidence, and evidence
type substitution operations, used in the runtime semantics (Figure 4). Type substitution over a
term is defined inductively over its subterms and their evidences. Observe that type substitution
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Fig. 6. Lifting operations.

Fig. 7. Term and evidence type substitution.

Fig. 8. Auxiliary functions for evidence.

on the annotated types of a term must transform evidence types into gradual types by using the
unlift operator (unlift(αE ) = α ). This occurs in the type substitution on function, ascription, and
type application terms. Type substitution in evidence is defined as the type substitution in each of
its components, and evidence type substitution is defined inductively in the expected way.

Figure 8 defines evidence inversion functions. For instance, if ε justifies that G11 → G12 ∼

G21 → G22, then dom(ε) computes new evidence that justifies thatG21 ∼ G11, and cod(ε) computes
new evidence that justifies that G12 ∼ G22. Similarly, if ε justifies that G11 × G12 ∼ G21 × G22,
then pi (ε) justifies that G1i ∼ G2i . Finally, if εi justifies that G1i ∼ G2i , then ε1 × ε2 justifies that
G11 ×G12 ∼ G21 ×G22.

Consistent Transitivity. With the syntactic enrichment of evidence types, consistent transitivity
can be strengthened to account for sealing and unsealing, ensuring parametricity. Consistent tran-
sitivity is defined inductively in Figure 9. Save for rules (idL) and (idR), these inductive rules are
equivalent to the formal definition of consistent transitivity given by AGT (Def. 8.3). We describe
the interesting rules next.

Rule (unsl) specifies that when a sealing and an unsealing of the same type name meet in the
middle positions of a consistent transitivity step, the type name can be eliminated in order to
calculate the resulting evidence. For instance, 〈Int,α Int〉 � 〈α ?, ?〉 = 〈Int, Int〉 � 〈?, ?〉 = 〈Int, Int〉.
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Fig. 9. Consistent transitivity and evidence precision.

As shown in Section 8.1, it is important for consistent transitivity to not lose precision when
combining an evidence with an unknown evidence. To this end, and contrary to the formal
definition given by AGT shown at the end of Section 8.1, rule (idL) in Figure 9 preserves the left
evidence. Going back to the example of Section 8.1, we now have 〈Int,α Int〉 � 〈?, ?〉 = 〈Int,α Int〉,
instead of 〈Int, ?〉. Because 〈Int,α Int〉 � 〈Int, Int〉 is undefined, reduction steps to error as
desired.

Rule (sealL) shows that when an evidence is combined with a sealing, the resulting evidence is
also a sealing. This sealing can be more precise, e.g., 〈Int, Int〉 � 〈?,α ?〉 = 〈Int,α Int〉.

There is one rule per type constructor. For example, rule (func) corresponds to the function case,
where consistent transitivity is computed recursively with the domain and codomain evidences.
Also, there are symmetric variants for some rules—such as (idR) and (sealR)—in which the left and
right components of each evidence are swapped.

Evidence precision. Precision for evidence and evidence types is defined in Figure 9. The defini-
tion of evidence type precision is defined analogous to the definition of type precision, accounting
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as well for evidence type names αE . We say that a type name is more precise than another if their
bounded types are related by precision.

Properties. Importantly, this refined definition of consistent transitivity preserves associativity
and optimality. It does however break monotonicity, and consequently, the dynamic gradual guar-
antee (we come back to this in Section 9).

Instantiation and Outer Evidence. The reduction rule of a type application (RappG) produces
two evidences. The first one is the instantiation evidence ε[α̂] that justifies that the type of t[α̂/X ]

(G ′′[α/X ]) is consistent with G[α/X ]. The second one is the outer evidence εout that justifies that
G[α/X ] is consistent with G[G ′/X ]:

Ξ � (εΛX .t :: ∀X .G) [G ′] −−→ Ξ ′ � εout (ε[α̂]t[α̂/X ] :: G[α/X ]) :: G[G ′/X ]

where Ξ ′ � Ξ,α := G ′ for some α � dom(Ξ) and α̂ = liftΞ′ (α)

Evidence ε[α̂] is defined as: 〈E1,E2〉[α
E ] = 〈E1[α

E ],E2[α
E ]〉, where the evidence types Ei [α

E ]

are obtained by the type application of Ei to αE . The precise definition of εout is more delicate,
addressing a subtle tension between ensuring the precision required for justifying unsealing when
possible and not introducing new runtime errors when combined.

εout � 〈E∗[α
E ],E∗[E

′]〉 where E∗= liftΞ (unlift(π2(ε))),α
E = liftΞ′ (α),E ′= liftΞ (G ′)

In this definition, ε , α , G ′, Ξ, and Ξ ′ come from rule (RappG). The evidence types E∗[α
E ] and

E∗[E
′] are obtained by the type application of E∗ to αE and E ′, respectively. Observe that E∗

is obtained using the second component of evidence ε , and not using the information of the
first component. This is because ε justifies that ∀X .G ′′ is consistent with ∀X .G, where G ′′ is
the type of the body of the type abstraction, and ∀X .G is the ascribed type. Therefore, evi-
dence ε[α̂] justifies that G ′′[α/X ] is consistent with G[α/X ], where the right (resp. left) com-
ponent of ε[α̂] corresponds to the most precise information about G[α/X ] (resp. G ′′[α/X ]). As
εout must justify that G[α/X ] is consistent with G[G ′/X ], we only use the information of the sec-
ond component of ε (which corresponds to the most precise information about G). To illustrate
this, consider ε = 〈∀X .X → Bool,∀X .X → βBool〉 and ε[α̂] = 〈α Int → Bool,α Int → βBool〉, then
εout = 〈α Int → βBool, Int → βBool〉, and ε[α̂] � εout = εout . If εout would have been constructed using
the first component, then εout = 〈α Int → Bool, Int → βBool〉, but ε[α̂] � εout is not defined. De-
termining E∗ is the key challenge. The roundtrip unlift/lift “resets” the information of evidence
type names to that contained in the store. As previously mentioned, the local information of
evidence can be more precise than in the global store. Therefore, it is not necessarily true that
liftΞ(unlift(π2(ε))) = π2(ε). For example, if we take ε = 〈Int,α Int〉 and Ξ(α) = ?, then π2(ε) = α Int,

unlift(π2(ε)) = α and liftΞ (unlift(π2(ε))) = α ?. This technicality is crucial for proving parametricity
(specifically, the compositionality lemma—see Section 10). It is important to note that although
the first component of evidence εout can lose precision with respect the second component of ε ,
this local loss does not affect the precision of the entire program since evidence ε[α̂] maintains
the precision achieved so far. Furthermore, ε[α̂] � εout never fails: the role of the outer evidence
εout is just to seal arguments supplied to the function, and unseal values returned by the function,
and not to introduce new runtime errors; the possible runtime errors must come from the inner
evidence ε[α̂]. For instance, evidence εout = 〈α Int → α Int, Int → Int〉 seals arguments when they
are combined with dom(〈α Int → α Int, Int → Int〉) = 〈Int,α Int〉, and unseals returned values when
combined with cod(〈α Int → α Int, Int → Int〉) = 〈α Int, Int〉.

Note that εout will never cause a runtime error when combined with the resulting evidence of
the parametric term result because both are necessarily related by precision. Indeed, by (RappG):

Ξ � (εΛX .t :: ∀X .G) [G ′] −−→ Ξ ′ � εout(ε[α̂]t[α̂/X ] :: G[α/X ]) :: G[G ′/X ]
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and by (Rf ):

Ξ ′ � ε[α̂]t[α̂/X ] :: G[α/X ] �−−→
∗ Ξ ′′ � ε ′u :: G[α/X ]

Ξ ′ � εout(ε[α̂]t[α̂/X ] :: G[α/X ]) :: G[G ′/X ] �−−→
∗ Ξ ′ � εout(ε

′u :: G[α/X ]) :: G[G ′/X ]

Since π2(ε
′) � π2(ε[α̂]) � π1(εout), the combination (ε ′ � εout) through transitivity never fails.

Illustration. The following reduction trace illustrates all the important aspects of reduction. Re-
call that we use εG to denote the evidence that justifies the reflexive judgmentG ∼ G. For example,
εα→α justifies the reflexive judgment α→α ∼ α→α under environment Ξ = α := Int.

εα→α � Ξ; · � α→α ∼ α→α

where εα→α = 〈liftΞ(α→α), liftΞ(α→α)〉 = 〈α Int →α Int,α Int →α Int〉

(ε∀X .X→X (ΛX .λx : X .x ) :: ∀X .X →?) [Int] (εInt1 :: Int) initial evidence
(RappG ) �−−→ (〈α Int →α Int, Int→ Int〉(εα→α (λx : α .x ) :: α →?) :: Int→?) (εInt1 :: Int) εout and ε[α̂ ] are computed
(Rasc) �−−→ (〈α Int →α Int, Int→ Int〉(λx : α .x ) :: Int→?) (εInt1 :: Int) consistent transitivity
(Rapp) �−−→ 〈α Int, Int〉(〈Int, α Int 〉1 :: α ) :: ? argument is sealed
(Rasc) �−−→ 〈Int, Int〉1 :: ? unsealing eliminates α

Crucially, the initial evidence of the identity function is fully precise, even though it is ascribed
an imprecise type. Consequently, in the first reduction step above, εout is calculated as:

εout � 〈E∗[α
E ],E∗[E

′]〉 = 〈(∀X .X →X )[α Int], (∀X .X →X )[Int]〉 = 〈α Int →α Int, Int→ Int〉

The application step (Rapp) then gives rise to sealing and unsealing evidences after de-
constructing εout : the inner evidence 〈Int,α Int〉 seals the number 1 at type α , while the outer
evidence 〈α Int, Int〉 allows the subsequent unsealing in the ascription step (Rasc). As a result,
the ascribed identity function yields usable values, because the outer evidence subsequently
takes care of unsealing. This addresses the violation of the dynamic gradual guarantee reported
with λB and System FC in Section 3. Note that if the function explicitly introduced imprecision,
e.g., ΛX .λx : X .(x :: ?), then initial evidence would likewise be imprecise, and deconstructing εout

would not justify unsealing the result anymore. The following reduction trace illustrates all the
important aspects of reduction.

(ε∀X .X→?(ΛX .λx : X .(εX x :: ?)) :: ∀X .X →?) [Int] (εInt1 :: Int) initial evidence
(RappG ) �−−→ (〈α Int →?, Int→?〉(εα→?(λx : α .(εα x :: ?)) :: α →?) :: Int→?) (εInt1 :: Int) type application
(Rasc) �−−→ (〈α Int → ?, Int→?〉(λx : α .(εα x :: ?)) :: Int→?) (εInt1 :: Int) consistent transitivity
(Rapp) �−−→ ε?(εα (〈Int, α Int 〉1 :: α ) :: ?) :: ? argument is sealed
(Rasc) �−−→ ε?(〈Int, α Int 〉1 :: ?) :: ? consistent transitivity
(Rasc) �−−→ 〈Int, α Int 〉1 :: ? unsealing does not occur

We will return to a similar example in Section 9, which studies the dynamic gradual guarantee
and why GSF does not fully satisfy it.

8.3 Basic Properties of GSF Evaluation

The runtime semantics of a GSF term are given by first translating the term to GSFε (noted � t �
tε : G) and then reducing the GSFε term. We write t ⇓ Ξ � v (resp. t ⇓ error) if � t � tε : G
and · � tε �−−→

∗ Ξ � v (resp. · � tε �−−→
∗ error) for some resulting store Ξ. We write Ξ � v : G for

Ξ; ·; · � v : G. We write t ⇑ if the translation of t diverges, and t ⇓ v when the store is irrelevant.
The properties of GSF follow from the same properties of GSFε , expressed using the small-step

reduction relation, due to the fact that the translation� preserves typing. In particular, GSF terms
do not get stuck, although they might produce error or diverge:
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Proposition 8.4 (Type Safety). If � t : G then either t ⇓ Ξ � v with Ξ � v : G, t ⇓ error, or t ⇑.

Proposition 6.10 established that GSF typing coincides with SF typing on static terms. A simi-
lar result holds considering the dynamic semantics. In particular, static GSF terms never produce
error:

Proposition 8.5 (Static Terms do not Fail). Let t be a static term. If � t : T then ¬(t ⇓ error).

This result follows from the fact that all evidences in a static program are static, hence never
gain precision; the initial type checking ensures that combination through transitivity never fails.
This result can be found in the companion technical report.

9 GSF AND THE DYNAMIC GRADUAL GUARANTEE

The previous section clarified several aspects of the semantics of GSF programs, by establishing
type safety, and by showing that static terms do not fail. This section studies the dynamic gradual

guarantee (DGG) [Siek et al. 2015a], also known as graduality [New and Ahmed 2018; New et al.
2020]. In a big-step setting, this guarantee essentially says that if � t : G and t ⇓ v , then for any
t ′ such that t � t ′, we have t ′ ⇓ v ′ for some v ′ such that v � v ′. Intuitively: losing precision is
harmless, or, reducibility is monotonic with respect to precision.

Unfortunately, in order to enforce parametricity (Section 10), and as already alluded to earlier
(Section 8.2), GSF does not satisfy the DGG. First, we exhibit a counterexample, and identify the
non-monotonicity of consistent transitivity as the root cause for this behavior. Then, in order
to better understand the behavior of GSF programs when losing precision, we study a weaker
variant of the DGG—weaker in the sense that it is valid for a stricter notion of precision—first in
GSFε (Section 9.3) and then in GSF. The idea of devising a stricter notion of precision for which a
variant of the DGG can be satisfied was first explored by Igarashi et al. [2017a], even though they
leave the proof of such a result for System FG as a conjecture; here, we formally prove that GSF
satisfies the DGG with respect to the strict notion of precision.

9.1 Violation of the Dynamic Gradual Guarantee in GSF

To show that GSF does not satisfy the dynamic gradual guarantee (DGG), it is sufficient to exhibit
two terms in GSF, related by precision, whose behavior contradicts the DGG. Consider the poly-
morphic identity function idX � ΛX .λx : X .x :: X , and an imprecise variant id? � ΛX .λx : ?.x :: X .
Then idX [Int] 1 ⇓ 1, but id? [Int] 1 ⇓ error, despite the fact that idX [Int] 1 � id? [Int] 1.

Conceptually, it is interesting to shed light on what causes such a violation. Recall that Gar-
cia et al. [2016] prove the DGG for their language using (mostly) the monotonicity of consis-
tent transitivity (Lemma 8.2 (c)) with respect to imprecision. In fact, while not sufficient, we can
prove that monotonicity of consistent transitivity (CT) is a necessary condition for the DGG to
hold. Intuitively, since two successive ascriptions are collapsed via consistent transitivity, a vio-
lation of monotonicity for consistent transitivity immediately implies a violation of monotonic-
ity for reduction, and hence a violation of the DGG. For instance, if t = ε2(ε1u :: G1) :: G2,
t ′ = ε ′2(ε

′
1u

′ :: G ′
1) :: G ′

2, t � t ′ and t �−−→ (ε1 � ε2)u :: G2, then by the DGG, t ′ �−−→ (ε ′1 � ε ′2)u :: G ′
2, and

thus ε ′1 � ε ′2 should be defined.

Proposition 9.1 (¬ Monotonicity of CT ⇒ ¬ DGG). Let ε1 � ε ′1, ε2 � ε ′2, ε1 � G1 ∼ G2,
ε2 � G2 ∼ G3, ε ′1 � G

′
1 ∼ G ′

2, ε ′2 � G
′
2 ∼ G ′

3, where Gi � G ′
i .

If ε1 � ε2 �� ε ′1 � ε ′2, then ∃t � t ′, such that t �−−→ v , t ′ �−−→ v ′ such that v �� v ′.

Journal of the ACM, Vol. 69, No. 5, Article 38. Publication date: October 2022.



38:34 E. Labrada et al.

Proof. Let t � ε2(ε1u :: G2) :: G3, and t ′ � ε ′2(ε
′
1u

′ :: G ′
2) :: G ′

3, for some u � u ′. We know t � t ′.
Let ε1 � ε2 = ε12 and ε ′1 � ε ′2 = ε ′12, then t �−−→ ε12u :: G3 and t ′ �−−→ ε ′12u :: G ′

3, but as ε12 �� ε ′12 then
ε12u :: G3 �� ε ′12u

′ :: G ′
3 and the result holds. �

Garcia et al. [2016] study a language without universal types. But in GSF, because of univer-
sal types, there is an additional monotonicity condition that is necessary for the DGG to hold:
monotonicity of evidence instantiation (EI). Monotonicity of EI states that given two type ab-
stractions related by precision, the new evidences created after type application remain related.
Intuitively, since type application uses evidence instantiation, a violation of monotonicity for
the latter implies a violation of monotonicity for the former, and hence a violation of the DGG.
Formally:

Proposition 9.2 (¬ Monotonicity of EI ⇒ ¬ DGG). Let ε1 � ε2, G1 � G2, Ξ1 � Ξ2, α := G1 ∈

Ξ1, α := G2 ∈ Ξ2, α̂1 = liftΞ1
(α), α̂2 = liftΞ2

(α), and ε1[α̂1] is defined.
If ε1[α̂1] �� ε2[α̂2], or ε1out �� ε2out , then ∃t � t ′, such that t �−−→ v , t ′ �−−→ v ′ such that v �� v ′.

Proof. Let t � (ε1(ΛX .t1) :: ∀X .G ′
1) [G1], and t ′ � (ε2(ΛX .t2) :: ∀X .G ′

2) [G2], for some t1 � t2
and ∀X .G ′

1 � ∀X .G ′
2. We know t � t ′. Also, we know that Ξ1 � t �−−→ Ξ1,α := G1 � ε1out(ε1[α̂1]t

′
1 ::

G ′
1[α/X ]) : G ′

1[G1/X ] and Ξ2 � t
′ �−−→ Ξ2,α := G2 � ε2out(ε2[α̂2]t

′
2 :: G ′

2[α/X ]) : G ′
2[G2/X ], but as

either ε1out �� ε2out or ε1[α̂1] �� ε2[α̂2], then ε1out(ε1[α̂1]t
′
1 :: G ′

1[α/X ]) : G ′
1[G1/X ] �� ε2out(ε2[α̂2]t

′
2 ::

G ′
2[α/X ]) : G ′

2[G2/X ], and the result holds. �

As mentioned in Section 8.2, monotonicity of consistent transitivity is broken by the strength-
ening we impose to enforce parametricity. For instance, consider 〈Int,α Int〉 � 〈Int,α Int〉 and
〈α Int, Int〉 � 〈?, ?〉. By consistent transitivity, 〈Int,α Int〉 � 〈α Int, Int〉 = 〈Int, Int〉 (rule unsl), and
〈Int,α Int〉 � 〈?, ?〉 = 〈Int,α Int〉 (rule idL), but 〈Int, Int〉 �� 〈Int,α Int〉. Therefore, the DGG cannot be
satisfied as such. We later on discuss a tension between our notion of parametricity and the DGG
(Section 10), but first, we look at how to characterize the set of terms for which loss of precision
is indeed harmless in GSF.

9.2 Towards a Weak Dynamic Gradual Guarantee for GSF

One way to accommodate the dynamic gradual guarantee in languages like λB, GSF, and Sys-
tem FG , would be to change the definition of type (and term) precision. This is the approach taken
by Igarashi et al. [2017a], although they do not prove that the DGG holds with this adjusted preci-
sion, and leave it as a conjecture. Dually, if one sticks to the natural notion of precision, as adopted
by both GSF and CSA, and justified by the AGT interpretation, reconciliation might come from
considering other forms of parametricity, or perhaps less flexible gradual language designs [De-
vriese et al. 2018]. Here, inspired by the approach of Igarashi et al. [2017a], we devise an alternative
notion of precision for which the DGG does hold. We call this relation strict precision as it relates
fewer terms than the natural notion of precision. Conversely to Igarashi et al. [2017a], however,
we do not intend strict precision to be the one used to typecheck programs, but only to serve as a
technical device to characterize harmless losses of precision in GSF.

External vs internal losses of precision. First of all, it is important to observe that the violation
of the DGG from the previous section is due to the interaction between polymorphic types and im-
precision, which affects runtime sealing with type names. A first consequence of this observation
is that the simply-typed subset of GSF should enjoy the DGG with respect to the standard notion
of precision. Said differently, strict precision ought to coincide with natural precision on simply-
typed terms. A second consequence is that excluding any loss of precision related to type variables
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would be a sound approximation to characterize when the DGG holds; this corresponds exactly
to the precision relation of System FG [Igarashi et al. 2017a]. However, while this approach would
work for GSF as well, it appears too strict, in that it excludes losses of precision on polymorphic
types which are harmless in GSF.

Intuitively, we observe that in GSF, losing precision internally (i.e., by modifying the types of
binders) has a different impact on reducibility, compared to losing precision externally (i.e., through
imprecise type ascriptions). Specifically, external loss of precision is harmless in GSF when the as-
cribed term is closed with respect to type variables. Therefore any fully-static polymorphic func-
tion that is imprecisely ascribed and used adequately (type-wise) in a gradual context will behave
as expected.13 In practice, this means that in GSF, the fully precise polymorphic identity function
idX � ΛX .λx : X .x :: X and an imprecisely-ascribed variant such as idX? � idX :: ∀X .? → X have
the same behavior—in particular, one can apply idX? to any given type and argument of that type
and successfully obtain back that argument as result. In contrast, as we have seen, the internally-
imprecise function id? � ΛX .λx : ?.x :: X fails when applied, because the argument value is not
sealed on entry, and hence the unsealing on exit is invalid.

Admittedly, this difference in behavior between internal and external losses of precision might
come as a surprise to programmers, but it is the result of type-driven sealing. When applying one
of the functions above, the operational semantics must decide whether or not the value bound to
x ought to be sealed. If the type of x is known to be X , as in idX and idX?, it is clear that the value
should be sealed (with the runtime type name corresponding to X ). However, for id?, the type of x
is ?, so there are two options: not sealing because ? might stand for other types that X , or sealing
because ? might stand for X . Always sealing presents two issues. First, if the function was ΛX .λx :
?.x +1, then the addition would fail at runtime, and we would have another counterexample of the
DGG (because it is less precise than ΛX .λx : Int.x +1). More importantly, we could not know with
respect to which variable one ought to seal. Indeed, consider a slightly more complex function:
ΛX .ΛY .λz : ?.t . Here, always sealing would require deciding whether to seal with (the runtime
names of) X or Y .

This conundrum arises because runtime sealing is type driven, and types can be imprecise. When
faced with an imprecise term binder under a type binder, either options of sealing or not sealing
would expose a failure of the DGG. Optimistically, not sealing has the advantage of avoiding the
ambiguity of which type names to seal with, while still supporting harmless losses of precision
externally for polymorphic values. Note that a language design such as PolyGν in which sealing
and unsealing are independent of the precision of type information can sidestep the problem, by
leaving the task of sealing with explicit terms to programmers (Section 2).

Characterizing strict term precision for GSF. Strict term precision should coincide with nat-
ural precision on simply-typed terms, but how should it behave on the polymorphic fragment of
GSF? We now provide some intuitive characterization of strict term precision, denoted �, based
on the analysis above with the three terms idX , idX?, and id?.

(A) idX � id?

id? presents an internal loss of precision compared to idX , because the term binder changes
from type X to type ?, and fails at runtime when applied.

(B) idX :: ∀X .X → X � idX?

idX? presents an external loss of precision compared to idX :: ∀X .X → X , and does not
fail when applied.

13Our prior work on GSF [Toro et al. 2019] formalizes exactly this result. Here, we go further and establish more general
results, from which this sort of preservation of behavior for ascribed static terms easily follows (Section 10.4).
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Fig. 10. GSF: Strict precision.

(C) idX :: ∀X .X → X � id? :: ∀X .X → X
Although id? presents an internal loss of precision compared to idX , the ascription to

∀X .X → X on id? imposes this parametricity contract, and hence the resulting term does
behave like a proper (static) identity function.

The rest of this section builds upon this informal analysis in order to fully define strict precision
and establish the corresponding dynamic gradual guarantee. Of course, because strict precision
� is more restrictive than standard precision �, the dynamic gradual guarantee that one may
establish with respect to it is weaker; hereafter, we denote it DGG� . The dynamic gradual guarantee
appeals to term reduction, so in Section 9.3 we start by defining strict precision for GSFε , prove
DGG� for GSFε , and conclude by establishing DGG� for GSF. Finally, in Section 9.4 we provide
a characterization of � directly on GSF syntax, i.e., without appealing to elaboration, for which
DGG� holds.

9.3 Weak Dynamic Gradual Guarantee for GSF

Armed with the intuition presented above, we define a strict notion of precision for GSFε , which
closely characterizes GSFε terms for which monotonicity of consistent transitivity holds. While not
sufficient, monotonicity of consistent transitivity is necessary for the DGG to hold, as established
in Proposition 9.1.

Strict precision for gradual types. Strict precision for types (Figure 10) avoids any interference
between runtime sealing and loss of precision. As expected, � coincides with � except for universal
types, type variables and type names: these are not more precise than the unknown type anymore.
For instance, ∀X .X → X � ∀X .X → ? � ?. We say G1 is “more strictly precise” than G2 when
G1 � G2.

Strict precision for evidence. Strict type precision can be naturally lifted to define strict preci-
sion for evidence and evidence types (Figure 10). A type name is more strictly precise than another
if it is bound to a more strictly precise evidence type. Crucially, monotonicity of consistent transi-
tivity holds with respect to �.

Proposition 9.3 (�-Monotonicity of Consistent Transitivity). If ε1 � ε2, ε3 � ε4, and
ε1 � ε3 is defined, then ε1 � ε3 � ε2 � ε4.
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Fig. 11. GSFε : Strict precision.

For illustration purposes, let us recall the counterexample to monotonicity presented in Sec-
tion 9.1. Consider 〈Int,α Int〉 � 〈Int,α Int〉 and 〈α Int, Int〉 � 〈?, ?〉. By consistent transitivity,
〈Int,α Int〉 � 〈α Int, Int〉 = 〈Int, Int〉 (rule unsl), and 〈Int,α Int〉 � 〈?, ?〉 = 〈Int,α Int〉 (rule idL), but
〈Int, Int〉 �� 〈Int,α Int〉. This argument is no longer valid with strict precision, as α Int

� ? and
therefore 〈α Int, Int〉 � 〈?, ?〉.

Strict precision for GSFε terms. Strict precision for GSFε terms relates two possibly-open
terms and their respective types (Figure 11). It is worth noting that types can be related by � or
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� depending on the rule. We use � to relate every type annotation (save for type instantiations),
and � for (almost) every other relation. Note that we could have obtained a simpler definition by
using � everywhere, but the relation would be overly conservative, for instance rejecting example
(C) among many others. Our goal is to design a term precision relation as permissive as possible
(close to the natural term precision relation) such that the DGG is satisfied. The precision judg-
ment Ω � Ξ1 � s1 : G1 � Ξ2 � s2 : G2 denotes that term s1 of typeG1 is more strictly precise than s2

of type G2, under store Ξ1 strictly more precise than Ξ2, and precision relation environment Ω. It
is important to clarify that the judgment Ω � Ξ1 � s1 : G1 � Ξ2 � s2 : G2 does not necessarily imply
thatG1 � G2. In fact, the typesG1 andG2 are related by the more general relation �. Nevertheless,
evidences are the ones that play a crucial role in the term precision relation, which are related in
almost every case by �. Ω binds a term variable to a pair of types related by precision �. The intu-
ition about why we use � and not � in Ω is that as long as evidence are related by �, we can relax
this relation on type annotations. Furthermore, using � on Ω makes the precision relation on terms
overly conservative rejecting example (C) above. Rule (�xε ) establishes Ω � Ξ1�x : G1 � Ξ2�x : G2

if x : G1 � G2 ∈ Ω, and Rule (�λε ) extends Ω with the annotated types of the functions to relate.
Strict term precision is the natural lifting of strict type precision � to terms, except for types

that do not influence evidence in the runtime semantics, namely function argument types and
ascription types: for these, we can use the more liberal type precision relation �. Note that these
types are used to elaborate evidence, but at runtime once evidence is elaborated, they are no longer
relevant, unlike instantiation types which propagate to evidence upon application. For example,
Rule (�ascε ) has the premise G1 � G2. If we imposed a strict precision relation between ascribed
types, then example (B) would not be satisfied as ∀X .X → X � ∀X .? → X . By (�ascε ) we know
that for the elaborated terms ε∀X .X→X idX :: ∀X .X → X � ε∀X .X→X idX :: ∀X .? → X because
evidences are the same (and thus related by �), whereas the type annotations are related by �.
Furthermore, example (A) is satisfied as the elaborated terms are not related by strict precision
because ε∀X .X→X is not related to ε∀X .?→X .

Rule (�appGε ) states that types involved in a type application must be related by strict precision
because they do influence evidence during reduction: after elimination of type abstractions, new
evidences are created using these types, and such evidences need to be related as well. Note that
this restriction is sufficient to satisfy monotonicity of evidence instantiation, which is needed for
the dynamic gradual guarantee (Proposition 9.2).

Finally, we need to strengthen the relation with an additional rule (�Mascε ) to account for GSFε
terms that are the result of the elaboration from GSF. This will be important to scale the DGG�

from GSFε to GSF below. Recall that the translation from GSF to GSFε introduces evidences to
ensure that GSFε terms are well-typed (Figure 5). In particular, the translation uses type matching
� to ascribe subterms of type ? in elimination positions to the corresponding top-level type
constructor. When an actual matching expansion occurs, the corresponding evidence is generated
such as ε∀X .? = IΞ(∀X .?,∀X .?), or ε?→? = IΞ(? → ?, ? → ?). Such evidences are related by �,
but not necessarily by �. Rule (�Mascε ) accounts for the case where they are not. Note that
evidences ε1 and ε2 do not contribute to any increase in precision: when combined with some
arbitrary evidence ε during reduction, the combination ε � εi either fails or results in ε . Rule
(�Mascε ) is key to satisfy example (B). To see why, consider terms (idX :: ∀X .X → X ) [Int] and
(idX :: ∀X .? → X ) [Int] and their elaborations:

(GappG)

(Gascu)
idX � idX

′ ε1 = I(∀X .X → X ,∀X .X → X )

idX :: ∀X .X → X � ε1idX :: ∀X .X → X ε2 = I(∀X .X → X ,∀X .X → X )

(idX :: ∀X .X → X ) [Int] � ε2(ε1idX
′ :: ∀X .X → X ) :: ∀X .X → X [Int]
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(GappG)

(Gascu)
idX � idX

′ ε ′1 = I(∀X .X → X ,∀X .? → X )

idX :: ∀X .? → X � ε ′1idX :: ∀X .? → X ε ′2 = I(∀X .? → X ,∀X .? → X )

(idX :: ∀X .? → X ) [Int] � ε ′2(ε
′
1idX

′ :: ∀X .? → X ) :: ∀X .? → X [Int]

Note that ε1 = ε2 = ε ′1 = ε∀X .X→X = 〈∀X .X → X ,∀X .X → X 〉, ε ′2 = 〈∀X .? → X ,∀X .? → X 〉,
and ε2 � ε ′2 but ε2 � ε ′2.After one step of execution, both pairs of evidences are combined (ε1 � ε1

and ε ′1 � ε ′2), resulting in both cases in ε∀X .X→X . Therefore, these two programs behave identically
and are thus related.

Strict precision for configurations. Figure 11 also defines strict type precision for GSFε stores
and configurations. A store is more strictly precise than another if it binds each type name to a
more strictly precise type. Finally, a configuration is more strictly precise than another if the store
and term components are more strictly precise, and the terms are well-typed with their respective
stores.

DGG� for GSFε . Armed with strict precision for GSFε , and the fact that consistent transitivity is
monotone with respect to it (Proposition 9.3), we can prove the weak dynamic gradual guarantee
DGG� for GSFε . Given two configurations related by strict precision, small-step reduction (�−−→) of
the most precise one implies that of the less precise one. Alternatively, if the first configuration is
already a value, then so is the second.

Proposition 9.4 (Small-step DGG� for GSFε). Suppose Ξ1 � t1 � Ξ2 � t2.

(a) If Ξ1 � t1 �−−→ Ξ ′
1 � t

′
1, then Ξ2 � t2 �−−→ Ξ ′

2 � t
′
2, for some Ξ ′

2 and t ′2 such that Ξ ′
1 � t

′
1 � Ξ ′

2 � t
′
2.

(b) If t1 = v1, then t2 = v2.

DGG� for GSF. Using Proposition 9.4 we can establish DGG� for GSF, considering that two GSF
terms are related by strict precision iff their elaboration to GSFε are.

Theorem 9.5 (DGG�). Suppose t1 � t2, � t1 : G1, and � t2 : G2.

(a) If t1 ⇓ Ξ1 � v1, then t2 ⇓ Ξ2 � v2, · � Ξ1 � v1 : G1 � Ξ2 � v2 : G2 and Ξ1 � Ξ2, for some v2 and Ξ2.
If t1 ⇑ then t2 ⇑.

(b) If t2 ⇓ Ξ2 � v2, then t1 ⇓ Ξ1 � v1, · � Ξ1 � v1 : G1 � Ξ2 � v2 : G2 and Ξ1 � Ξ2, for some v1 and Ξ1,
or t1 ⇓ error.

If t2 ⇑, then t1 ⇑ or t1 ⇓ error.

Harmless imprecise ascriptions. Finally, we can use the DGG� to establish that, given a term t
of typeG, ascribing to a less precise typeG ′ and then back to typeG, results in a term semantically
equivalent to t :

Lemma 9.6. Let � t : G, G � G ′, and t ′ = t :: G ′ :: G, then

• t ⇓ Ξ � v ⇐⇒ t ′ ⇓ Ξ � v .
• t ⇓ error ⇐⇒ t ′ ⇓ error.

Note in particular that if t produces a value, then t ′ produces the exact same value. While
the above result characterizes an ascription roundtrip through imprecision and back, we can also
establish harmlessness results for imprecise ascriptions. Given a term t that reduces to some value,
ascribing it to a less precise type also results in a (less strictly precise) value.

Lemma 9.7. Let � t : G such that t ⇓ Ξ � v , and G � G ′. Then t :: G ′ ⇓ Ξ � v ′ such that
� Ξ � v : G � Ξ � v ′ : G ′, for some v ′.
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Likewise, we can characterize ascribing the subterms of elimination forms, such as function
application and type application:

Lemma 9.8. Let � t1 : G1 and � t2 : G2 such that � t1 t2 : G and t1 t2 ⇓ Ξ � v . Let G1 � G ′
1,

G2 � G ′
2, and G � G ′, such that � (t1 :: G ′

1) (t2 :: G ′
2) : G ′. Then (t1 :: G ′

1) (t2 :: G ′
2) ⇓ Ξ �v ′ such that

� Ξ � v : G � Ξ � v ′ : G ′, for some v ′.

Lemma 9.9. Let � t : G1 such that � t [G2] : G and t [G2] ⇓ Ξ � v . Let G1 � G ′
1, G2 � G ′

2, and
G � G ′, such that � (t :: G ′

1) [G ′
2] : G ′. Then (t :: G ′

1) [G ′
2] ⇓ Ξ′ �v ′ such that � Ξ �v : G � Ξ′ �v ′ : G ′

and Ξ � Ξ ′, for some v ′ and Ξ′.

Interestingly, Lemma 9.9 is more general than in previous work [Toro et al. 2019], where the
instantiated types were restricted to only static types. Similar lemmas can be defined for other
eliminations forms, such as projections and n-ary operations.

These results, which embody the motto that external imprecision is harmless in GSF, constitute
a valuable compositionality guarantee when embedding fully-static (System F) terms in a gradual
world, as will be further illustrated in Section 10.4.

9.4 Syntactic Strict Precision for GSF

For now, strict precision for GSF terms has been defined by appealing to their elaboration to GSFε
terms. Unfortunately, with this definition it would be hard for programmers to get an intuition
about when two terms are related by strict precision, as it would require understanding the elabo-
rations to GSFε . Here we design a strict precision relation � for GSF terms syntactically, as a sound
approximation of the elaboration-based definition. To define a syntactic strict precision relation
for GSF, we start from the GSF to GSFε translation rules, and analyze when two terms yield related
elaborations. Let us first look at two crucial cases: ascriptions and type applications.

Ascriptions. For a couple of ascriptions t1 :: G ′
1 and t2 :: G ′

2 we know that:

(Gasct)

t1 � v
Δ; Γ1 � t1 � t ′1 : G ′

1 ε1 = I(G ′
1,G1)

Δ; Γ1 � t1 :: G1 � ε1t
′
1 :: G1 : G1

(Gasct)

t2 � v
Δ; Γ2 � t2 � t ′2 : G ′

2 ε2 = I(G ′
2,G2)

Δ; Γ2 � t2 :: G2 � ε2t
′
2 :: G2 : G2

If Ω � · � ε1t
′
1 :: G1 : G1 � · � ε2t

′
2 :: G2 : G2, then by (�ascε ), it must be the case that ε1 � ε2,

Ω � · � t ′1 : G ′
1 � · � t ′2 : G ′

2 and G1 � G2, where Ω is well-formed with respect to Γ1 and Γ2, i.e.,
Ω � Γ1 � Γ2 (Figure 12). As I(G ′

1,G1) = 〈G ′
1 �G1,G

′
1 �G1〉 and I(G ′

2,G2) = 〈G ′
2 �G2,G

′
2 �G2〉,

then we require that G ′
1 � G1 � G ′

2 � G2, which leads to the following strict precision rule for
ascriptions on GSF:

Ω � t1 : G ′
1 � t2 : G ′

2 G ′
1 �G1 � G ′

2 �G2 G1 � G2 t1, t2 � v

Ω � t1 :: G1 : G1 � t2 :: G2 : G2

Type applications. For a couple of type applications t1[G ′
1] and t2[G

′
2], we know from the elabo-

ration rules that:

(GappG)

Δ; Γ1 � t1 � t ′1 : G1 Δ � G ′
1

G1 � ∀X .G ′′
1 ε1 = I(G1,∀X .G ′′

1 )

Δ; Γ1 � (ε1t1 :: ∀X .G ′′
1 ) [G ′

1] � t ′′1 [G ′
1] : G ′′

1 [G ′
1/X ]

(GappG)

Δ; Γ2 � t2 � t ′2 : G2 Δ � G ′
2

G2 � ∀X .G ′′
2 ε2 = I(G2,∀X .G ′′

2 )

Δ; Γ2 � (ε2t2 :: ∀X .G ′′
2 ) [G ′

2] � t ′′2 [G ′
2] : G ′′

2 [G ′
2/X ]
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Fig. 12. GSF: Syntactic strict term precision.

Let us suppose that Ω � ·�(ε1t1 :: ∀X .G ′′
1 ) [G ′

1] : G ′′
1 [G ′

1/X ] � ·�(ε2t2 :: ∀X .G ′′
2 ) [G ′

2] : G ′′
2 [G ′

2/X ],
where Ω � Γ1 � Γ2. Then by (�appGε ), we know that Ω � · � (ε1t1 :: ∀X .G ′′

1 ) [G ′
1] : ∀X .G ′′

1 �
· � (ε2t2 :: ∀X .G ′′

2 ) [G ′
2] : ∀X .G ′′

2 and G ′
1 � G ′

2. Note that I(Gi ,∀X .G ′′
i ) = I(∀X .G ′′

i ,∀X .G ′′
i ) =

〈∀X .G ′′
i ,∀X .G ′′

i 〉, for i ∈ {1, 2}. By (�Mascε ), it must be the case that ∀X .G ′′
1 � ∀X .G ′′

2 and
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Ω � · � t ′1 : G1 � · � t ′2 : G2. Finally, the strongest requirements yield the following strict precision
rule for type applications:

Ω � t1 : G1 � t2 : G2 G ′
1 � G ′

2

Ω � t1 [G ′
1] : G ′′

1 [G ′
1/X ] � t2 [G ′

2] : G ′′
2 [G ′

2/X ]

Syntactic strict precision. Figure 12 defines syntactic strict precision for GSF terms, which
soundly reflects strict precision for GSFε and can account for the translation of GSF terms to GSFε .
Judgment Ω � t1 : G1 � t2 : G2 denotes that term t1 of type G1 is more strictly precise to t2 of type
G2, under precision relation environment Ω. Note that contrary to GSFε , we do not require type
stores because source terms only exist prior to evaluation, and hence do not contain type names.
Most of the rules are straightforward and derived following the reasoning explained above for as-
criptions and type applications. We use metavariable v in GSF to range over constants, functions
and type abstractions, and use �v to relate them. We make such distinction between precision on
values and terms, because a pair of values such as ΛX .λx : X .x :: X and ΛX .λx : ?.x :: X should
not be related (�v), but their ascriptions to ∀X .X → X should (�ascv).

Rule (�v) demands that the internal types of the values be related in � because we do not
know in which context the value is going to be used. In contrast, rule (�ascv) is more permissive,
establishing that the internal types can be in �—but only if the values have ascriptions such that
their meet (i.e., initial evidences) are in � (as explained on how we derive (�asct)). This allows
capturing some internal losses of precision, whenever the surrounding type information ensures
that the associated evidence will be related by �. For instance, (ΛX .λx : X .x :: X ) :: ∀X .X → X �
(ΛX .λx : ?.x :: X ) :: ∀X .X → X at the corresponding type.

Rule (�asct) uses the same technique to be as permissive as possible: it only requires G1 � G2,
but requires the meets of the types involved in the ascriptions to be related by � as explained
before. Likewise, Rule (�app) requires the meets of the function argument types and the actual
argument types to be related by �. Note that during translation from GSF to GSFε , the argu-
ments t ′1 and t ′2 will be ascribed to dom�(G1) and dom�(G2), respectively. To account for strict

precision over the evidence of the ascriptions I(G ′
1, dom�(G1)) = 〈G ′

1 � dom�(G1),G
′
1 � dom�(G1)〉

and I(G ′
2, dom�(G2)) = 〈G ′

2 � dom�(G2),G
′
2 � dom�(G2)〉, we require that G ′

1 � dom�(G1) � G ′
2 �

dom�(G2). Rule (�appG) follows the GSFε precision rule for type instantiation and uses � to relate
the instantiation types.

Soundness of syntactic strict precision. Finally, syntactic strict term precision for GSF is sound
with respect to strict term precision of the translated terms in GSFε :

Proposition 9.10. Suppose t1 and t2 GSF terms such that · � t1 : G1 � t2 : G2, and their elabora-
tions · � t1 � tε1 : G1 and · � t2 � tε2 : G2. Then · � · � tε1 : G1 � · � tε2 : G2.

10 GRADUAL PARAMETRICITY FOR GSF

In this section, we first discuss two different notions of parametricity for gradual languages that
have been developed in the literature (Section 10.1), in order to situate the notion of gradual
parametricity for GSF (Section 10.2). Then, we show in Section 10.3 that this notion of gradual
parametricity for GSF is incompatible with the DGG. This tension is established solely driven by
the definition of parametricity, and not by monotonicity of consistent transitivity (Section 9.1).
This suggests that the incompatibility is shared by other languages with essentially the same
notion of gradual parametricity, for which the dynamic gradual guarantee has so far been left as
an open question. Finally, we explore gradual free theorems in GSF based on examples discussed
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in the literature, using both gradual parametricity and the DGG� in order to establish such results
(Section 10.4).

10.1 On Gradual Parametricities

We first review the standard technique to state and prove parametricity. The notion of parametric-
ity established by Reynolds [1983] is usually defined by interpreting types as binary logical rela-
tions. The fundamental property of such a relation, also known as the abstraction theorem, states
that a well-typed term is related to itself at its type. Consequently, polymorphic terms must behave
uniformly at all possible type instantiations.

Preliminaries. The definition of parametricity for the statically-typed polymorphic lambda cal-
culus is standard and uncontroversial. Notationally, we follow Ahmed et al. [2017] in all the techni-
cal development hereafter. The chosen notations scale smoothly to describe gradual parametricity,
both in other work and ours. The relational interpretation of types is presented using atoms of
the form (t1, t2) ∈ Atom[T1,T2], denoting that the closed terms t1 and t2 have types T1 and T2,
respectively. Formally:

Atom[T1,T2] = {(t1, t2) | · � t1 : T1 ∧ · � t2 : T2}

The logical relation is defined using two mutually-defined interpretations: one for values and
one for computations. For simplicity and uniformity, throughout this section we use notation
(v1,v2) ∈ Vρ�T � when v1 and v2 are related values at type T under environment ρ, and nota-
tion (t1, t2) ∈ Tρ�T � when terms t1 and t2 are related computations at typeT under environment ρ.
An environment ρ, which maps a type variable to two types and a relation, is used to relate values
at abstract types as explained below. For convenience, we introduce the following notation for pro-
jections in ρ: if ρ = {X �→ (T11,T12,R1),Y �→ (T21,T22,R2), ...}, then ρ1 = {X �→ T11,Y �→ T21, ...},
ρ2 = {X �→ T12,Y �→ T22, ...}, and ρR = {X �→ R1,Y �→ R2, ...}.

Let us briefly go through the definitions. Two base values (of type B) are related if they are the
same:

Vρ �B� = {(v,v) ∈ Atomρ [B]}

where Atomρ [T ] = {(t1, t2) | (t1, t2) ∈ Atom[ρ1(T ), ρ2(T )]}. Two functions are related if given two
related argument the application yield related computations:

Vρ �T1 → T2� = {(v1,v2) ∈ Atomρ [T1 → T2] | ∀(v ′
1,v

′
2) ∈ Vρ �T1�.(v1 v

′
1,v2 v

′
2) ∈ Tρ �T2�}

Two type abstractions are related if their instantiations to two arbitrary types yield related com-
putations for any given relation between the instantiated types:

Vρ �∀X .T � = {(v1,v2) ∈ Atomρ [∀X .T ] |

∀T1,T2,∀R ∈ Rel[T1,T2].(v1 [T1],v2 [T2]) ∈ Tρ,X �→(T1,T2,R)�T �}

where R relates values of typesT1 and T2, formally Rel[T1,T2] = {R ⊆ Atom[T1,T2]}. This relation
allows us to relate values at abstract types: two values are related at an abstract type X , if they are
in the relation for X :

Vρ �X � = ρR (X )

Finally, two computations are related if they reduce to two related values (t �−−→
∗ v specifies that

term t reduces in zero or more steps to the value v).

Tρ �T � = {(t1, t2) ∈ Atomρ [T ] | t1 �−−→∗ v1 ⇒ (t2 �−−→∗ v2 ∧ (v1,v2) ∈ Vρ �T �)}

With the above definitions, we can establish the definition of the logical relation between two
open terms. Two open terms are related if both are well-typed with the same type, and if we
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close them with any ρ and γ in the interpretation of Δ and Γ, respectively, we obtain related
computations.

Δ; Γ � t1 � t2 : T � Δ; Γ � t1 : T ∧Δ; Γ � t2 : T ∧∀ρ,γ .ρ ∈ D�Δ�∧γ ∈ Gρ �Γ� ⇒ (ρ(γ1(t1)), ρ(γ2(t2))) ∈ Tρ �G�

The fundamental property of this relation establishes that a well-typed program is related with
itself: if Δ; Γ � t : T then Δ; Γ � t � t : T . The proof of this property uses compatibility lemmas
for each term constructor. For instance, the compatibility lemma for type instantiation states: if
Δ; Γ � t1 � t2 : ∀X .T and Δ � T ′, then Δ; Γ � t1 [T ′] � t2 [T ′] : T [T ′/X ]. An important property
that is used to demonstrate parametricity (specifically the above compatibility lemma) [Ahmed
2006; Ahmed et al. 2017] is the following (hereafter called compositionality):

If Δ � T ′, ρ ∈ D�Δ� and R = Vρ�T ′�, then Vρ,X �→(ρ1(T ′),ρ2(T ′),R)�T � = Vρ�T [T ′/X ]�

Observe that for compositionality to be satisfied, the relation R can not be any relation;
it must be Vρ�T ′�. For example, if T = X and T ′ = Int, then Vρ,X �→(ρ1(T ′),ρ2(T ′),R)�T � =
Vρ,X �→(ρ1(Int),ρ2(Int),R)�X � = ρR (X ) = R and Vρ�T [T ′/X ]� = Vρ�X [Int/X ]� = Vρ�Int�. Therefore,
R = Vρ�T ′� = Vρ�Int�.

Parametricity for gradual languages—or gradual parametricity—is a novel concept around which
different efforts have been developed, yielding different notions. The subtle differences in interpre-
tation come from the specificities of gradual typing, namely the potential for runtime errors due
to type imprecision. Much of it is linked to the mechanism used to enforce type abstraction. Apart
from GSF, gradual parametricity has only been proven for λB [Ahmed et al. 2017] and PolyGν [New
et al. 2020], under two fairly different interpretations. Technically, both are defined using logical
relations that are fairly standard, except for three important cases: polymorphic types, type vari-
ables, and of course, the unknown type. We now briefly review and compare both approaches.

Gradual parametricity in λB. We now present the notion of gradual parametricity for λB, illus-
trating the main differences with the original notion of parametricity of Reynolds [1983]. As we
will see later, GSF follows similar ideas and techniques. Building on prior work by Matthews and
Ahmed [2008], λB uses runtime type generation to reduce type applications, and a form of auto-
matic (un)sealing is introduced via conversions and type names during reduction. A conversion

T1
ϕ
⇒ T2 is used to make explicit the conversion between a type name and the type it is bound to

in the store. The label ϕ stands for a type name α accompanied by a sign (− or +), where −α rep-

resents a sealing and +α an unsealing. For instance, 1 : Int
−α
⇒ α is a conversion, representing an

integer sealed value with type α . The term (1 : Int
−α
⇒ α) : α

+α
⇒ Int is composed of two conversions,

reducing to the plain value 1 after unsealing. Conversions are introduced upon type applications,
similar to the εout evidence in GSF. They are also closely related to sealing and unsealing terms in
PolyGν .

Since gradual types introduce divergence, λB uses a step-indexed logical relation to ensure well-
foundedness. Technically, this means that atoms in λB are of the form (W , t1, t2), where worldW
describes the set of assumptions under which the pair of expressions t1 and t2 are related. Because
reduction occurs relative to a type name store, and type names have indefinite dynamic extent,
worlds are of the form (j, Σ1, Σ2,κ): j corresponds to the step index, Σ1, and Σ2 correspond to the
type name stores under which the terms are being typechecked and evaluated, and κ is a map from
type names to relations R. As worlds carry type instantiation information and relations, environ-
ment ρ now maps type variables to type names. For instance, ρ(X ) = (T1,T2,R) may correspond
to ρ(X ) = α , in a world W such that W = (j, {α := T1}, {α := T2}, {α �→ R}). For simplicity,
we use a dot notation to access different components of a world: W .j,W .Σ1,W .Σ2, and W .κ are
used to access the step-index, both type name stores, and the relation store, respectively. Note that
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the indexW .j specifies the number of available future reduction steps, i.e., a single reduction step
reduces the index by one.

Two values are related at a type name α if both values are conversions to α and belong to the
relation associated with α :

Vρ�α� = {(W ,v1 : T1
−α
⇒ α ,v2 : T2

−α
⇒ α) ∈ Atom∅[α] | (↓W ,v1,v2) ∈W .κ(α)}

Above, ↓W lowers the step-index of the world and the intepretationsκ in the world by one; formally
↓W = (j,W .Σ1,W .Σ2, �W.κ�j ) and j = W .j − 1, where �κ�j = {α �→ �R�j | κ(α) = R}, and

�R�j = {(W , t1, t2) ∈ R | W .j < j}. For instance, (W , 1 : Int
−α
⇒ α , 2 : Int

−α
⇒ α) ∈ Vρ�α� = Vρ�X �,

when ρ(X ) = α ,W .Σ1(α) = Int,W .Σ2(α) = Int, and (↓W , 1, 2) ∈W .κ(α).
As sealing and unsealing are introduced automatically at runtime, to reason parametrically

about type abstractions, λB does not directly relate type applications as computations. For in-
stance, consider term ΛX .λx : X .x , which is related with itself (W ,ΛX .λx : X .x ,ΛX .λx :
X .x) ∈ V∅�∀X .X → X �. If we instantiate these values with Int, choosing relation {(1, 2)}, as

W .Σi � (ΛX .λx : X .x) [Int] �−−→ W .Σi ,α := Int � (λx : α .x) : α → α
+α
⇒ Int → Int, then ac-

cording to the standard definition of parametricity, the two instantiations have to be related at
type X → X . Following the dynamic semantics of λB, the following must hold:

(W ′, (λx : α .x) : α → α
+α
⇒ Int → Int, (λx : α .x) : α → α

+α
⇒ Int → Int) ∈ Vρ�X → X �

for a future world W ′ such that (W ′′, 1, 2) ∈ W ′.κ(α), for some W ′′. A future world intuitively
captures how the world changes upon reduction: while the step-index decreases by one at each
step of reduction, the store is extended after each type instantiation. Formally, we say thatW ′ is
a future world of W , notation W ′ � W , if the step index is lower (W ′.j < W .j), the type name
stores are super sets of the originals (W ′.Σ1 ⊇W .Σ1 andW ′.Σ1 ⊇W .Σ1), and theW ′.κ is a future
relation store (W ′.κ � �W.κ�W ′ .j ). We say that κ ′ is a future relation store of κ, notation κ ′ � κ, if
∀α ∈ dom(κ) then κ ′(α) = κ(α). According to the definition of related functions at type X → X ,
the application of these functions to related values at type X should yield related computations at

type X . In particular using (W ′, 1 : Int
−α
⇒ α , 2 : Int

−α
⇒ α) ∈ Vρ�X �, then

(W ′, ((λx : α .x) : α → α
+α
⇒ Int → Int) (1 : Int

−α
⇒ α),

((λx : α .x) : α → α
+α
⇒ Int → Int) (2 : Int

−α
⇒ α)) ∈ Tρ�X �

But these application expressions do not type check! Therefore, instead of relating the two type
application expressions as computations, λB relates only the bodies of the type abstractions after
the type applications have been performed (highlighted in gray):

Vρ�∀X .T � = {(W ,v1,v2) ∈ Atomρ [∀X .T ] | ∀T1,T2,∀R ∈ Rel[T1,T2].∀W ′ �W .∀α .∀t1, t2.
W ′.Σ1 � v1 [T1] �−−→W ′.Σ1,α := T1 � (t1 : ρ(T )[α/X ]

α−
⇒ ρ(T )[T1/X ]) ∧

W ′.Σ2 � v2 [T2] �−−→W ′.Σ2,α := T2 � (t2 : ρ(T )[α/X ]
α−
⇒ ρ(T )[T2/X ])) ∧

(W ′ � (α ,T1,T2,R), t1, t2 ) ∈ Tρ[X �→α ]�T �}

After both type applications take a step, only the inner terms t1 and t2 are related in a world
extended with α , the two instantiated typesT1 andT2, and the chosen relation R. World extension
� is formally defined asW � (α ,T1,T2,R) = (W .j, (W .Σ1,α := T1), (W .Σ2,α := T2),W .κ[α �→ R]).
Observe how this definition strips out the outermost conversions in charge of sealing and unsealing
(this conversion is similar to evidence εout in GSF). This technique makes it possible to reason about
a pair of related functions applied to a pair of already-sealed related values. In the previous example,
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we know that ifW .Σi � (ΛX .λx : X .x) [Int] �−−→ W .Σi ,α := Int � (λx : α .x) : α → α
+α
⇒ Int → Int

then (W ′, λx : α .x , λx : α .x) ∈ Vρ�X → X �, where W ′ is the extended future world. Therefore,

we can deduce that (W ′, (λx : α .x) (1 : Int
−α
⇒ α), (λx : α .x) (2 : Int

−α
⇒ α)) ∈ Tρ[X �→α ]�X �.

The problem with this definition is that it does not support directly reasoning about type appli-
cations. For instance, in the previous example, from the logical relation we cannot directly deduce
that:

(W ′, (λx : α .x) : α → α
+α
⇒ Int → Int, (λx : α .x) : α → α

+α
⇒ Int → Int) ∈ Vρ�Int → Int�

To reason about related type applications as computations (and not by considering the inner terms
only), one needs to use a conversion lemma. This lemma relates two values after the unsealing
of some type name α . Essentially, such a lemma says that if (W ,v1,v2) ∈ Vρ�T �, T and T ′ are
convertible under +α ,W .Σ1(α) =W .Σ2(α) = T

′′ andW .κ(α) = Vρ�T ′′�, then

(W ,v1 : ρ(T )
+α
⇒ ρ(T ′),v2 : ρ(T )

+α
⇒ ρ(T )) ∈ Tρ�T ′�

Observe that to apply this lemma, α must be bound to the same type in both stores (W .Σ1(α) =
W .Σ2(α) = T ′) and to the value relation of that type (W .κ(α) = Vρ�T ′�). When this situation
happens, we we say that α is synchronized in W . A similar requirement is established for the
proof of parametricity for System F, specifically the compositionality lemma described before. The
synchronization requirement is needed in gradual parametricity, among other reasons, to prevent

the unsealing of unrelated values such as (W ′, 1 : Int
−α
⇒ α , 2 : Int

−α
⇒ α) ∈ Vρ�α�. Otherwise, after

unsealing, we would have (W ′′, 1, 2) ∈ Vρ�Int�, which is false.

Gradual parametricity in PolyGν . New et al. [2020] recently developed another approach to
gradual parametricity, which has the benefit of avoiding the convoluted treatment of type applica-
tions described above. In doing so, the notion of gradual parametricity they present is more similar
to Reynolds’s original presentation. Note however, that this comes at a cost: the syntax of PolyGν

departs importantly from System F, by requiring all sealing and unsealing to happen explicitly in
the term syntax, with outward scoping of type variables:

System F ((ΛX .λx : X .x) [Int] 1)+1 PolyGν unsealX ((ΛX .λx : X .x) [X = Int] (sealX 1))+1

Technically, gradual parametricity for PolyGν is established by first translating PolyGν to an in-
termediate language PolyCν and finally to CBPVOSum, a variant of Levy’s Call-by-Push-Value [Levy
1999] with open sums to encode the unknown type. The logical relation of parametricity is defined
for CBPVOSum, and differs importantly from that of λB. In particular, even though it still uses type
names to relate type abstractions, the definition requires type applications (and not some inner
terms) to be related as computations, as expected in the standard treatment of parametricity. Cru-
cially, this is possible only because type application never incurs in automatic insertion of conver-
sions to seal/unseal values, as would happen in λB, because in this approach, sealing and unsealing
are explicit in the syntax of terms.

Comparing parametricities. The notion of gradual parametricity of PolyGν is stronger than that
of λB, as it directly embodies the kind of parametric reasoning that one is used to in static languages.
While λB ensures a form of gradual parametricity, this notion is weaker, because given two related
type abstractions and two arbitrary (possibly different) types, we cannot directly reason about
both corresponding type applications directly: we can only directly reason about the body of the
type abstractions after the type applications have reduced.

While the notion of gradual parametricity of PolyGν is superior, as already mentioned, it is
enabled by sacrificing the syntax of System F. In this work, we are interested in gradualizing
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System F, and studying the properties we can get, rather than in designing a different static source
language in order to accommodate the desired reasoning principles. This led us to embrace runtime
sealing through type names, as in λB, and consequently, to aspire to a weaker notion of gradual
parametricity than that of PolyGν . We do believe that both approaches are fully valuable and
necessary to understand the many ways in which gradual typing can embrace such an advanced
typing discipline.

In particular, as illustrated by New et al. [2020], the weaker notion of parametricity adopted in
GSF can lead to behavior that breaks the (strong notion of) parametricity enjoyed by PolyGν . Note
that this can however only occur when manipulating values of imprecise polymorphic types; for
values of static types, the reasoning principles of standard parametricity do apply. They argue that
GSF exhibits non-parametric behavior by considering the following example. Consider the below
value:

v � (ΛX .λx : X .true) :: ∀X .? → Bool

Although v is related to itself at type ∀X .? → Bool, two different instantiations (to Int and Bool,
respectively) are not related computations, i.e., (W ,v [Int],v [Bool]) � Tρ�? → Bool�. Given two
related arguments at type ? such as εInt3 :: ? twice, v [Int] (εInt3 :: ?) reduces to true, whereas
v [Bool] (εInt3 :: ?) reduces to an error. As we saw earlier, this happens because GSF does not di-
rectly relate type applications as computations. The logical relation only tells us that after instanti-
ation, the internal terms (without the outermost evidences) εα Int→Bool(λx : α .true) :: ? → Bool
and εα Bool→Bool(λx : α .true) :: ? → Bool are indeed related at type ? → Bool. In this case,
if we try to apply both functions to εInt3 :: ?, both programs fail. The only arguments that
can be passed such that both applications succeed are related sealed values at type ?, such as
(W , 〈Int,α Int〉3 :: ?, 〈Int,αBool〉true :: ?) ∈ Vρ�?� (assuming an appropriate relation for α ).

Finally, note that the fact thatv [Bool] (1 :: ?) reduces to an error in GSF points to a wider point
in the design space of gradually-typed languages: how eagerly should type constraints be checked?
Indeed, v [Bool] is λx : Bool.true, whose application to an underlying Int value is ill-typed and
can legitimately be expected to fail. In that respect, GSF follows GTLC [Siek and Taha 2006; Siek
et al. 2015a], in which (λx : Bool.true) (1 :: ?) also fails with a runtime cast error. This eager form
of runtime type checking likewise follows from the Abstracting Gradual Typing methodology as
formulated by Garcia et al. [2016]. An interesting perspective would be to study a lazy variant of
AGT, and whether it recovers properties of alternative approaches [New and Ahmed 2018].

It is interesting to observe that no runtime error is raised in λB for this example, despite the
fact that the parametricity logical relation is essentially the same as that of GSF. The difference
comes from the runtime semantics of λB: as we have illustrated in Section 3, λB does not track the
type instantiations that occur on imprecise types. This means that the underlying typing violation
observed by GSF, which manifests as a runtime error, is not noticed in λB. Therefore, this example
highlights yet another point of tension in the design space of System F-based gradual languages.

10.2 Gradual Parametricity in GSF

We now turn to the technical details of gradual parametricity in GSF. As explained above, we
follow λB [Ahmed et al. 2017] for the formal development of gradual parametricity, due to the
use of runtime type name generation for sealing, and the System F syntax that requires automatic
insertion of (un)sealing evidences at runtime. We highlight the main differences in the logical
relations of GSF with respect to λB, mainly in the value logical relations for types ? and α .

We establish parametricity for GSF by proving parametricity for GSFε . Specifically, we define a
step-indexed logical relation for GSFε terms, closely following the relation for λB. The relation is
defined on atoms (W , t1, t2) that denote two related terms t1, t2 in a worldW . A world is composed
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Fig. 13. Logical relation: auxiliary definitions.

of a step index j, two stores Ξ1 and Ξ2 used to typecheck and evaluate the related terms, and a
mapping κ, which maps type names to relations R, used to relate sealed values. The components
of a world are accessed through a dot notation, e.g.,W .j for the step index. The interpretations of
values, terms, stores, name environments, and type environments are mutually defined, using the
auxiliary definitions of Figure 13. As usual, the value and term interpretations are indexed by a
type and a type substitution ρ.

Auxiliary definitions. We write Atomρ [G] (Figure 13) to denote a set of terms of the same type
after substitution. The Atom=ρ [G] is similar to Atomρ [G] but restricts the set to values that have,
after substitution, equally precise evidences (the equality is after unlifting because two sealed
values may be related under different instantiations). Remember that the unlifting operator, given
an evidence type E, returns a gradual type G, forgetting to which types the type names were
instantiated. For instance,

(W , 〈Int,α Int〉1 :: α , 〈Bool,αBool〉true :: α) ∈ Atom=ρ [X ]

if ρ(X ) = α , as (W , 〈Int,α Int〉1 :: α , 〈Bool,αBool〉true :: α) ∈ Atomρ [X ] (assuming an adequate
world) and unlift(π2(〈Int,α Int〉)) = unlift(π2(〈Bool,αBool〉)) = α . However,

(W , 〈Int, Int〉1 :: ?, 〈Bool,Bool〉true :: ?) � Atom=ρ [?]

since unlift(π2(〈Int, Int〉)) = Int � Bool = unlift(π2(〈Bool,Bool〉)). We explain this in detail below,
when presenting the logical relations for values.

Reln[G1,G2] defines the set of relations of values of typeG1 andG2. Note that ifR ∈ Reln[G1,G2],
we also require that for all atoms in R, all future versions of that atom should also be present in R.
Intuitively, this is because values in a relation R should still be related after lowering the number
of steps (reduction). We use �R�n and �κ�n to restrict the step index of the worlds to less than n.
Finally, κ ′ � κ specifies that κ ′ is a future relation mapping of κ (an extension14), and similarly
W ′ �W expresses thatW ′ is a future world ofW . Intuitively, a future relation mapping represents
the same relations as the original plus some extra ones that may have been added during reduction.
Similarly, a future world represents a world after some steps of reduction, i.e., a world with a
smaller (or equal) step index and a future mapping relation.

14Note the relation is antisymmetric as we quantify over all α ∈ dom(κ), and this could be false for some α ∈ dom(κ′).
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Logical relation for terms. Following λB, the logical interpretation of terms (Figure 14) of a given
type enforces a “error-sensitive” view of parametricity: if the first term yields a value, the second
must produce a related value at that type; if the first term fails, so must the second. The reason
behind this is to ensure parametric behavior in the presence of runtime errors. Given a parametric
term, if after two different instantiations one of the resulting terms fails and the other terminates
to a value, then both instantiations did not behave similarly.15 Observe that one reduction takes
i steps in the definition of the interpretation of terms while the other one takes any arbitrary
number of steps. This is because only one index is needed for this definition to be well-founded,
and it would be challenging to establish the number of steps for the second reduction.

Logical relations for values. The logical interpretation of values (Figure 14) uses Atom=ρ [G],
which requires the second component of the evidence of each value to have the same precision
to enforce such sensitivity. Indeed, if one is allowed to be more precise than the other, then
when later combined in the same context, the more precise value may induce failure while the
other does not. For instance, if we have evidences 〈Int → Int,α Int→Int〉 and 〈Int → Int, Int → Int〉
and combine them through consistent transitivity with the evidence 〈Int → Int, Int → Int〉, the
first combination fails while the second one succeeds, resulting in 〈Int → Int, Int → Int〉. For
this reason, related values are required to have evidence such that their second components
are equal using the unlifting operator (unlift(π2(〈Int → Int,α Int→Int〉) = α � Int → Int =
unlift(π2(〈Int → Int, Int → Int〉))).

Two base values are related if they are equal. Two functions are related if their application to
related values yields related results. Note that, unlike λB, the arguments are related at one step
down (↓W ).16 Otherwise (in combination with the definition of related values at type ?, which
also presents some differences), the logical relation would not be well-founded, as we explain
below. Two pairs are related if their components are pointwise related. Two type abstractions are
related if given any two types and any relation between them, the instantiated terms (without their
unsealing evidence) are also related in a world extended (�) with α , the two instantiation types
G1 andG2 and the chosen relation R between sealed values (Figure 13). Note that the step index of
this extended world is decreased by one, because we take a reduction step.

Two sealed values are related at a type name α if first, after unsealing, the resulting values are
in the relation corresponding to α (W.κ(α)) in a one step lower current world. The first part of
the definition is faithful to λB, while the second part is new. We additionally require that for any
evidence ε that justifies the judgment between α and any typeG, in any store such thatW belongs
to its interpretation, the values ascribed to the typeG and evidence ε remain related. This technical
extension is sufficient to prove Lemma 10.5 (formalized at the end of this section), which states
that the ascription of two related values yields related terms; this lemma is essential for the proof
of parametricity. The necessity of this extension comes from differences between the dynamic
semantics of GSF and λB. The dynamic semantics of GSF combine evidence (eager), whereas λB

accumulates cast (lazy). For instance, the conversion (1 : Int
−α
⇒ α) : α

−β
⇒ β from λB needs two

reduction steps to obtain 1, i.e., the step-index is reduced by two. In GSF, this information is com-

pressed in a single evidence 〈Int, βα Int
〉, and needs only one reduction step to obtain the similar

value, i.e., the step-index is reduced by one. Observe that if ε exists such that ε � Ξ � α ∼ G,
sinceW ∈ S�Ξ�, α must be synchronized (i.e.,W .Σ1(α) =W .Σ2(α) = G ′ andW .κ(α) = Vρ�G ′�).
Intuitively, if α is synchronized, then after multiple possible unsealings the resulting values are

15Considering a logical relation where the first term may fail and the other terminates leads to a weaker version of para-
metricity (in terms of different notions of gradual parametricity).
16The operator ↓W has the same definition as �W in λB .
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Fig. 14. Gradual logical relation.

kept related. For instance, if (W , 〈Int,α β Int
〉1 :: α , 〈Int,α β Int

〉1 :: α) ∈ Vρ�α� where α is synchro-
nized, then it must be the case that (W ′, 〈Int, β Int〉1 :: β, 〈Int, β Int〉1 :: β) ∈ W.κ(β), and also that

(W ′′, 〈Int, Int〉1 :: Int, 〈Int, Int〉1 :: Int) ∈ Vρ�Int�; but if (W , 〈Int,α β Int
〉1 :: α , 〈Bool,α β Bool

〉true ::
α) ∈ Vρ�α�, then it must be the case that (W ′, 〈Int, β Int〉1 :: Int, 〈Bool, βBool〉true :: Bool) ∈W.κ(β).

Finally, two values are related at type ? if they are related at the least-precise type with the same
top-level constructor as the second component of the evidence, const(π2(εi )). The function const
extracts the top-level constructor of an evidence type (Figure 14). The intuition is that to be able to
relate these unknown values we must take a step towards relating their actual content; evidence
necessarily captures at least the top-level constructor (e.g., if a value is a function, the second
evidence type is no less precise than ? → ?, i.e., const(E1 → E2)). Also, we consider the second

Journal of the ACM, Vol. 69, No. 5, Article 38. Publication date: October 2022.



Gradual System F 38:51

component as in 〈E1,E2〉 � Ξ; Δ � G ∼ G ′, E1 and E2 correspond to the most precise information
aboutG andG ′, respectively. Here E2 corresponds to the most precise information about ?, and E1

could be a totally unrelated type as in (W , 〈Int,α Int〉1 :: ?, 〈Bool,αBool〉true :: ?) ∈ Vρ�?�. Observe
that, unlike λB, the definition does not decrease the index of the world W by 1. However, in λB
this is done on a case-by-case basis where needed (i.e., function, type name, etc.). We made this
technical change to facilitate the parametricity proof.

Well-foundedness. The logical relation is well-founded for three reasons: (i) in the ? case,
const(π2(εi )) cannot itself be ?, as just explained; (ii) in each other recursive cases, the step in-
dex is lowered: for functions and pairs, the relation is between reducible expressions (applica-
tions, projections) that either take a step or fail; for type abstractions, the relation is with respect
to a world whose index is lowered; (iii) we require in the definition of related functions that
arguments must be related at (at least) one step down. For instance, if (W , 〈? → ?, ? → ?〉u1 ::
?, 〈? → ?, ? → ?〉u2 :: ?) ∈ Vρ�?�, then (W , 〈? → ?, ? → ?〉u1 :: ? → ?, 〈? → ?, ? → ?〉u2 ::
? → ?) ∈ Vρ�? → ?�, but function arguments related at Vρ�?� would contain the original
(W , 〈? → ?, ? → ?〉u1 :: ?, 〈? → ?, ? → ?〉u2 :: ?) atom.

Logical relations for stores and environments. The unary relation S�Ξ� specifies all the
worlds that satisfy Ξ: every α in dom(Ξ) must be synchronized. The interpretation of D�Δ� speci-
fies all pairs of worldsW and type substitutions ρ, such that all type variables in Δ are mapped to
some α in ρ, and α is associated to some relation inW . The relation Gρ�Γ� specifies that the value
environment γ satisfies the type environment Γ under worldW if, for every variable x ∈ dom(Γ),
the mapped values are related in Vρ�Γ(x)� in worldW .

For convenience, we introduce the following notation for projections in γ : if γ = {x �→

(v11,v12),y �→ (v21,v22), ...}, then γ1 = {x �→ v11,y �→ v21, ...} and γ2 = {x �→ v12,y �→ v22, ...}.
Type variable substitution ρi (s) is defined as syntactic sugar for ρ(W.Ξi , s), in a context whereW
is defined, lifting each substituted type name in the process and defined as

(ρ,X �→ α)(Ξ, s) = ρ(Ξ, s[liftΞ(α)/X ])

·(Ξ, s) = s

Parametricity. The logical relation approximation Ξ; Δ; Γ � t1 � t2 : G says that given a worldW
that satisfies Ξ, a type substitution ρ and value environment γ that satisfies Δ and Γ, respectively,
under worldW , then the pair of substituted terms ρ1(γ1(t1)), ρ2(γ2(t2)) are related computations in
Tρ�G�. Logical equivalence Ξ; Δ; Γ � t1 ≈ t2 : G is defined as the symmetric extension of logical
approximation. Finally, the fundamental property says that any well-typed GSFε term is related to
itself at its type:

Theorem 10.1 (Fundamental Property). If Ξ; Δ; Γ � t : G then Ξ; Δ; Γ � t � t : G.

As standard, the proof of the fundamental property uses compatibility lemmas for each term con-
structor and the compositionality lemma. The compatibility lemmas related to type abstractions
are the following:

Lemma 10.2 (Compatibility-EΛ). If Ξ; Δ,X � t1 � t2 : G, ε � Ξ; Δ � ∀X .G ∼ G ′ and Ξ; Δ � Γ
then Ξ; Δ; Γ � ε(ΛX .t1) :: G ′ � ε(ΛX .t2) :: G ′ : G ′.

Lemma 10.3 (Compatibility-EappG). If Ξ; Δ; Γ � t1 � t2 : ∀X .G and Ξ; Δ � G ′, then
Ξ; Δ; Γ � t1 [G ′] � t2 [G ′] : G[G ′/X ].

The compatibility lemma for type abstractions (Lemma 10.2) says that if two terms are related,
then the type abstractions (whose bodies are those terms) ascribed to any type G ′ are also related
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at G ′. The compatibility lemma for type instantiations (Lemma 10.3) says that if two terms are
related to some polymorphic type ∀X .G, then the instantiations to some type G ′ are related at
G[G ′/X ]. The remaining compatibility lemmas are defined analogously and can be found in the
companion technical report.

In order to prove Lemma 10.3 (Compatibility-EappG), we establish another important lemma to
relate terms after a type substitution.

Lemma 10.4 (Compositionality). If

• W.Ξi (α) = ρ(G ′) andW.κ(α) = Vρ�G ′�,
• E ′

i = liftW.Ξi
(ρ(G ′)),

• Ei = liftW.Ξi
(Gp ) for some Gp � ρ(G),

• ρ ′ = ρ[X �→ α],
• εi = 〈Ei [α

E′
i /X ],Ei [E

′
i/X ]〉, such that εi �W.Ξi � ρ(G[α/X ]) ∼ ρ(G[G ′/X ]), and

• εi
−1 = 〈Ei [E

′
i/X ],Ei [α

E′
i /X ]〉, such that εi

−1 �W.Ξi � ρ(G[G ′/X ]) ∼ ρ(G[α/X ]), then

(1) (W ,v1,v2) ∈ Vρ′�G� ⇒ (W , ε1v1 :: ρ(G[G ′/X ]), ε2v2 :: ρ(G[G ′/X ])) ∈ Tρ�G[G ′/X ]�
(2) (W ,v1,v2) ∈ Vρ�G[G ′/X ]� ⇒ (W , ε1

−1v1 :: ρ ′(G), ε2
−1v2 :: ρ ′(G)) ∈ Tρ′�G�

Observe that Lemma 10.4 is informally the combination of the compositionality and conversion
lemma from Ahmed et al. [2017]. This lemma says that if α is synchronized inW , and X is bound
to α , then (1) given two related values at type G, removing variable X by substitution (unsealing)
yields related computations at typeG[G ′/X ]; and (2) given two related values at typeG[G ′/X ] then
substituting G ′ for X (sealing) yields related computations at type G. Note that the un(sealing)
of type names is done via ascriptions, where evidences are constructed as in the reduction rule
for type instantiations. Note that in order to respect termination sensitivity, we require that the
evidences used to ascribe both values do not introduce new runtime errors. To do so, we build both
evidences by lifting store information, similarly to computing the outer evidence εout (Section 8.2).

Almost all compatibility lemmas and the compositionality lemma rely on the fact that the as-
cription of two related values yields related terms.

Lemma 10.5 (Ascriptions Preserve Relations). If (W ,v1,v2) ∈ Vρ�G�, ε � Ξ; Δ � G ∼ G ′,
W ∈ S�Ξ�, and (W , ρ) ∈ D�Δ�, then (W , ρ1(ε)v1 :: ρ(G ′), ρ2(ε)v2 :: ρ(G ′)) ∈ Tρ�G ′�.

10.3 Parametricity vs. the DGG in GSF

We now give a different perspective from that presented in Section 9.1, regarding the violation
of the general dynamic gradual guarantee (DGG, stated with respect to �). More precisely, we
show that the definition of parametricity for GSF (Section 10) is incompatible with the DGG. To
do so, we again prove that there exists two terms in GSF, related by precision, whose behavior
violates the DGG, but this time we do so with a proof of the intermediate results that is fully-
driven by the definition of parametricity, and not by monotonicity of consistent transitivity. We
present the proof sketch of the intermediate results in order to highlight the key properties that
imply this incompatibility. This is particularly relevant because these properties also manifest in
λB, for which the DGG has not been formally explored yet.

Recall from Section 9.1 that the term that helps us establish the violation of the DGG is id?, a
variant of the polymorphic identity function idX whose term variable x is given the unknown type.
This term always fails when fully applied.

Lemma 10.6. For any � v : ? and � G, we have (ΛX .λx : ?.x :: X ) [G] v ⇓ error.
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Let us consider id? � ΛX .λx : ?.x :: X , whose elaboration is va = 〈∀X .? → X ,∀X .? → X 〉

(ΛX .λx : ?.〈X ,X 〉x :: X ) :: ∀X .? → X , and two different types Int and Bool, such that:

· �va [Int] �−−→

α := Int � 〈? → α Int, ? → Int〉
(
〈? → α Int, ? → α Int〉(λx : ?.〈α Int,α Int〉x :: α) :: ? → α

)
:: ? → Int

and

· �va [Bool] �−−→

α := Bool�〈? → αBool, ? → Bool〉
(
〈? → αBool, ? → αBool〉(λx : ?.〈αBool,αBool〉x :: α) :: ? → α

)
:: ? → Bool

If we consider the domain of the external evidences:

dom(〈? → α Int, ? → Int〉) = dom(〈? → αBool, ? → Bool〉) = 〈?, ?〉

and any pair of related values at type ?, then their ascription to ? using evidence 〈?, ?〉 yields related
values at type ?. In particular for vb = 〈Int, Int〉1 :: ?, (W ,vb ,vb ) ∈ V�?�, as 〈Int, Int〉 � 〈?, ?〉 =
〈Int, Int〉 (〈?, ?〉vb :: ? �−−→ vb ), we obtain that : (↓W � (α , Int,Bool,R),vb ,vb ) ∈ VX �→α �?� for any
R ∈ RelW.j [Int,Bool]. This fact is central to the proof of Lemma 10.6, and to prove it, we use a
(rather technical) intermediate lemma, which crisply captures this idea in a more general setting
using the term (ΛX .λx : ?.t), where t can be any term. Intuitively, consider one step of execution
of the application of (ΛX .λx : ?.t) to two different arbitrary types, and the resulting outermost
evidences ε1 and ε2. The ascription of any value v to ? using the domain of ε1 and ε2 yields two
related computations. The intermediate lemma is formalized as follows:

Lemma 10.7. Let � (ΛX .λx : ?.t) � va : ∀X .? → X and � v � vb : ?. Let G1 and G2, such that
const(G1) � const(G2). If · � va [Gi ] �−−→ α := Gi � ε ivi :: ? → Gi and εi � ? → α ∼ ? → Gi , then
∀W ∈ S�·�,∀R ∈ RelW.j [G1,G2], (W � (α ,G1,G2,R), dom(ε1)vb :: ?, dom(ε2)vb :: ?) ∈ TX �→α �?�.

We now show that instantiating id? to any arbitrary type such as Int, and applying it to any
value of type ? such as vb = 〈Int, Int〉1 :: ? necessarily leads to a runtime error (Lemma 10.6). For
simplicity, we omit worlds in the development below. Consider the configuration · � va [Int] vb ,
which steps to:

α := Int � (〈? → α Int, ? → Int〉
(
〈? → α Int, ? → α Int〉(λx : ?.〈α Int,α Int〉x :: α) :: ? → α

)
:: ? → Int) vb

By the fundamental property (Theorem 10.1) on id? and 1, we know that:

(1) va is related to itself at type ∀X .? → X , and then choosing G1 = Int,G2 = Bool,R =
{(〈Int, Int〉1 :: Int, 〈Bool,Bool〉true :: Bool} we know that

(v1,v2) ∈ VX �→α �? → α�

where v1 = 〈? → α Int, ? → α Int〉(λx : ?.〈α Int,α Int〉x :: α) :: ? → α , and
v2 = 〈? → αBool, ? → αBool〉(λx : ?.〈αBool,αBool〉x :: α) :: ? → α .

(2) 〈Int, Int〉1 :: ? is related to itself at type ?.

Then we notice that, by associativity of consistent transitivity, the pending redex is equivalent
to:

α := Int � 〈α Int, Int〉
(
v1(〈?, ?〉vb :: ?)

)
:: Int

By (2) and Lemma 10.7, 〈?, ?〉vb :: ? �−−→ vb and (vb ,vb ) ∈ VX �→α �?�. We instantiate the result in (1)
(v1,v2) ∈ VX �→α �? → α� with arguments (vb ,vb ) ∈ VX �→α �?�. But notice that v2 vb always fails
(as α is instantiated to Bool not Int), therefore v1 vb must also fail and the result holds, otherwise
v1 and v2 would not be related. Furthermore, let us assume (falsely) that v2 vb reduces to some

Journal of the ACM, Vol. 69, No. 5, Article 38. Publication date: October 2022.



38:54 E. Labrada et al.

value. Then α := Int � v1 vb �−−→
∗ Ξ � 〈Int,α Int〉1 :: α , and α := Int � v2 vb �−−→

∗ Ξ � 〈Int,α Int〉1 :: α ,
then we would have to prove that (〈Int,α Int〉1 :: α , 〈Int,α Int〉1 :: α) ∈ VX �→α �α�, i.e., (〈Int, Int〉1 ::
Int, 〈Int, Int〉1 :: Int) ∈ R which is false as R = {(〈Int, Int〉1 :: Int, 〈Bool,Bool〉true :: Bool)}.
Therefore, v1 vb ought to fail.

As a consequence of Lemma 10.6, the dynamic gradual guarantee is violated in GSF.

Corollary 10.8. There exist � t1 : G and t2, such that t1 � t2, t1 ⇓ v and t2 ⇓ error.

Proof. Let idX � ΛX .λx : X .x :: X , and id? � ΛX .λx : ?.x :: X . By definition of precision, we
have idX � id?. Let � v : G and � v ′ : ?, such thatv � v ′. Pose t1 � idX [G] v and t2 � id? [G] v ′. By
definition of precision, we have t1 � t2. By evaluation, t1 ⇓ v . But by Lemma 10.6, t2 ⇓ error. �

Interestingly, Lemma 10.6 holds irrespective of the actual choices for representing evidence in
GSFε . The key reason is the logical interpretation of ∀X .G. Therefore, the incompatibility described
here does not apply only to GSF but to other gradual languages that use similar logical relations
such as λB: in fact, we have been able to prove that Lemmas 10.7 and 10.6 also hold in λB (by using
conversions instead of evidences and using λB logical relations), so we conjecture that the reason
of the incompatibility is the same as in GSF.

10.4 Gradual Free Theorems in GSF

The parametricity logical relation (Section 10) allows us to define notions of logical approximation
(�) and equivalence (≈) that are sound with respect to contextual approximation (�ctx ) and equiv-
alence (≈ctx ), and hence can be used to derive free theorems about well-typed GSF terms [Ahmed
et al. 2017; Wadler 1989]. The definitions of contextual approximation and equivalence, and the
soundness of the logical relation, are fairly standard. As shown by Ahmed et al. [2017], in a gradual
setting, the free theorems that hold for System F are weaker, as they have to be understood “modulo
errors and divergence”. Ahmed et al. [2017] prove two such free theorems in λB. However, these
free theorems only concern fully static type signatures. This leaves unanswered the question of
what imprecise free theorems are enabled by gradual parametricity. To the best of our knowledge,
this topic has not been formally developed in the literature so far, despite several claims about
expected theorems, exposed hereafter.

Igarashi et al. [2017a] report that the System F polymorphic identity function, if allowed to be
cast to ∀X .? → X , would always trigger a runtime error when applied, suggesting that functions
of type ∀X .? → X are always failing. Consequently, System FG rejects such a cast by adjusting the
precision relation (Section 3). But the corresponding free theorem—i.e., that applying any function
of type ∀X .? → X either diverges or fails—is not proven. Also, Ahmed et al. [2011] declare that
parametricity dictates that any value of type ∀X .X → ? is either constant or always failing or
diverging (p.7). This gradual free theorem is not proven either. In fact, in both an older system
[Ahmed et al. 2009b] and its newest version [Ahmed et al. 2017], as well as in System FG , casting
the identity function to∀X .X → ? yields a function that returns without errors, though the returned
value is still sealed, and as such is unusable (Section 3). The parametricity relation in GSF does not
impose such behavior: it only imposes uniformity of behavior, including failure, of polymorphic
terms, which leaves some freedom regarding when to fail. As we saw earlier, the unknown type can
stand for any type, including any type variable. Consequently, in GSF, a function of type ∀X .? → X
could behave like the identity function with type ∀X .X → X , or as a function of type ∀X .Int → X
that always fails when applied, or a function that given a pair returns its first or second component
with type ∀X .(X × X ) → X , etc. In particular, we show next that ascribing the System F identity
function to ∀X .? → X yields a function that behaves exactly as the identity function (and hence
never fails).
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The DGG�-related Lemmas 9.4 and 9.7 help us prove that in GSF types ∀X .? → X and ∀X .X →

? are inhabited by non-constant, non-failing, parametricity-preserving terms. Observe that this
result is a consequence of the fact that imprecise ascriptions are harmless in GSF.

In particular, both types admit the ascribed System F identity function, among many others (for
instance, the polymorphic term ΛX .λx : X .λf : X →X . f x of type ∀X .X →(X →X )→X can also
be ascribed to ∀X .X →?).

We formalize this using the following corollary:

Corollary 10.9. Let t and v be static terms such that � t : ∀X .T , � v : T ′, and t[T ′] v ⇓ v ′.

(1) If ∀X .T � ∀X .X → ? then (t :: ∀X .X → ?)[T ′] v ⇓ v ′′, and v ′ � v ′′.
(2) If ∀X .T � ∀X .? → X then (t :: ∀X .? → X )[T ′] v ⇓ v ′′, and v ′ � v ′′.

Cheap Theorems. The intuition of ∀X .? → X denoting always-failing functions is not entirely
misguided: in GSF, this result does hold for a subset of the terms of that type. This leads us to
observe that we can derive “cheap theorems” with gradual parametricity: obtained not by looking
only at the type, but by also considering the head constructors of a term. For instance:

Theorem 10.10. Let v � ΛX .λx : ?.t for some t , such that � v : ∀X .? → X . Then for any � v ′ : G,
we either have v [G] v ′ ⇓ error or v [G] v ′ ⇑.

This result is proven by exploiting the gradual parametricity result (Theorem 10.1). Note that
what makes it a “free” theorem is that it holds independently of the body t , therefore without
having to analyze the whole term. Not as good as a free theorem, but cheap. It is worth noting that
although the external loss of precision is harmless, the internal loss of precision may change the
expected behavior of a term. For example, the function ΛX .λx :?.t from Theorem 10.10 might be
the imprecise identity function ΛX .λx :?.x :: X . Therefore, we could expect that applied to a type
and a value of the same type, it returns the same value; however, by Theorem 10.10, it always fails
or diverges.

11 EMBEDDING DYNAMIC SEALING IN GSF

A gradual language is expected to cover a spectrum between two typing disciplines, such as simple
static typing and dynamic typing. The static end of the spectrum is characterized by the conser-
vative extension results [Siek et al. 2015a], which we have established for GSF with respect to
System F (Propositions 6.10 and 8.5). The dynamic end of the spectrum is typically characterized
by an embedding from the considered dynamic language to the gradual language [Siek et al. 2015a].
For instance, in the case of GTLC [Siek and Taha 2006], the dynamic language is an untyped lambda
calculus with primitives.

In this section, we study the “dynamic end” of GSF. Unsurprisingly, GSF can embed an untyped
lambda calculus with primitives, called λdyn (Section 11.1). More interestingly, we highlight the
expressive power of the underlying type name generation mechanism of GSF by proving that GSF
can faithfully embed an untyped lambda calculus with dynamic sealing, λseal (Section 11.2). This
language, also known as the cryptographic lambda calculus, was first studied in a typed version
by Pierce and Sumii [2000], and then untyped [Sumii and Pierce 2004]. One of their objectives was
to study whether dynamic sealing could be used in order to dynamically impose parametricity via
a compiler from System F to λseal. Recently, Devriese et al. [2018] prove that such a compiler is
not fully abstract, i.e., compiled System F equivalent terms are not contextually equivalent in λseal.
Nevertheless, the dynamic sealing mechanism of λseal to protect abstract data, and its relation to
gradual parametricity, is an interesting question. We define an embedding of λseal terms into GSF
(Section 11.3), and prove that this embedding is semantic preserving (Section 11.4).
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11.1 Embedding a Dynamically-Typed Language in GSF

The essence of embedding a dynamically-typed language in a gradual language is to ascribe every
introduction form with the unknown type [Siek and Taha 2006; Siek et al. 2015a]. For instance, the
expression (1 2) from a dynamically-typed language can be embedded as (1 :: ?) (2 :: ?). Observe
that not adding the ascriptions would yield an ill-typed term, as per the conservative extension
result with respect to the static typing discipline. Let us call λdyn the dynamically-typed lambda
calculus with pairs and primitives. We aim at an embedding of λdyn that preserves termination,
divergence, and failure. We will establish this result formally as a corollary of a stronger result for
the extended language with dynamic sealing (see Corollary 11.8).

The embedding of λdyn terms into GSF is defined as:

�b � = b :: ?

�λx .t � = (λx : ?. �t �) :: ?

�〈t1, t2 〉� = 〈 �t1 �, �t2 � 〉 :: ?

�op(t )� = let x : ? = �t � in op(x ) :: ?

�x � = x

�t1 t2 � = let x : ? = �t1 � in let y : ? = �t2 � in x y

�π1(t )� = π1( �t �)

�π2(t )� = π2( �t �)

The only novelty here with respect to prior work is that the embedding produces application
terms in A-normal form in order to ensure that embedded terms behave as expected. For example,
the term (1 Ω), with Ω = (λx .x x) (λx .x x), diverges in the dynamically-typed language. But if we
would embed an application �t1 t2� simply as �t1� �t2�, because evidence combination would detect
the underlying type error before reducing the application. Note that this precaution is unnecessary
for pairs, because there are no typing constraints between both components. To better understand
the need to use the A-normal form, we present both translations (with and without A-normal
form) of program (1 Ω) to GSF and then their translations to GSFε . For simplicity, let us suppose
that �Ω� = Ω and, 1ε and Ωε are GSFε terms, where � Ω � Ωε : ?, � (1 :: ?) � 1ε : ? and
1ε = εInt1 :: ?.

�t1 t2� = let x : ? = �t1� in let y : ? = �t2� in x y
GSF let x : ? = 1 :: ? in let y : ? = Ω in x y
GSFε let x : ? = 1ε in let y : ? = Ωε in (ε?→?x :: ? → ?) y
�−−→ ·� let y : ? = Ωε in (ε?→?1ε :: ? → ?) y

diverges reducing Ωε

�t1 t2� = �t1� �t2�
GSF (1 :: ?) Ω
GSFε (ε?→?1ε :: ? → ?) Ωε

�−−→ ·� error

(εInt � ε?→?) fails

11.2 The Cryptographic Lambda Calculus λseal

The cryptographic lambda calculus λseal is an extension of λdyn with primitives for protecting ab-
stract data by sealing [Sumii and Pierce 2004]. Figure 15 presents the syntax and dynamic semantics
of the λseal language we consider here, which is a simplified variant of that of Sumii and Pierce
[2004]. In addition to standard terms, which correspond to λdyn, the λseal language introduces four
new syntactic constructs dedicated to sealing. First, the term νx .t generates a fresh key to seal and
unseal values, bound to x in the body t . Seals, denoted by the metavariable σ , are values tracked
in the set of allocated seals μ. The sealing construct {t1}t2 evaluates t1 to a value v and t2 to a seal
σ , and seals v with σ . Term let {x}t1 = t2 in t is for unsealing. At runtime, t1 should evaluate to a
seal σ and t2 to a sealed value {v}σ ′ . If σ = σ ′, unsealing succeeds and t is evaluated with x bound
to v . Otherwise, unsealing fails, producing a runtime sealing error unseal_error.17

To illustrate, consider the following term:

νx .νy.λb .let {n}x = {1}(if b then x else y) in n + 1

17The original term for unsealing in λseal has the syntax let {x }t1 = t2 in t else t3; if the unsealing fails, reduction recovers
from error evaluating t3. To be able to encode such a construct, we would need to extend GSF with error handling.
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Fig. 15. λseal: Untyped lambda calculus with sealing.

This term first generates two fresh seals x and y, and then defines a function that receives a
booleanb and attempts to unseal a sealed value. The value 1 is sealed using either x ory, depending
on b, and unsealed with x . If the function is applied to true, unsealing succeeds because the seals
coincide, and the function returns 2. Otherwise, unsealing fails, and an unseal_error is raised.

Overall, we can distinguish three kinds of runtime errors in λseal (error): in addition to unsealing
errors, unseal_error, there are two kinds of runtime type errors, hereafter called type_error—
omitted in Figure 15—and seal_type_error. The former corresponds to standard runtime type
errors such as applying a non-function, and can happen in λdyn. The latter is specific to λseal, and
corresponds to expressions that do not produce seals when expected, such as {1}2.

11.3 Embedding λseal in GSF

We now present a semantic-preserving embedding of λseal terms in GSF. The embedding relies
on a general seal/unseal generator, expressed as a GSF term. This term, called su hereafter, is a
polymorphic pair of two functions, of type ∀X .(X → ?) × (? → X ), instantiated at the unknown
type, and ascribed to the unknown type:

su ≡ (ΛX .〈(λx : X .x :: ?), (λx : ?.x :: X )〉) [?] :: ?

When evaluated, the type application generates a fresh type name, simulating the seal genera-
tion of λseal’s term νx .t . Then the first component of the pair represents a sealing function, while
the second component represents an unsealing function, which can only successfully be applied
to values sealed with the first component. We write suσ to denote a particular value resulting from
the evaluation of the term su, where the type name σ is generated and stored in Ξ. Crucially, a
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Fig. 16. Embedding λseal in GSF.

value that passed through π1(suσ ) is sealed, and can only be observed after passing through the
unsealing function π2(suσ ). Trying to unseal it with a different function results in a runtime error.

Embedding Translation. Figure 16 defines the embedding from λseal to GSF. The cases unrelated
to sealing are as presented in Section 11.1. The crux of the embedding is in the use of the term su. A
seal generation term νx .t is embedded into GSF by let-binding the variable x to the term su, whose
value suσ will be substituted in the translation of t . Recall that the first component of the pair
suσ is used for sealing, and the second one for unsealing. Therefore, the sealing operation {t1}t2

is embedded by let-binding the translations of t1 and t2 to fresh variables x and y, and applying
the first component of y (the sealing function) to x (the value to be sealed). Likewise, an unsealing
let {z}t1 = t2 in t3 is embedded by binding the translation of t1 and t2 to fresh variables x and y,
then unsealing y using the second component of x (the unsealing function), and binding the result
to z, for use in the translation of the term t3. The use of A-normal forms in the embedding of sealing
and unsealing is required because both are eventually interpreted as function applications, so the
precaution discussed in Section 11.1 applies. Finally, note that because seals σ cannot appear in
source text, so the translation need not consider them.

Illustration. As an example, the embedding of the λseal term νx .νy.let {n}x = {1}x in n + 1 is the
following GSF term:

let x : ? = su in
let y : ? = su in
let u : ? = x in
let z : ? = (let n1 : ? = 1 in let s : ? = x in π1(s) n1) in
let n : ? = π2(u) z in n + 1

The following reduction trace shows the most critical steps of the program above. We define suε

as the translation of su to GSFε , and suσ
ε is the value of suε , where a fresh seal σ is generated. Note

that we omit some trivial evidences and type annotations for readability. This program generates
two fresh type names (σ and σ ′), reducing the first su to suσ

ε and the second one to suσ ′

ε . Then,
after a few substitution steps, the first component of suσ

ε is applied to 1, sealing the value, and then
applies the second component of suσ

ε , unsealing the sealed value. The whole program reduces to 2.

· � let x = suε in let y = suε in · · · initial program

�−−→∗ σ := ?,σ ′ := ? � let u = suσ
ε in · · · let s = suσ

ε in · · · σ and σ ′ are generated

�−−→∗ σ := ?,σ ′ := ? � let z = π1(suσ
ε )(εInt1 :: ?) in · · · substitution steps

�−−→∗ σ := ?,σ ′ := ? � let n = π2(suσ
ε )(〈Int,σ Int〉1 :: ?) in n + 1 argument is sealed by σ

�−−→∗ σ := ?,σ ′ := ? � let n = εInt1 :: ? in n + 1 unsealing eliminates σ

�−−→∗ σ := ?,σ ′ := ? � εInt2 :: ?
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If we slightly modify the previous λseal program by νx .νy.let {n}y = {1}x in n + 1, then unseal-
ing fails with unseal_error because it uses a different seal to unseal than the one used to seal. The
embedding of this λseal term in GSF is very similar to the previous one; the only difference is that,
now, u is bound to y. The following reduction trace illustrates where the embedding of the λseal

term fails. Note that the resulting value of π2(suσ ′

ε ) is 〈? → σ ′?, ? → ?〉(λx : ?.〈σ ′?,σ ′?〉x :: σ ′) :: ? → ?,

where σ ′ is a type name and σ ′? is an evidence. Then, the sealed value 〈Int,σ Int〉1 :: ? is substituted
in the body of the function, failing in the consistent transitivity 〈Int,σ Int〉 � 〈σ ′?,σ ′?〉.

· � let x = suε in let y = suε in · · · initial program

�−−→∗ σ := ?,σ ′ := ? � let u = suσ ′

ε in · · · let s = suσ
ε in · · · σ and σ ′ are generated

�−−→∗ σ := ?,σ ′ := ? � let z = π1(suσ
ε )(εInt1 :: ?) in · · · substitution steps

�−−→∗ σ := ?,σ ′ := ? � let n = π2(suσ ′

ε )(〈Int,σ Int〉1 :: ?) in n + 1 argument is sealed by σ

�−−→∗ error error unsealing by σ ′

11.4 Semantic Preservation of the λseal Embedding in GSF

We now prove that the embedding of λseal into GSF is correct, namely that a λseal term and its trans-
lation to GSF behave similarly: either they both terminate to a value, both diverge, or both yield an
error. Note that the semantic preservation theorem below only accounts for what we call valid λseal

terms, i.e., terms that do not produce runtime type errors related to sealing, i.e., seal_type_error.
We come back to this point at the end of this section. We write t ⇓ or t ⇓ v ‖ μ if t ‖ · �−−→

∗ v ‖ μ,
for some v and μ. We write t ⇑ if t diverges, and t ⇓ error if t ‖ · �−−→

∗ error, where error �
type_error or unseal_error. As before, we write t ⇓ if � t � tε : ? and · � tε �−−→

∗ Ξ �v , for some
v and Ξ.

Theorem 11.1 (Embedding of λseal). Let t be a valid closed λseal term.

a. � �t� : ?
b. t ⇓ implies �t� ⇓

c. t ⇑ implies �t� ⇑

d. t ⇓ error implies �t� ⇓ error

To prove Theorem 11.1, we use a simulation relation ≈ between λseal and GSFε , defined in
Figure 17. The simulation relation μ; Ξ; Γ � t ≈ tε : ? uses a set of allocated seals μ by the re-
duction of the λseal term t . The GSFε term tε typechecks in the typing environment Γ where all
variables have type unknown, and it typechecks and it is evaluated in the store Ξ with all its type
names instantiated, also, to the unknown type. In all the rules of the simulation, we implicitly
assume that μ and Ξ are synchronized, i.e., if σ ∈ μ then σ := ? ∈ Ξ. Rules whose names begin
with (TR) relate a λseal term and its translation in GSFε , i.e., embedding first the λseal term into
GSF, and then translating the resulting GSF term to a GSFε term. For instance, Rule (TRb) relates
the λseal value 1 with the GSFε value εInt1 :: ?. Note that Rule (TRp) uses metavariable D to denote
the possible types of GSFε raw values (u), obtained by the embedding: either a base type B, an un-
known function type ? → ?, or a pair of raw values D ×D. Rule (TRsG) relates the seal generation
term νx .t with the GSFε term that let-binds the variable x to the term suε to be substituted in t ′;
it requires that the bodies of the seal generation and let-binding be related. The remaining rules,
whose names begin with (R), help us keep terms related as they reduce. One of the most important
rules is (Rsed2), which relates a λseal sealed value with a GSF value that has sealing evidence, where
σ is a type name and σ E2 is an evidence type. Rule (Rsed1) relates a sealed value {v1}v2 with a GSFε
term that takes the first component of v ′

2 (expected to be a suσ
ε value related to the seal v2), and

applies it tov ′
1 related tov1. Dually, Rule (Runs) relates a term for unsealing with a GSFε term that

takes the second component of v ′
1 (expected to be a suσ

ε value related to the seal v1), and applies it
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Fig. 17. Simulation relation between λseal and GSFε terms.

to v ′
2 related to v2 (expected to be a sealed value). Also, the rule requires the bodies t3 and t3 to be

related.
We first establish a number of useful lemmas. First, all GSFε terms that are in the relation have

type unknown, simulating the fact that they are related to untyped λseal terms.

Lemma 11.2. If μ; Ξ; Γ � t ≈ tε : ? then Ξ; Γ � tε : ?.

Also, the relation ≈ guarantees that if we have a λseal value related to a GSFε term, then the
latter reduces to a related value.

Journal of the ACM, Vol. 69, No. 5, Article 38. Publication date: October 2022.



Gradual System F 38:61

Lemma 11.3. If μ; Ξ � v ≈ tε : ? , then there exists vε s.t. Ξ � tε �−−→
∗ Ξ � vε , and μ; Ξ � v ≈ vε : ?.

For example, we know by Rule (Rsed1L) that

σ ;σ := ? � {1}σ ≈ let x = εInt1 :: ? in let y = suσ
ε in (ε?→?π1(ε?×?y :: ? × ?) :: ? → ?) x : ?

Thus, we know that the GSFε term reduces to a value, in this case, 〈Int,σ Int〉1 :: ?.
Lemma 11.4 establishes substituting related values in related terms yields related terms.

Lemma 11.4. If μ; Ξ; Γ,x : ? � t ≈ tε : ? and μ; Ξ; Γ � v ≈ vε : ?, then
μ; Ξ; Γ � t[v/x] ≈ tε [vε/x] : ?.

Lemma 11.5 shows that the relation ≈ simulates both the notions of reduction −−→ and −−→ , and
the reduction relations �−−→ and �−−→, including error cases. Note that a single step of reduction in
λseal can be simulated by several reduction steps in GSFε , hence the use of �−−→∗ in the conclusions
of the lemma cases. For example, we have μ; Ξ � π1(〈1, 2〉) ≈ π1(ε?×?(εInt×Int〈1, 2〉 :: ?) :: ? × ?) : ?,
and the GSFε term needs to reduce inside the frame π1(�) before eliminating the projection like
the λseal term.

Lemma 11.5. Suppose that t is a term of λseal, tε is a term from GSFε and μ; Ξ � t ≈ tε : ?.

(a) If t ‖ μ −−→ t ′ ‖ μ ′, then there exists t ′ε s.t. Ξ � tε �−−→
∗ Ξ ′ � t ′ε and μ ′; Ξ ′ � t ′ ≈ t ′ε : ?

(b) If t ‖ μ −−→ error, then Ξ � tε �−−→
∗ error

(c) If t ‖ μ �−−→ t ′ ‖ μ ′, then there exists t ′ε s.t. Ξ � tε �−−→
∗ Ξ ′ � t ′ε and μ ′; Ξ ′ � t ′ ≈ t ′ε : ?

(d) If t ‖ μ �−−→ error, then Ξ � tε �−−→
∗ error

Proof. The proof is by induction on μ; Ξ � t ≈ tε : ? and by analysis of the different cases.

Case ((a)). Most of the cases use Lemma 11.3, Lemma 11.4, and the consistent transitivity relation.

Case ((b)). Most of the cases use Lemma 11.3 and the consistent transitivity relation.

Case ((c)). The proof follows by cases analysis on t ‖ μ �−−→ t ′ ‖ μ ′and from Case ((a)).

Case ((d)). The proof follows by cases analysis on t ‖ μ �−−→ error and from Case ((b)). �

The main property of the relation ≈ is that related terms behave similarly:

Lemma 11.6. If � t ≈ tε : ? then

• t ⇓ v ‖ μ implies · � tε �−−→
∗ Ξ � vε , where μ; Ξ � v ≈ vε : ?.

• t ⇑ implies tε diverges.
• t ⇓ error implies · � tε �−−→

∗ error.

Proof. The proof is by case analysis on the reduction of t .

• Suppose t ⇓ v ‖ μ. Then · � tε �−−→
∗ Ξ �vε and μ; Ξ � v ≈ vε : ? by Lemmas 11.3 and 11.5((c)).

• Suppose t ⇑. Then tε diverges by Lemma 11.5((c)).
• Suppose t ⇓ error, then · � tε �−−→

∗ error by Lemma 11.5((c) and (d)). �

Finally, a λseal term and its embedding into GSFε are related.

Lemma 11.7. If � �t� � tε : ?, then � t ≈ tε : ?.

Semantics preservation (Theorem 11.1) follows from Lemmas 11.6 and 11.7.

Leaking the Encoding. As mentioned earlier, the semantic preservation result does not account
for λseal terms that can raise runtime seal type errors, seal_type_error. The reason is that, without
further caution, the encoding of seals as pairs of functions could be abused. For instance, the

Journal of the ACM, Vol. 69, No. 5, Article 38. Publication date: October 2022.



38:62 E. Labrada et al.

term let {y}〈λx .x,λx .x 〉 = 1 in y raises a seal_type_error in λseal, because the expression that is
supposed to produce a seal produces a pair of functions. Nevertheless, the embedding of this term
in GSF reduces to 1. To properly deal with such cases—and therefore obtain a semantic preservation
statement with equivalences instead of implications—would require introducing a primitive way
of distinguishing “proper seals” produced by the translation from standard pairs of functions. A
direct solution would be to exploit the data abstraction capabilities of System F, and hence GSF. Of
course, in a statically-typed version of λseal [Pierce and Sumii 2000], this problem is sidestepped
because a seal_type_error can never occur at runtime.

Embedding of the Dynamically-Typed Language. Finally, a direct consequence of the seman-
tics preservation theorem is that the embedding of λdyn is also correct; in fact the embedding result
holds as stated by Siek et al. [2015a] (Theorem 2), with equivalences instead of implications:

Corollary 11.8 (Embedding of λdyn). Let t be a closed λdyn term.

(a) � �t� : ?
(b) t ⇓ if and only if �t� ⇓

(c) t ⇑ if and only if �t� ⇑

This result follows from Theorem 11.1 combined with the fact that a seal_type_error simply
cannot occur in λdyn, which has no sealing-related terms.

12 GRADUAL EXISTENTIAL TYPES IN GSF

Existential types are the foundation of data abstraction and information hiding: concrete represen-
tations of abstract data types are elements of existential types [Mitchell and Plotkin 1988; Pierce
2002]. It is well known that existential types can be encoded in terms of universal types [Pierce
2002]. However, several polymorphic languages [Ahmed 2006; Ahmed et al. 2009a; Neis et al. 2009]
include both universal and existential types primitively, instead of relying on the encoding. The
reason is that proving certain properties, such as representation independence results, is much
simpler with direct support for existential types.

Although some efforts have already been developed to protect data abstraction in a dynamically-
typed language [Abadi et al. 1995; Rossberg 2003; Sumii and Pierce 2004; Wadler 2017], prior
work on gradual parametric polymorphism leaves the treatment of existential types as future
work [Ahmed et al. 2017; Toro et al. 2019]. In this section, we present an extension of GSF with
existential types, dubbed GSF∃. We first briefly review existential types (Section 12.1) and why a
direct treatment is preferable to an encoding (Section 12.2). We then informally introduce gradual
existential types in action (Section 12.3) before formally developing GSF∃ (Section 12.4). Finally,
we discuss the metatheory of GSF∃ (Section 12.5).

12.1 Existential Types in a Nutshell

An abstract data type (ADT for short) guarantees that a client can neither guess nor depend
on its implementation [Mitchell and Plotkin 1988; Reynolds 1983]. Formally, an ADT consists of a
type name A, a concrete representation type T , implementations of some operations for creating,
querying and manipulating values of type T , and an abstraction boundary enclosing the repre-
sentation and operations [Pierce 2002]. Thus, an ADT provides a public name to a type but hides
its representation. The representation independence property for an ADT establishes that we can
change its representation without affecting clients. This property is a particularly useful applica-
tion of relational parametricity [Reynolds 1983]; we can show that two different implementations
of an ADT are contextually equivalent so long as there exists a relation between their concrete
type representations that is preserved by their operations.
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Data abstraction is formalized by extending System F with existential types, of the form ∃X .T .
Elements of an existential type are usually called packages, written pack〈T ′, t〉 as ∃X .T , where
T ′ is the hidden representation type and the term component t has type T [T ′/X ]. The existential
elimination construct unpack〈X ,x〉 = t1 in t2 allows the components of the package to be accessed
by a client, keeping the actual representation type hidden. Packages with different hidden repre-
sentation types can inhabit the same existential type. Thus, we can implement an ADT in different
ways, creating different existential packages.

For instance, consider a semaphore ADT with three operations: bit to create a semaphore, flip
to produce a semaphore in the inverted state, and read to consult the state of the semaphore, as a
Bool. We can encode such an ADT as an existential type with a triple:

Sem ≡ ∃X .X × (X → X ) × (X → Bool)

Alternatively, for readability, we can use a hypothetical record syntax:

Sem ≡ ∃X .{bit : X ,flip : X → X , read : X → Bool}

Below are two equivalent implementations of this Sem ADT:

s1 ≡ pack〈Bool,v1〉 as Sem where v1 ≡ {bit = true, flip = (λx : Bool.¬ x), read = (λx : Bool.x)}
s2 ≡ pack〈Int,v2〉 as Sem where v2 ≡ {bit = 1, flip = (λx : Int.1 − x), read = (λx : Int.0 < x)}

In the first implementation, the concrete representation type is Bool, and in the second it is
Int. The representation and operations of the Sem ADT are abstract to a client, in the sense that
the representation of bit is hidden, and it can only be manipulated and queried by the operations
flip and read . For instance, if we have the expression unpack〈X ,x〉 = s in t , where s is an imple-
mentation of Sem, we can do (x .read (x .flip x .bit)) in the expression t , but (x .read (x .flip true))
or x .bit == true are invalid programs that do not typecheck. Note that untyped versions of these
programs would run normally with s1, but they would crash with s2.

12.2 Existential Types: Primitive or Encoded?

Existential types are closely connected with universal types, and in fact they can simply be encoded
in terms of universal types, using the following encoding [Harper 2012]:

∃X .T ≡ ∀Y .(∀X .T → Y ) → Y
pack〈T ′, t〉 as ∃X .T ≡ ΛY .λf : (∀X .T → Y ). f [T ′] t

unpack〈X ,x〉 = t1 in t2 ≡ t1 [T2] (ΛX .λx : T .t2) where Δ; Γ � t1 : ∃X .T and Δ,X ; Γ,x : T � t2 : T2

The intuition behind this encoding is that an existential type is viewed as a universal type taking
the overall result type Y , followed by a polymorphic function representing the client with result
type Y , and yielding a value of type Y as result. A package is a polymorphic function taking the
client as argument, and unpacking corresponds to applying this polymorphic function.

Therefore, to study gradual existential types in GSF, one could simply adopt this encoding. How-
ever, if we want to reason about interesting properties such as representation independence and
free theorems, it is preferable to give meaning to existential types directly.

The benefit of a direct treatment of existential types can already be appreciated in the fully-static
setting, with the simple examples of packages s1 and s2 above. Suppose we want to show that s1 and
s2 are contextually equivalent, i.e., indistinguishable by any context. To prove this equivalence, it
is sufficient to show that the packages are related according to a parametricity logical relation that
is sound with respect to contextual equivalence [Reynolds 1983]. Using the direct interpretation of
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existential types, such a proof is considerably easier and more intuitive than using their universal
encodings.18

The additional complexity of reasoning about existential types via their universal encoding
hardly scales to more involved examples. For instance, Ahmed et al. [2009a] prove challenging
cases of equivalences in the presence of abstract data types and mutable references, where the
encoding would have been a liability; hence their choice of supporting existential types directly.
Considering that the GSF logical relation also involves a number of technicalities (evidence, worlds,
etc.), providing direct support for existentials is all the more appealing.

12.3 Gradual Existential Types in GSF∃

In this section, we show some illustrative examples of gradual existential types in action, high-
lighting their benefits and expected properties when type imprecision is involved. In particular,
we want to dynamically preserve the information hiding property presumed for abstract data
types.

Typed-Untyped Interoperability. Gradual existential types allow programmers to embed an
untyped implementation of a library as a static ADT, by picking the unknown type as the hidden
representation type. For instance, if v3 is an untyped record, then s3 below is a gradually well-
typed implementation of the Sem ADT. The translation �·� embeds untyped terms in the gradual
language, basically by introducing ? on all binders and constants [Siek and Taha 2006].

let v3 = {bit = 1,flip = (λx .1 − x), read = (λx .0 < x)} in
let s3 = pack〈?, �v3�〉 as Sem in C[s3]

where C ≡ unpack〈X ,x〉 = � in (x .read (x .flip x .bit))

The package s3 is essentially a version of the package s2 where types have been erased (replaced
with the unknown type). As illustrated later (Section 12.5), one can prove in GSF∃ that s3 is contex-
tually equivalent to s2 (and hence to s1 as well), using a direct interpretation of gradual existential
types. The static client or contextC , given a package implementation of the Sem ADT, changes the
state of the semaphore and then reads the state. The whole example runs without error, producing
false as the final result.

Of course, we could have associated a package implementation that does not respect the ADT
signature. For instance, we definev ′

3 as a variant ofv3, where flip has type ? → Bool. We obtain the
package s ′3, which is still gradually well-typed. However, using the package with clientC results in
a runtime type error. The runtime error happens when the ¬ operator is applied to x .bit, because
¬ expects a Bool argument, but dynamically bit is an Int.

let v ′
3 = {bit = 1,flip = (λx .¬ x), read = (λx .0 < x)} in

let s ′3 = pack〈?, �v ′
3�〉 as Sem in C[s ′3]

The dual case of typed/untyped interoperability is that of a static package being used in dynamic
code. The following example defines the untyped functionд, which take as arguments the function
f and an expression x to be applied to f . The function д is applied to the typed components of the
package s2, reducing the whole program without error to true.

let д = (λf .λx . f x) in unpack〈X ,x〉 = s2 in ((д x .read) x .bit)

18In the companion technical report we provide sketches of these two proof techniques in System F.
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Taking the same example, but changing x .bit to the expression (1 :: ?) yields a runtime error,
because the function x .read is expecting a sealed value, but instead it receives an unsealed Int.

let д = (λf .λx . f x) in unpack〈X ,x〉 = s2 in ((д x .read) (1 :: ?))

Optimistic Type Checking. The following example shows how the optimistic gradual type
checker accepts programs that run without errors, which would be rejected with a static type
checker.

unpack〈X ,x〉 = s2 in
let f = λz.if(z) then (x .flip :: ?) else ((λx : Int.1 − x) :: ?) in
let v ′

2 = {bit = x .bit, flip = f true, read = x .read} in
let s ′2 = pack〈X ,v ′

2〉 as Sem in
unpack〈Y ,y〉 = s ′2 in (y.read (y.flip y.bit))

The package s ′2 is essentially the same as s2—in fact they are equivalent. The function f receives
a Bool argument to decide whether to return the (hidden) flip function from package s2, or a
literal (not hidden) function. This program is gradually well-typed because of the ascriptions to
the unknown type in the branches of the conditional. In contrast, a static type system would reject
this program (without the ? ascriptions in the conditional branches) because the then branch would
have type X → X , while the else branch would have type Int → Int. The gradual program runs
properly, yielding false as a result.

Note that if the definition of flip in v ′
2 would be f false, then a runtime error would be raised.

The error would be produced during the evaluation of the definition of s ′2 becausev ′
2 ought to have

type X × (X → X ) × (X → Bool), but instead it would have type X × (Int → Int) × (X → Bool).

Internal vs. External Imprecision. Another point to take into account is the nature of the impre-
cision of a term of existential type. As discussed previously regarding universal types (Section 9.2),
the imprecision for existential types can be either internal or external, and this has an impact on
runtime behavior. The following program is fully static except for the imprecise ascription of s2 to
the type Sem1 ≡ ∃X .X × (X → ?) × (X → Bool). Observe that Sem � Sem1.

unpack〈X ,x〉 = s2 :: Sem1 in (x .read (x .flip (x .flip x .bit)))

Here we are in the presence of an ascribed imprecision (i.e., external), preserving the GSF prop-
erty that if we ascribe a static closed term to a less precise type, its behavior is preserved: this
program runs without error, and evaluates to true. Indeed, we will later show that GSF∃ satisfies
the weak dynamic gradual guarantee DGG� (Section 12.5).

Conversely, in the following example, the imprecision is now internal, due to the imprecise
signature Sem1 of the package.

unpack〈X ,x〉 = pack〈Int,v2〉 as Sem1 in (x .flip (x .flip x .bit)) + 10

This program is accepted statically, but fails at runtime because according to type-driven sealing, it
would otherwise reveal hidden information, namely, the fact that the supposedly-hidden represen-
tation type is Int. The function x .flip has type X → ?, which specifies that it has to be applied to
a sealed value and could return another sealed value, or in this case, an Int value. The application
(x .flip x .bit) has type ?, and it is used as the argument of x .flip again, optimistically treated as an
abstract type. Then, the result of the second application of x .flip is added to 10, being optimistic
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Fig. 18. SF∃: Syntax, static and dynamic semantics (extends Figure 1).

again with the result of the function x .flip, but this time at type Int. The program fails at runtime
because of the attempt to use x .flip with both types X → X and X → Int. Note that if we allow
both behaviors of the function x .flip, returning 11, then we would be revealing that the hidden
representation type is Int. Thus, we admit at runtime the first application of x .flip, accepted only
with the type X → Int, but it fails in the second application because it receives an Int instead of a
sealed value.

12.4 Semantics of GSF∃

In this section, we formally present the design and semantics of GSF∃, an extension of GSF with ex-
istential types that exhibits the behaviors illustrated above. First, we introduce the static language
SF∃, which is the starting point to apply AGT. Actually, we only apply AGT to the new features
in SF∃ since the others have already been gradualized. Then, we focus on GSF∃, the static and
dynamic semantics derived by AGT. Finally, we show the principal properties that GSF∃ fulfills.

The Static Language SF∃. We derive GSF∃ by applying AGT to SF extended with existential types,
called SF∃ (Figure 18). We extend SF statics with the rules (Tpack) and (Tunpack) for a package
and its elimination form, which are standard. We augment the definition of type equality to deal
with existential types, and use the schme function to extract the schema of an existential type.

The dynamic semantics of the unpack constructor is very similar to the type application; also a
fresh type name α is generated and bound to the representation type T ′ in the global type name
store Σ . Then, we substitute α (instead of the representation type) and the term component, for the
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variablesX and x in the body of the unpack. Like SF, SF∃ is also type safe, and all well-typed terms
are parametric. As usual, in SF∃, two packages are related if their term components are related
under some relations between their concrete type representations. We can define the interpretation
of existential types in SF∃ using the same auxiliary definitions for the logical relation of GSF. Some
definitions, such as Atom=ρ [∃X .G], become simpler because they do not need to deal with the
evidence.

Vρ �∃X .G� = {(W , pack〈T1,v1〉 as ∃X .ρ(G), pack〈G2,v2〉 as ∃X .ρ(G)) ∈ Atom=ρ [∃X .G] |

∀W ′ �W ,α .∃R ∈ RelW ′.j [G1,G2].(W
′ � (α ,G1,G2,R),v1,v2) ∈ Vρ[X �→α ]�G�}

GSF∃: Statics. We derive the statics of GSF∃ following AGT. As in Section 5, we first define the
syntax of gradual typing, and we give them meaning through the concretization function. Then,
we lift the static semantics of the static language to gradual settings using the corresponding ab-
straction function, which forms a Galois connection. Being consistent with the above, we extend
the syntactic category of gradual types G ∈ GType with existential types:

G ::= B | G → G | ∀X .G | G ×G | X | α | ? | ∃X .G
As usual, the unknown type represents any type, including existential types. We naturally ex-

tend the concretization function C and abstraction function A to existential types, preserving the
Galois connection established earlier (Proposition 6.3):

C (∃X .G) = {∃X .T | T ∈ C (G)} A({ ∃X .Ti }) = ∃X .A({Ti })

We define in Figure 19 the inductive definition of type precision, which is equivalent to Defini-
tion 6.1 (Proposition 12.1). As a result, ∃X .? denotes any existential type, is more precise than the
unknown type and less precise than ∃X .X → X .

With the meaning of gradual types, the GSF∃ static semantics follow as usual with AGT. In
this case, we need to define the gradual counterpart of the type equality predicate, whose lifting
is type consistency. Following Definition 6.6, we can find in Figure 19 an equivalent inductive
characterization of type consistency (Proposition 12.2). Then, we lift functions using abstraction,

concretization and Definition 6.8. Our only new function in SF∃ is schme , whose lifting schm�
e is

defined in Figure 19 as expected.
The gradual typing rules of GSF∃ (Figure 19) extend those of GSF. The new rules are obtained by

replacing type predicates and functions with their corresponding consistent liftings in the static
typing rules. Observe that Rule (Gpack) uses type consistency instead of type equality so that the
implementation term can be of a type that is distinct from, but consistent with the package type
(after substituting for the representation type). For example:

pack〈Bool,v1〉 as Sem3 where Sem3 ≡ ∃X .X × (X → X ) × (X → ?)

Here, the type of v1 is Bool × (Bool → Bool) × (Bool → Bool), which is more precise than
Sem3 [Bool].

Rule (Gunpack) uses the consistent existential schema function schm�
e , which allows a term of

unknown type to be optimistically treated as a package, and therefore unpacked.

GSF∃: Dynamics. We now turn to the dynamic semantics of GSF∃. As we did before, we give the
dynamic semantics of GSF∃ in terms of a more informative variant called GSF∃ε . In GSF∃ε , all values
are ascribed, and ascriptions carry evidence.
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Fig. 19. GSF∃: Syntax and static semantics (extends Figure 3).

Figure 20 presents the syntax, static and dynamics semantics of GSF∃ε ; essentially those of GSFε
naturally extended with existential types. It is worth noting that we introduce the syntactic form
packu〈G ′,v〉 as ∃X .G for raw existential values. The reduction rule (Rpack) reduces the term
pack〈G ′,v〉 as ∃X .G to the value ε∃X .G packu〈G ′,v〉 as ∃X .G :: ∃X .G, inserting the evidence ε∃X .G

(evidence of the reflexive judgment ∃X .G ∼ ∃X .G), the ascription to ∃X .G and changing the syn-
tax of the package by packu. The reduction rule (Runpack) specifies the reduction of an unpack
expression: we substitute a fresh type name α for X in the body of the unpack, as well as a (care-
fully ascribed) package implementation for x . In particular, this rule combines the evidence from
the actual implementation term ε1u :: G1 with the evidence of the package, substituting the rep-
resentation type on the left G ′ and the fresh type name α on the right for the type variable X .
Note that the evidence ε justifies that the static type of the package declared by the keyword “as”
is consistent with ∃X .G. Thus, ε[Ĝ ′, α̂] justifies that the static type after the substitution by G ′

is consistent with G[α/X ]. Formally, ε[Ĝ ′, α̂] = 〈p1(ε) [Ĝ ′],p2(ε) [α̂]〉, where Ĝ ′ = liftΞ′ (G ′) and

α̂ = liftΞ′ (α). Consequently, the resulting evidence of ε1 � ε[Ĝ ′, α̂] justifies that the type of the
implementation term is consistent with G[α/X ]. Failure to justify this judgment produces an er-
ror, specifying that the implementation term is not appropriate. This evidence plays a key role in
making the implementation term abstract, i.e., ensuring information hiding.

To support the dynamic semantics for existential types, we need to extend the representation
of evidence types E in GSF∃ε , adding ∃X .E for existential evidence types. Additionally, we extend
the definitions of consistent transitivity naturally: consistent transitivity between evidences with
existential types simply relies on the underlying schemes:
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Fig. 20. GSF∃ε : Syntax, static and dynamic semantics (extends Figure 4).

(ex)
〈E1,E2〉 � 〈E3,E4〉 = 〈E ′

1,E
′
2〉

〈∃X .E1,∃X .E2〉 � 〈∃X .E3,∃X .E4〉 = 〈∃X .E ′
1,∃X .E ′

2〉

Illustration. We now return to the gradual semaphore implementation s∗3 , which is the translation
of the term s3 from GSF∃ to GSF∃ε . Remember that all base values in GSF∃ε are ascribed to their base
types, but for simplicity below, we omit trivial evidences. The following reduction trace illustrates
all the important aspects of reduction in GSF∃ε :

unpack〈X , x 〉 = εSempacku〈?, v∗
3 〉 :: Sem in (x .read (x .flip x .bit)) initial evidence

(Runpack) �−−→∗ (〈?→Bool, α ? →Bool〉(λx .0 < x ) :: α →Bool)
(Rproji ) ((〈?→ Int, α ? →α Int 〉(λx .1 − x ) :: α →α ) (〈Int, α Int 〉1 :: α )) consistent transitivity
(Rapp) �−−→ (〈?→Bool, α ? →Bool〉(λx .0 < x ) :: α →Bool) (〈Int, α Int 〉(1 − 1) :: α ) unsealing eliminates α

(Rop,Rasc) �−−→∗ (〈?→Bool, α ? →Bool〉(λx .0 < x ) :: α →Bool) (〈Int, α Int 〉0 :: α ) the return is sealed
(Rapp) �−−→ εBool(0 < 0) :: Bool unsealing eliminates α

(Rop,Rasc) �−−→∗ εBoolfalse :: Bool

In this example, the initial evidence of the package is fully static. We omit some steps in the
reduction, but it is crucial to show in the rule (Runpack) how the evidence εSem[?,α ?] is calculated:

εSem[?,α ?] ≡ 〈? × (? → ?) × (? → Bool),α ? × (α ? → α ?) × (α ? → Bool)〉

After some application of the rule (Rproji), the term component is protected by the type name
α . The application step (Rapp) then gives rise to unsealing evidence to interact with the implemen-
tation and sealing evidence to protect the implementation.

12.5 Properties of GSF∃

In this section, we summarize the main properties, statics and dynamics, concerning GSF∃. We
cover the refined criteria for gradual typing and parametricity.
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Static Properties. We can show that the GSF∃ meet the same static properties as GSF.

Proposition 12.1 (GSF∃: Precision, Inductively). The inductive definition of type precision
given in Figure 19 is equivalent to Definition 6.1.

Proposition 12.2 (GSF∃: Consistency, Inductively). The inductive definition of type consis-
tency given in Figure 19 is equivalent to Definition 6.6.

The type system of GSF∃ is equivalent to the SF∃ type system on fully-static terms (Proposi-
tion 12.3), where �S denote the typing judgment of SF∃.

Proposition 12.3 (GSF∃: Static Eqivalence for Static Terms). Let t be a static term and G
a static type (G = T ). We have �S t : T if and only if � t : T .

The static semantics of GSF∃ satisfy the static gradual guarantee (Proposition 12.4), where type
precision (Definition 6.1) extends naturally to term precision.

Proposition 12.4 (GSF∃: Static Gradual Guarantee). Let t and t ′ be closed GSF∃ terms such
that t � t ′ and � t : G. Then � t ′ : G ′ and G � G ′.

Dynamic Gradual Guarantees. Not surprisingly, GSF∃ does not satisfy the dynamic gradual
guarantee (Section 9) with respect to precision � for existential types. Let us return to the
semaphore implementation s1. Note that s1 � s4, where s4 = pack〈Bool,v1〉 as ∃X .X × (X →

X ) × (? → Bool). If we use these terms in the same context as follows, we will obtain that

unpack〈X ,x〉 = s1 in (x .read (x .flip x .bit)) � unpack〈X ,x〉 = s4 in (x .read (x .flip x .bit))

However, the term on the left reduces to 2, while the (less precise) term on the right produces a
runtime error because of the attempt to apply the function read (in this case of type ? → Bool) to
a sealed value. On the other hand, with a simple extension of strict precision to existential types,
GSF∃ does satisfy the weaker dynamic gradual guarantee DGG� (Theorem 9.5). Figure 21 defines
the strict type and term precision for both GSF∃ε and GSF∃.

Parametricity. We establish parametricity for GSF∃ by proving parametricity for GSF∃ε . We
extend the step-indexed logical relation for GSFε (Figure 14), adding the interpretation of exis-
tential types. Usually, two packages are related if their term components are related under some
conditions [Ahmed 2006; Neis et al. 2009]. But in gradual settings, the definition of Vρ�∃X .G� is
more complex. We start with the classical interpretation of the existential types adapted to our
previous logical relation (which is not adequate for the interpretation of gradual existential types):

Vρ �∃X .G� = {(W , ε1packu〈G1,v1〉 :: ∃X .ρ(G), ε2packu〈G2,v2〉 :: ∃X .ρ(G)) ∈ Atom=ρ [∃X .G] |

∀W ′ �W ,α .∃R ∈ RelW ′.j [G1,G2].(W
′ � (α ,G1,G2,R),v1,v2) ∈ Vρ[X �→α ]�G�}

Let us focus on some simple and not very interesting programs, but useful to explain our exis-
tential types interpretation. For example, if we relate these two package, ε∃X .X packu〈Int, εInt1 ::
Int〉 :: ∃X .X and ε∃X .X packu〈Bool, εBooltrue :: Bool〉 :: ∃X .X , under the above definition, then we
would have to prove that their component terms, εInt1 :: Int and εBooltrue :: Bool, are related in
Vρ[X→α ]�X �, which is not true. Keep in mind that for two terms to be related in our logical rela-
tionship they must have the same type, and they are related in a type variable if they are related
in the type variable substituted by its associated type name.

Taking the above into account, we change the logical interpretation of existential types slightly.
It is worth pointing out that this definition is not enough to interpret existential types.
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Fig. 21. GSF∃ε and GSF∃: Extensions for strict precision.

Vρ �∃X .G� = {(W , ε1packu〈G1,v1〉 :: ∃X .ρ(G), ε2packu〈G2,v2〉 :: ∃X .ρ(G)) ∈ Atom=ρ [∃X .G] |

∀W ′ �W ,α .∃R ∈ RelW ′.j [G1,G2].(W
′ � (α ,G1,G2,R),

ε1[Ĝ1, α̂] v1 :: ρ(G)[α/X ] , ε2[Ĝ2, α̂] v2 :: ρ(G)[α/X ] ) ∈ Tρ[X �→α ]�G� }

First, we establish that two packages are related if their term components ascribed to the exis-
tential type body, substituting the fresh type name α by X , are related. Second, since we ascribed
term components to other types, we need evidence justifying this. More specifically, we need two
evidences that justify ρ(G)[G1/X ] is consistent with ρ(G)[α/X ] and ρ(G)[G2/X ] is consistent with
ρ(G)[α/X ], respectively. In this sense, we use evidences ε1[Ĝ1, α̂] and ε2[Ĝ2, α̂]; they are just ε1

and ε2, substituting representation types in the left and the fresh type name α in the right, by X .
Note that the combination of these evidences with the internal evidences of the package (term
component evidences) through transitivity can fail.

This interpretation of existential types is pretty complete but is not enough. Now, suppose that
we have the packages ε∃X .?packu〈Int, εInt1 :: Int〉 :: ∃X .? and ε∃X .?packu〈Bool, εInt1 :: Int〉 :: ∃X .?.
These two packages are very similar; the only difference consists in their representation type.
They are related under the above interpretation of existential types, due the fact that we can relate
ε?(εInt1 :: Int) and ε?(εInt1 :: Int) under the unknown type. But we do not want to relate these
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packages. First, it is easy to show that the encodings to universal types of these two packages are
not related because they do not behave in the same way. Second, we could use the packages in
the same context (e.g., if we ascribe them by the type ∃X .X ) with different behaviors, losing the
property that says if two packages are related then they are contextually equivalents. Therefore,
we need to be more strict in the definition of when two packages are related.

Finally, we define the interpretation of existential types as follows:

Vρ �∃X .G� = {(W , ε1packu〈G1,v1〉 :: ∃X .ρ(G), ε2packu〈G2,v2〉 :: ∃X .ρ(G)) ∈ Atom=ρ [∃X .G] |

∀W ′ �W ,α .∃R ∈ RelW ′.j [G1,G2]. ∀Ξ, ε � Ξ; dom(ρ) � ∃X .G ∼ ∃X .G,W ′ ∈ S�Ξ�.

( (ε1 � ρ1(ε)) ∧ (ε2 � ρ2(ε)) ) ⇒ (W ′ � (α ,G1,G2,R),

(ε1 �ρ1(ε) )[Ĝ1, α̂]v1 :: ρ(G)[α/X ], (ε2 �ρ2(ε) )[Ĝ2, α̂]v2 :: ρ(G)[α/X ]) ∈ Tρ[X �→α ]�G�}

The representation type of a package in gradual settings act as a pending substitution, which
has to make sense for all possible (more precise) existential types. In a static world, we do not have
to deal with this problem, because evidence never gains precision, and the initial type checking
ensures that the program never fails. For this reason, we extend the interpretation of existential
types by quantifying over all evidences that justify that ∃X .G ∼ ∃X .G. Doing so ensures that
the representation type behaves correctly for any existential type that is more precise than ∃X .G.
Note that studying the encoding of existential into universal types leads us to justify the same
definition.

Representation Independence and Gradual Free Theorems. We prove the soundness of the
logical relation extended with existential types with respect to contextual equivalence.

Proposition 12.5. If Ξ; Δ; Γ � t1 ≈ t2 : G, then Ξ; Δ; Γ � t1 ≈ctx t2 : G.

With this result, we can return to the semaphore example and show the representation indepen-
dence for the two different implementations s1 and s3. Let us recall the definition of these packages,
where the former uses Bool as representation type, while the latter uses the unknown type:

s1 ≡ pack〈Bool,v1〉 as Sem where v1 ≡ {bit = true, flip = (λx : Bool.¬ x), read = (λx : Bool.x)}
s3 ≡ pack〈?, �v3�〉 as Sem where v3 ≡ {bit = 1,flip = (λx .1 − x), read = (λx .0 < x)}

To prove that these two packages are contextually equivalent (Proposition 12.6), it suffices by
Proposition 12.5 to show that each logically approximates the other. (Note that to proceed with
the proof below, we deal with the tuple-based representation of Sem, since GSF has no records.)
We prove only one direction, namely s1 � s3 : Sem; the other is proven analogously. Therefore, we
are required to show that s∗1 � s∗3 : Sem, where s∗1 and s∗3 are the translation of s1 and s3 from GSF∃
to GSF∃ε , respectively.

Proposition 12.6. s1 ≈ctx s3 : Sem

To prove s∗1 � s∗3 : Sem, we are required to show that for allW , (W , s∗1 , s
∗
3) ∈ T∅�Sem�. Therefore,

we have to prove that � s∗i : Sem (but this is already proven) and (W , s∗1 , s
∗
3) ∈ V∅�Sem� (since s∗i

are already values). Expanding the definition of V∅�Sem�, we need to show that ∀W ′ �W and α ,
∃R ∈ RelW ′.j [Bool, ?], such that ∀ε � ·; · � Sem ∼ Sem:

(W ′′, (εSem�ε)[Bool, α̂]v∗
1 :: G[α/X ], (εSem�ε)[?, α̂]v∗

3 :: G[α/X ]) ∈ T[X �→α ]�G�

where W ′′ = W ′ � (α ,Bool, ?,R), G = schm�
e (Sem) = X × (X → X ) × (X → Bool), s∗1 =

εSempacku〈Bool,v∗
1〉 :: Sem and s∗2 = εSempacku〈?,v∗

2〉 :: Sem. Since εSem is a static evidence, it
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cannot gain precision and so (εSem�ε) = εSem. Therefore, now we are required to show

(↓W ′′,v ′
1,v

′
3) ∈ V[X �→α ]�G�

where

v ′
1 = 〈Bool × (Bool → Bool) × (Bool → Bool),αBool × (αBool → αBool) × (αBool → Bool)〉

〈true, 〈(λx : Bool.¬ x), (λx : Bool.x)〉〉 :: α × (α → α) × (α → Bool)
v ′

3 = 〈Int × (? → Int) × (? → Bool),α Int × (α ? → α Int) × (α ? → Bool)〉
〈1, 〈(λx .1 − x), (λx .0 < x)〉〉 :: α × (α → α) × (α → Bool)

Taking R = {(W ∗, εBooltrue :: Bool, εInt1 :: ?), (W ∗, εBoolfalse :: Bool, εInt0 :: ?) | W ∗ � W ′}, it is
easy to show that

− (↓2W ′′, 〈Bool,αBool〉true :: α , 〈Int,α Int〉1 :: α) ∈ V[X �→α ]�X �

− (↓2W ′′, 〈Bool → Bool,αBool → αBool〉(λx : Bool.¬ x) :: α → α ,

〈? → Int,α ? → α Int〉(λx .1 − x) :: α → α) ∈ V[X �→α ]�X → X �

− (↓2W ′′, 〈Bool → Bool,αBool → Bool〉(λx : Bool.x) :: α → Bool,
〈? → Bool,α ? → Bool〉(λx .0 < x) :: α → Bool) ∈ V[X �→α ]�X → Bool�

Note that ↓2W ′′ �W ′. Thus, the result follows immediately.

13 RELATED WORK

We have already discussed at length related work on gradual parametricity [Ahmed et al. 2017;
Igarashi et al. 2017a; New et al. 2020; Xie et al. 2018], highlighting the different design choices,
properties, and limitations of each. Hopefully our discussions adequately reflect the many sub-
tleties involved in designing a gradual parametric language. A key lesson of this work is that the
tension between graduality and parametricity comes from the early commitment to seal values
based on type information. Very recently, Labrada et al. [2022] proposed plausible sealing as a
new intermediate language mechanism that allows postponing such decisions to runtime. The re-
sulting intermediate language satisfies both graduality and parametricity, but the formal treatment
so far only accounts for a restricted form of polymorphism. Their approach uses lexically-scoped
sealing instead of global seals used in prior work, including this work. As a result, their language
cannot embed the cryptographic lambda calculus; indeed, such an embedding crucially relies on
the unrestricted scope of dynamic seals (Section 11).

The relation between parametric polymorphism in general and dynamic typing greatly pre-
dates the work on gradual typing. Abadi et al. [1991] first note that without further precaution,
type abstraction might be violated. Subsequent work explored different approaches to protect para-
metricity, especially runtime-type generation (RTG) [Abadi et al. 1995; Leroy and Mauny 1991;
Rossberg 2003]. Sumii and Pierce [2004] and Guha et al. [2007] use dynamic sealing, originally pro-
posed by Morris [1973], in order to dynamically enforce type abstraction. Matthews and Ahmed
[2008] also use RTG in order to protect polymorphic functions in an integration of Scheme and
ML. This line of work eventually led to the polymorphic blame calculus [Ahmed et al. 2011] and its
most recent version with the proof of parametricity by Ahmed et al. [2017]. We adapt their logical
relation to the evidence-based semantics of GSF.

Hou et al. [2016] prove the correctness of compiling polymorphism to dynamic typing with
embeddings and partial projections; the compilation setting however differs significantly from
gradual typing. New and Ahmed [2018] use embedding-projection pairs to formulate a semantic
account of the dynamic gradual guarantee, coined graduality, in a language with explicit casts.
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Inspired by the work of Neis et al. [2009] on parametricity in a non-parametric language, they ex-
tended their approach to gradual parametricity, yielding the PolyGν language design with explicit
sealing [New et al. 2020], discussed at length in this article.

Devriese et al. [2018] disprove a conjecture by Pierce and Sumii [2000] according to which the
compilation of System F to a language with dynamic sealing primitives is fully abstract, i.e., pre-
serves contextual equivalences. They show that, for similar reasons, the embedding of System F
in a polymorphic blame calculus like λB is not fully abstract; their observation also applies to GSF.
Full abstraction might be too strong a criteria for gradual typing: already in the simply-typed set-
ting, embedding typed terms in gradual contexts is not fully abstract, because gradual types admit
non-terminating terms. Nevertheless, whenever the observable effects of the static and gradual
languages are the same, then full abstraction is a powerful criteria to ensure the preservation of
static reasoning principles [Jacobs et al. 2021]. For instance, Jacobs et al. [2021] show the fully
abstract embedding criterion for a gradual version of the simply-typed lambda calculus extended
with recursive types and sums. In previous work [Toro et al. 2019], we show that GSF satisfies
an imprecise termination property, which is a weaker yet useful result that sheds light on gradual
free theorems about imprecise type signatures. Here, we extend this result by introducing a strict
notion of precision relative to which the dynamic gradual guarantee is satisfied.

The embedding of a cryptographic lambda calculus in GSF directly relates to unpublished work
by Siek and Wadler [2016], which studies the connection between a polymorphic cast calcu-
lus [Ahmed et al. 2011] and a cryptographic lambda calculus based on that of Pierce and Sumii
[2000]. Their approach is similar to our own, though the technicalities differ: their translation tar-
gets a cast calculus, more akin to GSFε , while we define the embedding directly at the level of GSF.
Therefore, our result is the first to relate the dynamic end of a gradual parametric source language
and dynamic sealing. Also, our embedding is inspired by the type Univ = ∃Y .∀X .(X → Y )× (Y →

X ) put forth by Devriese et al. [2018] in their analysis of full abstraction mentioned above. The
type Univ can be interpreted as stating the existence of a universal type Y , i.e., a type that all other
types can be embedded into and extracted from. As they show by a parametricity argument, Univ
cannot be inhabited in System F. In GSF, however, the unknown type ? plays this role of a uni-
versal type. Interestingly, Siek and Wadler [2016] discuss an alternative embedding that resembles
ours, although they discard it as it does not align well with their treatment of blame. A system-
atic treatment of blame within the Abstracting Gradual Typing framework is an active research
topic.

This work is generally related to gradualization of advanced typing disciplines, in particular to
gradual information-flow security typing [Disney and Flanagan 2011; Fennell and Thiemann 2013,
2016; Garcia and Tanter 2015; Toro et al. 2018]. In these systems, one aims at preserving noninterfer-
ence, i.e., that private values do not affect public outputs. Both parametricity and noninterference
are 2-safety properties, expressed as a relation of two program executions. While Garcia and Tanter
[2015] show that one can derive a pure security language with AGT that satisfies both noninter-
ference and the dynamic gradual guarantee, Toro et al. [2018] find that in the presence of mutable
references, one can have either the dynamic gradual guarantee, or noninterference, but not both.
Also similarly to this work, AGT for security typing Toro et al. [2018] needs a more precise ab-
straction for evidence types (based on security label intervals) in order to enforce noninterference.
Together, these results suggest that type-based approaches to gradual typing are in tension with
semantically-rich typing disciplines. Solutions might come from restricting the considered syntax,
as in PolyGν in the context of parametricity, or the range of graduality, as recently established by
Azevedo de Amorim et al. [2020] in the context of noninterference, where the dynamic end of the
spectrum is not fully untyped security-wise.
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14 CONCLUSION

GSF is a gradual parametric language that bridges between System F and an untyped language
with dynamic sealing primitives. The spectrum between both extremes is fairly continuous, even
if not perfectly: the implicit type-driven resolution of sealing in its runtime semantics, which
appears necessary in order to respect the syntax of System F, implies that GSF violates the
dynamic gradual guarantee in certain cases. We precisely characterize the weaker continuity that
GSF supports, along with all its other properties. In particular, we prove that GSF can faithfully
embed dynamic sealing. Additionally, we extend GSF with support for existential types for gradual
data abstraction. The design of GSF is largely driven by the Abstracting Gradual Typing (AGT)
methodology. We find that AGT greatly streamlines the static semantics of GSF, but does not
yield a language that respects parametricity by default; non-trivial exploration was necessary to
uncover how to strengthen the structure and treatment of runtime evidence in order to recover a
notion of gradual parametricity. In turn, this strengthening breaks the dynamic gradual guarantee
when loss of precision interferes with type-driven sealing.

This work focuses on the semantics and metatheoretical properties of GSF, without explicitly
taking into account efficiency considerations such as pay-as-you-go [Igarashi et al. 2017a; Siek and
Taha 2006], space efficiency [Herman et al. 2010; Siek and Wadler 2010], cast elimination [Rastogi
et al. 2012], and so on. Optimizing the dynamic semantics of GSF is left for future work. Likewise,
blame tracking has not been considered [Wadler and Findler 2009]. The use of explicit polymor-
phism in the design of GSF hampers certain interoperability scenarios. We are exploring a resolu-
tion of this tension based on a flexible runtime mechanism, whose metatheory is on-going work.

As extensively discussed, gradual parametricity is subtle, and there are many scenarios when
the decision of failing or not is open to debate and various considerations. This work contributes to
this discussion by proposing several practical principles, such as ensuring that fully-static terms
can be embedded in gradual contexts and made imprecise externally without affecting their be-
havior. There are two main trends in the design of gradual parametric languages: those based on
System F, like λB, CSA, System FG and GSF, and those that depart from that syntax, like PolyGν .
GSF contributes to the System F trend. Also, we have argued that while PolyGν enjoys a stronger
metatheory than languages from the other trend, several limitations regarding modularity and
abstraction caused by its use of explicit sealing are not benign. The question remains open of
whether there is a third way, embracing both System F and a fully satisfying metatheory. Plausible
sealing [Labrada et al. 2022] seems promising in that regard, but there are still open issues for the
technique to fully cover System F.
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