Visually Exploring Object Mutation

Rodrigo Schulz Fabian Beck

DCC, VISUS,
University of Chile University of Stuttgart
Chile Germany

Abstract—Object-oriented programming supports object mu-
tation during a program execution. A mutation occurs whenever
a value is assigned to an object field. Analyzing the evolution
of object mutation is known to be difficult. Unfortunately,
classical code debuggers painfully support the analysis of object
mutations.

Object Evolution Blueprint is a visualization dedicated to
exploring object mutation over time. Our blueprint visually and
concisely represents sequences of field mutations. The history
of each field is adequately shown with respect to the dynamic
value types. We have observed the use of our blueprint with
three practitioners. Our visualization has been well received and
accepted to complete two different software comprehension tasks.
Moreover, our user study shows that the visualization is both
intuitive and simple to learn.

I. INTRODUCTION

The execution of an application written in an object-
oriented programming language may produce a large number of
objects [1]. These objects interact with each other by sending
messages. Whenever an object receives a message, the values
of the instance variables may change. While a message may
produce a state transition, the set of instance variables and their
current values represent the current state of an object. A wrong
value stored in a variable is often the cause of unexpected
behavior: object states are typically investigated when a bug
occurs. Understanding object states and their changes over
time is a central part of program comprehension tasks when
debugging, extending, or maintaining the implementation of
a software system [2]. Although object state analysis is a
crucial step to comfortably carrying out programming activities,
efficiently supporting object state reasoning has received scant
interest from the software engineering research community [3].

In this paper we present a novel approach to visually
exploring object state changes during a program execution.
This analysis occurs by ‘“snapshotting” objects during a
program execution, and after the application execution, these
object revisions are visualized and analyzed. The Object
Evolution Blueprint represents each object as a list of contained
attributes. Figure 1 gives the blueprint of an object of the
class RTKiviatBuilder. In total, 153 revisions of that object
have been produced. Each of the three variables of the class
RTKiviatBuilder iSs represented as a diagram showing the
evolution of the variable along the object revision from left
to right. Figure 1 shows, encoded in the colored boxes, that
the view variable was null in the early object revisions and
was then sporadically modified. The variable xiviatMetrics

Jhonny Wilder Cerezo Felipez

Alexandre Bergel
Pleiad Lab, DCC
University of Chile
Chile

Universidad Mayor
de San Sim6n
Bolivia

Object 1 (RTKiviatBuilder)
153 revisions

#view (RTView)

#kiviatMetrics (OrderedCollection)
8.0 A

60
40 4
2o d
0.0 -

#kiviatNodes (OrderedCollection)
3.0 A

2.0

1.0

0.0 -

Fig. 1: Object Evolution Blueprint example

held a collection which has grown to reach a size of 8.
Similarly, the collection held by the variable xiviatNodes
has grown to reach a size of 3. We also see that the filling of
kiviatNodes occurred after the filling of kxiviatMetrics. The
blueprint supports three kinds of variable diagrams: numeric
variables, collections, and a generic diagram for all other
types. Interactions allow for further investigating details of
the object state and focusing the analysis on time spans
of interest. Our blueprint is implemented in Pharo [4], an
object-oriented language and programming environment, and
is seamlessly integrated with other programming tools. The
graphics are rendered with the Roassal visualization engine'.
We observed three participants to solve two exercises. We also
analyzed answers of some questions regarding the usability
and practicability of the blueprint.

II. OBJECT MUTATION META-MODEL

This section presents the meta-model we use to create
object revisions and represents the evolution of their values.
During a program execution, a model is created and filled with
information described by our meta-model. After the program
execution, the Object Evolution Blueprint visualizes the model
describing the evolution of object variables.

Consider the trivial program in SmalltalkLite syntax [5]:

Thttp://agilevisualization.com



class RTMondrian {
view
addElement(e) { view.add(e) }
reset() { view = new RTView }

¢ = new RTMondrian
c.reset()
c.addElement(5)
c.addElement(7)

The class RTMondrian has one variable view and two methods,
addElement (e) and reset (). The execution of the script
creates an instance of RTMondrian and sends three messages
to it: reset (), addElement (5), and addelement (7). Each
message modifies the view variable: the message reset ()
initializes the variable view with an instance of the class

RTView, and the two calls of addElement (...) fill view with
two elements. Formally, we represent the succession of these
three messages as an ordered collection of three tuples:

{c¢, view, nil, vy, reset(), t1},

{c, view, vy, vo, addElement(5), t2},

{c, view, va, vs, addElement(7), t3}
The ¢ variable refers to an instance of RTMondrian. The three
values v, v, and v3 represent the three different states of the
variable view: vy is the empty view, vs is the view with the
element 5, and v3 is the view with elements 5 and 7.

Each tuple {o, variable, previousValue, newValue, message,
time} describes a revision of the execution that captures the
change of variable for the object 0. A complete object snapshot
is a set of tuples. Before sending message, variable had the
value previousValue. Message changes the value of o.variable
to newValue. If message changes several variables, then several

tuples are generated. A tuple represents a timestamped revision.

The timestamp is given by the component time. A global

repository contains all the object revisions and may be queried.

The previous example illustrated three mutations of the
object c. We say that an object o mutates when receiving
the message m if at least one variable is modified. An object
mutation reflects a state modification in that object. Specifically,
we consider a variable v is modified if a new value is given
to v or the object referenced by v has a new value in one
of its variables. This means that, if v = 5, then executing the
expression v = 6 modifies the variable v by giving a new value
to it. Further, if v = new OrderedCollection, then v.add(5)
modifies v. Note that this second example does not assign a
new value to v, instead it modifies the object referenced by
v. Note that an object revision may contain mutation from
its previous revision. After the program execution, Object
Evolution Blueprint visually represents object and variable
mutations.

III. OBJECT EVOLUTION BLUEPRINT

Object Evolution Blueprint is a visual representation of a
particular object, based on the set of tuples previously described.
Figure 2 gives an example of one object represented as a gray
box. The object is an instance of the class RTMondrian (Mark A
on the figure). The blueprint represents 42 different revisions of

Object 1 (RTMondrian) @
42 revisions ®

®

#view (RTView) @
#interactionBuilder (RTInteractionBuilder) @
#shapeBuilder (RTBoundedShapeBuilder)

#layoutBuilder (RTLayoutBuilder)

#title (ByteString)

5.0 @

#metricNormalizer (RTMetricNormalizer) @
#currentFrame (RTMondrianFrame)
#edgeBuilder (RTEdgeBuilder)
#rootFrame (RTMondrianFrame) @

Fig. 2: Generic diagram example

the object (Mark B). The object has 9 instance variables in total.
Variables are vertically lined up, ordered according to the class
definition. The evolution of a variable over time is represented
by a diagram. The type of the variable is used to select a
suitable diagram. Three different diagrams are supported in
our blueprint.

Generic diagram. This diagram is used when the type of a
variable is not a number or a collection. In Figure 2 all the
variables except title are represented using a generic diagram.
Each data point contained in the time series encodes an object
revision. We use the following glyphs:

: The variable has no value, it is therefore null.

: The revision assigns a new value to the variable.

: The object referenced by the variable is modified,
but the object identity remains unmodified.

: The variable and referenced object remain unmodified.

Consider the view variable (Mark C). During the first three
object revisions, the variable was null. At the fourth re-
vision, a value has been assigned to it. Another value is
assigned a few revisions afterwards. The referenced value
is then modified twice, without changing the value of view.
Visualizing the evolution of variables allows one to compare
different variables. For example, the initialization of variable



Object 1 (RTView)
1182 revisions

#announcer (Announcer)

#attributes (UndefinedObject)

Object 1 (OEBStock)
1003 revisions

#elements (OrderedCollection)

100.0

#value (Smallinteger) 0.0
250.0
150.0

50.0 40.0
-50.0 30.0
-150.0 200

10.0

0.0

#stockName (ByteString)
30 A

#edges (OrderedCollection)

#trCanvas (TRCanvas)
2.0 A
1.0
0.0

Fig. 3: Numerical and collection diagram example

interactionBuilder occurs after the initialization of variables
view and shapeBuilder since the first event happens later
(i.e., located on the right in the diagram).

Numerical diagram. In the case that the type of a variable is
a number, a numerical diagram uses a chart to represent the
evolution of the numerical values. Figure 3 (left) illustrates
the evolution of an object of the class oEBstock, being part
of a financial application. In total 1,003 revisions of the stock
object were produced. The orBstock class defines two variables,
value and stockName.

Collection diagram. Analyzing the evolution in size of a col-
lection is the purpose of the collection diagram. Figure 3 (right)
represent 1,182 revisions of a rRTview object. The variables
elements and edges have the type orderedcollection. The
diagram shows the size of the collection over time and indicates
changes of the collection itself, whether an object contained in
that collection has been modified, replaced, added, or removed.
Collection modifications are indicated using the color orange
(“7). The figure shows that the initialization of the elements
and edges variables went through three distinct phases: (i) the
collection elements is first filled while edges is empty, (ii)
edges is then filled with 40 different entities while elements
remains unmodified, (iii) elements is filled with 500 elements
and edges is constant.

Interactive Exploration. Object Evolution Blueprint offers
a range of interactions to support data navigation and obtain
details on demand. Brushing and linking facilitates users to
identify the exact variable value at a given moment in time.

Locating the mouse above a diagram highlights all the variable
value snapshots at the pointed time. This allows one to get
a complete revision of the object at a given moment in time.
The whole visualization may be zoomed in and out. This
function is convenient in case many objects are simultaneously
represented. Object Evolution Blueprint is meant to be used by
practitioners to address some debugging- and comprehension-
related issues. It is therefore crucial to have the visualization
(i) easily accessible within the programming environment and
(ii) any visualized entity should be one click away from the
related source code.

Usage. There are two ways to generate a blueprint. The first
way to produce a visualization is to let the programmer locate
snapshotting of objects in the source code. This is achieved
by sending the message oLog to an object. Sending the oLog

message to any object creates an object revision which is
kept in a global repository, as described in Section II. The
second way to generate a visualization is to use a dedicated
code execution profiler. The profiler may be configured with
classes for which their instances have to be snapshot: each
object, instance of the specified class, that receives a message
is snapshot. The profiler may be configured in several different
ways to filter irrelevant data gathering. For example, a condition
may be set to exclude particular objects from being recorded.

Multiple objects. Our blueprint is designed to support a
detailed analysis of individual objects. Several objects may be
represented and traditional navigation facilities are supported,
including zooming in/out, searching, scrolling. Currently, our
blueprint does not support analysis across a massive number of
objects. Instead, it supports local and fine-grained analysis of
individual objects. Note that our design concurs with traditional
breakpoint debugging approaches to only consider a restricted
number of objects.

1V. EVALUATION

This section evaluates our blueprint used by three practition-
ers, including one PhD student and two professional software
engineers, in a qualitative study.

A. User Study Design

Each participant evaluated two program executions and
answered five open questions. Our session was designed to
be relatively short, with 30 minutes as the maximum allowed
time to complete the whole experiment. First, we asked some
questions about the participant’s personal experience. Then,
we provided a description and some illustrations of Object
Evolution Blueprint as learning material, also introducing how
to manually create object revisions (we focused on this usage
mode in the evaluation). The two tasks of the study were:

o Exercise 1: We provided a short executable script to
render a visual treemap for a hierarchical data set. The
objective of this exercise was to analyze some individual
variable diagrams. A participant will therefore evaluate
the evolution of some particular variables, independently.
The questions we asked are: (Q1) Which variables have



TABLE I: Result of the exercises

Participant Exercise 1 Exercise 2
Ql Q2 Q3 Time | Q4 Q5 Q6 Time
P1 1 0 0 15 0 1 1 12
P2 1 1 1 13 0 1 1 12
P3 0 1 0 13 0 1 0 7
Total 2 2 1 13 0 3 2 10

no value assigned during the whole execution? (Q2) One
variable always receives new values, which variable is it?
(Q3) One variable is sometimes modified and sometimes
receives a new value, which variable is it?

o Exercise 2: We provided another script that involves the
Sugiyama graph layout algorithm [6]. The objective of
this exercise is to compare particular individual diagrams.
The questions we ask are: (Q4) How many times is the
variable x modified? (Q5) Which of the 3 variables, x, v,
and z, is initialized first? (Q6) Which are initialized at
the same time?

Finally, we asked five questions to formalize the impression
left by the blueprint. The answers assess the overall usefulness
and the perception of the blueprint left to the participants.

We have considered two different exercises to cover two
complementary aspects of the blueprint: characterizing an
individual variable, and relating a group of variables. For each
exercise we provide an entry point of the code. This entry
point may be considered by the participant as the root of the
execution call graph for the exercise.

B. Results: Exercises

On average, the participants took 13 minutes to complete
the first exercise and 10 minutes to complete the second. Each
exercise had three questions. We gave 1 point per correct answer.
We determined the correct answers from a careful analysis
of the code. Table I summarizes the result of the exercises.
The user study shows that all but one question received at
least one correct answer. Question 4 was incorrectly answered
three times, which indicates that the participants were not able
to identify the number of times variables were modified. A
variable modification is represented with a particular color in a
variable diagram. The participants were not able to identify the
correct location where to insert the revision creation, which
resulted in them missing the relevant object revisions. Question
5, about identifying the variable that is initialized first, was
correctly answered by the three participants.

Participant P1. The participant started to execute the script
to see its effect. The participant then used the debugger to
follow the control flow and identify locations where to create
the object revision (i.e., inserting the call to orLog). These
locations were essentially identified by operating the classical
debugging operations to follow the program execution control
flow. When deemed relevant, the participant captured the
object revision. The fact that the participant naturally used the
debugger indicates that the blueprint is not meant to replace
the debugger.

Participant P2. The participant did not use the debugger
in both exercises. Instead, the participant solely navigated in
the source code and used the Object Evolution Blueprint to
answer the questions. He browsed the code and looked for the
implementor and sender of message call to obtain a mental
overview of the call graph. Calls to create object revisions
are then inserted later on. Note that the participant qualified
himself as experienced with the Pharo debugging facility.

Participant P3. Similarly to P2, P3 manually searched for the
entry point of where to capture the object revision.

We did not find any indication that the participant misun-
derstood the blueprint. Pharo offers the inspector tool [7] to
inspect the value of each instance variable. Participants P1
and P2 opened the inspector on previous object snapshots.
This suggests that easily jumping from the blueprint to the
actual object inspector is a valuable asset of our blueprint
implementation. Participants regularly brushed diagram data
points to obtain the name of the message in which the snapshot
was taken, in particular, during the second exercise.

C. Results: Open Questions

Do you consider the tasks as realistic program comprehen-
sion tasks? We asked the participants to use a Likert-type scale
to answer this question (i.e., a scale from 1 to 5, where 1 means
totally disagree and 5 means completely agree). Participant
graded our set of exercises with 4, 4, 3. P1 commented that
“the tasks are low level, so the participant is not challenged to
have a wider comprehension.”

Do you feel you can answer these questions using the
classical textual logging and debugging facility of Pharo? Using
the same scale, participants answered 3, 4, 2. Pharo offers an
expressive API to reflect on the execution of an application. P1
had the feeling that fully using Pharo’s reflective capabilities
would probably help in completing the exercises. P3 said that
the blueprint eases the answering of the questions.

Do you see one or more benefits in using the Object Evolution
Blueprint? If yes, which ones? P1 saw a benefit to using the
blueprint to analyze state changes. However, P1 is wondering
about the scalability of the whole approach. P2 said that the
evolution of each variable is apparent. There is therefore
less information one has to remember when performing a
comprehension task. In addition, several variables may be
compared at once. P3 said that the visualization is useful for
identifying singular points in the execution of an application.

For what purpose do you think the visualization is most
useful? P1 commented that it is useful for addressing and
identifying related events. P2 said that the visualization is
useful for (i) identifying variables receiving unexpected values,
(i1) crafting a cache for a variable, (iii) giving a visualization
of a historical evolution of the state, being useful when the
application has crashed.

Would you like to use a visualization like ours in your soft-
ware development activities? P1 and P3 answered affirmatively.
P2 is unsure what to answer since P2 does not feel familiar



with the visualization. It is therefore difficult to identify a
recurrent situation where the blueprint is beneficial.

V. RELATED WORK

To date there has been little work on visually exploring
object mutations. Alsallakh et al. [8] developed an approach
for Java code that, among other things, visualizes the evolution
of generic variables in a timeline visualization discerning null
values from others The approach also includes a specialized
visualization for numeric variables. However, the approach
does not highlight changes in the generic visualization and
does not present variables in context of the respective object.
Beck et al. [9] discuss how visualizations of evolving numeric
variables can be integrated into the source code view as word-
sized visualizations.

Other approaches focus on visualizing program execution
as well, but from a structural or architectural perspective,
for instance, recording and showing on a timeline UML-
like sequence diagrams [10], [1 1], [12], stack traces [13], or
dynamic call graphs [14]. General profiling tools represent
runtime information on method levels in lists or call trees.
Although these approaches offer insights into the temporal
evolution of program executions, the state of variables and
objects only play a secondary role if any at all.

Moreover, there exist specialized visualization approaches
for debugging. Some show the program state at a breakpoint,
such as DDD [15], ZStep 95 [16], deet [17], or reference
patterns in Jinsight [10]. Exploring the evolution of state is
possible by interactively stepping through the code. It might
also help debugging to visually compare data structures of
alternative program runs [!8]. Typical means of visualization
are linked nodes in a tree structure [15], [16], [17], [10] or
nested boxes [15]. Visualizations can also be tailored to specific
data structures like lists and arrays [19], [20], [21], trees [19],
[22], [23], images and other media [22], [21], [7], or maps [7].
Most approaches are extensible by user-defined visualizations
of other data structures. Since we want to give an overview
of the evolution of program state, however, we do not use
breakpoints and stepping.

In general, object-centric debugging [3] is also related to
our approach. It switches the focus from the runtime stack to
objects because debugging questions of developers are often
more related to objects—we apply the same paradigm here.

VI. CONCLUSION

Assessing the evolution of individual objects during a
program execution is a difficult activity. This paper describes
Object Evolution Blueprint as a visual support to characterize
and comprehend object mutations during an object life-time.
Our approach has been implemented in the Pharo programming
environment. However, our design does not rely on any
particularities of Pharo.

The blueprint has been evaluated using a user study, and
its usefulness has been illustrated via three participants. The
results of two exercises and the participant perceptions indicate
that the blueprint is useful for addressing particular situations
in program comprehension.

ACKNOWLEDGMENT

We thank Renato Cerro for his comments on an early draft.
Fabian Beck is indebted to the Baden-Wiirttemberg Stiftung
for the financial support of this research project within the
Postdoctoral Fellowship for Leading Early Career Researchers.

REFERENCES

[1] D. Marinov and R. O’Callahan, “Object equality profiling,” in Proceed-
ings of OOSPLA’03.

[2] 1. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of FSE’06.

[3] J. Ressia, A. Bergel, and O. Nierstrasz, “Object-centric debugging,” in
Proceedings of ICSE’12.

[4] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep Into Pharo. Square
Bracket Associates, 2013.

[51 A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts, “Stateful traits
and their formalization,” Journal of Computer Languages, Systems and
Structures, vol. 34, no. 2-3, pp. 83-108, 2008.

[6] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 11, no. 2, pp. 109-125, 1981.

[7]1 A. Chis, T. Girba, O. Nierstrasz, and A. Syrel, “The Moldable Inspector,”

in Proceedings of the 2015 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, ser.

Onward! 2015.

B. Alsallakh, P. Bodesinsky, A. Gruber, and S. Miksch, “Visual tracing

for the Eclipse Java Debugger,” in Proceedings of CSMR’12.

[9] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf, “Visual monitoring

of numeric variables embedded in source code,” in Proceedings of

VISSOFT’13.

W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang,

“Visualizing the execution of Java programs,” in Software Visualization.

2002.

W. De Pauw and S. Heisig, “Visual and algorithmic tooling for system

trace analysis: a case study,” ACM SIGOPS Operating Systems Review,

vol. 44, no. 1, pp. 97-102, 2010.

——, “Zinsight: A visual and analytic environment for exploring large

event traces,” in Proceedings of SOFTVIS’10.

J. Triimper, J. Bohnet, and J. Dollner, “Understanding complex multi-

threaded software systems by using trace visualization,” in Proceedings

of SOFTVIS’10.

F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf, “Rapid serial

visual presentation in dynamic graph visualization,” in Proceedings of

VLHCC’12.

A. Zeller and D. Liitkehaus, “DDD—a free graphical front-end for UNIX

debuggers,” ACM Sigplan Notices, vol. 31, no. 1, pp. 22-27, 1996.

H. Lieberman and C. Fry, “ZStep 95: A reversible, animated source

code stepper,” in Software Visualization: Programming as a Multimedia

Experience. Cambridge, MA, MIT Press, 1997, pp. 277-292.

D. R. Hanson and J. L. Korn, “A simple and extensible graphical

debugger,” in Proceedings of the USENIX Annual Technical Conference,

ser. ATEC. USENIX Association, 1997, pp. 183-174.

D. Abramson and R. Sosic, “A debugging tool for software evolution,”

in Proceedings of WCRE’95.

J. H. Cross II, T. D. Hendrix, D. A. Umphress, L. A. Barowski, J. Jain,

and L. N. Montgomery, “Robust generation of dynamic data structure

visualizations with multiple interaction approaches,” ACM Transactions

on Computing Education, vol. 9, no. 2, p. 13, 2009.

B. Alsallakh, P. Bodesinsky, S. Miksch, and D. Nasseri, “Visualizing

arrays in the Eclipse Java IDE,” in Proceedings of CSMR’12.

D. Rozenberg and I. Beschastnikh, “Templated visualization of object

state with Vebugger,” in Proceedings of VISSOFT’14.

Y.-P. Cheng, J.-F. Chen, M.-C. Chiu, N.-W. Lai, and C.-C. Tseng,

“xDIVA: a debugging visualization system with composable visualization

metaphors,” in Companion to OOPSLA’08.

A. Chis, T. Girba, and O. Nierstrasz, “The Moldable Debugger: A

framework for developing domain-specific debuggers,” in Proceedings

of SLE’14.

[8

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]
(21]

[22]

[23]



