Foundations of Typestate-Oriented Programming

BONALD GARCIA, University of British Columbia
ERIC TANTER, University of Chile
ROGER WOLFF and JONATHAN ALDRICH, Carnegie Mellon University

Typestate reflects how the legal operations on imperative objects can change at runtime as their internal
state changes. A typestate checker can statically ensure, for instance, that an object method is only called
when the object is in a state for which the operation is well defined. Prior work has shown how modular
typestate checking can be achieved thanks to access permissions and state guarantees. However, typestate
was not treated as a primitive language concept: typestate checkers are an additional verification layer
on top of an existing language. In contrast, a typestate-oriented programming (TSOP) language directly
supports expressing typestates. For example, in the Plaid programming language, the typestate of an object
directly corresponds to its class, and that class can change dynamically. Plaid objects have not only typestate-
dependent interfaces but also typestate-dependent behaviors and runtime representations.

This article lays foundations for TSOP by formalizing a nominal object-oriented language with mutable
state that integrates typestate change and typestate checking as primitive concepts. We first describe a stat-
ically typed language—Featherweight Typestate (FT)—where the types of object references are augmented
with access permissions and state guarantees. We describe a novel flow-sensitive permission-based type
system for FT. Because static typestate checking is still too rigid for some applications, we then extend this
language into a gradually typed language—Gradual Featherweight Typestate (GFT). This language extends
the notion of gradual typing to account for typestate: gradual typestate checking seamlessly combines static
and dynamic checking by automatically inserting runtime checks into programs. The gradual type system of
GFT allows programmers to write dynamically safe code even when the static type checker can only partly
verify it.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory—
Semantics; D.3.3 [Programming Languages|: Language Constructs and Features—Typestate; D.2.10
[Software Engineering]: Design—Representation

General Terms: Languages, Design, Reliability, Theory, Verification
Additional Key Words and Phrases: Access permissions, gradual typing, types, typestates

An earlier version of this article was presented at the European Conference on Object-Oriented Programming
(ECOOP), July 2011 [Wolff et al. 2011].

R. Garcia is supported by the National Science Foundation under grant #0937060 to the Computing Research
Association for the CIFellows Project and by the Natural Sciences and Engineering Research Council of
Canada. E. Tanter is partially funded by FONDECYT Project 1110051, Chile. J. Aldrich and R. Wolff are
supported by the National Science Foundation under grants #CCF-0811592 and #CCF-1116907.

Authors’ addresses: R. Garcia, Software Practices Laboratory, Computer Science Department, University
of British Columbia; email: rxg@cs.ubc.ca; E. Tanter, PLEIAD Laboratory, Computer Science Department
(DCC), University of Chile; email: etanter@dcc.uchile.cl; R. Wolff and J. Aldrich, Institute for Software
Research, Carnegie Mellon University; emails: {roger.wolff, jonathan.aldrich}@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 0164-0925/2014/10- ART12 $15.00

DOL: http://dx.doi.org/10.1145/2629609

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

http://dx.doi.org/10.1145/2629609

12:2 R. Garcia et al.

ACM Reference Format:

Ronald Garcia, Eric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations of typestate-oriented
programming. ACM Trans. Program. Lang. Syst. 36, 4, Article 12 (October 2014), 44 pages.

DOI: http://dx.doi.org/10.1145/2629609

1. INTRODUCTION

This article investigates an approach to increase the expressiveness and flexibility of
object-oriented languages, with the goal of improving the reliability of software. By
introducing typestate directly into the language and extending its type system with
support for gradual typing, useful abstractions can be implemented directly, stronger
program properties can be enforced statically, and when necessary dynamic checks can
be introduced seamlessly.

An object’s type specifies the methods that can be called on it. In most programming
languages, this type is constant throughout the object’s lifetime, but in practice, the
methods that it makes sense to call on an object change as its runtime state changes
(e.g., an open file cannot be opened again). These constraints typically lie outside the
reach of standard type systems, and unintended uses of objects result, at best, in
runtime exceptions.

More broadly, types generally denote properties that hold without change, and in
mainstream type systems, they fail to account for how changes to mutable state can
affect the properties of an object. To address this shortcoming, Strom and Yemini
[1986] introduced the notion of typestate as an extension of the traditional notion of
type. Typestate reflects how the legal operations on imperative objects can change at
runtime as their internal state changes.

The seminal work on typestate [Strom and Yemini 1986] focused primarily on
whether variables were properly initialized, and presented a static typestate checker.
A typestate checker must account for the flow of data and control in a program to
ensure that objects are used in accordance with their state at any given point in a
computation. Since that original work, typestate has been used to codify and check
more sophisticated state-dependent properties of object-oriented programs. It has been
used, for instance, to verify object invariants in .NET [DeLine and Fahndrich 2004], to
verify that Java programs adhere to object protocols [Fink et al. 2008; Bierhoff et al.
2009; Bodden 2010], and to check that groups of objects collaborate with each other
according to an interaction specification [Naeem and Lhotak 2008; Jaspan and Aldrich
2009].

Most imperative languages cannot express typestates directly: rather, typestates are
encoded through a disciplined use of member variables. For instance, consider a typical
object-oriented file abstraction. A closed file may have a null value in its file descriptor
field. Accordingly, the close method of the file object first checks if the file descriptor is
null, in which case it throws an exception to signal that the file is already closed. Such
typestate encodings hinder program comprehension and correctness. Comprehension
is hampered because the protocols underlying the typestate properties, which reflect
a programmer’s intent, are at best described in the documentation of the code. In
addition, typestate encodings cannot guarantee by construction that a program does
not perform illegal operations. Checking typestate encodings can be done through a
whole-program analysis (e.g., Fink et al. [2008]), or with a modular checker based on
additional program annotations (e.g., Bierhoff and Aldrich [2007]). In either case, the
lack of integration with the programming language hinders adoption by programmers.

To overcome the shortcomings of typestate encodings, a typestate-oriented pro-
gramming (TSOP) language directly supports expressing them [Aldrich et al. 2009].
For instance, in a class-based language that supports dynamically changing an ob-
ject’s class (such as Smalltalk), typestates can be represented as classes and can be

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

http://dx.doi.org/10.1145/2629609

Foundations of Typestate-Oriented Programming 12:3

dynamically updated: objects can have typestate-dependent interfaces, behaviors, and
representations. However, protocol violations in a dynamically typed TSOP language
result in “method not found” errors. To catch such errors as early as possible, we want
to regain the guarantees provided by static type checking.

Static typestate checking is challenging, especially in the presence of aliasing. Some
approaches sacrifice modularity and rely on whole program analyses [Fink et al. 2008;
Naeem and Lhotak 2008; Bodden 2010]; others retain modularity at the expense of
sophisticated type systems, typically based on linear logic [Walker 2005] and requiring
many annotations. One kind of annotations is access permissions, which specify certain
aliasing patterns [Boyland 2003; DeLine and Fahndrich 2004; Bierhoff and Aldrich
2007]. None of these approaches, however, incorporates typestates as a core language
concept.

The first contribution of this article is a core calculus for TSOP inspired by Feather-
weight Java (FJ) [Igarashi et al. 2001]—Featherweight Typestate (FT). FT is a nominal
object-oriented language with mutable state that integrates typestate change and type-
state checking as primitive concepts. Much like FJ, which characterizes Java and nom-
inal object-oriented programming, FT is meant to precisely characterize TSOP and to
serve as a platform for exploring extensions to the paradigm and interactions with
proven and bleeding-edge language features. A novel flow-sensitive permission-based
type system makes it possible to modularly check FT programs.

Unfortunately, FT and all existing static typestate checkers cannot always verify safe
code, due to the conservative assumptions they must make. Advanced techniques like
fractional permissions [Boyland 2003] increase the expressiveness of a type system,
within limits, but increase its complexity. Many practical languages already provide a
simple feature for overcoming the limitations of their type systems: dynamic coercions.
Although these coercions (a.k.a. casts) may fail at runtime, they are often necessary in
specific scenarios where the static machinery is insufficient. Runtime assertions about
typestates are not supported by any modular approach that we know of; one primary
objective of this work is to support them.

Once dynamic coercions on typestates are available, they can be used to ease the
transition from dynamically- to statically typed code. For this reason, we extend grad-
ual typing [Siek and Taha 2006, 2007] to account for typestates: we make typestate
annotations optional, check as much as possible statically, and automatically insert
runtime checks into programs where needed. This allows programmers to gradually
annotate their code and get progressively more support from the type checker while
still being able to safely run a partially annotated program.

The second contribution of this work is Gradual Featherweight Typestate (GFT), an
extension of FT that supports dynamic permission checking and gradual typing. Like
FT, GFT directly integrates typestate as a first-class language concept. Its analysis
is modular and safe without imposing complex notions like fractional permissions
onto programmers. It supports recovery of precise typing using dynamically checked
assertions, supports the gradual addition of type annotations to a program, and enables
permission- and typestate-based reasoning in dynamically typed programs.

Section 2 introduces the key elements of TSOP with access permissions and state
guarantees. Section 3 describes F'T, including its syntax, its static and dynamic seman-
tics, and its metatheory. Section 4 extends FT to GFT. GFT’s dynamic semantics are
presented using a type-safe internal language to which GFT translates. The sound-
ness proofs for both languages are available in companion technical reports [Garcia
et al. 2013; Wolff et al. 2013]. Section 5 relates the dynamic semantics of FT to that
of GFT. In particular, every FT program is also a GFT program, and its translation
to GFTIL has the same runtime behavior as running the FT program directly. This
connection is analogous to the relationship between the simply typed, gradually typed,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:4 R. Garcia et al.

ClosedFile File
path

dlose() open() getPath()
OpenfFile OpenFile | [ClosedFile |
file_desc [open() |

read() close()
[AtEOF] [NotEOF |
OO [read) |

Fig. 1. (a) State diagram of a file. (b) Hierarchy of files states.

and cast-based languages of Siek and Taha [2006]. Section 6 concludes. A translator for
GFT’s source language, type checker for the internal language, and executable runtime
semantics are available at http:/www.cs.ubc.ca/~rxg/gft/gft-toplas.tgz.!

2. TYPESTATE-ORIENTED PROGRAMMING

To avoid conditionals on flag fields or other indirect mechanisms like the state pattern
[Gamma et al. 1994], TSOP proposes to extend object-oriented programming with an
explicit notion of state (from here on we use state to mean typestate). In TSOP, objects
are modeled not just in terms of classes but in terms of changing states. Each state
may have its own representation and methods, which may transition the object to new
states.

To illustrate this concept in practice, consider a familiar example. A file object has
methods such as open, close, and read. However, these methods cannot be called at just
any time. A file can only be read after it has been opened; if we reach the end-of-file,
then the ability to read is not available anymore; an open file cannot be opened again,
and so forth. Figure 1(a) shows a state diagram of a file object, describing the protocol.
Figure 1(b) depicts the corresponding TSOP model of file objects in terms of states,
using distinct classes in a subclass hierarchy to represent states. File is an abstract
state; a file object is either in the OpenFile or ClosedFile state. Note that the path field
is present in both states, but that the file_desc field, which refers to the low-level
operating system resource, is only present in the OpenFile state. Any OpenFile can
be closed; however, it is only possible to read from an open file if the end-of-file has
not been reached. Therefore, the OpenFile state has two refining substates: AtEOF and
NotEOF.

State change. A TSOP language supports a state change operation, denoted <. For
instance, the close method in OpenFile can be defined as

void close() { this <« ClosedFile(this.path); }

The expression forme <« C(...) transitions the object described by e into the state C;
the arguments are used to initialize the fields of the object. In other words, < behaves
like a constructor but updates the object in-place.

Declaring state changes. A statically typed TSOP language must track state changes
to reject programs that invoke methods on objects in inappropriate states. Consider
the following:

OpenFile f = ...; f.close(); f.close();

IThis article differs from our previous article in a number of ways. Most importantly, we present the static
language FT in Section 3. Gradual Typestate’s type system is simplified to more clearly reflect its foundations
and its relation to FT.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

http://www.cs.ubc.ca/protect $
elax sim $rxg/gft/gft-toplas.tgz

Foundations of Typestate-Oriented Programming 12:5

change state?

owner | others
full yes no
shared | yes yes
pure no yes

Fig. 2. Access permissions.

The type of f before the first call to close is OpenFile. However, the second call to
close should be rejected by a type checker. One way to do so is to analyze the body of
the close method to deduce that it updates the state of its argument to ClosedFile.
However, this approach sacrifices modularity. Therefore, a method’s signature should
specify the output state of its arguments as well as that of its receiver. The calculi in
this article specify the state changes of methods by annotating each argument with its
input and output state, separated by the > symbol. The input and output states of the
receiver object are placed in square brackets after the normal argument list, such as

void close() [OpenFile > ClosedFilel{...}

Access permissions. In a language with aliasing, tracking state changes is a subtle
process. For instance, consider the following (where F, OF and CF are abbreviations for
File, OpenFile, and ClosedFile, respectively):

void m(OF > CF f,0F > OF g) {f.close(); print(g.file_desc.pos);}

Because of possible aliasing, f and g may refer to the same object. In that case, the
method body of m must not be well typed, as g may refer to a closed file by the time it
needs to access its (potentially nonexistent) file_desc field.

To track state changes in the presence of aliasing, Bierhoff et al. have proposed access
permissions [Bierhoff and Aldrich 2007; Bierhoff et al. 2009]. An access permission
specifies whether a given reference to an object can be used to change its state or
not, as well as the access permissions that other aliases to the same object might
have. In this work, we consider three kinds of access permissions (Figure 2): full,
shared, and pure. We say a reference has write access if it has the ability to change
the state of an object. full and shared have write access, where full implies exclusive
write access. Our choice of permissions captures a coherent and self-contained set from
the literature that supports common programming idioms. We can easily add more
known permissions (e.g., immutable, unique, and none), but they would simply add
more complexity to our development without providing any new insights.

One fix for the m method is to require that f and g have exclusive write access to an
OF to ensure that they are not aliases, and therefore that f.close() cannot affect g’s
referent:

void m(full OF > full CF f, full OF >» full OF g) {...}

State guarantees. Requiring g to have exclusive write access seems like overkill here.
Only a pure access permission is required to read the field file_desc. But we must still
ensure that the two parameters are not aliases.

For more flexible reasoning in the presence of aliasing, access permissions are aug-
mented with state guarantees (proposed by Bierhoff and Aldrich [2007] but formalized
and proven sound for the first time here). A state guarantee puts an upper bound on
the state change that may be performed by a reference with write access: it can only
transition an object to some subclass of the state guarantee. A type specification then

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:6 R. Garcia et al.

has the form k(D) C, where k is the access permission, D is the state guarantee, and C
is the current state of the object. A permission, k(D), is the access permission coupled
with the state guarantee.

Consider the following:

full(Object) NotEOF x = new NotEOF(...);
pure(OF) OF y = x;

x.read();

print(y.file_desc.pos);

Whereas x. read() may change the state of the file by transitioning it to AtEOF, the type
system ensures that it cannot invalidate the open file assumption held by vy.

State guarantees improve modular reasoning about typestates substantially. For
instance, they recover the ability to express something similar to an ordinary object-
oriented type: shared(C) C allows an object to be updated but guarantees that it always
obeys the interface C.? In addition, it turns out that we can use state guarantees to
express an alternative solution to the previous example: restrict g to the pure access
permission it requires, but add a state guarantee of OF to ensure that no other reference
can transition the object to ClosedFile:

void m(full(F) OF > full(F) CF f,
pure(OF) OF > pure(OF) OF g){ ... }

In this case, we can still statically enforce that f and g are not aliases by carefully
choosing exactly how references to objects can be created. In this way, we can allow the
programmer more flexibility than always demanding exclusive access to objects.

Permission flows. Permissions are split between all aliases and carefully restricted
to ensure safety. This includes aliases in local variables, as well as in object fields.
Consider the following snippet:

class FileContainer{ shared(OF) OF file; }

full(Object) OF x = new OF(...);
pure(OF) OF y = x;
full(Object) FileContainer z = new FileContainer(x);

After construction of the OF, the reference x has no aliases, so it is safe to give it full
access permission with an unrestricted update capability (Object state guarantee).
Then, a local alias y is created, capturing a pure access permission with OF guar-
antee. After this point, any state change done through x must respect this guaran-
tee. Therefore, the permission of x must be downgraded to full(0F). Finally, a con-
tainer object is created, passing x as argument to the constructor. The field of z cap-
tures a shared(0F) permission. The permission of x is downgraded again, this time to
shared (0F). At this point, there are three aliases to the same file object: x and z.file
both hold a shared(0F) permission, and y holds a pure(0F). All aliases must be consis-
tent, in that a state update through one alias must not break the invariants of other
references.

Temporarily holding permissions. Consider the example of a socket. A socket (of type
S) is like a file in that it can be open (0S) or closed (CS). However, an open socket can

2In FT, state guarantees are enforced for the rest of program execution. As we will see, however, when we
consider gradual typing, a guarantee can be removed if the variable of the guaranteed type goes out of scope
or a runtime assertion on that variable is executed. Extensions such as borrowing can also allow guarantees
(e.g., on a borrowed object) to be removed.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:.7

also be ready (RS) or blocked (BS). The wait method accepts a blocked socket and waits
until it is ready,® whereas the read method gets data from the socket. The methods of
socket have the following signatures:

void wait() [pure(0S) 0S > pure(0S) RS]
int read() [shared(0S) RS > shared(0S) 0S]

Now consider the following program, which waits on a blocked socket and then reads
from it:

shared(0S) 0S x = new 0S(...);
X.wait();
X.read();

This program is ill-typed due to the downgrading of permissions. To invoke wait, the
permission to x is downgraded from shared(0S) 0S to pure(0S) 0S. Therefore, read,
which requires a shared(0S) RS, cannot be called, even though the call to read is safe:
wait requires a read-only alias to its argument and does nothing that would interfere
with the caller’s shared(0S) permission. This is an unfortunate limitation due to the
conservative nature of the type system.

We could attempt to work around this problem by creating a temporary alias to x
with only a pure access permission and use that alias to invoke wait. However, this is
cumbersome and does not allow for permissions to be merged back later. Merging the
permission returned by wait into the permission held by the client is crucial in this
case, because we want x to have type shared (0S) RS, taking advantage of the fact that
wait returns when the socket is ready (RS).

To properly support this pattern, we introduce a novel expression, hold, which re-
serves a permission to a variable for use within a lexical scope and then merges that
permission with that of the variable at the end of the scope. For instance:

shared(0S) 0S x = new 0S(...);
hold[x:shared(0S) 0S] { x.wait(); }
x.read();

The program is now type correct: hold retains a shared access permission to the object
referenced by x, which is merged back once the body of hold is evaluated. The call to
wait is performed with just the necessary access permission, pure, and the state of
the object is merged back into the permission of x, enabling the call to read. Our hold
construct serves a similar purpose to borrowing [Boyland and Retert 2005; Naden et al.
2012] in that it can be used to ensure that the caller retains the permissions it needs
after making a method call. The two differ in that borrowing ensures that the callee
returns all of the permissions that it was given without storing any in the heap. In
contrast, hold is for the caller only: the callee can do what it wants with the permissions
it receives as long as sufficient permissions are returned to the caller.

Dynamic permission asserts. As sophisticated as the type system might be, it is still
necessarily conservative and therefore loses precision. Dynamic checks, like runtime
casts, are often useful to recover such precision. For instance, consider the following
extension of the FileContainer snippet seen previously in which both y and z are
updated to release their aliases to x:

3Note that wait does not actually change the state of the socket itself but rather asserts the desired RS type
once the state of the socket has been changed, such as by another thread or by a coroutine.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:8 R. Garcia et al.

y = new OF(...);

z < Object();
assert<full(F) OF>(x);
x.close();

Assuming that close requires a full(F) permission to its receiver, the type system is
unable to determine that x can be closed, even though it is safe to do so (because x is
once again the sole reference to the object). A dynamic assert allows this permission to
be recovered. Like casts, dynamic asserts may fail at runtime.

Note that dynamic class asserts, which modify the static class of an object but leave
permissions alone, need no special support beyond what is needed for a typical object-
oriented language. Therefore, a static typestate language that runs on a standard
0O backend can support dynamic assertions about the class of an object. Dynamic
permission asserts, on the other hand, require special support from the runtime system.

Gradual typing. A statically typed TSOP program requires more annotations than
a comparable object-oriented program. This may be prohibitively burdensome for a
programmer, especially during the initial stages of development. For this reason, we
develop a gradually typed calculus that supports a dynamic type Dyn. Precise type
annotations can then be omitted from an early draft of a program as in the following
code:

Dyn f = ...; f.read();

A runtime check verifies that f refers to an object that has a read method.* Assume that
read is annotated with a receiver type full(OF) NotEOF. In this case, we must ensure
that we have an adequate permission to the receiver. Thus, a further runtime check
verifies that f refers to an object that is currently in the NotEOF state, that no aliases
have write access, and that all aliases have a state guarantee that is a superstate of
OF. The last two conditions ensure that invariants of aliases to f cannot be broken.
Gradual typing thus enables dynamically- and statically typed parts of a program to
coexist without compromising safety.

Although typestate checking has historically been considered only in a fully static
setting, supporting gradual typestate checking means that access permissions and
state guarantees are properties that are dynamically enforced. Just like objects have
references to their class, object references have both access permissions and state
guarantees. For instance:

Dyn x = app.getFile();
pure(OF) OF y = x;
app.process(x);

x is a dynamic reference to a file and remains so even after a statically typed alias y is
created. However, the static assumptions made by y are dynamically enforced: both x
and y refer to (at least) an open file after the execution of process. If process tries to
close x, an error is raised.

Putting it all together. Listing 1 exhibits the preceding capabilities in a small logging
example that generalizes to other shared resources.” The OpenFileLogger (OFL) state

4Note that Dyn is different from Object: if f had type Object, then type checking would fail because Object
has no read method.

5When the output type is the same as the input type, we omit it for brevity; a practical language would
provide means to further abbreviate our type annotations.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:9

1 class FilelLogger { /* Logging—related data and methods */ }
2

3 class OpenFileLogger : Filelogger {

4 full(OF) OF file;

5

6 void log(string s)[shared(OFL) OFL] {...}

7

8 void close()[full(FL) OFL » full(FL) FL] {

9 full(OF) OF fileT = (this.file :=: new OF("/dev/null"));
10 assert<full(F) OF>(fileT);

11 fileT.close();

12 this < Filelogger();

13 }

14 }

15

16 // Client code

17 void staticLog(shared(OFL) OFL logger) {

18 logger.log("in staticlog");

19 }

20 Dyn dynamicLog(Dyn logger) { logger.log("in dynamicLog"); }
21

22 full(OF) OF file® = new OF(...);

23 full(OFL) OFL logger = new OFL(file0);

24

25 hold[logger:shared(OFL) OFL]{ dynamicLog(logger); }
26 staticLog(logger);

27

28 assert<full(FL) OFL>(logger);

29 logger.close();

Listing 1. Sample typestate-oriented code.

holds a reference to a file object (OF) and provides a log method for logging messages
to it. When logging is complete, the close method acquires all permissions to the file
by swapping in a sentinel value.® (with :=:, explained in the next section), closes the
file, and transitions the logger to the FileLogger (FL) state, which has no file handle.
The client code declares and uses two logging interfaces: staticLog and dynamicLog.
They are somewhat contrived but are meant to represent APIs that utilize a file logger
but do not store it. After creating logger (line 23), the file0 reference no longer has
enough permission to close the file, so calls to logger.log() are safe. Line 25 passes
logger to a dynamically typed method; as a result, logger is of type Dyn after the call.
Using hold, we hold a shared(0FL)O0FL permission to the logger while the dynamiclLog
call happens, then restore those permissions before the call to staticLog. Had we not
held these permissions, the logger would have Dyn type, and the call to staticlLog()
(line 26) would be preceded by an (automatically inserted) assertion to dynamically
ensure that logger is of the appropriate type (shared(0OFL) OFL). By line 28, logger
only has shared access permission, although no other aliases exist. After asserting
back full access permission, logger can close the file log.

6 A practical language would support nullable references, but for simplicity we omit this.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:10 R. Garcia et al.

x,this € IDENTIFIERNAMES
m € METHODNAMES
f e FIELDNAMES
C,D, E,Object € CLASSNAMES
PG == (CL,e) (programs)
CL ::= class C extends D { F M } (classes)
Fa=TFf (fields)
M :=Tm((T>»Tzx) [T >»T]{returne; } (methods)
T == P C | Void (types)
P = k(D) (permissions)
k ::= full | shared | pure (access permissions)
e n=ux|letz:T=cinel|new C(T) (expressions)
| z.flaem(@)|x.f=2a]x—C(T)
| assert(T)(z) | hold[z : T](e)
Auv=2x:T (type contexts)

Fig. 3. Featherweight Typestate: syntax.

3. FEATHERWEIGHT TYPESTATE

In this section, we present FT, a static language for TSOP. FT is based on FJ [Igarashi
et al. 2001]. FT is the first formalization of a nominal TSOP language, with support for
representing typestates as classes, modular typestate checking, and state guarantees.

3.1. Syntax

Figure 3 presents FT’s syntax. Small caps (e.g., FIELDNAMES) indicate syntactic cate-
gories, italics (e.g., C) indicate metavariables, and sans serif (e.g., Object) indicates par-
ticular elements of a category. An overbar (e.g., A) indicates possibly empty sequences
(e.g., Ay, ..., A)). FT assumes a number of primitive notions, such as identifiers (in-
cluding this) and method, field, and class names (including Object). An FT program
PG is a list of class declarations C L paired with an expression e. Class definitions are
standard, except an FT class does not have an explicit constructor: instead, it has an
implicit constructor that assigns an initial value to each field. FJ, for instance, requires
an explicit constructor, but its type system forces the same behavior as in FT. Fields
F and methods M are mostly standard. Each method parameter is annotated with its
input and output types, and the method itself carries an annotation (in square brack-
ets) for the receiver object. Like FdJ, we use helper functions like fields, method, and so
forth, whose definitions are deferred to the Appendix.

Types in FT extend the Java notion of class names as types. As explained in Sec-
tion 2, the type of an FT object reference has two components: its permission and its
class (or state). The permission can be broken down further into its access permission
k (described previously in Figure 2) and state guarantee D. We write these object ref-
erence types in the form k(D) C. Following the Java tradition, the Void type classifies
expressions executed purely for their effects. No source-level values have the Void type.

To simplify the description of the type system, expressions in FT are restricted to
A-normal form [Sabry and Felleisen 1993], so let expressions explicitly sequence all
complex operations (we write e1; ey as shorthand for the standard encoding).

Apart from method invocation, field reference, and object creation (all standard),
FT includes the update operation xy < C(x7), which lets programs directly express
typestate change. It replaces the object referred to by xy with a new object of class C,
which may not be the same as xy’s current class. Also nonstandard is the swapping

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:11

assignment xg. f :=: x1. It assigns the value of x; to the field f of object x¢ and returns
the old value as its result. Section 3.3 explains why this is needed.

The assert operation changes the static type of an object reference. Asserts are
similar to casts in that an assert up the subclass hierarchy succeeds immediately,
whereas an assert down the class hierarchy requires a runtime check. Assertions
are strictly more powerful than casts: they change the type of an existing reference,
whereas casts produce a new reference with a different type. In fact, a type cast (T") x
can be encoded using class assertions:

A lety: Ty =x
(T)x = inletz: Void = assert(T)(y)
iny,

where y and z are fresh, and the type Ty depends on how much permissions are to be
taken from x. The assert operation of FT cannot change the permission of a variable,
but the runtime permission tracking introduced in GFT will allow us to add support
for permission-changing assertions there.

The hold expression hold[x : T'](e) captures the amount of x’s permissions denoted
by T for the duration of the computation e. When e completes, these permissions are
merged back into x.

3.2. Managing Permissions

Before we present FT’s typing judgments, we must explain how permissions are treated.
Permissions to an object are a resource that is split among the variables and fields that
reference it. Figure 4 presents several auxiliary judgments that specify how permis-
sions may be safely split and how they relate to typing.

First, access permission splitting k1 = ke/ ks describes how given a k; access permis-
sion, kg can be acquired, leaving behind %3 as the residual. When we are only concerned
that ke can be split from %; (i.e., the residual access permission is irrelevant), we write
k1 = ko. For instance, given any access permission &, full = k2 and & = k.

Permissions partially determine what operations are possible, as well as when an
object can be safely bound to an identifier. The restrictions on permissions are for-
malized as a partial order, analogous to subtyping. The notation P; <: P, says that
Py is a subpermission of Py, which means that a reference with P; permission may
be used wherever an object reference with P, permission is needed. As expected, the
subpermission relation is reflexive, transitive, and antisymmetric. The first subper-
mission rule says that splitting an access permission produces a lesser (or identical)
permission. The subpermission rules for pure and full access permissions respectively
capture how state guarantees affect the strength of permissions. Pure access permis-
sions covary with their state guarantee because a pure reference with a superclass
state guarantee assumes less reading capability. Full access permissions contravary
with their state guarantee because a full reference with a subclass state guarantee
assumes less writing capability (i.e., it can update to fewer possible states). Although
full access permissions also allow reads, those reads can only see writes through the
full reference itself; therefore, contravariance is enough, and we do not have to enforce
invariance. The last rule ensures that subpermissions are transitive.

Permission splitting extends access permission splitting to account for state guar-
antees. First, if k(D) <: ko(Ds), then the latter can safely be split from the former.
The remaining task then is to determine the proper residual permission k3(Ds). The
residual access permission k3 comes directly from access permission splitting. For the
residual state guarantee, observe that k(D;) <: k2(Dy) implies that D; and D, are re-
lated by subclassing. By considering the possible cases of permission splitting, we find
that the state guarantee should be whichever of D; and D is subclass of the other: this

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:12 R. Garcia et al.

Compatible Permissions
k = k/k| Access Permission Splitting E< D P, o Py

k(E) < pure(D) Py P

k = pure/k full = full/pure
k € {full, shared } shared(D) « shared(D)

k = shared/shared Vi,j:i#j.P o Pj
P compatible

P <:P| Sub issi P s
ubpermission P = P/P| Permission Splitting

ko = ko E<:D
k1(D) <: k2(D) pure(E) <: pure(D) ki(D1) <: k2(Dz2) ki = ka/ks
D<E Pi<:P, Py<:P Ds = Dy 12 Do
<: 1 <tI? 2 <t I3
full(E) <: full(D) P < P k1 (D1) = k2(D2)/ks(Ds)

T = T/T| Type Splitting

P13P2/P3 01 <:CQ
P, Ci= P, Cy/Ps C4

Void = Void,/Void

Type Merging

P=P AP, C=CiNC,
P C/P,Co=PC T/Dyn=T Dyn/T =T

T<:T T|T Type Demotion

Subtyping Max. Residual (shared(D))| shared(D) D
T Ti=T Ti=T/T (pure(D) C)| = pure(D) D
nn<T T |Ty T| = T otherwise

| A type k(D) C is well-formed if C <: D |

Fig. 4. Permission and type management relations.

is necessary if k3 is a write access and ideal if /&3 is pure. We denote this as the greatest
lower bound of D; and D, in the subclass hierarchy D; A Dy, an operation that we use
(along with greatest lower-bound permission P; A Py) several times in the language
formalization.

Permission splitting in turn extends to type splitting T = T /T, taking subclasses
into account for object references; the Void type can be arbitrarily split. Type splitting
has a special case called the maximum residual, that being the most permissions that
can be split without changing the original type. Type splitting determines the notion
of subtyping T' <: T used in F'T. As with access permission splitting, we write P; = P,
or T = T to express that P, or Ty can be split from P; or T4, respectively.

Converse to type splitting is type merging, denoted T'/T = T. The type merging
relation describes how two separate permissions to the same underlying object may be
combined.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:13

The compatible permissions relation P; <> Py says that two distinct references to the
same object, one with permissions P; and the other with P, can soundly coexist at
runtime. For instance, shared(C) < shared(C) and full(C) <> pure(Object). On the other
hand, full(C) <+ full(C) because if one of these references updated its state guarantee
(further down the subclass hierarchy), then the other reference could violate it during
a state change operation. The compatible permission relation is used to define the

relation P compatible: that the outstanding permissions P of references to a particular
object can all coexist. These concepts are critical for showing that well-typed programs
remain in a consistent state as they run.

Finally, we defer the discussion of type demotion to the end of Section 3.3.

3.3. Static Semantics

Armed with the permission management relations, we now discuss the most salient
feature of FT’s static semantics: flow-sensitive typing.

As with FJ, the FT type system relies on type contexts. Whereas I' is the standard
metavariable for type contexts, we use a different metavariable A to emphasize that
the typing contexts are not merely lexical. In our notation, A, x : T specifies a context
A’ that includes all of the bindings in A plus the binding x : 7', which requires thatA
contains no entry for x. In FT°s type system, the types of identifiers are flow sensitive
in the sense that they vary over the course of a program. In part, this reflects how the
permissions to a particular object may be partitioned and shared between references
as computation proceeds, but it also reflects how update and assert operations may
change the class of an object during execution.

The FT typing judgment is a quaternary relation of the form A; e : T 4 Ay, which
means “given the typing assumptions Aj, the expression e can be assigned the type
T and doing so produces typing assumptions Ay as its output.” The assumptions in
question are the types of each reference. Threading typing contexts through the typing
judgment captures the flow sensitivity of type assumptions.

Typing rules. Figure 5 presents the typing rules for FT expressions (all prefixed with
“ST”: S for “statically typed” and T for “type system”).

The (STvar) typing rule, for variable references, demonstrates flow-sensitive typing
immediately. If the type context binds a variable x to a type T4, and that variable is
referenced at type T, then the output type context resets the type assumption for
x according to the type splitting relation. Observe that the (STvar) rule implies that
generally a variable reference can be given many possible types.

LEmMa 38.1. If At x:T1 4 AN and Ty <: Te, then A+ x : To - A” for some A”.

This is similar to the standard subsumption rule for object-oriented languages, but
changing the type from 74 to T also changes the output context.

The (STlet) rule reflects the standard value-binding behavior for let, but it also
sequences permission-consuming operations. After typing the expression bound to x,
the new typing context is updated with a type assumption for x, which is used to type
the body of the let. To preserve lexical scoping, x (and its associated permission) is
removed from the output context.

The (STnew) rule, for creating a new object, is analogous to the equivalent Java rule.
The prominent difference is that in FT, a new object also has permissions associated
with it. The reference to a new object is given full(Object) permissions because it is
unique, so it can update the object arbitrarily without concern about aliases. This rule
relies on an auxiliary judgment that captures the idea of a well-typed constructor call:
the arguments to the constructor are iteratively checked against the class fields, and
the typing context is iteratively updated accordingly. This means that a variable may

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:14 R. Garcia et al.

Are: T +HA| Well-Typed Expression

Aler:Tr 44

T Ty /T Apz:Ti ey :To 4 Az T
(STvar) 1= To/Ts (STlet) & 1 re2 2 A2, 0 0
Ax:TiFx:To 4Ax: T3 Abletz: Ty =eriney : To -4 A/
fields(C) =T f
Arx:THA
(STnew) -
YA + new C() : full(Object) C' + A’
ke {full,shared} fields(C)=T f C <:D
A T 4 A" zy: k(D) E
(STupdate) P i T AL, 0 k(D)
Az « C(z2) : Void 4 A/}, z1 : k(D) C
Ts f € ﬁelds(Cl)
Ty f € fields(C' Ty | T : T : 4
(STfield) b f € fields(Ch) 2 | Ty (STswap) Az :PLCrlaa:Ta A
Azx:PLCiFaf: Té HAjz: P Cy Az : P CiFar.f =120 :To A A
. P Cy < Ty mdecl(m,Cr) =T m(T; » T)) [Ty > T]] To<:T;
(STinvoke) —
Ayzy Py Cryzo i To - x1m(Z) : T - Al,zy T x0T
ST: t
STassert) — 5 G assert(P D)(x) : Void J Az - P D
Ty =T/Ts Tol /Ty=T,
Ax:Tske: T AN x:T%
(SThold) T Te et
A,z : Ty Fhold[z : To](e) : T H A,z : T}
where

R A
Abaz:THAN =A=Agra0:To 4A1; Arbx1:Ti 4D - Ap b an: Th o Apgpr = A

Fig. 5. FT: expression typing rules.

be given for more than one argument to the constructor, but because of flow-sensitive
typing, it may be typed differently each time.

The (STassert) rule reflects how the assert operation assert(T)(x) changes class type
information of the reference x. Although FT types consist of more than the object’s class,
this operation can only affect the class part of an object’s type: the permission must
stay the same. The assert operation could safely decrease permissions to an object, but
it would add no expressiveness to the language.

The (SThold) rule reflects how the hold expression acquires permissions to an object
for the dynamic extent of its subordinate expression. Once that expression completes,
the held permissions are returned to the reference from which they were acquired. It
types the subexpression e after splitting T from variable x. The resulting type of x
is the merge of the demotion of T3 (the type being being held) and T';, the resulting
output type of x after evaluation of e.

Class update. The (STupdate) rule type checks FT°s novel update operation,
x1 < Co(x2), which replaces the receiving object referenced by x; with Cy(xz). This
operation is only possible if the reference to the receiving object has shared or full ac-
cess permissions to the underlying object. The possible target states of an object are
implicitly constrained by the state guarantee that the object has after the arguments to
the constructor have been typed, since £(D) C must be a well-formed type. This ensures
that the outstanding references to the updated object (including possibly its own fields)
all have a consistent view of the object. The type of the update operation is Void since

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:15

it is performed solely for its effect on the heap. The type of the updated object in the
output context reflects its new class.

Type demotion. Update operations can alter the state of any number of variable
references. To retain soundness in the face of these operations, it is sometimes necessary
to discard previously known information in case it has been invalidated. In these cases,
an object reference’s class must revert to its state guarantee, which is a trusted state
after an update. The type demotion function T'| (Figure 4) expresses this restricting
of assumptions. Note that full references need not be demoted since no other reference
could have changed their states. We write A| for the compatible extension of demotion
to typing contexts.

The (STupdate) rule necessarily demotes types: type assumptions from the input
context are demoted in the output context to ensure that any aliases to the updated
object retain a conservative approximation of the object’s current class.

Note that type demotion does not imply any runtime overhead: it is a purely static
process. Furthermore, types of class fields have the restriction that they must be invari-
ant under demotion (i.e., T\ = T'). This means that a field with shared or pure access
permission has the same class type as its state guarantee. Since the types of fields
do not change as a program runs, they must not be invalidated by update operations.
This restriction ensures that field types remain compatible with other aliases to their
objects. As a result, only local variable types need ever be demoted.

The classes of variables in Ay are demoted to their state guarantees since state
change may have invalidated those stronger assumptions. Only one object is updated
by this operation, but it may affect any number of outstanding references.

Field operations. As mentioned in Section 3.1, two operations operate directly on an
object field: field reference and swapping assignment. Field reference (STfield) does not
relinquish any of the permissions held by the field, so the result type is determined by
taking the maximal residual T, of the field type Ts. This operation does not affect the
permissions of the object reference used to access the field.

Swap operations (STswap) cause an object to relinquish all permissions to a field and
replace it with a new reference. The swap expression has two purposes. The first is to
reassign a field value in the heap. The second is to return the old field value as the
result of the expression. If a field has shared or pure access permissions to an object,
then field reference can yield the same amount of permission; however, if a field has
full access permission to an object, only swapping can yield that full access permission.

Method invocation. The (STinvoke) rule describes how method invocations are type
checked. When invoking a method, first the method declaration is looked up based on
the type of the receiver. Next, both the receiver and the arguments are checked for
compatibility. The resulting type of the expression is, as usual, specified by the method
declaration. The outgoing context demotes the references in A. This is necessary to
keep type checking modular, since the method call may perform typestate update
operations. The outgoing types for the receiver and the arguments are, however, listed
in the method’s declaration and as such are available to the program when the method
returns.

Note that in several other expressions (e.g., new), permissions to certain variables
(arguments to the constructor) are implicitly split, and residual permissions are left
over for typing the remainder of the program. Method invocation is different. To keep
FT’s design simple, the method invocation rule checks that method arguments (in-
cluding the receiver) have enough permission to type the method call and discards
any residual permissions. Additionally, the structure of (STinvoke) requires all method
arguments to be unique (e.g., x.m(y, y) is untypeable; see Section 3.7).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:16 R. Garcia et al.

Md ok in C'| Well-Typed Method Declaration

class C'extends D { --- } class C'extends D { --- }
mdecl(D, m) undefined mdecl(D,m) =T, m(T; » T])|P. E » T{]
T, m(T; » T!)[P, C » T{] ok in C T, m(T; » T!)[P, C » T{] ok in C

Well-Typed Method

T, m(T; » T/)[P: C¢ » T{'] ok in C;
this: P, Cy,z: T; +e: T, A this: T{,z : T}
T, <: T/ T, < T/
T, m(T; » T/ x) [P, Cy » T{'] { return e; } ok in C,

Well-Typed Class Well-Typed Program

Co <: Object k(D) E|l=k(D) E M okin Cy CLok -t+e:T -
class Cy extends C; { k(D) E f; M } ok (CL,e) ok

Fig. 6. FT program typing rules.

Typing programs. Recall that an FT program is a pair of a class table and an ex-
pression. To formalize the notion of a well-typed program, we introduce a few more
judgments (Figure 6).

First, we consider the interface or declaration of a method:

Md:=Tm(T >T)IT >T]

The method declaration judgment Md ok in C checks that the interface specification for
a method is compatible with a particular class, which holds if the method is altogether
new, or a proper override of a superclass method. This is used by the method typing
judgment M ok in C, which checks that a method M is well typed if it is defined as
part of class C. To type the body of the method, the rule assumes the input types
from the method declaration. On completion of typing, the method, the arguments, and
this are checked against the method’s output specification. This typing rule allows this
and the arguments x to be subtypes of the output types specified by the declaration.
The method is well typed as long as enough permissions remain for these variables
to match the declared output specification. If the type system required the output
context A(to exactly match the output specification, then the language would need
more mechanisms (such as an explicit subsumption rule).

For a class definition to be well typed, all of its fields must have object reference
types, all of its methods must be well typed, and its superclass hierarchy must lead to
Object. This implies that all intermediate superclasses are defined and that every chain
of superclasses ends at Object—that is, there are no inheritance cycles. In addition,
as explained earlier, we require that the permissions associated with field types be
invariant under demotion.

Finally, a program is well typed if its class table and main expression are well typed
in turn.

3.4. Dynamic Semantics

The runtime semantics of the language add some new syntactic notions. In partic-
ular, FT is a stateful language, so most values in the language are references to

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:17

heap-allocated objects:

o € OBgJECTREFS
[€ INDIRECTREFS
v € VALUES
C(0) € OgJEcCTS
e i=s|lv]|letx:T =eine|new C(S) |s.f (expressions)
| s.m(s)|s.f:=:s|s <« C(s)|assert(T)(s)
| mergell : T'/ll(e)
s u=x|l (simple expressions)
v = void | o (values)
u € OBJECTREFS — OBJECTS (stores)
p € INDIRECTREFS — VALUES (environments)
E = 0O|letx =Eine | mergell : T/II(E) (evaluation contexts)

Ultimately, expressions in the language evaluate to values—that is, void or an object
reference o. Since the language is imperative, the value void is used as the result of
operations that are only interesting for their side effects. In other object-oriented lan-
guages, a void object is unnecessary: imperative operations can return some arbitrary
object reference. However, FT must explicitly consider how permissions to an object
are distributed, so providing a void object lets us clearly indicate when no permissions
to any object are returned.

The merge expression is a technical device that models how held permissions are
treated dynamically. It tracks held permissions at runtime and ultimately merges
those held permissions back into their associated indirect reference. This expression is
purely a tool for proving type safety.

To connect object references to objects, we use stores u, which abstract the runtime
heap of a program. Stores are represented as partial functions from object references o
to objects C(0). A well-formedness condition is imposed on stores: only object references
o in the domain of a store can occur in its range.

In addition to the traditional heap, the dynamic semantics uses a second heap, which
we call the environment, that mediates between variable references and the object
store. The environment serves a purely formal purpose: it supports the proof of type
safety by keeping precise track of the outstanding permissions associated with different
references to objects at runtime. In the source language, two variables could refer to
the same object in the store, but each can have different permissions to that object. The
environment tracks these differences at runtime. It maps indirect references [to values
v. Two indirect references can point to the same object, but the permissions associated
with the two indirect references are kept separate. The runtime language therefore
adds a notion of simple expressions s, which include true variables x and indirect
references /, and may be used in the runtime language everywhere that variables can
be used in the programmer-visible language (except, of course, variable definition). The
environment is not needed in a practical implementation of the language. As we show
later (Section 3.6), well-typed programs can be safely run on a traditional single-heap
machine where object references are simple expressions.

To state and prove our notion of type safety, we use a notion of evaluation contexts
E. Evaluation contexts are expressions with holes, notation [J, in them. An expression
can be plugged into the hole to produce a program. Following the presentation of FJ
by Pierce [2002], we use evaluation contexts to capture the possibility of a program
getting stuck at a bad assertion.

The dynamic semantics of FT is formalized as a structural operational semantics
defined over store/environment/expression triples. Figure 7 presents the rules (prefixed
with “SE”: S’ for “static typing” and E for “evaluation”).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:18 R. Garcia et al.

wope—p,p e

d
(SElookup) (SEnew) 0 ¢ dom(y) —

1, ps L= i, p, p(1) , p,new C(1) — plo— C(p(1)], p,0

L ¢ dom(p)
wp etz : T =wvine— u,p[l — v],[l/z]e

(SElet)

(SEupdate)

s p, (I — C(1)) = plp(ls) = C(p(1))], p, void
u(p(l) = C(0) fields(C) =T f
s Py lfl — M, P, 04
pp(l)) =C(---0i--+) fields(C) =
po py b fi =i lo = plp(l) = C(--- p(l2) -~
wp) =C(-) C<iD
, p, assert{ P D)(1) — u, p,void
u(p) = C(---)
method(m,C) =T, m(T » T" z) [T, » T{] { returne; }
wy o, Lem(I) — w, p, [I//2][1/this]e

(SEfield)

Tf
)

(SEswap)
:]7 , 04

(SEassert)

(SEinvoke)

M, p, €1 — ‘u/’ P/’ ell
woplete: T =ejines — u', pletz: T =¢}ines
I ¢ dom(p)
92 POI[L T](e) — o oIl p(1)], mergell - (T1)/](e)

(SEcongr)

(SEhold)

wpe— i pe
w, p,mergells : T/l2](e) — p', o', merge[ls : T/l2](e")

(SEmcongr)

(SEmerge)
B, pomerge[ly : T/L](v) — 1. py v

Fig. 7. FT dynamic semantics.

The (SElookup) rule dereferences an indirect reference to get the underlying value.
The (SEnew) rule creates a new object based on the constructor expression given. The
arguments to the constructor are dereferenced so that the objects in the heap contain
object references. The (SElet) rule handles a variable binding by allocating a new
indirect reference, associating the object reference in question to it in the environment
and substituting the fresh reference into the body of the let expression. The (SEupdate)
rule replaces a binding in the store with a newly constructed object. The (SEfield) rule
looks up the field of an object in the heap and returns the corresponding object reference.
The (SEswap) rule swaps the field of an object with a new object reference and returns
the old one. The (SEassert) rule checks that a reference points to an object with a type
compatible with the assertion. If the assertion succeeds, the program returns a void
value; if not, the program gets stuck. The (SEinvoke) rule substitutes the arguments
to the method invocation into the method body and continues executing. The (SEcongr)
rule ensures that the bound expression in a let is computed before the body of the let.
The (SEhold) rule initiates the bookkeeping process of holding on to permissions while

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:19

a subexpression executes. It uses a new indirect reference I’ to hold its permissions.
The (SEmcongr) rule allows the expression inside of the merge expression to execute.
The (SEmerge) expression removes the bookkeeping information once the relevant
subexpression has evaluated to a final value.

3.5. Type Safety

To establish type safety, the type system must be extended to account for runtime
phenomena. First, we must type the void value:

STvoid
ST Void : Void o A
To type runtime programs, type contexts must be extended to account for runtime
references:

b € x|l]|o (context bindings)
A = b:T (linear type contexts)

Since runtime expressions have no free variables but may now contain indirect refer-
ences [and object references o, a typing context may only have entries of the form [: T
and o : T'. As such, the type rules must account for references in a runtime program,;
for example,
(STvar) h= T2/T3 (STobj)
A,s :Th+ s :ToHA, s : Ts JA,o:Tl—o:T—|A

Since variables are replaced by indirect references at runtime, they should be typed
similarly. On the other hand, an object reference may only appear once in a program, as
the result of a variable reference, which will either be bound to a variable immediately
or returned as the final program result. As such, it is safe to consume it entirely.

Other references to variables in FT’s type system should now consider simple ex-
pressions (variables or indirect references) rather than just variables; for example,

fields(C)=T f AF s:T 4N
A Fnew C(s): full (Object) C - A’

Furthermore, context demotion A] must be extended to the reference entries in a
context.
In addition, we require a typing rule for the runtime merge expression:

T,=T| A,lQ:Tgl—e:T'—Al,lgiTé Tl/TQISTg
A,ll : Tl,lz : T2 = merge[ll : Tl/l2](e) T H Al,lz : T3

The merge expression owns the indirect reference /1, which it uses to store the permis-
sions that it is holding to later merge back into /5. Thus, the outgoing permissions of /5
combine the output of the computation e with the held permissions.

To prove type safety, we must account for the outstanding permissions associated
with references to each object o and make sure that they are mutually consistent. To
achieve this, we appeal to some helpers, presented in Figure 8. The fieldTypes function
takes a heap and an object reference in the domain of the heap and produces a list of
the type declarations for every field reference to that object. This function disregards
object references that are not bound to some field of some object. The envTypes func-
tion performs the analogous operation for the indirect references in an environment
that have bindings in the context. This function disregards indirect references in the
environment that have no typing in the context. The ctxTypes function does the same
for object references that occur in a type context. The refTypes function takes a heap,

(STnew)

(STmerge)

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:20 R. Garcia et al.

Helper Functions

refTypes(p, A, p,0) = fieldTypes(u,0) ++ envTypes(A, p, o) ++ ctzTypes(A, o)

fieldTypes(i,0) = 4+ [Ty | u(o)) = C(@), fields(C) =T J, and of = o]
o’edom(p)
envTypes(A,p,0) = 4+ [T |p(l)=oand (I:T) e A]
ledom(p)
ctzTypes(A,0) = [T]o:T e A]

i, A, pok| Global Consistency
1, A pt ook| Reference Consistency

ran(p) < dom(u) u {void }

p(o) = C(o') !0/‘ = |fields(C)| dom(A) < dom(p) U dom(p)
refTypes(u, A, p,0) = k(E) D {U|(l:Void)e A} < {l]p(l) =void }
C<:D k(E) compatible {11 (:k(D)C)eAtc{l]p(l)=0}

A p ook ws A, p = dom(u) ok
1w, A, p ok

Merge Consistency

VE. e = E[merge[h : Tl/lz](e/)] = p(l1) = 0= p(lg)
p = eme

Fig. 8. FT permission consistency relations.

context, environment, and object and yields the list of type declarations for outstanding
heap, environment, and context references. These definitions use square brackets to
express list comprehensions and ++ to express list concatenation.

Using the refTypes function and permission compatibility, we can define a notion of
reference consistency that verifies the mutual compatibility of the types of all outstand-
ing references to some object in the heap. A consistent object reference points to an
object that has the proper number of fields, and all references to it are well formed,
assume a plausible class, are mutually compatible, and are tracked in the store.

Reference consistency is used in turn to define global consistency, which establishes
the mutual compatibility of a store-environment-context triple. Global consistency im-
plies that every object reference in the store satisfies reference consistency, that every
reference in the type context is accounted for in the store and environment, and that
Void and object-typed indirect references ultimately point to void values and object ref-
erences, respectively. Note that global consistency and permission tracking take into
account even objects that are no longer reachable in the program.

To prove that preservation holds, we require an additional notion of consistency,
called merge consistency, to ensure that only indirect references to the same underlying
object are ever merged. This judgment helps us guarantee that permissions produced
at runtime by hold expressions are only combined in sound ways.

These concepts contribute to the statement (and proof) of type safety.

THEOREM 3.2 (PROGRESS). If e is a closed expression and A + e : T - A/, then
either e is a value or for any store u and environment p such that u, A, p ok, either
w,p,e — i, p, e for some store u', environment p’, and expression €/, or e is stuck at a
bad assert—that is, e = Elassert(D)(l)] where u(p(l)) = C(---) and C«:D.

Proor. By induction on the derivation of Ale: T 4 A’. O

To facilitate our proof of type preservation, we define and establish an invariant of
program evaluation. Our semantics has many rules that evaluate to an object reference,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:21

but the reference is either returned as the final result of the program or immediately
bound to an identifier (asinletx : T = o ine). Furthermore, at most one object reference
appears in a program at any point of execution. We capture these invariants as follows.

Definition 3.3. An expression e is in head reference form, notation hdrefle) if and
only if either

(1) e contains no object references o; or
(2) e = Elo] for some E, 0 and E contains no object references.

When a program is in head reference form and takes a step that produces or con-
sumes an object reference, we can easily characterize a type context that establishes
preservation.

Finally, we establish a relationship between type contexts that helps us show that
evaluating a subterm retains enough output permissions to continue executing the
rest of the program. This is needed in particular to support method invocations, since
the permissions resulting from evaluating a method body may be be stronger than the
method interface declares.

Definition 3.4. A context A is stronger than a context A’, notation A < A’ if and only
ifforalll : T’ € A/, thereis some T' <: T’ such that!: T € A.

Using these formal helpers, we can state and prove a preservation theorem.

THEOREM 3.5 (PRESERVATION). If e is a closed expression, A e : T - A, u, A, p ok,
hdrefle), p -eme, and u, p,e — ', p’, e then forsome A', N e’ : T 4 A", u', N, p'ok,
o' Fe'me, and A" < A

Proor. By induction on u, p,e — u', p’,e’. DO

3.6. Single-Heap Implementation Model

As mentioned previously, the environment in the FT dynamic semantics is specifically
a tool for proving type safety. In particular, we need indirect references so that we can
independently track the permissions to a particular object held by individual aliases.
Similarly, hold and merge expressions only play a role in statically allocating permis-
sions and need not be considered after type checking FT programs. Here we formally
show that a practical implementation of the language can use a traditional heap and
can do without hold and merge. Figure 9 presents the rules (prefixed with “SI”: S for
“static” and I for “implementation”). The implementation semantics almost exactly
matches the dynamic semantics but leaves out the extra layer of indirection imposed
by indirect references / and environments p. Note as well that there are no rules for hold
or merge. This is because FT does not need to track runtime permissions in practice.
The hold expression is a purely static means of controlling permission flows, and merge
is merely a technical device for proving type safety, so the implementation semantics
for FT can discard them.

We define a simulation relation (~) between dynamic semantics configurations and
implementation semantics configurations:

w, p.e~pu, pEe)

where the erasure function £(e) is the natural extension of the following equations:

E(hold[l : T'1(e)) = E(e)
E(mergelly : T'/11(e) = E(e),

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:22 R. Garcia et al.

N
K€ —p,e

o ¢ dom(u)
(SInew) — — (SIlet) -
w,new C(o') — pfo— C(0)],0 wlete : T =vine — p,[v/z]e
=C(o lds(C) =T f
(SIupdate) _ I (Stfielq) Q) =C(0) _ fie s(/) I
1 (01 — C(@)) = ulor > C (0], void 10 Fs = o0,
plo1) =C(---0f---) fields(C) =T f plo)=C(--) C<:D
(SIswap) S (SIassert) -
py01.fi =1 00 = pfor — C(-+-02---)], 0} 1, assert(P D)(0) — p,void
n(o) =C(-+)
) method(m,C) =T, m(T » T" z) [T, » T{] { return e; }
(SIinvoke) — —
p, 0.m(0") — p, [o'/z][o/this]e
(SIcongr) Hy€1 — [, €7

wletz : T =ejines — p' letx: T =e)ines
Fig. 9. FT implementation semantics.

and where p(e) is the natural extension of p(l) to arbitrary expressions. Note that this
relation is defined up to choice of object references.

ProrositionN 3.6.

(1) Ife is a source program, then @, @,e ~ @, E(e).
@) If pa,prer~ph.e) and py,p.er—> pg, p2.e2, then ey —*us.e; and
W2, P2, €2 ~ Ly, ey, for some store i, and some expression ej.

Proor.

(1) Immediate.
(2) By induction on w1, p1,e1 —> ug, p2,e2. O

3.7. Discussion

In the design of F'T, we made a number of decisions based on the desire to simplify the
resulting calculus. We now discuss these decisions and their alternatives.

Method calls. In FT, two particular restrictions on method calls are made to sim-
plify the type system design for clarity of presentation. First, the (STinvoke) rule
enforces that a variable may be passed only once as an argument to a method call.
For example, x;.m(xz, X2) would never type check because xo is passed as the argu-
ment for two method parameters. Type checking duplicated arguments like these adds
substantial complexity to the type system and the type safety proof specifically be-
cause method parameters change state. For instance, suppose that m were declared as
Void m(Ty1 > To, T1 > T3)[T > T, where T, # Ts. Then the question arises: what is the
type of xo after the method call? One could define a sensible merging of T, and T3 as its
output type. However, this is not sufficient, because when proving type preservation, a
single indirect reference would be substituted for two different method parameters into
a method body that was type checked using two independent variables. One solution
in the formalism is to use a generalized form of merge to temporarily split a reference
into two references for the dynamic extent of the method call.

The second simplification we make to method calls is that when a method call
takes a variable argument, it drops permissions on the floor. For example, consider
the method call x;.m(x2), where xo has type full(Object)C but the method is declared

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:23

as Void m(pure(Object)C > pure(Object)C)[T > TI. Then the extra full permission is lost
during the call and is not recovered after the method returns. A practical version of this
language would allow method calls to preserve extra permissions so that, for instance,
X2 could recover its full permission. We can use hold to implement this explicitly in
our model language: a practical language would integrate hold semantics directly into
method calls.

Method overriding. For clarity and simplicity, the language definition provides con-
servative constraints on what counts as a legal method override. The overriding rule
from Figure 6 says that the overriding method’s signature must match the superclass
method exactly, except the incoming class of the receiver object must be the class in
which the override is being declared. One side effect of this restriction is that calling
an overridden method on an object of statically known subclass type can lose type
information. For example, consider two classes:

1 class C { Void m()[full(Object) C > full(Object) C] { ... } }
2 class D { Void m()[full(Object) D > full(Object) C] { ... } }

Because of the method type restriction, the following code

1 x = new D();
2 x.m()

results in the type of X being C rather than D. This particular drawback can be rectified
by loosening the restriction on the output type of the receiver, but the language benefits
much more from a generally broader notion of legal method overrides. In particular, a
method can be a legal override of an existing method if all of the following are met:

(1) The input permission of the receiver is a superpermission of the overridden
method’s receiver input permission.

(2) The input class of the receiver must match the current class definition, which is
therefore a subclass of the overridden method’s receiver input class. Note that
covariance in the receiver class is standard in object-oriented type systems and is
sound because we dispatch on the receiver.

(3) The output type of the receiver is a subtype of the overridden method’s receiver
output type.

(4) The input types of the arguments are supertypes of the overridden method’s input

types.
(5) The output types of the arguments are subtypes of the overridden method’s output

types.
(6) The return type is a subtype of the overridden method’s return type.

Demotion. The process of demoting environment references at update operations is
quite coarse in the current design. Many objects that need not be demoted in particular
cases are currently demoted. For example, if an object is updated, then any existing
environment variable whose type is unrelated is surely not an alias to the object at
hand. As such, it need not be demoted. In addition, methods could also be annotated
to indicate that they do not perform state change. Such safe methods need not cause
any variables to be demoted when they are called. For simplicity of presentation, we
demote uniformly.

Kinds of permissions. The literature on modular typestate checking with permissions
(e.g., Bierhoff and Aldrich [2007] and Naden et al. [2012]) introduces other kinds of
access permissions, such as none, which provides no guarantees about the behavior
of other aliases; unique, which guarantees that there are no other usable aliases; and

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:24 R. Garcia et al.

immutable, which guarantees that no one can change the underlying object. Note that
the semantics of none and unique make their state guarantees essentially irrelevant, so
each could be limited to none(Object) and unique(Object), respectively, or alternatively
none and unique could be treated as permissions P rather than access permissions k.

We integrate full, pure, and shared into F'T because they constitute a self-contained
and representative set of access permissions, especially in a language that supports
state change for aliased objects. The full permission embodies the concept of grant-
ing a single alias the ability to change state (much like unique), the pure permission
embodies the inability to change state (much like immutable), and the shared permis-
sion characterizes support for multiple sources of state change. The other permissions
described earlier can all be integrated into FT without any additional machinery.

In general, as a program executes, permissions to variables get split and are strictly
weakened. There are many ways to refine the static type system to increase expres-
siveness, such as parametric polymorphism, fractional permissions, and borrowing
[Boyland 2003; Boyland and Retert 2005; Naden et al. 2012]. We believe that hold is a
simple but expressive means of recovering permissions and is complementary to these
more sophisticated but complex mechanisms.

Syntactic sugar. In addition to increasing expressiveness, a practical language could
also implement some convenient shorthands that would make programs more con-
cise while retaining their expressiveness and precision. For example, many method
arguments are likely to have the same incoming and outgoing type. A language can
abbreviate this idiom by allowing a single type parameter specification T x to be equiv-
alent to an identical type transition specification T > T x.

A practical typestate-oriented language could easily simplify the presentation of class
field types. Since field types must be invariant under demotion, any field with pure or
shared access permission has the same class assumption and state guarantee, such
as shared(C) C. In these cases, a field type can be abbreviated to include the access
permission and a single class, such as shared C. In the case of full, the state guarantee
must be specified to be precise, although the same abbreviation could have the same
meaning as a common case.

Unicity of typing. As with many object-oriented languages, the FT expressions are
not uniquely typed. In particular, because of subtyping, most values could be assigned
many possible types. This absence of type unicity can be traced specifically to the
variable reference rule (STvar), which can assign to a variable reference any subtype
of that variable’s current type. In most cases, however, the type of a variable reference
is restricted by the surrounding context.

To see these phenomena in practice, consider the following program:

let x : full(Object) C =y in x

The type annotation on X’s declaration restricts how (STvar) applies to y: the type
of this reference must match the annotation. On the other hand, no such annotation
constrains the reference to x in the body of the let. Treated as an entire program, this
whole expression could be assigned any subtype of x. In fact, because programs are in
A-normal form, this flexibility of typing manifests only for the top-level program type.

Even with programs in A-normal form, it is possible to extend FT to have even more
flexible typing. Such changes do not increase the expressive power of the language,
but they do make some programs more convenient to write. First, type annotations on
let-bindings could be elided from the language, thereby requiring the type system to
guess a type for each variable. This kind of design would increase the nondeterminism

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:25

of typing. Consider its effect on the preceding program:
letx =yinx

As before, the reference to x can be typed many ways. However, the type of X is no
longer fixed when it is declared, so the reference to y can be typed many ways, and y’s
output type varies accordingly.

Second, a full subsumption rule could be added to the language:

A0|—€IT1—|A1 T1<ZT2
Aol—e:TQ—iAl

Its effect would be to allow any expression, not just variable references, to be typed
many ways.

These two proposed changes to the type system, and their increase in nondetermin-
ism of typing, add no significant expressive power to the type system. Once a method
body is type checked, any extra permissions left over are either discarded (in the case
of local variables) or adjusted to match the method interface specification (in the case
of method arguments). This means that adding subsumption has no effect on the set of
typeable FT programs. Since permissions are simply a type-checking device and have
no effect on runtime behavior in F'T, there is no particular need for subsumption.

We find in the next section that such nondeterminism in typing is incompatible with
a runtime treatment of permissions, which is needed to support gradual typing. In that
context, we depend on the determinism of typing that comes from the design presented
in this section.

(STsub)

4. GRADUAL FEATHERWEIGHT TYPESTATE

Despite its sophistication, FT cannot statically typecheck all typestate-oriented pro-
grams that one might want to write. In this section, we present GFT, a gradually typed
[Siek and Taha 2007] extension of FT. GFT seamlessly enhances FT’s static type system
with support for dynamic typestate checking. To support GFT, we extend concepts of
gradual typing to encapsulate the sophistication of permissions, typestate change, and
modular flow-sensitive typing.

4.1. Considerations

The design of GFT is driven by several interacting forces. Here, we outline three
primary observations that inform how we extend FT.

4.1.1. Dynamic Typing. The most visible feature of a gradually typed programming
language is the presence of dynamically typed values. To support this, GFT adds a
dynamic type:

T = ---|Dyn

The type system treats the Dyn type with greater leniency: type checks on Dyn values
are deferred to runtime.

A Dyn typed value is quite different from an object with Object type. This can be seen
by looking at programs (in the sugared syntax of Section 2) that are legal with a Dyn
value and not legal with an Object value:

full(Object) Object y = ...;
Dyn ydyn = vy; // y’s type does not change
shared(Object) Object ystc = vy; // y’s type changes

full(Object) Object xsl
full(Object) Object xs2

ystc; // Type error
ydyn; // Okay

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:26 R. Garcia et al.

ystc.f(y); // Type error: no method f
ydyn.f(y); // Okay

// Void f([full(Object) Object > pure(Object) Object]) [T > T]
m.f(ystc); // Type error: incompatible permissions
m.f(ydyn); // ydyn now has type pure(Object) Object

Each of the preceding scenarios captures a difference between static types and dy-
namic types. Assigning a statically typed variable y to a dynamically typed variable
ydyn does not change y’s permissions. As seen in Section 2, this is not generally true
for static types. Furthermore, assigning y to ystc may fail if, for example, y were pure.
Conversely, a dynamic variable can be assigned to any other variable regardless of its
type: safety is checked at runtime. However, assigning a static variable to another static
variable is always checked. Next, method calls on dynamic objects are always safe, and
any arguments are treated as dynamic. This is not the case for static method calls.
Finally, static method calls on static objects are checked for conformance. On the other
hand, a dynamic object can always be passed as an argument to a method call. Note,
however, that the type of the dynamic object after the method call matches the method
declaration. Newly discovered static information is not automatically discarded, but as
we will show, a program can choose to discard this type information.

On the surface, adding Dyn, a single syntactic difference, is the only necessary addi-
tion for gradual typing, but this small interface change implies substantial underlying
formal and implementation machinery, which we outline in this section. The fact that
it is almost trivial syntactically is one of the great strengths of gradual typing.

4.1.2. Type Assertions. Runtime type tests are at the heart of gradual typing, although
they need not appear in the surface syntax of a gradual language. However, type tests in
the form of casts are a standard feature of object-oriented programming. As discussed
earlier, F'T’s assert operation is analogous to traditional object-oriented language sup-
port for type casting, but FT does not track runtime information about permissions.
For this reason, FT assertions cannot manipulate variable permissions. Since GFT re-
quires runtime permission information to support gradual typing, we can expose them
at the source language by extending the semantics of assert to manipulate the full type
of an object reference, not just its class. For instance, using assert, the method call
example from Section 4.1.1 can be extended to revert the ydyn variable back to Dyn:

m.f(ydyn); // ydyn now has type pure(Object) Object
assert<Dyn> (ydyn); // ydyn now has Dyn type.

4.1.3. Dynamic Permissions Need Deterministic Typing. In Section 3.7, we observed that
FT’s type system could be made more nondeterministic by removing type annotations
on let-bound variables and by adding full subsumption. This kind of nondeterminism
would be problematic for the semantics of a gradual language that depends on dy-
namic permission tracking. To understand this phenomenon, consider the following
hypothetical example in a gradual language with the preceding extensions. Suppose
that x has type full(D) D and that class C has one field of type pure(D) D, and consider
the following expression:

lety = xin
letz = new C(y)inz

What are the types of x and y at the end? The answer depends on what type was given
to the x reference when it was bound to y. If x was given type full(D) D, then x would
have type pure(D) D and y would have type full(D) D; but if the reference to x was given
type pure(D) D, then the reverse would be true: x would have type full(D)D and y would

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:27

T = T/T| Type Splitting Consistent Subtyping

- T1 <t T2
T = Dyn/T T, <T, Dyn<T

Fig. 10. Hybrid permission management relations.

have type pure(D) D; finally, if the reference to x were given type shared(D) D, then
both x and y would end up with that type.

This flexibility allows many more programs to be typed without the programmer
having to annotate every variable binding, or change those annotations as the pro-
gram changes, but such nondeterminism is incompatible with dynamic permission
assertions. Suppose that we extend the example with a dynamic assertion:

lety = xin
letz = new C(y) in
let w = assert(shared(D) D)(y) in z

Then, the behavior of this example depends on how the types are resolved. If y has
shared or full access permission, then the assertion is a safe “upcast” that always
succeeds; if ¥ ends up with pure permission, then the assertion is a “downcast” that
must be checked dynamically (and in this case fails because x’s full permission is not
compatible with a shared alias).

These issues do not arise in FT because it cannot check permissions dynamically. As
such, it only needs to find some valid typing, after which the permission information is
discarded for runtime. Gradual typing, on the other hand, can detect how permissions
flow in a program at runtime, so permissions must have some deterministic specifi-
cation if gradually typed programs are to behave deterministically. In the following
development, we leverage the fact that FT typing is more deterministic than strictly
necessary to support dynamic permissions and thereby support gradual typing as a
pure extension.”

4.2. Making Featherweight Typestate Gradual

Now that we have brought to light the primary challenges of developing a gradually
typed typestate-oriented language like GF'T, we can provide an overview of the language
and describe how its design addresses these considerations.

Aside from the introduction of a dynamic type Dyn, the syntax of GFT is the same as
that of FT. The key extensions to the language can be found in its typing rules and its
runtime semantics.

4.2.1. Managing Permissions. Now that the Dyn type has been introduced to the lan-
guage, we must consider how it interacts with the family of type operations that sup-
ports TSOP.

Figure 10 presents the necessary adjustments. First, type splitting is extended to
account for Dyn. In particular, any reference can split off a Dyn without affecting its
original type or permissions. This captures the intuition that dynamically typed objects
do not intrinsically carry any permissions.

Following Siek and Taha [2007], we replace subtyping in our rules with a notion of
consistent subtyping T < T.Consistent subtyping is the union of the notion of type con-
sistency T ~ T from gradual typing—which codifies possibly safe substitution—with

7As shown in Wolffet al. [2011], a typestate-oriented language can simultaneously enjoy deterministic typing
and low annotation overhead.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:28 R. Garcia et al.

At e:T - A | Source Expression Typing

fields(C) =T f

A o : T < A xq : D
(GTvary) (GTupdatey) k@2 - - 1 DYyn
Ayz:Dyntx:T H A,z :Dyn A b z1 « C(73) : Void 4 A}, z71 : Dyn

Tfiel
(GTfieldq) A,z :DynF x.f : Dyn 4 A,z : Dyn

A,z :Dyn=A" 2o : T
A,z :Dyn - x1.f :=: x5 :Dyn 4 A’, x5 : Dyn

(GTswapg)

(GTinvoke;)

A,zy :Dyn,zo : T2 - x1.m(T3z) : Dyn 4 A}, z1 : Dyn, 25 : Dyn

(GTassert) S - -
A,z T | assert(T")(z) : Void 4 A,z : T

Fig. 11. Gradual Featherweight Typestate: expression typing extensions.

the notion of subtyping T' <: T' for FT—which codifies definitely safe substitutability.
According to consistent subtyping, Dyn < T, and also T < Dyn because modified
type splitting now forces T' <: Dyn (see Section 4.5). We restrict the rules to ensure
determinism, which facilitates our translation semantics.

4.2.2. Static Semantics. The fundamental differences between FT and GFT are found
in its type system. All of FT’s typing rules are valid for GFT, so Figure 11 presents
only the extensions that GFT adds to FT’s type system (all prefixed with “GT”: G for
“Gradually typed” and T for “type system”).

The (GTassert) rule for assert subsumes the analogous rule in FT, although now
it considers and affects the entire type of its argument, including particularly the
permissions associated with an object. When T <: Ts, the assert is statically safe;
otherwise, a runtime check is required (see Section 4.4).

The full language adds new typing rules for each operation in the case when the
primary object being operated on is dynamically typed. The rest of the new typing
rules account for how Dyn-typed references to objects can be used, as well as their
effect on permissions and type information. The (GTvary) rule says that a Dyn-typed
variable can be referenced at any type. Note that because of our extensions to type
splitting, x : Dyn can already be typed at Dyn using FT’s (STvar) rule. The (GTupdate,)
rule accounts for updating a dynamically typed variable. The type system checks that
the arguments to the constructor are suitable, but the checks on the target of the update
are deferred to runtime (see Section 4.4). The (GTfieldy) rule says that accessing a field
of a dynamic object yields another dynamic object (if it succeeds). The (GTswapy) rule
allows an object to be swapped into the field of a dynamic object. Permissions are
checked at runtime for safety. Finally, the (GTinvokey) rule calls a method with objects
of any type. However, the output type of the method’s arguments are all dynamic, since
the effect on their permissions cannot be known until runtime.

4.3. Internal Language

Gradually typed languages are characterized in terms of three languages: a fully stat-
ically typed language, the gradually typed language itself, and the internal implemen-
tation language. For instance, the original work on gradual typing presented the simply
typed lambda calculus, the gradual lambda calculus, and the cast calculus as the nec-
essary three components [Siek and Taha 2006]. Here we have already presented the
first two components: FT and GFT. We must now introduce our analogue to the cast
calculus.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:29

o € OBJECTREFS
| € INDIRECTREFS
s u= x|l (simple exprs)
bu=uz|l]o (bare expr)
e = es|eq (expressions)
es == blvoid| s[T = T/T] | new C(3) (statically checked exprs)
| letx =-eine|release[T](s) | s.f | s.m(s)
| s.f = s|s<« C(3) | assert{T » T)(s)
| hold[s:T=T/T>»T= T](e) | merge[l: T/l:T = T](e)
eqd = S.qf | s.am(s) | s.f =4 s (dynamically checked exprs)
| s<q C(3) | asserta(T » T)(s)
A =0T (type context)

Fig. 12. Internal language syntax.

The semantics of GFT are defined by type-directed translation to GFTIL, an internal
language that makes the details of dynamic permission management explicit. This
section presents the syntax, type system, and dynamic semantics of the internal lan-
guage. Section 4.4 discusses how the source language is mapped to it.

4.3.1. Syntax. GFTIL is structured much like GFT but elaborates several concepts
(Figure 12). First, the internal language introduces explicitly dynamic variants e; of
some operations from the source language. Static variants are ensured to be safe by the
type system; dynamic variants require runtime checks. Second, many expressions in
the language carry explicit type information. This information is used to dynamically
account for the flow of permissions as the program runs. These type annotations play a
role in both the type system and the dynamic semantics. Finally, GFTIL adds the same
runtime constructs as were added to FT: object references, indirect references, and the
void object.

In GFTIL, reference expressions come in two forms. A bare reference b signifies
a variable or reference that is never used again. In contrast, a splitting reference
s[T = T/T] explicitly specifies the starting type, the result type, and the residual
type of the reference. The release[T'](s) expression explicitly releases a reference and
its permissions, after which it can no longer be used.

The notion of a well-typed GFTIL program (see Appendix C) is almost identical in
form to that notion in FT. One notable difference is the typing of method bodies: since
GFTIL explicitly tracks resources, it requires a method’s returned value as well as the
output states of all of its parameters (and this) to exactly match the method signature,
for which release[T'](s) is introduced. In contrast, both FT and GFT allow subtyping to
implicitly fill the gap.

4.3.2. Static Semantics. The rules for GFTILs typing judgment A e : T -4 A are
defined using the same permission and type management relations as the source lan-
guage. GFTIL's typing rules explicitly and strictly encode permission flow by checking
the input context A to force their arguments s to have exactly the type required. GFTIL's
dynamic semantics uses this encoding to track permissions.

Figure 13 presents some of GFTILs typing rules (rules are prefixed with “TT”: T
for “typing” and I for “internal language”). For brevity, we only present the rules for
invoke, update, and assert, together with their dynamically typed variants here: the
full set can be found in Appendix C. The (TIinvoke) rule matches a method’s arguments
exactly against the method signature. Each argument’s output type is dictated by the
method’s output states. The (TTupdate) rule almost mirrors GFT’s update rule, except
its argument types must exactly match the class field specifications. The (TIassert) rule
is the safe subset of GF'T’s rule, although GFTILs assert is explicitly annotated with its

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:30 R. Garcia et al.

mdecl(m, C1) = T, m(T2 » T4)[P1 C1 » T/]

(TIinvoke) —
A,s1: Py Cr,sa: To b s1.m(52) : T 4 Al s1: T, 82 T}

(TIinvoke,)
A, sy :Dyn, sp : Dyn - s1.qm(s2) : Dyn o Al, s1 : Dyn, s : Dyn
ke {full,shared} C2 <:D fields(C2) =T f

(TTIupdate)
A sy e k‘(D) Cr,82: T F s1 «— 02(5) : Void 4 A, sy : k(D) Cs

fields(C2) =T f

(TTupdatey)
A,s1:Dyn,so i T s1 <4 C2(53) : Void - A, s1 : Dyn
(TIassert) N> T -
A, s Ty b assert{Th » Ta)(s) : Void 4 A, s : Ts
T T:
(TIassert,) LB Te -
A, s: Ty | assertq(T1 » Ta)(s) : Void 4 A, s: Ts
T Ts /T T: T, T A, s T o2 T 4 Ay,s: T}
(TThold) 12 Ty/Ts bl /T = T} s: T3 e 1,8: Ty

A,s: Ty hold[s: Ty = To/Tz » Ty = T{](e) : T 4 Ay,s: T}

T, =T, Tl/TéETg A,lg:Tz}—e:T%Ahlz:Té

(TImerge) 7
Ayl Ty, lo : To merge[h : Tl/l2 : T2 = Tg](e) T H Aq,le: T3

Fig. 13. Select internal language typing rules.

argument’s source type. The dynamic variants of these expressions enforce very little
statically: the (TIupdatey) rule only checks that the arguments match the constructor,
and the (Tlasserty) rule applies when the destination type cannot be split from the
source type. The (TThold) rule is the explicit analogue to the GFT typing rule. The
(TImerge) rule expresses how merge annotates the expression e with the information
needed to restore the held permissions 7 back to reference /s after e completes. The
type T, of [after e completes is merged with T to give [type T3. The type of e is the
type of the whole expression.

4.3.3. Dynamic Semantics. The dynamic semantics of GFTIL, presented in Figure 14,
depend on the same runtime structures as FT: environments p and stores wu. One
significant difference, though, is that GFTIL heaps map object references to tracked
objects:

C(@) P € TRACKEDOBJECTS
u € OBJECTREFS — TRACKEDOBJECTS (stores)

Expressions in the language evaluate to values, including void and object references o.
Stores u associate object references to objects. The novelty of GFTIL is that an object in
the store C(0) is annotated with the collection of outstanding permissions for references
to that object, P. The dynamic semantics of GFTIL is defined as transitions between
store/environment/expression triples.

Figure 14 presents some select dynamic semantics rules of GFTIL (prefixed with
“GE”: G for “gradual typing” and E for “evaluation”). Certain rules use two helper func-
tions for tracking permissions in the heap, whose definitions are given in Figure 15.
Permission addition (+) augments the permission set for a particular object in the heap.
Conversely, permission subtraction (—) removes a permission from the set of tracked
permissions for an object. Both operations take an arbitrary value and type but behave
like identity when presented with a type that does not represent a permission, like
Void or Dyn. The (GEinvoke) rule is straightforward. The (GEupdate) rule looks up the

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:31

W, p,e — p, p,e| Dynamic Semantics

u(p(h)) = C(o) P
method(m,C) = T, m(T; » T/ =) [Tx » T{] { return ¢; }

(GEinvoke) — —
wy pylim(l2) — p, p, [l l2/this, Tle

p(p(lh)) = C(0) P mdecl(m,C) =T, m(T; » T]) [T: » T{] | Ti |=| 2 |
s li.am(lz) — p, p, asserty(Dyn > Ti)(l1); asserta(Dyn » T;)(l2);
let ret = I1.m(l2) in assert(T] » Dyn)(l1);

assert(I » Dyn)(l2); assert(T, » Dyn)(ret);
ret

(GEinvoke,)

o) = C@ P fields(C) =TT ' = (ulp(h) > C'(p(1) P]) — 0= T

(GEupdate) — - -
Hopyli = C (12) —H , p, void
(Gupdatey M@0 =C@) P Dy= A {DIKD)eP} C'<iD,
t py 1 —a C'(I2) — p, p, asserta(Dyn » shared(Dy) C)(l1);
= C'(l2);
assert(shared(D,) C" » Dyn)(l1)
(GEassert) W=n—pl):T+pl): T (GEassertqv) pll) = void
1, p,assert{T » T' (1) — ', p, void ", p,assertg(Dyn » Void)(l) — p, p, void
(GE rt,0) p()=0 pW=p—0:T+o0:P C '(o)=C(o5) P C<:C" P compatible
assert 0
¢ u, p,asserta(T » P' C" (1) — i, p,void
(GEhold) pw=p—pl):Ti+p(l) : Ta+p(l): Ts U¢dom(p) p' =p[l' > p(l)]

w, p,hold[l - Ty = To/Ts » T = Ti|(e) — p', p/,merge[l’ : To| /L : Tz = Ti](e)

p=p=—pl"):Ti—p(l) : To+p(l): T3

GEmerge
(merge) S ergell - Ti/L s = T5)(0) — i pr

wpe— i pe

(GEmcongr) n ;
B p.mergelly < T/la](e) — i, o/ mergells : 7/ia](¢)

Fig. 14. Select internal language dynamic semantics rules.

Permission Addition
T {Dyn, Void} Permission Subtraction

p=p+v:T p=p +v:T
wlo) = C(o5) P wW=p—v:T

plo— C7) P,Pl=p+o: P C’

Fig. 15. Internal dynamics auxiliary functions.

object references for the target reference and the arguments to the class constructor,
replaces the store object for the target reference with the newly constructed object, and
releases the permissions held by the fields of the old object. The (GEassert) rule uses
permission addition and subtraction to track permissions, and returns void. Rules for
dynamic operators, like (GEinvokey) and (GEupdate;), dynamically assert the neces-
sary permissions (using asserty), defer to the corresponding static operation, and then
statically release the acquired permission (using assert). The (GEassert;) rule confirms
dynamically that its type assertion is safe. The (GEhold) rule performs the splitting

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:32 R. Garcia et al.

Helper Functions

fieldTypes(p,0) = -+ [Ti #Dyn | (o) =C(0") P, fields(C) =T f, of =0, and T; # Dyn]

o’edom(p)

1, A, p+ ook| Reference Consistency

p(o) = C() K(E) |0 = |fields(C)|
refTypes (i, A, p, 0) = k(E) D
C<:D k(E) compatible

A, p= ook

Fig. 16. Changes to permission-consistency relations.

of permissions (one permission to be used through the execution of the subexpression,
and one to be held around it) and evaluates to a merge. A new indirect reference, ', is
added to the environment as an alias for [to hold the permission T% | during execution
of e. Finally, the (GEmerge) rule applies when the subexpression is fully evaluated
and roughly reverses the (GEhold) rule. It merges the held type of [’ with the type of
its alias [and updates the store accordingly. Note that after this point, the indirect
reference [’ is no longer in scope.

4.3.4. Type Safety. As for FT, the type safety proof of GFTIL must account for the
outstanding permissions for each object o and verify that they are mutually compatible.
Figure 16 presents representative updates to FT’s permission accounting operations
needed for GFTIL. The basic reference type operations must be updated to filter out
the Dyn type and to expect tracked objects rather than just objects. The most important
difference, though, is that when checking reference consistency, that an object is ok
with respect to a context-environment-heap triple, it is now necessary to check that
the heap is properly tracking permissions.

The definition of global consistency does not change from that of FT. Recall that under
global consistency, every reference in the type context is accounted for in the store and
environment, and that Void and object-typed indirect references ultimately point to void
values and object references, respectively. In extending to GFT, Dyn-typed references
can be ignored because they may point to anything. Note that global consistency and
permission tracking take into account even objects that are no longer reachable in the
program. To recover permissions, a program must explicitly release the fields of an
object before it becomes unreachable.

These concepts contribute to the statement (and proof) of type safety.

THEOREM 4.1 (PROGRESS). Ife is a closed expression, i, A, p ok, and
Atre:T A N, then only one of the following holds:

—e is a value;
—u, p,e — ', p', e for some u', p’,e’; or
—e = Elegl and w, p, e is stuck.

The last case of the progress theorem holds when a program is stuck on a failed
dynamically checked expression. All statically checked expressions make progress.

THEOREM 4.2 (PRESERVATION). If Ate: T 4 A, and i, A, p ok, and
pbFeme and w,p,e — ', p' e, then A"+Fe' : T 4 AN and i/, A", p’ ok, and p' + e’ me
for some A”.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming

12:33

A e: T~ el 4 A| Source toInternal Language Translation

Ty = T>/Ts

(TRvar) (TRvary)

AT x:Ty~
z[Th = To/T3] 4 A,z : T3

Aler T~ ef 42,
A,z Ty kczzTQMegﬁA’,w:T{
Abletz: Ty =ejines : Ty~
|et.7::elzin
Ietret:e% in
release[T]](z); ret o A’

(TRlet)

mdecl(m, C1) =T m(T; » T!)[Ty » T,]
coerce(xy, Py C1,Tt) = clz

T
2

coerce(xa, T, T;) = e
(TRinvk) (o2, T, T4)

T # Dyn

A,zy: P Cr,ze : To - z1.m(T3) : T ~

z — /
er; e%; z1.m(Ta) 4 Al,xzy Ty, 2 : T}

T> f e ﬁclds(Cl)

A,z : P, C T I 4
(TRswap) z1 1 C1 - x2 2~ ey —

Ajzy: PLCy b ar.f = zo: Ty~
let &y = eZ inxy.f = afh - A

fields(C) =T f
A xo: T~ eg +H Az k(D) E
k € {full, shared} C<:D

(TRupdate) — -
Az « C(Zz) : Void ~
let 2, = eZ in

z1 « C(xh) 4 A}, z1 : k(D) C

Ty f € fields(Ch) Ty | T}

Az: P Ciba.f:Th~
z.f 4 A x: P Cy

(TRfield)

T=T

A,z T+ assert(T")(z) : Void ~»
assert(T" » T')(z) 4 A,z : T’

(TRassert)

T = T>2/Ts
A,I:Tgl—e:T«»eI—{A',z:Té

A,z :Dyn z : T ~ let ret = x[Dyn = Dyn/Dyn] in
assertg(Dyn » T')(ret);
ret 4 A,z : Dyn

fields(C)=T f AFax:T~ el 4A
A new C(Z) : full(Object) C' ~
let 2/ = eZ in new C(z’) o A’

(TRnew)

coerce(xo, T>, Dyn) = e%

(TRinvk,)
,z1:Dyn,zo : To z1.m(T3) : Dyn ~

eg'; z1.9m(T2) 4 Al,z1 : Dyn, x> : Dyn

A,zy:Dyn= A" xo: T
A,zq:Dyn - zq.f =t a2 : Dyn~
assert(T" » Dyn)(z2);
let 25, = z2[Dyn = Dyn/Dyn] in
z1.f =g z'z — A, x5 : Dyn

(TRswapg)

fields(C) =Ts f
A}—IEzZTzME%—{A,,IElZDyn
Az «— C(7z) : Void ~

let 2, = eZ in

T1 g C(g) — A’|,xy : Dyn

(TRupdatey)

(TRfieldy)

A,z :Dyn z.f : Dyn ~
z.qf 4 A,z :Dyn
T T

A,z : T - assert(T")(x) : Void ~»
asserty(T » T')(z) 4 A,z : T’

(TRassert,)

Tp| /T; = T}

(TRhold)

A,z :Ti - hold[z : T2](e) : T ~
hold[x : Th = To/T5 » T4 = Ty](e*)
Az le

Fig. 17. Type-directed translation from GFT to GFTIL.

4.4. Source to Target Translation

The dynamic semantics of GFT are defined by augmenting its type system to generate
GFTIL expressions. The typing judgment becomes A Fe; : T ~ eg - A’, where e; is
a GFT expression and e is its corresponding GFTIL expression. Figure 17 presents
these rules. We use the 7 superscript to disambiguate GFTIL expressions as needed.
Several rules use the coerce partial function, which translates consistent subtyping
judgments T < T into variable assertions:

coerce(x, Ty, To) = assert(T; > To)(x) if Ti <: Ty
coerce(x,Dyn, T') = assertq(Dyn > T')(x) if T # Dyn

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:34 R. Garcia et al.

Most of the translations are straightforward and follow similar patterns. For in-
stance, the (TRupdate) rule, which applies when the target of the update is statically
typed, let-binds all of the arguments to the object constructor to extract the exact per-
missions that it needs before calling GFTILs static update. The (TRupdatey) rule, in
contrast, applies when the target of the update is dynamically typed. It translates to
a dynamic update operation <4, but is otherwise the same. Operations on dynami-
cally typed objects translate to dynamic operations. Other rules like (TRassert) simply
use the typing rule to expose the needed extra type annotations for the corresponding
GFTIL expression. The (TRhold) rule specifies how the source-level hold is translated
to the internal expression, which is fully annotated with the intermediate types used
in the derivation.

As intended, the translation rules preserve well typing.

THEOREM 4.3 (TRANSLATION SOUNDNESS). If AFe: T ~sef 4 A, then A-ef : T 4 A

This theorem extends straightforwardly to whole programs.

4.5. Discussion

In FT, permissions are a compile-time phenomenon and need not be represented at
runtime. However, permissions are an integral component of FT types, so being able
to reason about them at runtime is critical to support the dynamic type checking that
is at the heart of gradual typing. For this reason, GFT is designed to support runtime
tracking and querying of permissions.

To achieve this combination of static and dynamic typestate checking, several chal-
lenges needed to be overcome. First, given that the language includes objects whose
type changes over time, it is necessary to determine what might be a reasonable be-
havior for dynamically typed objects. Since dynamically typed objects include object
references that would otherwise have permissions associated with them, it was neces-
sary to introduce a notion of runtime-checked permissions, a feature that could also be
applied to purely dynamically typed typestate-oriented languages. Nonetheless, this
change alone necessitated removing nondeterminism from the type system of FT while
still providing a convenient programming model.

Once runtime permission tracking and dynamic assertions are added, the introduc-
tion of the Dyn type of gradual typing can be viewed as a pure language extension,
since any program with no Dyn types falls in the nongradual subset of the language.
To keep the development simple, our presentation introduces gradual typing by mak-
ing some modifications to the existing permission management operations and typing
rules. However, the Dyn type could have been introduced to GFT as a pure extension
atop the language with dynamic type assertions. First, we could have preserved a full
separation between dynamic typing and type splitting/subtyping by only specifying
that Dyn = Dyn/Dyn, which is standard for any type that does not track permis-
sions (like Void). We could then have introduced a distinct notion of dynamic type
splitting T ~ T /T solely for handling the special properties of the Dyn type. Its two
rules would be 7" ~ Dyn/T and Dyn ~ T/Dyn. The type system could then be ex-
tended with special rules for checking variables and complex expressions at Dyn, as
well as checking Dyn-typed variables at non-Dyn types. Furthermore, we could de-
fine consistent type splitting as the union of standard type splitting and dynamic type
splitting. This would lead to the definition of consistent subtyping that we ultimately
used, although by a more circuitous route. We found it simpler to allow Dyn to be
the head of the subclass hierarchy and then extend subtyping to consistent subtyping
directly.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:35

In F'T, hold is a purely static notion and supports the permission-based type discipline,
but it is not needed at runtime. In a gradually typed setting, however, we must account
for temporarily held permissions at runtime, so both hold and merge have GFTIL coun-
terparts that implement the necessary permission bookkeeping. Compared to prior
work on borrowing, the semantics of hold is novel in two ways that can be ascribed
to its straightforward and effective integration with gradual typing. First, to provide
a static guarantee that the held permissions remain valid, hold must do runtime
bookkeeping to ensure that the code inside the nested block does not assert an incom-
patible permission. Second, hold does not always restore the exact original permission;
rather, it agnostically merges the held permission with the available pending permis-
sions. Because of dynamic assertions that can occur within the nested block, the merged
permission may be stronger or weaker than the original permissions. To date, borrow-
ing has been conceived only in a static context, and it recovers exactly the permissions
that were loaned to a function call. It remains to be explored how borrowing interacts
with dynamic permission assertion.

5. GFT SIMPLY EXTENDS FT

The prior sections present two source languages, FT and GFT, as well as type systems
and operational semantics for both. However, despite the presence of two separate
operational semantics, we claim that GFT is simply an extension of the FT language,
with support for gradual typing and dynamic permission management. This section
clarifies the sense in which this is so.

We start with the syntax and static semantics of these languages. As discussed
in Section 4, FT is syntactically a subset of GFT, with the only extension being the
addition of the Dyn type. Furthermore, GFT’s type system accepts all FT programs. So
the syntax and static semantics of the two languages are in sync.

From here, however, things appear to diverge. We give FT a direct operational se-
mantics. On the other hand, GFT is defined by type-directed translation to GFTIL, an
intermediate language that is given its own operational semantics, independent of that
of FT.

To complete the connection between FT and GFT, we bridge the difference between
these operational semantics. In particular, since every FT program is also a GFT
program, we show that translating an FT program to GFTIL and then running it
produces the same behavior as running the FT program directly.

The key observation underlying this connection is that many GFTIL expressions
are designed to maintain proper permission accounting so that information may be
queried whenever runtime permission checks are needed. FT, being a static language,
never needs to query runtime permissions (although assert may check class identity in
the case of a downcast). Furthermore, as shown in Section 3.6, indirect references and
their environment are irrelevant to the behavior of programs: it is the structure of the
heap that matters. Thus, we want to show that FT programs produce the same heap
structures when run on the FT semantics and the GFTIL semantics.

The relationship between FT, GFT, and GFTIL programs is reminiscent of the con-
nection between the simply typed, gradually typed, and cast calculus programs of Siek
and Taha [2006]. Every simply typed program is also a gradually typed program and
thus translates to a cast calculus program that has the same semantics. The correspon-
dence between semantics in their system is immediately evident and needs no proof.
In our present case, we must account for GFTIL's strict permission tracking and show
that it does not affect the behavior of FT programs.

First, we establish what it means for an FT state and a GFTIL state to be in corre-
spondence. We must appeal to the GFT translation for this.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:36 R. Garcia et al.

Definition 5.1. Let A+, p,e ~ u*, p*, e’ if and only if

(1) u, A, p ok;

(2) 1%, A, p* ok;

(3) u=Iu"l;

@) pcph

(5) Al—e:T«»eg#Al;
(6) e} expands toe’; and
() Ael - A

The preceding definition relies on several auxiliary concepts. The |u?| operation
converts a GFTIL heap 1” to an FT heap by discarding permission information. Addi-
tionally, the relation e{ expands to eg is defined by the following rules:

7 7
e; expands toe;

(release) -
el expands to letret = el inrelease[T'](1); ret

el expands toe; C <: D

(assert)

el expands to let ret = e in assert(P C > P D)();ret.

el expands toel e’ expands toel
(refl) 7 7 (let)
el expands toe

Tin el Tin ol
let x = ey ine; expands toletx =e; iney

This relation accounts for the extra code added by the translation of let expressions
and method bodies.

The resulting correspondence A F u, p,e ~ u?, p, e’ captures the idea that we can
consider an FT and GFTIL state to be in sync if they are the same apart from indirect
references and permission tracking steps.

Armed with these definitions, we can establish correspondence.

ProposiTiON 5.2.
(I) Ifete:T ~ e’ e, then ot 3,0.e ~DB.D,e”.
(2) Let ef be one of
(@) a value v;
(b) a reference [T, = Ts/Tsl; or
(¢) an assertion assert(T > T ().
If ef expands to el, 1.A,p ok, A el : T - A, and u?,pt el
ur.pfel —* ut, pl.v, where ps C ps.
(8) If A1 = p1,prer ~ ui.pf.ef and pi,pi.er — pz,pa.e2, then ui.pf.ef —* ug.p5.e5
and Ag &= g, pa.e2 ~ b, p3 el for some As.

—* w,p3.v, then

Proor SKETCH.

(1) Straightforward.

(2) By induction on e expands toe3.

(3) By simultaneous induction on u1, p1,e1 — K2, p2, ez and e; expands toe?.
Cases (SEassert) and (SEinvoke) make explicit use of well-typed translation. In
particular, Some assert expressions in FT translate to assert; in GFTIL, but they
never modify the permissions, only the class.

To account for the let-bound arguments introduced by translation, cases (SEnew),

(SEupdate), and (SEinvoke) appeal to part (2) and use a nested simultaneous

induction on the el expands to e relation and the number of let bindings in e.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:37

Finally, to properly translate running programs, we extend (TRref) to include
indirect references and add the following rules:

TRvoid TRobj
v oid Void wvoid 4 & Y X 0 T Fro T oA

T1=T\L A,lz:Tgl—eZTl—Al,lgiTé Tl/TZ/STg

mergelly : T1/lsl(e) : T ~
merge[h : Tl/lz : TZ/ = Tsl(e)

(STmerge)

Al Tl : T = A1l Ts

6. CONCLUSION

Related work. A lot of research has been done on typestates since they were first
introduced by Strom and Yemini [1986]. Most typestate analyses are whole-program
analyses, which makes them very flexible in handling aliasing. Approaches based on
abstract interpretation (e.g., Fink et al. [2008]) rely on a global alias analysis and
generally assume that the protocol implementation is correct and only verify client
conformance. Naeem and Lhotak [2008] developed an analysis for checking types-
tate properties over multiple interacting objects. These global analyses typically run
on the complete code base, only once a system is fully implemented, and are time
consuming.

Fugue [DeLine and Fahndrich 2004] was the first modular typestate verification
system for object-oriented software. It tracks objects as “not aliased” or “maybe aliased”;
only “not aliased” objects can change state. Bierhoff and Aldrich [2007] extended this
approach by supporting more expressive method specifications based on linear logic
[Girard 1987]. They introduce the notion of access permissions to allow state changes
even in the presence of aliasing. They also use fractions, first proposed by Boyland
[2003], to support patterns like borrowing and adoption [Boyland and Retert 2005].
The Plural tool supports modular typestate checking with access permissions for Java.
It has been used in a number of practical studies [Bierhoff et al. 2009]. Although Plural
introduced state guarantees, this article provides their first formalization. Nanda et al.
[2005] present a system for deriving typestate information from Java programs. In
general, type and typestate inference techniques are complementary and orthogonal
to gradual typing [Siek and Vachharajani 2008].

Work on distributed session types [Gay et al. 2010] provides essentially the same
expressiveness as Plural but with protocols expressed in the structural setting of a
process algebra instead of the setting of nominal typestates. It considers communication
over distributed channels as well as object protocols but does not allow aliasing for
objects with protocols.

The preceeding approaches do not address TSOP, as they are not integrating type-
states within the programming model, but rather overlay static typestate analysis on
top of an existing language. TSOP has been proposed by Aldrich et al. [2009]; its defin-
ing characteristic is supporting runtime changes to the representation of objects in the
dynamic semantics and type system. The programming language Plaid® is the first
language to integrate typestates in the core programming model. Saini et al. [2010]
developed the first core calculus for a TSOP language; their language is object based
and relies on structural types. GFT builds on this work but adapts it to a class-based,
nominal approach with shared access permissions and state guarantees for reasoning
about typestate in the presence of aliasing. Earlier work related to TSOP includes the
Fickle system [Drossopoulou et al. 2001], which can change the class of an object at
runtime but has limited ability to reason about the states of an object’s fields.

8Under development at CMU: http:/plaid-lang.org.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:38 R. Garcia et al.

This work also builds on existing techniques for partial typing, like hybrid typing
[Knowles and Flanagan 2010] and gradual typing [Siek and Taha 2006, 2007; Bierman
et al. 2010]. GFT is a considerable advance in this sense by showing how to gradually
check flow-sensitive resources in a modular fashion. Bodden [2010] presented a hybrid
approach to typestate checking. A static typestate analysis is performed to avoid unnec-
essary instrumentation of programs for monitoring typestates at runtime. Although the
hybrid perspective is shared with this work, the proposed analysis is global. Turning a
conventional alias analysis into a modular analysis would require heavy low-level an-
notations (such as abstract locations) that are not directly meaningful to programmers.
In contrast, permissions are designed to match human abstractions.

Ahmed et al. [2007] define a core functional programming language that supports
strong updates—that is, changing the type of an object in a reference cell. Similarly to
our approach, it uses linear typing. They present two languages: 1.3 and extended L.3. L3
allows aliasing, but only has exclusive access, through a capability: only one reference
can read/write to an object. In contrast, full, shared, and pure access permissions allow
for more varied aliasing patterns. Extended L3 allows recovering a capability, but the
programmer must provide a proof that no other capabilities exist to the reference cell.
Extended L3 is a parametrized framework: one must add one’s own type system to
associate a proof with the capability request.

Future work. GFT is at the core of the Plaid language design project at CMU. We
are integrating other access permissions from Bierhoff and Aldrich [2007] and looking
at how a gradual type system could support Plaid’s statechart-like multidimensional,
compositional state model [Sunshine et al. 2011]. Another interesting direction is ex-
amining how gradual permissions could be leveraged in Plaid’s support for concurrency
[Stork 2013]. Most importantly, we are exploring ways to extend the power of the static
type system to avoid resorting to dynamic asserts. An example of such an extension
is permission borrowing [Boyland and Retert 2005; Naden et al. 2012], which, if spec-
ified in method signatures, avoids having to dynamically reassert permissions after
“lending” them to a subcomputation. The language that we present here already in-
cludes one such refinement, namely hold, used to hold some permissions to a reference
while a subcomputation is performed.

Importantly, it remains an outstanding research question if the cost of dynamic
permission checking can be amortized over the number of permission checks. As it
now stands, enabling dynamic permission checking mandates a fully instrumented
runtime semantics to keep track of permissions. In Plaid, we intend to address this with
reference counting, not for memory management but for enabling runtime permission
checks. Standard optimization techniques like deferred increments [Baker 1994] and
update coalescing [Levanoni and Petrank 2006] will be applied. We believe that these
techniques will reduce reference count overhead to a small percentage of runtime, and
we will study this empirically in future. The formalism presented here establishes a
baseline from which to explore this capability and develop new models for permission
tracking.

Conclusion. FT and GFT are nominal core calculi for TSOP. By introducing typestate
directly into the languages and extending their type systems with support for gradual
typing, state abstractions can be implemented directly, stronger program properties
can be enforced statically, and when necessary dynamic checks can be introduced
seamlessly. Both languages support a rich set of access permissions together with
state guarantees for substantial reasoning about typestate in the presence of aliasing.
Furthermore, this work paves the way for further gradual approaches by showing how
to modularly and gradually check flow-sensitive resources.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:39

A. HELPERS
Subclass fields(C) | Class Field Declarations
F, M fields-object) ———————
class C extends D { F, M } (fields-object) Jields (Object) = -
C<:D .
- class C extends D { T f, M }
c<:C fields(D) = T" f'
C<:D D<:FE AT —
C< E (fields-subclass) f'nf=g —
fields(C) =T7 f/, T f

method(m,C) | Method Definition

class C extends D { F, M }
T, m(T » T' z) [Ty » T}] { returne; } € M

method(m,C) = Tr m(T » T" z) [Ty » T]] { returne; }

(method-override)

class C extends D { F, M } m¢ M
method(m, D) = T, m(T » T’ z) [Ty » T}] { returne; }

method(m,C) =T, m(T » T" z) [Ty » T]] { returne; }

mdecl(m,C) | Method Declaration

method(m,C) =T, m(T » T" z) [Ty » T]] { returne; }
mdecl(m,C) =T, m(T » T") [Ty » T}]

(method-super)

(mdecl)

B. GFT PROGRAM TYPING RULES

Well-typed Method Declaration

class C extends D { F', M } class C extends D { F', M }
mdecl(D,m) = Tr m(T; » T})[P: E > T{] mdecl(D, m) undefined
Tr m(T; » T!)[P: C » T/] ok in C T m(T; » T!)[P: C » T{] ok in C

Well-typed Method
T m(T; » T] «)[Ty » T/] ok in C;
x: Ty, this: Ty e < T 4 this: T/, z : T/
T/ < T/ T/ < T!
T m(T; » T! x) [Ty » T/] { returne; } ok in C

Well-typed Field Well-typed Class Well-typed Program

T|=T Fok M okinCy CLok Fe=T--
T f ok class C extends C; { F; M } ok (CL,e) ok

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:40 R. Garcia et al.

C. GFT INTERNAL LANGUAGE (GFTIL)

Are:T-HA| Well-typed Expression

(TIvoid)

A void : Void 4 A

mdecl(m,C1) = T m(Tz » T3)[P1 C1 » T]]

(TIinvoke) — —_—
A,s1: P Cr,s2:To b s1.m(s2) : Tr 4 Al st : Ty, 82 : T

(TIvar-b)

Ab:THbO:THA

(TIinvoke,)

A, sy :Dyn,sg : Dyn - s1.4m(52) : Dyn H A, s1 : Dyn, s2 : Dyn

T = T2/T3 (T2 f) € ﬁelds(cl)
(TIvar) (TIswap)
Ays: Ty + S[T1 = Tz/Tg] T 4 As: T3 A,s1: P Cr,s9:To

81.f =: s90:To 4 A,s1: PL Cy

(T f) € fields(C) T T

(TIfield) As:PCrHsf:T 4A,s:PC
(Tlswapa) A,s1:Dyn,so:Dyn=s1.f :=:q s2:DynH A, s1:Dyn
(TIfield) A,s:Dyn s.qf : Dyn 4 A, s : Dyn
(TTupdate) kie {fullshared} Cf <:Dy fields(C) =T f

A, s1:ki1(D1) Crys2: T = s1 < Cp(s52) : Void 4 Al, 51 : k1(D1) Cf

fields(C) =T f
A,s: T+ new C(3) : full(Object) C -+ A

(TInew)

fields(C) =Ty |

(TIupdate) — -
A,s1:Dyn sy Th 51 «—4 C(532) : Void 4 A, s1 : Dyn

(TIrel)

A,s: T |- release[T](s) : Void 4 A

T13T2/T3 TQl/Té%T{ A,s:TgFe:T%A/,S:Té

TThold
(TThold) A,s: Ty Fhold[s: Ty = To/T3 » Ty = T{](e) : T 4 A/, s: T}

Akep:T1 4 A
Ap,z:T Fex: Ty - As
z:Voide Agorz: T] ¢ Ag

TIlet
(TTlet) Abletz=ejiney:To 4 As ~x

T =11l /Ty = T3
A,lg:TgFe:T#A/,lg:Té

Ayl Ty le i To - merge[ll :T1/12 :TQ/ = T3](e) T Ay T

(TImerge)

T=1T
A,s: T+ assert(T » T")(s) : Void 4 A,s: T’

(TIassert)

T T
A, s: T assertq(T » T'")(s) : Void 4 A,s: T”

(TIasserty)

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming

Well-typed Method Signatures

class C extends D { F', M } class C extends D { F', M }
mdecl(D,m) = T, m(T; » T)[P: E » T{] mdecl(D, m) undefined
Tr m(T; » T])[P: C » T{] ok in C T m(T; » T!)[P: C » T{] ok in C

Well-typed Method
T m(T; » T/)[Ty » T{] ok in C;

this: Ty, : Ty e : T 4 this: T,z : T/
T m(T; » T! x) [Ty » T/] { returne; } ok in C;

Well-typed Field Well-typed Class Well-typed Program

T|=T Fok M okinCy CLok -Fe:T -
T f ok class C extends C; { F; M } ok (CL,e) ok
Dynamic Semantics
d ! = C(p(1)) [full(Object
(GElookup-binder) (GEnew) 2 £ dom (1) ' = plo — Clp(D)) [full(Object)]]
1y ps L= g, p, p(1) s pynew C(1) — 1/, p, 0
"=p—pl): T+ p(l): Ta+ p(l) : T "'=u—pl):T
(GElookup-obj)—* — p(l) : T1 + p(1) 2, p(l) : T3 (GErel) u=p—p() : _
1, p, Ty = T2 /Ts] — 1, p, p(1) 1, p, release[T](l) — 1, p, void

wp(lh)) = C@©) P fields(C) =T f
wypy b fi =t la > B
ulp(lr) — [p(l2)/0:]C(0) P], p,0;

(GEswap)

w(p(ll)) =C@) P method(m,C) =
T m(T; » T! x) [Ty » T]] { return e; }

(GEinvoke) — —
w, p,lim(l2) — p, p, [l1, l2/this, T]e
u(p(h)) = C@) P fields(C) =T f
Dy = MD | k(D) P}
(GEswapg) -
oyl fi =g lo —
w, p, assertg(Dyn » shared(D,) C)(l1);
assertq(Dyn » T;)(l2);
let ret =11.f; :=: l2in
assert(shared(Dg) C' » Dyn)(l1);
assert(T; » Dyn)(ret);
ret
u(p(l)) = C(a) P
mdecl(m,C) =T, m(T; » T]) [Ty » T{]
. | T |=] L2 |
(GEinvoke,)

5 11.am(l2) — p, p,assertg(Dyn » Ti)(11);
assertg(Dyn » T;)(l2);
let ret = I1.m(l2) in

assert(T} » Dyny(l1);
assert(T] » Dyn)(l2);
assert(T, » Dyn)(ret);
ret

wlp(l)) =C@ P fields(C) =T f
p = plp(lh) = C'(p(l2)) Pl p'=p1—0:T

(GEupdate)

w,p, 1y« C'(I2) — 1/, p, void

12:41

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

R. Garcia et al.

12:42
(i) = C(@7) P
Dy = N{D |k(D)e P C' <: D
(GEupdate,) s = M L(e} g
pspyln —a C'(l2) —
Hs p, assertg(Dyn » shared(Dg) C)(11);
l1 < C'(l2);
assert(shared(Dy) C” » Dyn)(l1)
pp) = C@ P fields(C) =T f , o
(GEfield) LT p=ptoi:T (GEassert) w=p—pl):T+pQ): -
wyps L fi = 'y p, 04 i, p,assert{T » T")(l) — ', p, void
))=C@) P lds(C) =T f
GEelay 1P0) = C@) P fields(C) =Tf
B pylafi = 1, p, 04
p(l) = void

GE t. i i
(GEassertv) 1, p, assertg(Dyn » Void)(l) — p, p, void

p(l) =0
wW=p—o0:T+o:P C’

(o) = C(a7) P
(GE - C <:C" P compatible
assert 0 -
! 1, pyassertg{T » P' C")(1) — i/, p,void

W=p—pl) :To+p): To+p(l) : T35 U ¢dom(p) p' =p[l' = p(l)]

(GEhold)
w,p,hold[l: Ty = To /T3 » T4 = T{](e) — i/, p/,merge[l’ : To /L : T4 = Ty](e)

wW=p—pl'):Tr—p(l): T2 + p(l) : T5
(GEmerge)
Iy P, merge[l’ T/l T = T3](v) — w,p,v

(GEmcongr) My Py € —> N/a P/7 e
w, p,merge(ly : T/lz](e) — ', p’, merge(ly : T/l2](e’)

1¢d
(GElet) L¢ dom(p)
B, p,let z =vine — p, p[l — o], [[/z]e

/ / /
w,p e1 — s p e
(GEcongr) 7_7 ,’ ,’ 1 T
wyp,letx =erines — ', p' let x = e ine2

D. TYPE-DIRECTED TRANSLATION FROM GFT TO GFTIL

Method Translation

this: Ty, z: T - e: Ty~ ef Athis: T/, z: 1"
el = let ret = e* in coerce(this, T}, T}); coerce(x, T" , T"); ret

T m(T » T z) [Ty » T{] { return e; } ~ T, m(T » T" x) [Ty » T/] { return eT; }

CL~ CL| Class Translation

F~» F?| Field Translation
F~ FT M~ MZT

class Cy extends C1 { F; M }

TF~F FZ. VT
~ class Cy extends C, { FZ; MZ }

PG ~ PG*| Program Translation

ke:T~ef 4. CL~CLT
(CL,e)~ (CLT, ")

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

Foundations of Typestate-Oriented Programming 12:43

REFERENCES

Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3: A linear language with locations. Fundamenta
Informaticae 77, 4, 397-449.

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009. Typestate-oriented program-
ming. In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object-Oriented Program-
ming Systems Languages and Applications (OOPSLA09). ACM, New York, NY, 1015-1022.

Henry G. Baker. 1994. Minimizing reference count updating with deferred and anchored pointers for func-
tional data structures. ACM SIGPLAN Notices 29, 9, 38—43.

Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased objects. In Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applica-
tions. ACM, New York, NY, 301-320.

Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. 2009. Practical API protocol checking with ac-
cess permissions. In Proceedings of the 23rd European Conference on Object-Oriented Programming
(ECOOP’09). Springer-Verlag, Berlin, Heidelberg, 195-219.

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding dynamic types to C. In Proceedings of
the 24th European Conference on Object-Oriented Programming (ECOOP’10). Springer-Verlag, Berlin,
Heidelberg, 76-100.

Eric Bodden. 2010. Efficient hybrid typestate analysis by determining continuation-equivalent states. In
Proceedings of the 32nd ACM / IEEE International Conference on Software Engineering (ICSE’10). ACM,
New York, NY, 5-14.

John Boyland. 2003. Checking interference with fractional permissions. In Proceedings of the 10th Interna-
tional Conference on Static Analysis (SAS’03). Springer-Verlag, Berlin, Heidelberg, 55-72.

John Boyland and William Retert. 2005. Connecting effects and uniqueness with adoption. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL05).
ACM, New York, NY, 283-295.

Robert DeLine and Manuel Féhndrich. 2004. Typestates for objects. In ECOOP 2004—Object-Oriented Pro-
gramming. Lecture Notes in Computer Science, Vol. 3086. Springer, 465—-490.

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2001. Fickle:
Dynamic object re-classification. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01). Springer-Verlag, Berlin, Heidelberg. 130-149.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective typestate
verification in the presence of aliasing. ACM Transactions on Software Engineering and Methodology
17, 2, Article No. 9.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, MA.

Ronald Garcia, Roger Wolff, Eric Tanter, and Jonathan Aldrich. 2013. Featherweight Typestate. Technical
Report CMU-ISR-13-112. Carnegie Mellon University, Pittsburgh, PA.

Simon Gay, Vasco Vasconcelos, Antonio Ravara, Nils Gesbert, and Alexandre Caldeira. 2010. Modular session
types for distributed object-oriented programming. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL'10). ACM, New York, NY, 299-312.

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1, 1-102.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A minimal core calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems 23, 3, 396—-450.

Ciera Jaspan and Jonathan Aldrich. 2009. Checking framework interactions with relationships. In ECOOP
2009—O0bject-Oriented Programming. Lecture Notes in Computer Science, Vol. 5653. Springer, 27-51.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid type checking. ACM Transactions on Programming
Languages and Systems 32, 2, 6:1-6:34.

Yossi Levanoni and Erez Petrank. 2006. An on-the-fly reference-counting garbage collector for Java. ACM
Transactions on Programming Languages and Systems 28, 1, 1-69.

Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. 2012. A type system for borrowing
permissions. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'12). ACM, New York, NY, 557-570.

Nomair A. Naeem and Ondrej Lhotak. 2008. Typestate-like analysis of multiple interacting objects. In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages
and Applications (OOPSLA08). ACM, New York, NY, 347-366.

Mangala G. Nanda, Christian Grothoff, and Satish Chandra. 2005. Deriving object typestates in the
presence of inter-object references. In Proceedings of the 20th Annual ACM SIGPLAN Conference on

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

12:44 R. Garcia et al.

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA05). ACM, New York,
NY, 77-96.

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

Amr Sabry and Matthias Felleisen. 1993. Reasoning about programs in continuation-passing style. Lisp and
Symbolic Computation 6, 3—4, 289-360.

Darpan Saini, Joshua Sunshine, and Jonathan Aldrich. 2010. A theory of typestate-oriented programming.
In Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs (FTFJP’10). ACM,
New York, NY, Article No. 9.

Jeremy Siek and Walid Taha. 2006. Gradual typing for functional languages. In Proceedings of the Scheme
and Functional Programming Workshop. ACM, New York, NY.

Jeremy Siek and Walid Taha. 2007. Gradual typing for objects. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’07). Springer-Verlag, Berlin, Heidelberg, 2-27.

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual typing with unification-based inference. In Pro-
ceedings of the 2008 Symposium on Dynamic Languages (DLS’08). ACM, New York, NY, 7:1-7:12.

Sven Stork. 2013. Zminium: Freeing Programmers from the Shackles of Sequentiality. Ph.D. Dissertation.
Carnegie Mellon University, Pittsburgh, PA.

Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering 12, 1, 157-171.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Eric Tanter. 2011. First-class state change
in plaid. In Proceedings of the 2011 ACM International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’11). ACM, New York, NY, 713-732.

David Walker. 2005. Substructural type systems. In Advanced Topics in Types and Programming Languages,
Benjamin Pierce (Ed.). MIT Press, Cambridge, MA, 3—43.

Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan Aldrich. 2011. Gradual typestate. In ECOOP 2011—
Object-Oriented Programming. Lecture Notes in Computer Science, Vol. 6813. Springer, 459-483.

Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan Aldrich. 2013. Gradual Featherweight Typestate.
Technical Report CMU-ISR-13-113. Carnegie Mellon University, Pittsburgh, PA.

Received May 2012; revised March 2014; accepted May 2014

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 12, Publication date: October 2014.

