
Power and Energy Code Profiling in Pharo

Alexandre Bergel
Pleiad Lab, DCC, University of Chile

Abstract
Modeling energy consumption is a major concern when de-
signing software systems such as a cloud service or for a
mobile device (e.g., smartphone, laptop). Unfortunately, we
have little knowledge on how decisions taken by a program-
mer may impact the energy profile of a system.

This paper investigates the energy consumption in the
Pharo programming language. We have closely monitored
the power consumption of five micro-benchmarks and four
macro-benchmarks. Our findings indicate that the way the
memory is used has a significant impact on the power con-
sumption. We propose a code profiler to measure the power
consumption of any Pharo code expression. Our profiler is
available under the MIT license and run on Pharo 5.

1. Introduction
Energy consumption is an important aspect when design-
ing software systems. A significant effort is dedicated by
the industry to reducing the energy consumption of cloud
infrastructures and mobile devices.

The importance of energy consumption is well known,
and various energy models have been proposed to restrict or
predict energy consumption [1]. Unfortunately, there is little
understanding on how the decisions taken by a programmer
impact the overall energy consumption. Most of the current
approaches are either specific to a particular material or ad-
hoc to a particular application. Moreover, the direct impact
on the programming activity on the energy consumption is
still unknown.
Energy consumption. This paper proposes a technique to
monitor the energy consumption in the Pharo programming
language. We have run our profiler across a set of nine
benchmarks and made the following findings:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWST’16, August 22-26th 2016, Prague, Czech Republic..
Copyright © 2016 ACM 978-1-4503-4524-8/16/08. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnnReprinted from IWST’16, [Unknown Pro-
ceedings], August 22-26th 2016, Prague, Czech Republic., pp. 1–7.

• We characterize some memory usages with respect to
the memory consumption. In particular, we found that
allocating and filling large memory chunks has a lower
energy footprint than allocating and filling small memory
chunks.

• A computation making a heavy numerical manipulation
has a lower energy consumption.

Monitoring the energy consumption is known to be highly
prone to unexpected variations. We present the results we
measured on a particular hardware using a well identified
set of benchmarks. We do not claim to have generalized our
results.
Contributions. This paper makes the following contributions:

• It carefully analyzes the energy consumption for some
programming idioms in the Pharo programming language.

• It briefly describes the implementation of an energy code
profiler for Pharo.

• It presents some of our findings related to energy con-
sumption in Pharo.

Outline. The paper is structured as follows. Section 2 gives
the necessary background on power and energy profiling
and presents the software and hardware used in our setting.
Section 3 describes the power and energy consumption
associated to the Pharo virtual machine. Section 4 presents
the benchmarks we have used in our experiment. Section 5
details the results of our monitoring using statistical tools.
Section 6 briefly describes our energy profiler. Section 7
gives an overview of the related work. Section 8 concludes
and exposes our future work.

2. Experiment Design
2.1 Metrics
Before introducing the metrics we will consider in this paper,
we briefly recapitulate the units we employ to characterize
power and energy consumption.
Energy units. Joule (J) is a unit of energy. As a physical
representation of this unit, we have the following correspon-
dence: vertically lifting an object of 100 grams by one meter
requires an energy of 1 J, from the surface of the Earth.

1

Watt (W) is a unit of power, defined as joule per second.
The Watt unit describes the energy consumption at a given
time. The cumulative energy consumption for microproces-
sors is measured in milliwatt hour (mWh). As a comparison,
a typical MacBook Air has a built-in 38 Wh lithium-polymer
battery, and a 45 W MagSafe 2 Power Adapter.
Processor energy consumption. Modern processors integrate
a graphical unit in addition to the logical unit (i.e., the physi-
cal unit that interprets instructions). We define PkgPower as
the power consumed by the whole processor. This metric is
measured in Watts. The power consumed by the logical unit
is noted IAPower. An Intel i5 processor typically consumes
between PkgPower = 5 and 40 W, and IAPower ranging
between 2 and 35 W.

The cumulated processor energy CuPakPower is the
amount of energy consumed during a period of time, mea-
sured in mWh.
Processor Temperature. As far as we know, the Intel i5
does not provide individual unit measurements, i.e., it is not
possible to obtain the temperature for the graphical unit and
logical unit separately. Instead, the processor exposes the
temperature of the whole physical compound. We refer to
this global measurement as PkgTemp, the temperature of the
processor (graphic and logical units).

Temperature of an Intel i5 ranges between 40 and 65 C
degrees. All temperature measurements provided in this paper
are in degree celsius (C).
Processor Frequency. A processor is associated to a fre-
quency, measured in GHz, reflecting the number of primary
instructions the logical unit can execute for unit of time. Mod-
ern processors change their frequency based on the current
workload. The frequency variation is instructed by the op-
erating system. Consider an Intel i5 having a frequency set
of 3.2 GHz. Using OSX 10.11.4, the i5 has its actual fre-
quency ranging from 1.7 Ghz to 3.6 Ghz, depending on the
provided workload. Note that the processor may run with a
frequency greater than the frequency set by the constructor.
This is because Intel processor offers a “turbo mode”, which
allows overclocking under some particular conditions. The
frequency variation usually reflects the energy saving policy
provided by an operating system. We denote the metric IAFrq
the frequency of the logical unit, measured in Hz.

2.2 Software and hardware platforms
We consider the Pharo 5 image and the Cog Virtual Machine1.
We will run Pharo with OS X El Capitan, Version 10.11.4,
which is latest version available at the time this paper is
written.

We consider the Intel Core i5 available in an iMac (year
2012). The considered i5 has a 3.2 GHz frequency, set by the
constructor.
1 Version released on 4 May 4 2016.

All the measurements were carried out at an atmospherical
temperature of 22 C. This is an important factor to consider

since most modern hardware has a turbo mode overclocking
the processor with a cold atmospherical temperature. Our
measurements included a screen using an intensity of 75%.
Network connection was disabled during the measurements.

3. Virtual Machine Launch and Being Idle
One should measure the basal energy before carrying out the
measurement on a set of benchmarks.
Operating System. We measure the processor energy con-
sumption with no running application. Pharo is therefore not
running and all the network connections have been shut down.
In that configuration, the processor has a consumption of ap-
proximately PkgPower = 6 W. The IA unit has a consumption
of IAPower = 2.5 W on average. The temperature is about
PkgTemp = 42 C. In the absence of workload, the processor
frequency runs with a frequency of IAFrq = 1.78 GHz.
Launching the VM. The Pharo virtual machine usually takes
less than 1 second to launch on our hardware. The time taken
to open the virtual machine is linear to the image file size.
Figure 1 represents a typical launch of the virtual machine
with an image of 47Mb.

The left-hand side of Figure 1 shows the power consump-
tion at four different times during the virtual machine launch.
The right-hand side represents the cumulative energy con-
sumption. Opening a 47Mb image consumes 3 mWh on our
platform.
Pharo Idle. Pharo has a very stable power consumption
of PkgPower = 6 W as soon as no explicit interaction or
execution is carried on. It is known that the Pharo VM checks
for event every millisecond, leading to a constant little use of
the CPU. Despite this, we could not measure any impact on
the energy consumption due to this regular event check.

4. Benchmarks
To characterize the power and energy consumption of a
processor, we will consider a set of 9 benchmarks: 5 micro-
benchmarks and 4 macro-benchmarks.

4.1 Micro-Benchmarks
A micro-benchmark is a very specific workload intended to
measure one particular aspect of the processor. We consider
five micro-benchmarks:

• G1: Creation and elimination of memory blocks large of
3 Mb, represented as an Array.

• G2: G1 and the memory space are sequentially filled with
an arbitrary immediate value.

• G3: Creation and elimination of small memory blocks,
large of 10 Kb, represented as an Array.

• G4: G3 and the memory space are sequentially filled with
an arbitrary immediate value.

• Rec: Recursively computing a large numerical sequence.

2

5/13/16, 5:22 PM

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/PkgPower.SVG

0.620.460.310.150.0

28.0

24.0

20.0

16.0

12.0

8.0

4.0

0.0

PkgPower(Watt)

Elapsed Time (sec)

5/13/16, 5:21 PM

Page 1 of 1file:///Users/alexandrebergel/Downloads/Work/CuPakPower.SVG

0.620.460.310.150.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

CuPakPower(mWh)

Elapsed Time (sec)

Figure 1: Energy profile of a typical Pharo VM launch

mean stdev median
GC1 18.12 0.3521 18.08
GC2 18.17 0.5578 18.11
GC3 18.23 0.6131 18.10
GC4 19.12 3.975 17.92
Rec 18.25 0.5355 18.25

Figure 2: Micro Benchmark - Description

The first four micro-benchmarks exercises the garbage
collections and memory accesses. All the memory accesses
are sequentially performed. The fifth micro-benchmark inten-
sively uses the method call stack.

4.2 Macro-Benchmarks
We designed four macro-benchmarks:

• FB: Computing a force based layout on a graph made of
5,000 nodes and 5,000 edges.

• Graph: Constructing a graph large 70,000 nodes and
70,000 edges.

• Plot: Plotting 30,000 numerical values.
• Comp: Compiling over 3,800 Pharo methods.

These macro-benchmarks have been designed to not rely
on some external devices such as the network or the hard
disk.

4.3 Benchmark Execution
We will run each benchmark across our set of platforms.
Between each benchmark execution, we pause Pharo for
10 seconds. This pause ensures that the CPU cools down
and reaches a still physical state before the next benchmark
execution.

5. Profile Across Different Workloads
We ran our set of benchmarks on an iMac Intel Core i5 3.2
GHz. We were careful in reducing and avoiding possible

bias: Pharo is the only application manually launched on our
hardware; network connection has been disabled; tests have
been multiply run before obtaining our measurements; the
screen intensity has been constant and no screensaver has
been employed.

5.1 Statistical tests
A data set can be “normally” distributed or not. Being normal
has an impact on the statistical tool used to analyze this
data. In our case, none of the benchmarks have produced a
statistically normal data set. We used the Shapiro-Wilk test
to verify normality.

As a consequence, we use the Kruskal-Wallis test, a sta-
tistical test to analyze differences in median values between
samples [2]. It is non-parametric (implying that it operates
on data that are not normal as we have) and evaluates one
particular factor.

In cases where we had more than two data sets to compare,
we used the Dunn’s multiple comparisons tests.

5.2 Micro-Benchmarks
In total, the five micro-benchmarks produce 5,165 data
points. We first analyze the power consumption and then
the temperature.
Power consumption. Table 2 gives some statistical measure-
ments. All the micro-benchmarks have an average compa-
rable consumption. The benchmark GC4 clearly stands out
when compared with other benchmarks.

Figure 3 charts the evolution of the PkgPower metrics
along the time. GC4 is characterized by many sporadic
power consumption peaks. Currently, we cannot explain the
cause of these peaks. Our measurement indicate that they are
not related to the use of garbage collector. GC3 and GC4
produce exactly the same number of incremental and full
garbage collections, and GC3 does not present these peaks.
We therefore infer that these peaks may be caused by the
processor low-level caches [1].

Figure 4 gives the distributions of the data points. We
see that the median for each benchmark is very similar,

3

0 10 20 30 40

GC1

GC2

GC3

GC4

Rec

PkgPower

Power consumption (W)

Figure 4: CPU power consumption distributions across micro
benchmarks

GC2 GC3 GC4 Rec
GC1 yes yes yes yes
GC2 no yes yes
GC3 yes yes
GC4 no

Figure 5: Micro Benchmark - PkgPower - significant differ-
ence

96420

30

22

15

7

0

PkgPower (W)

Time (s)

GC4

Figure 3: Evolution of PkgPower along the time

around 18W. Each benchmark produces data points within a
particular range. The Rec benchmark produces the narrowest
range. The reason stems from the low activity of the garbage
collector: using the runtime stack does not directly trigger the
garbage collector since no heap allocation occurs.

Benchmark GC1 creates and immediately frees large mem-
ory portions, thus triggering the garbage collector. Benchmark
GC3 creates and frees smaller memory chunks, which then
trigger the garbage collector more often than with GC1. This
explains why the range of power consumption is larger with
GC3 than with GC1.

Sequentially filling memory with an immediate value in-
creases the variability in the power consumption. Considering
smaller chunks leads to more variability than larger chunks.

Table 5 gives the result of the statistical multiple com-
parison. The table indicates whether two data point sets are
significantly different. From the table, we can conclude the
following:

• On average, multiply allocating large memory chunks con-
sume more power than allocating small memory chunks
(GC1 is significantly different from GC3).

• Sequentially filling a memory portion has a memory cost
(GC2 is significantly different from GC1, and GC4 sig.
diff from GC3).

• Using the runtime call stack has a lower power consump-
tion than using the heap (Rec is significantly different
from GC1). We conjecture that this is due to the garbage
collector.

40 45 50 55 60 65 70

GC1

GC2

GC3

GC4

Rec

PackageTemp

Temperature (C)

Figure 6: CPU temperature distributions across micro bench-
marks

Temperature. Figure 6 indicates the distribution of the tem-
perature of the benchmarks. We can notice that GC4 has
a temperature profile different from the other benchmarks.

4

FB Graph Plot
Comp no yes yes

FB yes yes
Graph yes

Figure 9: Macro Benchmark - PkgPower - significant differ-
ence

The large temperature range of GC4 seems to be due to its
particular power consumption.

5.3 Macro-Benchmarks

0 5 10 15 20 25

Comp

FB

Graph

Plot

PkgPower

Power consumption (W)

Figure 7: CPU power consumption distributions across macro
benchmarks

Power consumption. Figure 7 gives the distribution of the
power consumption of our four macro-benchmarks. All but
one benchmark have a comparable range of data points.
Interestingly, the FB benchmark has the largest range of
power consumption. The reason why FB has such a large
range is not clear to us. We conjecture that this is because FB
makes heavy use of arithmetic operations.

1410730

30

22

15

7

0

PkgPower (W)

Time (s)

FB

Figure 8: Evolution of PkgPower along the time for the
Macro-benchmarks

Figure 8 plots the PkgPower along the time. After five
seconds, we see that the energy consumption of the FB
benchmarks drastically drop. The reason for this is not
completely clear to us. We suspect that the method cache and
the proximity of the data (since they are immediate values)
play a large role in this consumption drop.

Table 9 characterizes the differences between the four
benchmarks. All the benchmarks have a significant difference
between each other, except Comp and FB.

This measurement strongly indicates that each execution
has a particular profile. Moreover, intensive numerical opera-
tions seem to result in a lower consumption.
CPU frequency. During our measurement, the CPU fre-
quency, IAFrq, ranges from 3.4 GHz and 3.6 GHz. It therefore
goes above the 3.2 GHz set by the constructor, indicating an
overclocking. Our measurements indicates a value IAFrq =
3500, sporadically be 3400 or 3600. The fact that IAFrq takes
only three different values during the execution discards any
correlation between the CPU frequency and the power / en-
ergy consumption.
Temperature and power consumption. Figure 10 plots the
data points for two benchmarks using the metrics PkgTemp
and PkgPower. All the micro and macro benchmarks have a
shape similar to Plot. Only FB has its measurement points
horizontally stretched out.

We conclude there is no correlation between PkgTemp
and PkgPower, despite a relatively high correlation for one
benchmark.

6. Implementation
Simple API. We provide a class EnergyProfiler and a method
profile: to perform the measurement. Consider the following
code:

EnergyProfiler new
profile: [”Block to be monitored”]

The method profile: is executed as follows:

1. it launches the low level energy monitor

2. it then evaluates the provided block

3. after the execution of the block, the monitor is stopped,
and data are made available in the Pharo image

5

Plot BenchmarkFB Benchmark

23.619.014.39.75.0

56

52

48

44

40

PkgTemp

PkgPower
23.021.520.018.517.0

65

60

55

PkgTemp

PkgPower

Figure 10: Plotting (PkgPower,PkgTemp) for two benchmarks.

EnergyProfiler also supports exporting the data in a CSV
format. This is convenient when data have to be statistically
analyzed.
Low-level measurements. All the low-level measurements
are performed using the Intel Power Gadget, a tool available
for Intel processors2. Thanks to OSSubprocess3, we were
able to launch the Intel toolchain within Pharo.

7. Related Work
Kansal et al. [1] have described a power consumption in
which the power consumed by the memory is linear to the last
level cache (LLC). LLC is a memory cache maintained in the
CPU that is shared among all processor cores. Unfortunately,
the state of the LLC cannot be inspected since the processor
does not expose it.

Kistowski et al. [3] have shown that the same workload
may result in very different energy profiles. They have
considered 5 macro-benchmarks and 3 different hardwares.
Their results shows that the energy profile of a workload
significantly varies across physical processors having the
same characteristics. This is a relevant finding for our setting.
We have currently run our experiment on a single hardware
and software set. As future work, we will run our benchmarks
across several executing platforms.

8. Conclusion and Future Work
To the best of our knowledge, the impact of the Smalltalk
execution on the power and energy consumption has not
been considered. This short paper presents our preliminary
results in measuring the energy consumption in Pharo. Our

2 https://software.intel.com/en-us/articles/

intel-power-gadget-20
3 https://github.com/marianopeck/OSSubprocess

measurements indicate that activating the garbage collector
greatly contributes to varying the power consumption.

As a future work, we plan to investigate the following
points:

• Replication across processors: The work presented in this
paper considers one particular processor. It is known that
the same workload may have different energy profiles
across the same processor [3]. One relevant point to
research is whether the virtual machine or the considered
version of Pharo have particularities energy-wise.

• Page swapping: Paging is a memory management tech-
nique offered by most operating systems to move a mem-
ory page from the physical memory to a secondary storage.
Loading and unloading pages from the hard disk may have
a significant impact on the overall consumption. We will
therefore explore the use of page swapping.

• Processor internal caches: a processor has several mem-
ory caches. These caches are hierarchically structured
around each processor core. It has been argued that mem-
ory caches may have a linear impact on the processor
power consumption [1]. We will research how this aspect
is exploited in our profiler.

Acknowledgments. We thank Renato Cerro for their com-
ments on an early draft of this paper.

References
[1] A. Kansal, F. Zhao, J. Liu, N. Kothari, A. A. Bhattacharya,

Virtual machine power metering and provisioning, in: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, ACM, New York, NY, USA, 2010, pp. 39–50.
doi:10.1145/1807128.1807136.
URL http://doi.acm.org/10.1145/1807128.1807136

[2] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, A. Wesslén, Experimentation in Software Engineer-
ing, Kluwer Academic Publishers, 2000. doi:10.1007/

978-3-642-29044-2.

6

https://software.intel.com/en-us/articles/intel-power-gadget-20
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://github.com/marianopeck/OSSubprocess
http://doi.acm.org/10.1145/1807128.1807136
http://dx.doi.org/10.1145/1807128.1807136
http://doi.acm.org/10.1145/1807128.1807136
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

[3] J. von Kistowski, H. Block, J. Beckett, C. Spradling, K.-D.
Lange, S. Kounev, Variations in cpu power consumption, in:
Proceedings of the 7th ACM/SPEC on International Conference

on Performance Engineering, ICPE ’16, ACM, New York, NY,
USA, 2016, pp. 147–158. doi:10.1145/2851553.2851567.
URL http://doi.acm.org/10.1145/2851553.2851567

7

http://doi.acm.org/10.1145/2851553.2851567
http://dx.doi.org/10.1145/2851553.2851567
http://doi.acm.org/10.1145/2851553.2851567

	Introduction
	Experiment Design
	Metrics
	Software and hardware platforms

	Virtual Machine Launch and Being Idle
	Benchmarks
	Micro-Benchmarks
	Macro-Benchmarks
	Benchmark Execution

	Profile Across Different Workloads
	Statistical tests
	Micro-Benchmarks
	Macro-Benchmarks

	Implementation
	Related Work
	Conclusion and Future Work

