
Taming the IDE with Fine-grained Interaction Data
Roberto Minelli†, Andrea Mocci†, Romain Robbes‡, Michele Lanza†
†REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

‡PLEIAD @ Departamento de Ciencias de la Computación (DCC) — University of Chile, Chile

Abstract—Integrated Development Environments (IDEs) lack
effective support to browse complex relationships between source
code elements. As a result, developers are often forced to exploit
multiple user interface components at the same time, bringing
the IDE into a complex, “chaotic” state. Keeping track of these
relationships demands increased source code navigation and
cognitive load, leading to productivity deficits documented in
observational studies. Beyond small-scale studies, the amount
and nature of the chaos experienced by developers in the wild is
unclear, and more importantly it is unclear how to tame it.

Based on a dataset of fine-grained interaction data, we propose
several metrics to characterize and quantify the “level of chaos”
of an IDE. Our results suggest that developers spend, on average,
more than 30% of their time in a chaotic environment, and
that this may affect their productivity. To support developers,
we devise and evaluate simple strategies that automatically alter
the UI of the IDE. We find that even simple strategies may
significantly reduce the level of chaos both in terms of effective
space occupancy and time spent in a chaotic environment.

I. INTRODUCTION

Integrated Development Environments (IDEs) are the vehi-
cle used by developers to construct, debug, and evolve source
code. IDEs leverage different user interface (UI) paradigms to
support manipulation of source code artifacts: window-based,
like in the Pharo IDE1, or tab-based, like in the Eclipse IDE2.
Unfortunately, neither of these two main paradigms effectively
supports the navigation of source code artifacts [1], mainly
because no existing UI paradigm is able to effectively and
efficiently tackle the complex relationships between source
code entities. To move away from some known limitations of
traditional IDEs, researchers developed different approaches to
better support navigation through software (e.g., [1], [2], [3])
and alternative UI metaphors (e.g., [4], [5], [6]). In practice,
most IDEs still adopt classical window-based or tab-based UIs.

The ineffectiveness of navigation support in IDEs has been
observed and studied. Ko et al. found that up to 35% of devel-
opment time is spent navigating code [7]. This phenomenon
can take the form of the “window plague” [3], manifesting
itself when developers are forced to open many UI components
at the same time to reveal the relationships between code
entities for the task at hand, and bringing the IDE into a
chaotic state. While there is evidence that this chaos affects the
developer’s productivity [8], it comes from a limited number
of data points. This limited amount of evidence means that the
nature and amount of chaos experienced by developers is hard
to characterize and quantify. This makes developing mitigating
countermeasures challenging.

1See http://pharo.org
2See https://eclipse.org

We start by looking for evidence of chaos by analyzing two
different datasets. The first one comes from Pharo, a window-
based IDE, and includes around 770 hours of development data
coming from 17 developers. We observe that these developers
spend on average 30% of their time in a chaotic environment.
The key characteristic that makes our approach possible is
the large number of fine-grained interaction data that we
were able to record over an extended period. To get a more
encompassing vision, we also analyzed the Mylyn3 dataset [9],
which features several thousands of individual tasks coming
from 179 developers. Due to the limited amount of information
available in this dataset, a similarly detailed analysis was not
possible. Instead, we quantified the number of entities (classes
and methods) interacted with in Mylyn tasks. This analysis,
corroborating the existing literature on the topic, provides
sufficient evidence that chaos is also prominent in tab-based
IDEs. Focusing on the finer-grained dataset, we were able to
comprehensively investigate the chaos phenomenon, charac-
terizing it in terms of the window space required to support
development tasks, and the overlapping of these windows.

Intuitively, having a chaotic environment hinders develop-
ment: The developer has to cope with the chaos of the IDE
itself, while she needs to piece together information scattered
in several entities displayed in different UI components. This
chaos is visible in activities such as e.g., searching for win-
dows, closing unneeded tabs, or moving windows around to
reveal what is below. We found a statistically significant, posi-
tive correlation between the level of chaos, and the proportion
of time that developers spend altering the UI of the IDE.
We found another positive and significant correlation between
chaos and the proportion of time spent performing program
comprehension tasks. This corroborates the findings of the
studies of Ko [7] and Bragdon [8].

These findings call for novel approaches whose aim is to
reduce the chaos of the IDE and make more time and space
available for the real essence of software development. Fine-
grained interaction data is useful there too: To help developers
coping with the chaos, we devised and evaluated simple strate-
gies that automatically reshape the UI of the IDE. Our findings
reveal that even simple strategies may significantly reduce
space occupancy and time spent in a chaotic environment.

We can summarize the contributions of our paper as follows:
• A set of metrics to characterize and quantify the “level

of chaos” of a programming session in an IDE, based on
fine-grained interaction data;

3See http://www.eclipse.org/mylyn/



• A detailed analysis of two datasets coming from two
different IDEs. We primarily focus on the Pharo dataset,
due to the rich information at our disposal. To get further
evidence, we investigate the size of the task contexts in a
large number of development tasks in the Mylyn dataset.

• An evaluation of the effectiveness of elision and layout
strategies to reduce the level of chaos in the IDE.

Structure of the Paper: Section II analyzes the literature
and provides initial empirical evidence, through the analysis
of Mylyn data, of the presence of chaos in the IDE UI.
Section III details our primary dataset and explains how we
modeled, characterized and measured the “chaos inside the
IDE”. In Section IV we present our strategies to reduce the
chaos present in the IDE and discuss their impact. Finally,
Section V discusses the threats to validity of our work; we
conclude and discuss further work in Section VI.

II. MOTIVATION

The complexity of building and maintaining working sets
for typical development tasks can both explain the chaotic
configuration of an IDE, and be impacted by it.

According to Wexelblat [10], the information path obtained
from navigation in an information space reveals the user’s
mental model of the system. In software engineering, devel-
opers spend a significant portion of their time building and
maintaining the working set of code fragments relevant to a
task. This is challenging when the relevant code fragments are
dispersed in several locations in the system. An observational
study by Ko et al. reported that developers spend 35% of their
time navigating the source code in search for information [7],
and that 27% of the navigation operations are performed on
already visited locations, indicating the necessity to period-
ically revisit these locations to recall information no longer
visible on screen.

This study is not alone: The recent context model study
by Fritz et al. [11], based on detailed observations of 12
developers, each solving three tasks, found that the average
context model necessary to solve a task contained 4 classes.
Further evidence is present in the study by Sillito and Murphy
[12]: Developers ask a variety of questions during maintenance
tasks; answering some of the questions involves inspecting
several entities, increasing working set size.

A. Improving Management of Working Sets
Several approaches have been proposed to improve the man-

agement of working sets. Robillard and Murphy proposed to
represent scattered concerns in source code as concern graphs
[13]. Mylyn itself is such a tool, which monitors interaction
data to automatically build a degree-of-interest model (DOI),
altering the views of the Eclipse IDE by filtering out entities
with a low DOI value [9]. Its effectiveness has been empir-
ically demonstrated [14]. The Degree-of-Knowledge (DOK)
model by Fritz et al. is an extension of the DOI, that also
includes authorship [15]. Other tools monitoring interactions
to help software exploration have been proposed, such as
Navtracks [1], and Teamtracks [16].

The problem with Tab-based UIs. A key issue not ad-
dressed by these works is the fact that most IDEs do not
properly support the work of maintaining one’s mental model
by adopting a file-based representation of source code, while
most working sets span several files. Moreover, the particular
UI paradigm typically used to manipulate source code hinders
the maintenance of complex working sets.

Eclipse is a good representative of widely used IDEs (such
as Visual Studio, Netbeans, IntelliJ Idea) that adopt the tab-
based metaphor. Each file is shown as an editor in the IDE,
with navigation tools (Package explorers, search tools, etc)
shown as views around the central editor. By default, the
screen estate allows for at most one file to be visible at
the same time, while other open files are shown as “hidden”
tabs. This is the case of the overwhelming majority of the
Java developers broadcasting their coding sessions on the
“livecoding” website4: Out of several dozens of videos linked
on the site, only a handful of developers stray away from the
IDE’s default settings and use two code tabs at the same time,
even if the vast majority of published coding videos show
IDEs with several tabs open at the same time.

Ko’s study mentioned above [7] observed a significant
number of re-navigation to entities recently browsed (27%).
He highlights patterns of back-and-forth navigation between
two files to compare similar pieces of code, which is necessary
if only one tab is visible at a time. In a series of controlled
experiments investigating the influence of type systems [17],
and of API documentation [18], [19], we observed that the
treatments with higher code completion times also had larger
working sets, and a larger number of tab switches in a tab-
based IDE. All of these findings point to issues related to
dealing with multiple tabs in an IDE when several scattered
fragments need to be accessed at the same time.

B. Evidence from Mylyn data
To explore in a more systematic way the phenomenon of

how tab-based IDEs support the management of complex
working sets, we measured the size of the task contexts5 con-
tained in the Mylyn dataset available in the Eclipse Bugzilla
repository6. We downloaded 6,182 bug reports that had a
Mylyn task context as attachment. For each task context, we
counted the number of distinct Java files and methods that were
interacted with. We applied filtering techniques to bypass some
of the deficiencies of the data [20], namely removing massive
selection events that could lead to an overestimation of the
number of entities interacted with (e.g., selecting an entire
group of classes from the navigation panel, without actually
opening them). In essence, we filter events that originate less
than 100ms after the previous event.

We are left with the number of Java files and the number of
methods that were interacted with during a task (we exclude
other types of files, such as .class or XML files). The median
task context has interactions with 3 Java files, that is, at least

4See https://www.livecoding.tv/videos/java/
5A set of artifacts that Mylyn considers relevant fot the task-at-hand.
6See https://bugs.eclipse.org



half of the tasks involve interactions with at least three Java
files. The upper quartile is 8, meaning that for at least 25%
of the tasks, the developer needed to consult 8 or more java
source code files to finish the task. Clearly, a large number
of tasks demand non-trivial interactions with a large number
of source code entities. Outliers are even higher; if we focus
on methods, the median number of methods interacted with
is 5, while the upper quartile is 21. This indicates that for at
least 25% of the tasks, the developer had to piece together
information from a large number of methods.

This is a likely sign that the typical size of working sets,
together with the way that source code is represented by the
tab-based UI paradigm, may generate chaos in the IDE, forcing
developers to spend significant time in interacting with the UI
components to manipulate their working sets, for instance to
revisit entities as documented by Ko [7].

Obtaining further evidence is hard, because of the Mylyn
data itself, which presents several limitations for this particular
investigation: It does not contain information on the visibility
of elements on screen, so it is impossible to know how
many tabs were open at distinct points during a task, or if
developers had several tabs visible at the same time. There is
no information to estimate the size of the screen, or the size
of tabs. The data is aggregated, and it is not always possible
to know the exact sequence of events (a sequence of events
concerning an entity may be encoded as a time period where
several events occured, reducing precision, as documented by
Ying and Robillard [21]). Finally, the Mylyn data is based on
a files-and-tabs metaphor, which is in itself limiting in terms
of possible optimizations.

C. Beyond Tab-based IDEs

Recent efforts have investigated better program representa-
tions and UI paradigms than the file-and-tab-based metaphor
of most common IDEs. We can trace back this inspiration
to the Lisp and Smalltalk IDEs of the 80’s, whose most
recent representative is Pharo. Efforts include Code Canvas
[5] and Code Bubbles [4]. Code Canvas has seen parts of its
functionality released in Visual Studio as Debugger Canvas,
which also integrates parts of Code Bubbles’ functionality
[22]. These tools aim to reduce the amount of code navigation,
by maximizing the number of entities visible at the same time.

The evaluation of CodeBubbles is particularly instructive.
The authors showed that at a similar screen resolution, Code
Bubbles was able to show more methods at the same time
than the classic Eclipse view [4]. Furthermore, a controlled
experiment showed that Code Bubbles users were both more
successful and faster in completing maintenance tasks than
Eclipse users [8]. Parts of this performance increase is at-
tributable to a reduction of repeated navigations, such as the
ones observed by Ko, according to the videos recorded during
the controlled experiment (75.9% of all Eclipse navigation
operations, compared to 37.6% for Code Bubbles), as more
entities were visible on screen.

D. Strengthening the existing evidence
Approaches such as CodeBubbles, and the insights that one

can obtain from its evaluation, motivate the need to evaluate
the impact of IDE UIs in alternative metaphors to the classic
tab-based approach. Moreover, window-based IDEs also suffer
from UI-related phenomena like the window plague [3], [2],
and our work lies in the same area of research. We leverage
our experience in recording and mining interaction data in
the IDE [23] to model and characterize the impact of chaos
in window-based IDEs, evaluate possible techniques that can
ameliorate the developer experience, and ultimately improve
the support that UI components give in constructing and main-
taining the working set by managing in a more efficient way
the screen real estate. While the empirical evidence brought
forth by CodeBubbles [8] shows that increasing the number of
code fragment visible at the same time has a positive impact
on productivity, it is lacking in several aspects. Beyond the
simple focus on the more general setting of window-based
IDEs like Pharo, our study complements it in several ways.

Variety of Tasks. Code Bubble’s productivity benefits are
shown in the context of a controlled experiment, with strong
internal, but limited external validity [24]. In fact, the study
was conducted on two well-defined development tasks only,
while both our datasets do not impose any constraint on
the tasks at hand. This increases the external validity of
the findings, at the price of a lower internal validity as the
conditions can not be controlled as in an experimental setting.

Duration of recorded data. The conclusions in the Code
Bubbles experiment are drawn from around 30 hours of
development. On the other hand, our DFLOW dataset contains
more than an order of magnitude of data (around 750 hours).

Entities Displayed. Code Bubbles was also evaluated on the
number of methods shown on screen [4]. This was however
done on a limited number of methods.

Impact of UI components. We characterize the impact of
chaos not only on navigations, but in general on the time spent
on UI fiddling (e.g., resizing windows) and the time spent on
program understanding.

Recorded interaction data. Last but not least, our approach
records enough interaction data to let us simulate the impact
of various strategies on the chaos in the IDE, without needing
to implement a prototype in the early stages.

These characteristics make our evaluation highly comple-
mentary to previous evaluations.

III. LOST IN THE IDE
To collect interaction data inside the Pharo IDE we built

DFLOW [23], a non-intrusive profiler. When a developer
enables DFLOW, it starts to silently capture the interactions
of the developer with the IDE. This includes the ones per-
formed on the IDE UI, e.g., move, resize, or open/close a
window. For each event, DFLOW records a timestamp down
to millisecond precision. In addition, DFLOW records meta
events, representing actions triggered by the developer inside
the IDE, such as browsing the source code of a method or
adding a new method to a class.



a

b

c

Fig. 1. Windows Displaying Source Code: (a) Code Browsers, (b) Debuggers, and (c) Message Lists

What is a Development Session? We call “development
session” each sequence of IDE interactions captured with
DFLOW which satisfy a series of constraints. In particular:

• All events happen in the same development environ-
ment/context (i.e., an image in the Smalltalk jargon);

• There are no adjacent pairs of events such that there are
more than 5 minutes of inactivity between them;

• When the user closes the IDE, the session terminates.
With this definition, each development session is a self-

contained and focused development period without long inter-
ruptions. This removes the potential problem of considering
major interruptions (e.g., Skype calls, coffee breaks) as part
as the development flow.

A. DFlow Dataset

Table I summarizes our dataset. It counts 771 hours of
development time coming from 17 open-source and academic
developers working on and around the Pharo project.

TABLE I
DFLOW DATASET

Metric Value
Number of Sessions 1,631
Number of Developers 17
Development Time 771h 10m 21s
Avg. Session Duration 28m 22s
Metric Total Avg. per Session
Number of Windows 40,140 24.61
Number of Browsers 6,833 4.19
Number of Debuggers 2,844 1.74
Number of Message Lists 3,870 2.37
UI Time 102h 15m 30s 3m 55s
Understanding Time 594h 54m 57s 22m 49s

We collected interactions with more than 40,000 windows,
that we further refined according to their type. We only
consider interactions with windows whose aim is to display
and let the user interact with source code:

• Code Browsers are the core windows that let users
navigate, read, and write source code (see Figure 1.a).

• Debuggers are the windows dedicated to debugging
activities. They let users navigate the call stack, watch
the state of variables, and read/edit in place the source
code of a method (see Figure 1.b).

• Message Lists are all the UIs that display a list of meth-
ods and, upon selection, the source code of the method
itself. Example includes UIs to browse implementors of
a method or methods that invoke another method (see
Figure 1.c)7.

Windows. We collected a total of 6,833 code browsers,
2,844 debuggers, and 3,870 message lists. Each session, on
average, lasts for ca. half an hour and counts interactions with
24 generic windows. Considering only windows containing
source code, on average each session features 4 browsers,
2 message lists, and 2 debuggers. However, these aggregate
metrics are significantly variable, with a considerable number
of outliers. For example, considering sessions with windows
containing code, the number of outliers (containing more than
18 of such windows) is 175, roughly corresponding to a tenth
of the recorded sessions.

Activity Durations. In previous work we used interaction
data to precisely measure the time spent in several program-
ming tasks, like editing, navigating and searching for code
artifacts, interacting with the UI of the IDE, and performing
corollary activities, such as object inspection at runtime [23].
Two of these components are useful for our current study,
when it comes to understand how the “level of chaos” corre-
lates with the behavior of the user.

The first is the UI Time, devoted to fiddling with the UI
of the IDE, i.e., moving and resizing windows. Our dataset
features more than 102 hours of UI Time (on average, ca. 3m
55s per session, ca. 14% of the total time).

The second is an estimate of the time devoted to program
understanding. In our model [23], we consider as understand-
ing the sum of three components: i) basic understanding time;
ii) time spent inspecting objects at runtime; and iii) time spent
doing mouse drifting, i.e., the time the user “drifts” with the
mouse without clicking, for example to support code reading.
Essentially, the basic understanding time is composed of all
the time intervals without any recorded event in the interaction
data that are greater than a given reaction time8 (that in our
model is equal to 1 second).

7Opening the call hierarchy of a method, in Eclipse.
8This approximates the Psychological Refractory Period [25] that varies

among humans, depending on the task at hand, between 0.15 and 1.5 seconds.
For further details on how we model understanding, see Minelli et al. [23].



window
a

b

window

window

window

windowwindow

window

c

d

Fig. 2. A Visualization of a Snapshot of a Session (left) and the Screen Regions Used to Measure the Chaos (right)

TABLE II
SPACE OCCUPANCY METRICS

Occupied Space The sum of the areas of all the screen regions
occupied by 1+ windows

Free Space The sum of the areas of all the screen regions not
occupied by any window

Focus Space The area of the screen region occupied by the
active window

Needed Space The total sum of the areas of all the windows, i.e.,
the space needed to display all windows

Overlapping Space The sum of the areas of all the screen regions
occupied by 2+ windows

Overlapping Depth The number of overlapping windows in a given
screen region

Weighted
Overlapping Space

The sum of the areas of all the screen regions
weighted by their overlapping depth

The reaction time models the time that elapses between the
end of a physical action sequence, i.e., typing or moving the
mouse, and the beginning of concrete mental processes like
reflecting, thinking, planning, etc. which represent the basic
moments of program understanding. In total, we estimate more
than 594 hours of understanding time, on average more than 22
minutes per session (i.e., around 80% of the session duration).

B. Modeling Chaos
To characterize and quantify the “level of chaos” of a

programming session in the IDE, we introduce a set of UI
metrics related to the usage of the screen and we observe how
they evolve throughout the sessions.

1) Quantifying Chaos: Our goal is to measure how devel-
opers exploit the screen space using the metrics of Table II.

Measuring chaos of a single layout. Consider a given
moment during a development session, with a fixed layout of
windows in the screen. All the metrics listed in Table II rely
on the concept of screen region, a part of the screen obtained
by creating a grid on the screen using all the coordinates (i.e.,
position) of the visible IDE windows in the screen in a given
snapshot of a development session, see Figure 2 (right).

Figure 2 shows a visualization of a snapshot of a session
(left) and its decomposition in screen regions (right). In
the view, each window is depicted with a translucent gray
rectangle (i.e., with size and position proportional to the real

window in the IDE). The white rectangle that contains all the
windows represents the IDE space, i.e., the screen.

In Figure 2 the darker the screen region, the more the
overlapping between windows. The figure highlights different
areas of the screen: (a) one with no windows (i.e., free
space), (b) one with a single window (i.e., no overlapping),
(c) one with low overlapping (i.e., only 2 windows overlap),
and (d) one with high overlapping (i.e., 3+ windows overlap).

We quantify overlapping in three different ways: over-
lapping space, overlapping depth, and weighted overlapping
space. The first measures the linear overlapping space ex-
pressed as the sum of the areas of all the screen regions
occupied by more than two windows. The depth indicates, for
each screen region, how many windows overlap. The weighted
overlapping is a combination of the previous two measures that
assigns more weight to regions with higher overlapping depth.

Aggregating layout changes. To observe the evolution of
the chaos, we divide each session into snapshots. Figure 3
schematizes a development session, i.e., a timeline of events.
Among these events, there are events that induce a change of
the layout of the IDE (depicted in red) and events that do not
change the layout of the IDE (depicted in gray). The former
are, for example, when the user resizes a window, opens a new
window, or closes an existing window.

We call snapshot each sequence of events that begins with a
layout-changing event and continues until the last event before
the next layout-changing event (with the exception of the first
and last snapshot that are delimited by the session start and
session end respectively). In short, a snapshot is a period in
which the layout of the IDE is fixed, thus the values of all the
metrics listed in Table II are constant for the entire duration
of the snapshot. In the example depicted in Figure 3, there are
four snapshots, from S#1 to S#4.

S#1

Other EventLayout-changing Event

S#2 S#3 S#4

Fig. 3. Session Snapshots Explained



To aggregate and define the level of chaos of a session,
we average the values of metrics for each snapshot. Table III
summarizes the distribution of space occupancy metrics across
all sessions. For each metric we report the average and
quartile values across all the sessions. Values (except for the
overlapping depth) are expressed in percentage with respect
to the available screen space (i.e., resolution).

TABLE III
DISTRIBUTION OF SPACE OCCUPANCY METRICS ACROSS ALL SESSIONS

Quartiles
Name Avg. Q1 Q2 Q3
Occupied 48.22% 36.16% 43.78% 61.37%
Free 51.78% 38.63% 56.22% 63.84%
Focus 32.66% 20.06% 35.22% 40.12%
Needed 96.83% 39.35% 73.47% 119.53%
Overlapping 20.95% 0.00% 17.08% 35.97%
Weighted Overlapping 69.05% 0.00% 39.61% 95.59%
Overlapping Depth 2.76 1.00 2.00 3.40

On average, the needed space is around 100%, which seems
to imply that developers do not experience chaos. However, the
average occupied space is around 50% of the screen, with 21%
overlapping, indicating at least a need for a better management
of the screen real estate. In 25% of the sessions (i.e., Q1)
windows do not overlap at all, while in the last quartile the
average needed space is always above 120%.

To better analyze the impact of chaos in the recorded
development sessions and shed light into how chaos impacts
development activities, we group the metric values into cate-
gories and we take in consideration the time dimension.

2) Categories of Chaos: To characterize the level of chaos
in a session we use the space occupancy metrics. The most
important indicators are the needed space and the overlapping
space. However, these values are continuous, and it is not clear
at which thresholds of values the chaos is acceptable or not.

Having a high needed space (e.g., �100% of the available
space) means that there is no way a developer can re-arrange
the open windows to fit them all on screen. This forces her
to have overlapping windows, which is suboptimal for an
efficient working environment. In fact, this intuitive correlation
holds across our entire dataset: Needed space and weighted
overlapping have a strong positive correlation with the Pearson
Correlation Coefficient PCC=0.99 (statistically significant at
95% confidence interval with p-value 2.2E-16). Thus, we
define chaos levels using only one indicator, the needed space,
because it is a more intuitive metric than a weighted sum.

We identify two macro-levels of chaos: low- and high-chaos.
The threshold that distinguishes between the two levels is
100%, i.e., when the screen resolution is – ideally – enough
to accomodate all the open windows, we say that the chaos is
low. We use the term “ideally” because the needed space does
not take into account overlapping, i.e., having less than 100%
of needed space does not imply that windows are uniformly
distributed in the screen without overlapping. Conversely, if
the screen resolution is insufficient (needed space >100%)
we say that the chaos is high.

We refined the two macro-levels into four distinct levels of
chaos: Comfy, Ok, Mess, and Hell, detailed in Table IV.

TABLE IV
CHAOS-LEVELS: COMFY, OK, MESS, AND HELL

Comfy 75% of the screen is required to layout windows. The user
can still manipulate and rearrange windows in a comfortable
manner, supporting the task at hand, which requires a likely
small/reduced working set.

Ok >75% and 100% of screen is required to layout all windows
Mess >100% and 200% of screen is required to layout all windows
Hell >200% of screen is required to layout all the windows, i.e.,

a developer would need more than two screens (needed space
>200%) to arrange all the currently opened windows.

Justifying the Thresholds. To define the levels of chaos
we chose three thresholds for the value of the needed space
metric: 75%, 100%, and 200%. Defining these thresholds in
a systematic and objective way it is far from trivial, if not
impossible. The perceived level of chaos is subjective and
depends on several factors, e.g., resolution.

Time spent in Chaos Configurations. Table V summarizes
the average values (per session) of the time spent in each of
the four chaos-levels. For each level we report the percentage
of the time spent (with respect to the total duration of each
session) and the absolute value. All values are averages across
all the sessions in our dataset.

TABLE V
AVERAGE TIME SPENT PER CHAOS-LEVEL

% Duration
Comfy 51.04% 10m 50s 126ms
Ok 16.98% 5m 10s 633ms
Mess 21.11% 7m 15s 16ms
Hell 10.88% 5m 26s 922ms

The results above show that for around 32% of the time
developers work in a high-chaos setting, i.e., for a session
of around 30 minutes of work, more than 12 minutes are
spent working with windows occupying more than 100% of
the screen. Moreover, 5 out of 30 minutes are spent in a more
critical setting, the hell configuration, where the needed space
is over 200% the resolution. The total time spent in high-chaos
amounts to ca. 331 hours, i.e., 42.92% of development time.

How does chaos correlate with the time spent with UI
fiddling and program understanding? For each session, we
correlate the percentage of time spent in each configuration
with the UI and understanding time, using the test for PCC.
Table VI shows the results of these tests.

TABLE VI
CHAOS, UI, AND UNDERSTANDING TIME

UI Understanding
PCC p-value PCC p-value

Comfy -0.34 2.20E-16 -0.27 2.20E-16
Ok -0.04 1.03E-01 0.05 3.36E-02
Mess 0.16 4.42E-10 0.11 1.940E-05
Hell 0.42 2.20E-16 0.26 2.20E-16



a) Original Situation b) After Elision Strategy c) After Elision and Layout Strategies

Fig. 4. Elision and Layout Strategies in a Nutshell

The moderate correlations are expected when considering
that understanding time, for example, is influenced by a
multitude of factors, including not only the size of working
sets but the quality of code or the difficulty of the task at hand.

On high-chaos levels, developers likely spend more time
fiddling with the UI and on program understanding. This is
consistent with a likely presence of more complex working
sets, spread on multiple windows, that require more attention
and time to be managed. The correlation between the time
spent on the hell configuration and the UI time is particularly
strong (0.42 PCC, p-value 2.20E-16).

On the comfy configuration, there is statistically significant
evidence of moderate negative correlation on both UI time
and understanding time. This is consistent with the fact that
smaller working set support likely more “productive” sessions,
where less time is spent on managing the UI and where
mental processes are more effective. There is no evidence of
correlations in the ok level of chaos. Probably, on the typical
configurations of windows corresponding to the thresholds of
needed space of this category, other factors prevail.

C. Wrapping Up
We modeled chaos in window-based IDEs by considering

the needed space to visualize all code containing windows
without overlapping. We defined four categories of chaos, and
by leveraging more than 770 hours of interaction data, we
showed that developers spend more than 30% of their time
in a high-chaos configuration, corroborating previous research
along the same lines.

We also discussed how our data is also consistent with
potential impact to the time spent by developers in program
understanding and UI time. In the following section, we
simulate and discuss how even simple elision strategies and
automatic window layouts can improve the level of chaos
experienced by developers.

IV. MAKE CODE, NOT CHAOS

Section III provided evidence that developers have to cope
with chaotic environments during a third of their programming
time, with negative implications both in terms of time spent
fiddling with the UI, as well as additional time spent with
program understanding. This section explains how we can
tame the IDE, by adopting simple mechanisms to reduce the
amount of needed space on the screen.

A. Elision and Layout Strategies

Figure 4 exemplifies our two strategies: Elision and Layout.
The strategies are part a two-step process: We first reclaim
space by eliding (hiding) the redundant parts of each non-
active window (in the figure, the in-focus or active window is
depicted with a thick border). Then, we apply a new layout to
occupy the space more efficiently.

In the example depicted in Figure 4, there is not enough
space to position all the windows of the IDE; consequently, the
overlapping between the windows is relatively high (4.a). After
the application of the elision strategy (4.b) the free space in the
IDE increases, but the overlapping is still present. Finally, with
the new layout, all the (elided) windows are now positioned
in the IDE without overlapping (4.c).

1) Elision: The elision strategy hides part of a window to
reduce the visual cognitive load on the developer. It stems from
the observation that at each instant there is only one active
window; all the others are inactive, producing a considerable
amount of visual noise. The underlying idea is to leave the
active window untouched, while reducing the visual noise
present in the background windows. The goal is to keep the
code displayed in all windows visible while hiding the non-
code elements displayed in the window (lists, buttons, etc.).
These UI elements are mostly used for navigation, and are
only usable while the window is active. When the focus
changes, its elided elements are restored. Since different types
of windows display source code in different ways, the strategy
implementation depends on the window types.

Code Browsers and Message Lists display code in the
bottom half of the window. The top half contains source code
navigation elements. Our strategy elides the top part while
keeping the code visible. Figures 5.a and 5.c illustrate how
the strategy works on these cases, reducing the needed space
of non-active code browser or message list by 50%.

Debuggers display the code of a method on the stack
and let the user modify it. The source code pane is in the
central part of the window (occupying roughly 1/3 of the
window). Our strategy elides the top and the bottom parts
while keeping the central part (i.e., code) visible. Figure 5.b
shows how the strategy works, reducing the space occupied
by each non-active debugger by ca. 66%. Figure 5 shows our
elision strategy, applied on the same windows of Figure 1,
reducing the opacity of the elided parts, instead of hiding them.



a

b

c

Fig. 5. Elision Strategy Explained for (a) Code Browsers, (b) Debuggers, and (c) Message Lists

2) Layout: The elision strategy efficiently reduces the
amount of needed space occupied by non-active windows.
However, also the overlapping between windows contributes
to chaos, i.e., by hiding parts of the open windows that
might be relevant for the developer. For the sake of simplicity
our definition of chaos (see Table IV) only considers the
needed space, however as discussed in Section III-B2 needed
space and weighted overlapping have a very strong positive
correlation. Thus, reducing the overlapping might contribute
to the reduction of the chaos level.

To reduce the overlapping, we adopt a layout algorithm
inspired by the rectangle packing layout. The idea is to stack
all the windows in columns from the origin of the screen (i.e.,
top-left) one below the other, as shown in Figure 4.c. If a
window cannot be repositioned (i.e., it does not fit in the screen
if moved in the new position), it is left in the original place.

3) Wrapping Up: We discussed two strategies to tame the
chaos in the IDE: Elision and Layout. Figure 4 summarizes,
step-by-step, how these strategies work on a hypothetical
development session. Intuitively, elision and layout strategies
help to tame the chaos inside the IDE by reducing both the
space needed to display all the windows and the overlapping
between them. The elision strategy aims to reduce the amount
of visual noise in the IDE while the layout strategy takes care
of reducing the overlapping between windows. Next, we eval-
uate the impact of the strategies under different perspectives.

B. Impact of Elision and Layout Strategies
To determine the potential impact of elision and layout

strategies, we simulate their application on our dataset of
recorded sessions. For each snapshot, we applied both the
elision strategy alone and together with the rectangle-packing
layout strategy. We first discuss how the strategies impact the
occupied space, then how they impact the time spent in each
chaos level. Finally, we also discuss how these two metrics
would change with a simple increase of resolution.

On Occupied Space. Table VII reports the average percent-
age gain by applying each of the two strategies.

Values are expressed in percentages with respect to the
baseline, i.e., the value of the metric before applying the
strategies. Suppose that for a session, the value of the free
space before applying the strategies (i.e., the baseline) is
12.82%. If, after applying the strategy, the free space increases
to 22.32%, we would compute the relative gain as follows:

TABLE VII
PERCENTAGE GAIN OF SPACE

Gain (%)
Elision

Metric Elision + Layout
Occupied Space -13.44% 6.99%
Free Space 27.82% 4.82%
Needed Space -24.74% -24.74%
Overlapping Space -34.61% -54.68%
Overlapping Depth -2.59% -26.43%
Weighted Overlapping -36.64% -58.13%

Gain (%) =
22.32%� 12.82%

12.82%
= 74.10%

The simple elision strategy is—as expected—able to signifi-
cantly increase the amount of free space, by almost 28%. This
is accompanied by a general improvement of all the occupancy
metrics, e.g., needed space drops by almost 25%. Moreover,
overlapping space significantly drops (ca. 35%), even if this
strategy does not try to consciously reduce it.

The effect of windows re-layout produces configurations
which make better use of the screen real estate. After layout,
the needed space does not obviously change (with the same
relative decrease of about 25% due to elision), but the
overlapping space is reduced by more than 50%. The more
efficient layout’s better use of available space is visible on
the free space metric, which drops considerably compared
to elision alone. In addition, the occupied space actually
increases compared to the default configuration. This is in
line with the goal of distributed windows in a more space
efficient configuration.

On Chaos Time. Table VIII shows the impact of our
strategies on the time spent in each of the chaos categories
defined in our model. Since the categories are defined only in
term of needed space, the results refer to either strategies.

The elision strategy has essentially the effect of redistribut-
ing the time spent on each category towards less chaotic
categories. The time spent in the most chaotic category (i.e.,
hell) is reduced on average around 8% of the session time.
The second high-chaos category, mess, is reduced again by
8% on average for each session. These times are redistributed
mostly towards the comfy category, which gains around 18%



TABLE VIII
PERCENTAGE GAIN AND DELTA TIME

Avg. Gain (%) per Session Absolute Difference
Comfy 17.73% 137h 50m 44s 882ms
Ok -1.35% 3h 25m 58s 502ms
Mess -8.08% -40h 29m 38s 554ms
Hell -8.30% -100h 47m 04s 812ms

of average time in each session, while the ok category changes
slightly. Developers spent 30% of their time in chaos pre-
viously; using the elision strategy could reduce this amount
down to 14%, less than half.

Looking at the variation in the total amount of time spent
per category, we find that programmers spent 142 hours in
the hell category in the default setting, while they spend 100h
less in the new settings, a reduction of 70%. Time spent in the
mess state drops from 188h to 148h, a drop of 21%. The ok
state is relatively stable, from 134h to 131h (-2%). The winner
is the comfy category, which increases from 282h to 419h, a
48% increase.

Overall, the total recorded time without strategies spent in
high-chaos categoires amounts to 42.92%, while after elision
this time would drop to 24.60%. In addition to get a better
understanding of the improvement of the layout strategy, we
compute the average drop in overlapping space for each of the
four chaos levels.

Table IX shows the reductions of average weighted over-
lapping before and after each strategy.

TABLE IX
AVG. WEIGHTED OVERLAPPING PER CHAOS-LEVEL

Original Elision Elision + Layout
Comfy 17.39% 16.76% 1.67%
Ok 55.86% 53.19% 27.81%
Mess 114.71% 112.99% 88.04%
Hell 330.11% 259.22% 235.52%

We find that after just elision, in almost all categories
there is no large change in overlapping, except in the hell
category where we see a 27% drop. A dual effect happens
after laying out, where major effects happen in the comfy
category (relative drop of 90%) and we see large drops in the
ok and mess categories. The effect in the hell category is less
pronounced. In addition to spending less time in high chaos
levels, developers would additionally enjoy a better spatial
organization, particularly in the comfy and ok categories.

C. Wrapping up

With our strategies the time spent in high chaos can be
significantly reduced, and that indeed we could better manage
the screen real estate. We do not evaluate how the reduction of
time spent in high chaos level could impact the time spent in
specific activities, but we have some confidence that this could
indeed happen given the correlations we found in Section VI.

V. THREATS TO VALIDITY

Internal Validity. Our definition of chaos is based on
overlapping and needed space (see Section III). Potentially
different developers might have additional indicators of chaos.
To cope with this threat we plan to cross-validate our measures
of chaos with concrete observations (e.g., think-aloud) to
better grasp the sensitivity of developers to chaos. Another
threat concerns our layout strategy that messes up that spatial
memory of developers. This naı̈ve strategy is only a proof
of concept that simple means can already achieve a lot. We
are aware of the importance of user placement of windows
[26], [27] and in our future work we will devise strategies
that consider and preserve the spatial memory of developers.
Another threat is that we only simulated strategies on our
existing dataset: We only replay the past interactions of the
developers in our dataset; were the developers to use our
elision and layout strategies, they might behave differently.
We expect that as a result of using the elision and layout
strategies, developers would spend less time UI fiddling and
revisiting previous source code locations, as these would stay
on screen. To mitigate this threat, we performed a correlation
study between the time spent by developers in fiddling with
the UI of the IDE and the levels of chaos (see Table VI). We
found evidence that UI and program comprehension time are
positively correlated with the high-chaos levels and negatively
correlated with low-chaos levels, supporting the fact that less
chaotic environments might let developers spend less time in
taming the IDE. We are of course aware that correlation is not
causation: As future work, we plan to release our strategies in
the Pharo IDE and collect feedback from developers and new
measurements, similar to the experiment on CodeBubbles [8].

Statistical Conclusion. We considered more than 770 hours
of development affecting more than 40 thousands windows.
Our dataset has proven to be substantial enough to draw
statistically significant conclusions about correlation between
chaos in the IDE and both the time spent by developers altering
the UI of the IDE, and the time spent performing program
comprehension tasks.

External Validity. We focused on the Pharo IDE and the
fine-grained interaction data we collected. Results may vary
for different programming languages and IDEs. However, as
part as our motivation (see Section II) we extensively discussed
the situation in tab-based IDEs (e.g.,Eclipse) and provided
preliminary evidence, leveraging Mylyn data, that also this
UI paradigm may generate chaos in the IDE. Unfortunately,
due to the coarse nature of Mylyn data, we could not conduct
analyses at the same granularity of DFLOW. For this reason,
in the future we plan to implement a fine-grained interaction
data profiler on another IDE to give us confidence about the
generalizability of our results. Bragdon’s study (which had
Eclipse as a baseline) gives confidence that this would be
the case [8]. Another threat is related to the distribution of
recorded sessions among developers: Most of the sessions
come from only 5 developers. This might influence conclu-
sions about developer diversity, but this was not the focus of



this paper. As part of our future investigations, we will collect
more sessions from more developers and try to draw more
precise conclusions on single developers. In this work the term
chaos refers only to the status of the UI of the IDE. In our
future work we plan to study how the difficulty and the kind
of task at hand impact on the IDE window configuration.

VI. CONCLUSIONS

The UIs offered to developers to browse complex relation-
ships between source code are often inadequate. Thus, devel-
opers are repeatedly forced to use multiple UI components
at the same time, bringing the IDE into a chaotic state. It is
unclear to what extent chaos impacts development, and more
importantly it is unclear how to tame it.

We analyzed a significant dataset of fine-grained interaction
data, counting more than 770 hours of development. We found
that developers in our dataset spend more than 30% of their
time in high levels of chaos. Furthermore, time spent in high
levels of chaos is correlated with time spent fiddling with
the UI. We proposed two simple strategies to reduce the
chaos in the IDE. We found that our simple elision strategy
could save a considerable amount of space the IDE needs to
layout windows. One might argue that all these are mere user
interface concerns, and not relevant for software engineering.
However, while considerable efforts are spent in making
mainstream end-user tools friendly, software developers are
still using convoluted environments. We believe there is no
good reason for why developers should be treated differently
from “normal” users.

Acknowledgements

We gratefully acknowledge the support of the SNF for the
project “HI-SEA” (No. 146734) and the support of FONDE-
CYT for the project No. 1151195.

REFERENCES

[1] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software,” in Proceedings of IWPC (13th International Workshop on
Program Comprehension), 2005, pp. 173–175.

[2] R. Minelli, A. Mocci, and M. Lanza, “The plague doctor: A promising
cure for the window plague,” in Proceedings of ICPC (23rd IEEE
International Conference on Program Comprehension), 2015.

[3] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves:
Curing the window plague in IDEs,” in Proceedings of WCRE (16th
Working Conference on Reverse Engineering), 2009, pp. 237–246.

[4] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles:
Rethinking the user interface paradigm of integrated development envi-
ronments,” in Proceedings of ICSE (32nd International Conference on
Software Engineering), 2010, pp. 455–464.

[5] R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in Proceedings of ICSE (32nd International
Conference on Software Engineering), 2010, pp. 207–210.

[6] E. Kandogan and B. Shneiderman, “Elastic windows: Evaluation of
multi-window operations,” in Proceedings of SIGCHI 1997 (Conference
on Human Factors in Computing Systems), 1997, pp. 250–257.

[7] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, 2006.

[8] A. Bragdon, R. C. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bubbles: a
working set-based interface for code understanding and maintenance,” in
Proceedings of CHI (28th International Conference on Human Factors
in Computing Systems), 2010, pp. 2503–2512.

[9] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model
for IDEs,” in Proceedings of AOSD (4th International Conference on
Aspect-Oriented Software Development), 2005, pp. 159–168.

[10] A. Wexelblat and P. Maes, “Footprints: History-rich tools for information
foraging,” in Proceedings of CHI (SIGCHI Conference on Human
Factors in Computing Systems), 1999, pp. 270–277.

[11] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich,
“Developers’ code context models for change tasks,” in Proceedings
of FSE (22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering), 2014, pp. 7–18.

[12] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, 2008.

[13] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 16, no. 1, 2007.

[14] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of FSE (14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering),
2006, pp. 1–11.

[15] T. Fritz, G. C. Murphy, E. R. Murphy-Hill, J. Ou, and E. Hill,
“Degree-of-knowledge: Modeling a developer’s knowledge of code,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 23, no. 2, pp. 14:1–14:42, 2014.

[16] R. DeLine, M. Czerwinski, and G. G. Robertson, “Easing program
comprehension by sharing navigation data,” in Proceedings of VL/HCC
(IEEE Symposium on Visual Languages and Human-Centric Comput-
ing), 2005, pp. 241–248.

[17] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, and A. Stefik,
“An empirical study on the impact of static typing on software main-
tainability,” Empirical Software Engineering, 2014.

[18] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do API
documentation and static typing affect API usability?” in Proceedings of
ICSE (36th International Conference on Software Engineering), 2014,
pp. 632–642.

[19] P. Petersen, S. Hanenberg, and R. Robbes, “An empirical comparison
of static and dynamic type systems on API usage in the presence of
an IDE: java vs. groovy with eclipse,” in Proceedings of ICPC (22nd

International Conference on Program Comprehension), 2014, pp. 212–
222.

[20] H. Sanchez, R. Robbes, and V. M. González, “An empirical study of
work fragmentation in software evolution tasks,” in Proceedings of
SANER (22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering), 2015, pp. 251–260.

[21] A. T. T. Ying and M. P. Robillard, “The influence of the task on pro-
grammer behaviour,” in Proceedings of ICPC (19th IEEE International
Conference on Program Comprehension), 2011, pp. 31–40.

[22] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger canvas: Industrial experience with the code bubbles paradigm,”
in Proceedings of ICSE (34th International Conference on Software
Engineering), 2012, pp. 1064–1073.

[23] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last
summer – an investigation of how developers spend their time,” in
Proceedings of ICPC 2015 (23rd IEEE International Conference on
Program Comprehension), 2015.

[24] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in Proceedings of ICSE
(37th IEEE/ACM International Conference on Software Engineering),
2015, pp. 9–19.

[25] S. Pinker, How the Mind Works. W. W. Norton, 1997.
[26] D. A. Henderson and S. Card, “Rooms: the use of multiple virtual

workspaces to reduce space contention in a window-based graphical user
interface,” ACM Transactions on Graphics, vol. 5, no. 3, pp. 211–243,
1986.

[27] G. Robertson, M. van Dantzich, D. Robbins, M. Czerwinski, K. Hinck-
ley, K. Risden, D. Thiel, and V. Gorokhovsky, “The Task Gallery: a 3D
window manager,” Proceedings of SIGCHI 2000 (ACM Conference on
Human Factors in Computing Systems, vol. 2, no. 1, pp. 494–501, 2000.


