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Abstract. JavaScript systems are becoming increasingly complex and
large. To tackle the challenges involved in implementing these systems,
the language is evolving to include several constructions for programming-
in-the-large. For example, although the language is prototype-based, the
latest JavaScript standard, named ECMAScript 6 (ES6), provides native
support for implementing classes. Even though most modern web browsers
support ES6, only a very few applications use the class syntax. In this
paper, we analyze the process of migrating structures that emulate classes
in legacy JavaScript code to adopt the new syntax for classes introduced
by ES6. We apply a set of migration rules on eight legacy JavaScript
systems. In our study, we document: (a) cases that are straightforward
to migrate (the good parts); (b) cases that require manual and ad-hoc
migration (the bad parts); and (c) cases that cannot be migrated due
to limitations and restrictions of ES6 (the ugly parts). Six out of eight
systems (75%) contain instances of bad and/or ugly cases. We also collect
the perceptions of JavaScript developers about migrating their code to
use the new syntax for classes.
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1 Introduction

JavaScript is the most dominant web programming language. It was initially
designed in the mid-1990s to extend web pages with small executable code.
Since then, its popularity and relevance only grew [1-3]. Among the top 2,500
most popular systems on GitHub, according to their number of stars, 34.2% are
implemented in JavaScript [4]. To mention another example, in the last year,
JavaScript repositories had twice as many pull requests (PRs) than the second
language, representing an increase of 97% over the previous year.* The language
can be used to implement both client and server-side applications. Moreover,

4 https://octoverse.github.com/



JavaScript code can also be encapsulated as libraries and referred to by web
pages. These characteristics make JavaScript suitable for implementing complex,
single-page web systems, including mail clients, frameworks, mobile applications,
and IDEs, which can reach hundreds of thousands of lines of code.

JavaScript is an imperative and object-oriented language centered on proto-
types [5, 6]. Recently, the release of the new standard version of the language,
named ECMAScript 6 (or just ES6, as used throughout this paper), represented
a significant update to the language. Among the new features, particularly impor-
tant is the syntactical support for classes [7]. With ES6, it is possible to implement
classes using a syntax very similar to the one of mainstream class-based object-
oriented languages, such as Java and C++4. However, although most modern
browsers already support ES6, there is a large codebase of legacy JavaScript
source code, i.e., code implemented in versions prior to the ES6 standard. Even
in this code, it is common to find structures that in practice are very similar to
classes, being used to encapsulate data and code. Although not using appropriate
syntax, developers frequently emulate class-like structures in legacy JavaScript
applications to easily reuse code and abstract functionalities into specialized
objects. In a previous study, we show that structures emulating classes are present
in 74% of the studied systems [8]. We also implemented a tool, JSClassFinder [9],
to detect classes in legacy JavaScript code. Moreover, a recent empirical study
shows that JavaScript developers are not fully aware of changes introduced in
ES6, and very few are currently using object-oriented features, such as the new
class syntax [10].

In this paper, we investigate the feasibility of rejuvenating legacy JavaScript
code and, therefore, to increase the chances of code reuse in the language.
Specifically, we describe an experiment on migrating eight real-world JavaScript
systems to use the native syntax for classes provided by ES6. We first use
JSClassFinder to identify class like structures in the selected systems. Then we
convert these classes to use the new syntax.

This paper makes the following contributions:

— We present a basic set of rules to migrate class-like structures from ES5
(prior version of JavaScript) to the new syntax for classes provided by ES6
(Section 3.1).

— We quantify the amount of code (churned and deleted) that can be automat-
ically migrated by the proposed rules (the good parts, Section 4.1).

— We describe the limitations of the proposed rules, i.e., a set of cases where
manual adjusts are required to migrate the code (the bad parts, Section 4.2).

— We describe the limitations of the new syntax for classes provided by ES6,
i.e., the cases where it is not possible to migrate the code and, therefore, we
should expose the prototype-based object system to ES6 maintainers (the
ugly parts, Section 4.3).

— We document a set of reasons that can lead developers to postpone/reject the
adoption of ES6 classes (Section 5). These reasons are based on the feedback
received after submitting pull requests suggesting the migration to the new
syntax.



2 Background

2.1 Class Emulation in Legacy JavaScript Code

Using functions is the most common strategy to emulate classes in legacy
JavaScript systems. Particularly, any function can be used as a template for the
creation of objects. When a function is used as a class constructor, the this
variable is bound to the new object under construction. Variables linked to this
define properties that emulate attributes and methods. If a property is an inner
function, it represents a method; otherwise, it is an attribute. The operator new is
used to instantiate class objects.

To illustrate the emulation of classes in legacy JavaScript code, we use a
simple Queue class. Listing 1.1 presents the function that defines this class (lines
1-8), which includes one attribute (_elements) and three methods (isEmpty,
push, and pop). The implementation of a specialized queue is found in lines 9-17.
Stack is a subclass of Queue (line 15). Method push (line 17) is overwritten to
insert elements at the first position of the queue.

// Class Queue
function Queue() { // Constructor function
this._elements = new LinkedList ();

}
Queue.prototype.isEmpty = function() {...}
Queue.prototype.push = function(e) {...}
Queue.prototype.pop = function() {...}
// Class Stack
function Stack () {
// Calling parent’s class constructor
Queue.call (this) ;
}
// Inheritance link
15 Stack.prototype = new Queue();
// Overwritten method
Stack.prototype.push = function(e) {...}
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Listing 1.1: Class emulation in legacy JavaScript code

The implementation in Listing 1.1 represents one possibility of class emulation
in JavaScript. Some variations are possible, like implementing methods inside/out-
side class constructors and using anonymous/non-anonymous functions [8,11].

2.2 ECMAScript 6 Classes

ES6 includes syntactical support for classes. Listing 1.2 presents an implementa-
tion for classes Queue and Stack (Listing 1.1) in this latest JavaScript standard.
As can be observed, the implementation follows the syntax provided by main-
stream class-based languages. We see, for example, the usage of the keywords
class (lines 1 and 11), constructor (lines 2 and 12), extends (line 11), and
super (line 13). Although ES6 classes provide a much simpler and clearer syn-
tax to define classes and deal with inheritance, it is a syntactical sugar over
JavaScript’s existing prototype-based inheritance. In other words, the new syntax
does not impact the semantics of the language, which remains prototype-based.’

5 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes



class Queue {
constructor () {
this._elements = new LinkedList ();

// Methods

isEmpty () {...}
push(e) {...}

9 pop() {...}

10 }

11 class Stack extends Queue ({
12 constructor () {

13 super () ;

14 }

15 // Overwritten method
16 push(e) {...}

17}

1
2
3
4
5 }
6
7
8

Listing 1.2: Class declaration using ES6 syntax

3 Study Design

In this section, we describe our study to migrate a set of legacy JavaScript
systems (implemented in ES5) to use the new syntax for classes proposed by
ES6. First, we describe the rules followed to conduct this migration (Section 3.1).
Then, we present the set of selected systems in our dataset (Section 3.2). The
results are discussed in Section 4.

3.1 Migration Rules

Figure 1 presents three basic rules to migrate classes emulated in legacy JavaScript
code to use the ES6 syntax. Each rule defines a transformation that, when applied
to legacy code (program on the left), produces a new code in ES6 (program on
the right). Starting with Rule #1, each rule should be applied multiple times,
until a fixed point is reached. After that, the migration proceeds by applying the
next rule. The process finishes after reaching the fixed point of the last rule.

For each rule, the left side is the result of “desugaring” this program to the
legacy syntax. The right side of the rule is a template for an ES6 program using
the new syntax. Since there is no standard way to define classes in ES5, we
consider three different patterns of method implementation, including methods
inside/outside class constructors and using prototypes [8,11]. Rule #1 defines
the migration of a class C with three methods (m1, m2, and m3) to the new class
syntax (which relies on the keywords class and constructor). Method m1 is
implemented inside the body of the class constructor, m2 is bound to the prototype
of C, and m3 is implemented outside the class constructor but it is not bound
to the prototype.® Rule #2, which is applied after migrating all constructor
functions and methods, generates subclasses in the new syntax (by introducing
the extends keyword). Finally, Rule #3 replaces calls to super class constructors
and to super class methods by making use of the super keyword.

6 For the sake of legibility, Rule #1 assumes a class with only one method in each idiom. The
generalization for multiple methods is straightforward.



Rule #1: Classes

ES5 ES6
function C(p0) { class C {
BO; this.ml = function(pl) { Bl; } é constructor (p0) { BO; B2; }

} m2 (p2) { B3;
C.prototype.m2 = function(p2) { B3; } m3 (p3) { B4;
C.m3 = function(p3) { B4; } }

0
B2; ml (pl) { Bl; }
}
}

Rule#2: Subclasses

ESS5 ES6
Cl;:? c class C extends D {
’ :\/ BO;
! }
C.prototype = new D();
Rule #83: super() calls
ES5 ES6
class C extends D { class C extends D {
BO; BO;
constructor (p0) { constructor (p0) {
B1; D.call (this, pl); B2; B1l; super(pl); B2;
) é }
B3; B3;
ml (p2) { ml (p2) |
B4; D.m2.call (this, p3); BS; B4; super.m2.(p3); B5;
) }
B6; B6;
) }

Fig. 1: Migration rules (p; is a formal parameter list and B; is a block of statements)

There are no rules for migrating fields, because they are declared with the
same syntax both in ES5 and ES6 (see Listing 1.1, line 3; and Listing 1.2, line
3). Moreover, fields are most often declared in constructor functions or less
frequently in methods. Therefore, when we migrate these elements to ES6, the
field declarations performed in their code are also migrated.

3.2 Dataset

We select systems that emulate classes in legacy JavaScript code in order to
migrate them to the new syntax. In a previous work [8], we conducted an empirical
study on the use of classes with 50 popular JavaScript systems, before the release
of ES6. In this paper, we select eight systems from the dataset used in this
previous work. The selected systems have at minimum one and at maximum 100
classes, and 40 KLOC.

Table 1 presents the selected systems, including a brief description, checkout
date, size (LOC), number of files, number of classes (NOC), number of methods
(NOM), and class density (CD). CD is the ratio of functions in a program that



are related to the emulation of classes (i.e., functions which act as methods or
class constructors) [8]. JSClassFinder [9] was used to identify the classes emulated
in legacy code and to compute the measures presented in Table 1. The selection
includes well-known and widely used JavaScript systems, from different domains,
covering frameworks (SOCKET.10 and GRUNT), graphic libraries (ISOMER), visual-
ization engines (SLICK), data structures and algorithms (ALGORITHMS.JS), and a
motion detector (PARALLAX). The largest system (PIXI.JS) has 23,952 LOC, 83
classes, and 134 files with .js extension. The smallest system (FASTCLICK) has
846 LOC, one class, and a single file. The average size is 4,681 LOC (standard
deviation 7,881 LOC), 15 classes (standard deviation 28 classes) and 29 files
(standard deviation 48 files).

Table 1: JavaScript systems ordered by the number of classes.

System Description Checkout LOC Files Classes Methods  Class

Date Density
FASTCLICK Library to remove click delays 01-Sep-16 846 1 1 16 0.74
GRUNT JavaScript task runner 30-Aug-16 1,895 11 1 16 0.16
SLICK Carousel visualization engine 24-Aug-16 2,905 1 1 94 0.90
PARALLAX Motion detector for devices 31-Aug-16 1,018 3 2 56 0.95
SOCKET.IO Realtime app framework 25-Aug-16 1,408 4 4 59 0.95
ISOMER Isometric graphics library 02-Sep-16 990 9 7 35 0.79
ALGORITHMS.JS Data structures & algorithms 21-Aug-16 4,437 70 20 101 0.54
PIXI.JS Rendering engine 05-Sep-16 23,952 134 83 518 0.71

4 Migration Results

We followed the rules presented in Section 3 to migrate the systems in our dataset
to ES6. We classify the migrated code in three groups:

— The Good Parts. Cases that are straightforward to migrate, without the need
of further adjusts, by just following the migration rules defined in Section 3.1.
As future work, we plan to develop a refactoring tool to handle these cases.

— The Bad Parts. Cases that require manual and ad-hoc migration. Essentially,
these cases are associated with semantic conflicts between the structures used
to emulate classes in ES5 and the new constructs for implementing classes in
ES6. For example, function declarations in ES5 are hoisted (i.e., they can be
used before the point at which they are declared in the source code), whereas
ES6 class declarations are not.

— The Ugly Parts. Cases that cannot be migrated due to limitations and
restrictions of ES6 (e.g., lack of support to static fields). For this reason, in
such cases we need to keep the legacy code unchanged, exposing the prototype
mechanism of ES5 in the migrated code, which in our view results in “ugly
code”. As a result, developers are not shielded from manipulating prototypes.

In the following sections, we detail the migration results according to the
proposed classification.



4.1 The Good Parts

As mentioned, the “good parts” are the ones handled by the rules presented in
Section 3.1. To measure the amount of source code converted we use the following
churn metrics [12]: (a) Churned LOC is the sum of the added and changed lines
of code between the original and the migrated versions, (b) Deleted LOC is the
number of lines of code deleted between the original and the migrated version,
(¢) Files churned is the number of source code files that churned. We also use
a set of relative churn measures as follows: Churned LOC / Total LOC, Deleted
LOC / Total LOC, Files churned / File count, and Churned LOC / Deleted
LOC. This last measure quantifies new development. Churned and deleted LOC
are computed by GitHub. Total LOC is computed on the migrated code.

Table 2 presents the measures for the proposed code churn metrics. PIXI.JS
has the greatest absolute churned and deleted LOC, 8,879 and 8,805 lines of code,
respectively. The smallest systems in terms of number of classes and methods
are FASTCLICK and GRUNT. For this reason, they have the lowest values for
absolute churned measures. Regarding the relative churn metrics, PARALLAX and
SOCKET.IO are the systems with the greatest values for class density, 0.95 each,
and they have the highest relative churned measures. PARALLAX has relative
churned equals 0.76 and relative deleted equals 0.75. SOCKET.I0 has relative
churned equals 0.77 and relative deleted equals 0.75. Finally, the values of Churned
/ Deleted are approximately equal one in all systems, indicating that the impact
in the size of the systems was minimum.

Table 2: Churned Metric Measures

System | Absolute Churn Measures|Relative Churn Measures|Churned /

‘ Churned Deleted Files ‘Churned Deleted Files ‘ Deleted

FASTCLICK 635 630 1 0.75 0.74 1.00 1.01
GRUNT 296 291 1 0.16 0.15 0.09 1.02
SLICK 2,013 1,987 1 0.69 0.68 1.00 1.01
PARALLAX 772 764 2 0.76 0.75 0.67 1.01
SOCKET.IO 1,090 1,053 4 0.77 0.75 1.00 1.04
ISOMER 701 678 10 0.71 0.68 1.11 1.03
ALGORITHMS.JS 1,379 1,327 15 0.31 0.30 0.21 1.04
PIXI.JS 8,879 8,805 82 0.37 0.37 0.61 1.01

In summary, the relative measures to migrate to ES6 range from 0.16 to 0.77
for churned code, from 0.15 to 0.75 for deleted code, and from 0.21 to 1.11 for
churned files. Essentially, these measures correlate with the class density.

4.2 The Bad Parts

As detailed in the beginning of this section, the “bad parts” are cases not handled
by the proposed migration rules. To make the migration possible, they require
manual adjustments in the source code. We found four types of “bad cases” in
our experiment, which are described next.



Accessing this before super. To illustrate this case, Listing 1.3 shows the emu-
lation of class PriorityQueue which inherits from MinHeap, in ALGORITHMS.JS.
In this example, lines 7-8 call the super class constructor using a function as
argument. This function makes direct references to this (line 8). However, in ES6,
these references yield an error because super calls must proceed any reference
to this. The rationale is to ensure that variables defined in a superclass are
initialized before initializing variables of the current class. Other languages, such
as Java, have the same policy regarding class constructors.

1 // Legacy code

2 function MinHeap (compareFn) {

3 this._comparator = comparefFn;
4

5 }

6 function PriorityQueue () {

7 MinHeap.call (this, function(a, b) {

8 return this.priority(a) < this.priority(b) 2 -1 : 1;
9 b

11}
12 PriorityQueue.prototype = new MinHeap () ;

Listing 1.3: Passing this as argument to super class constructor

Listing 1.4 presents the solution adopted to migrate the code in Listing 1.3.
First, we create a setter method to define the value of the _comparator property
(lines 4-6). Then, in the constructor of PriorityQueue we first call super() (line
10) and then we call the created setter method (lines 11-14). In this way, we
guarantee that super() is used before this.

1 // Migrated code

2 class MinHeap {

setComparator (compareFn) {

4

5 this._comparator = compareFn;

6 }

7}

8 class PriorityQueue extends MinHeap {

9 constructor () {

10 super () ;

11 this.setComparator (

12 (function (a, b) {

13 return this.priority(a) < this.priority(b) ? -1 : 1;

14 }) .bind (this));
15 000

16 }

17}

Listing 1.4: By creating a setter method (lines 4-6) we guarantee that super is
called before using this in the migrated code

We found three instances of classes accessing this before super in our study,
two instances in ALGORITHMS.JS and one in PIXI.JS.

Calling class constructors without new. This pattern is also known as “factory
method” in the literature [17]. As an example, Listing 1.5 shows part of a Server
class implementation in SOCKET.10. The conditional statement (line 3) verifies if
this is an instance of Server, returning a new Server otherwise (line 4). This
implementation allows calling Server with or without creating an instance first.
However, this class invocation without having an instance is not allowed in ES6.



// Legacy code
function Server (srv, opts) {
if (! (this instanceof Server)
return new Server (srv, opts);

SISV VR

Listing 1.5: Constructor of class Server in system SOCKET.IO

Listing 1.6 shows the solution we adopted in this case. We first renamed
class Server to _Server (line 2). Then we changed the function Server from the
legacy code to return an instance of this new type (line 7). This solution does
not have any impact in client systems.

// Migrated code
class _Server{
constructor (srv, opts) { ... }
}
function Server (srv, opts) {
if (! (this instanceof _Server)
return new _Server (srv, opts);

Bow N =
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Listing 1.6: Workaround to allow calling Server with or without new
We found one case of calling a class constructor without new in SOCKET.IO.

Hoisting. In programming languages, hoisting denotes the possibility of referencing
a variable anywhere in the code, even before its declaration. In ES5, legacy
function declarations are hoisted, whereas ES6 class declarations are not.” As
a result, in ES6 we first need to declare a class before making reference to
it. As an example, Listing 1.7 shows the implementation of class Namespace
in SOCKET.IO. Namespace is assigned to module.exports (line 2) before its
constructor is declared (line 3). Therefore, in the migrated code we needed to
change the order of these declarations.

1 // Legacy code
2 module.exports = Namespace;
3 function Namespace {...} // constructor function

Listing 1.7: Function Namespace is referenced before its definition

Listing 1.8 shows another example of a hoisting problem, this time in PIXI.JS.
In this case, a global variable receives an instance of the class DisplayObject
(line 2) before the class definition (lines 3-6). However, in this case the variable
_tempDisplayObjectParent is also used by the class DisplayObject (line 5).
Furthermore, PIXI.JS uses a lint-like static checker, called ESLint®, that prevents
the use of variables before their definitions. For this reason, we cannot just reorder
the statements to solve the problem, as in Listing 1.7.

// Legacy code
var _tempDisplayObjectParent = new DisplayObject ()
DisplayObject .prototype.getBounds = function(..) {

;

Bow N =

this.parent = _tempDisplayObjectParent;
}

o«

Listing 1.8: Hoisting problem in PIXI.JS

7 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
8 http://eslint.org/



Listing 1.9 shows the adopted solution in this case. First, we assigned null
to _tempDisplayObjectParent (line 2), but keeping its definition before the
implementation of class DisplayObject (line 4). Then we assign the original
value, which makes reference to DisplayObject, after the class declaration.

// Migrated code
var _tempDisplayObjectParent = null;

class DisplayObject { ... }
_tempDisplayObjectParent = new DisplayObject () ;

(S NIRRT

Listing 1.9: Solution for hoisting problem in PIXI.JS

We found 88 instances of hoisting problems in our study, distributed over
three instances in ALGORITHMS.JS, four instances in SOCKET.IO, one instance in
GRUNT, and 80 instances in PIXI.JS.

Alias for method names. Legacy JavaScript code can declare two or more methods
pointing to the same function. This usually happens when developers want to
rename a method without breaking the code of clients. The old name is kept for
the sake of compatibility. Listing 1.10 shows an example of alias in SLICK. In this
case, SLICK clients can use addSlide or slickAdd to perform the same task.

1 // Legacy code
2 Slick.prototype.addSlide =
3 Slick.prototype.slickAdd = function (markup, index, addBefore) { ... };

Listing 1.10: Two prototype properties sharing the same function

Since we do not have a specific syntax to declare method alias in ES6, the
solution we adopted was to create two methods and to make one delegate the
call to the other one that implements the feature, as presented in Listing 1.11.
In this example, addSlide (line 6) just delegates any calls to slickAdd (line 4).

1 // Migrated code
2 class Slick {
3 R
slickAdd (markup, index,addBefore) { ... }
// Method alias
addSlide (markup, index, addBefore) { return slickAdd(markup, index,addBefore); }
}

'S

N o ow

Listing 1.11: Adopted solution for method alias in SLICK

We found 39 instances of method alias in our study, distributed over 25
instances in SLICK (confined in one class), 8 instances in SOCKET.IO (spread over
three classes), and 6 instances in PIXI.JS (spread over six classes).

4.3 The Ugly Parts

The “ugly parts” are the ones that make use of features not supported by ES6.
To make the migration possible, these cases remain untouched in the legacy code.

Getters and setters only known at runtime (meta-programming). In the ES5
implementation supported by Mozilla, there are two features, __defineGetter__
and __defineSetter__, that allow binding an object’s property to functions that



work as getters and setters, respectively.? Listing 1.12 shows an example in
SOCKET.IO. In this code, the first argument passed to __defineGetter__ (line 2)
is the name of the property and the second one (line 3) is the function that will
work as getter to this property.

1 // Legacy code

2 Socket.prototype.__defineGetter__ ('’ request’,
3 function() { return this.conn.request; }

4

)i

Listing 1.12: Getter definition in SOCKET.IO using __defineGetter__

ES6 provides specific syntax to implement getters and setters within the body
of the class structure. Listing 1.13 presents the ES6 version of the example shown
in Listing 1.12. Declarations of setters follow the same pattern.

// Migrated code

class Socket {
get request () { return this.conn.request; }

Bow N =

o

Listing 1.13: Getter method in ES6

However, during the migration of a getter or setter, if the property’s name
is not known at compile time (e.g., if it is denoted by a variable), we cannot
migrate it to ES6. Listing 1.14 shows an example from SOCKET.10. In this case,
a new getter is created for each string stored in an array called flags. Since the
string values are only known at runtime, this implementation was left unchanged.
// Legacy code
flags.forEach (function (flag) {

Socket .prototype._defineGetter_ (flag,

function(){ ... });
1)

Bow N =

o

Listing 1.14: Getter methods only known in execution time

We found five instances of getters and setters defined for properties only
known at runtime, all in SOCKET.IO.

Static data properties. In ES5H, usually developers use prototypes to implement
static properties, i.e., properties shared by all objects from a class. Listing 1.15
shows two examples of static properties, ww and orientationStatus, that are
bound to the prototype of the class Parallax. By contrast, ES6 classes do not
have specific syntax for static properties. Because of that, we adopted an “ugly”
solution leaving code defining static properties unchanged in our migration.

1 // Prototype properties (legacy code)

2 Parallax.prototype.ww = null;
3 Parallax.prototype.orientationStatus = 0;

Listing 1.15: Static properties defined over the prototype in PARALLAX

We found 42 instances of static properties, 28 in PARALLAX and 14 in PIXI.JS.

9 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide



Optional features. Among the meta-programming functionalities supported by
ES5, we found classes providing optional features by implementing them in
separated modules [13]. Listing 1.16 shows a feature in PIX1.JS that is implemented
in a module different than the one where the object’s constructor function is
defined. In this example, the class Container is defined in the module core, which
is imported by using the function require (line 2). Therefore, getChildByName
(line 4) is a feature that is only incorporated to the system’s core when the
module implemented in Listing 1.16 is used.

1 // Legacy code

2 var core = require(’../core’);

i core.Container.prototype.getChildByName = function (name) { ... };

Listing 1.16: Method getChildByName is an optional feature in class Container

In our study, the mandatory features implemented in module core were
properly migrated, but core’s optional features remained in the legacy code.
Moving these features to core would make them mandatory in the system. We
found six instances of classes with optional features in our study, all in PIXI.JS.

5 Feedback from Developers

After migrating the code and handling the bad parts, we take to the JavaScript
developers the discussion about accepting the new version of their systems in ES6.
For every system, we create a pull request (PR) with the migrated code, suggesting
the adoption of ES6 classes. Table 3 details these pull requests presenting their
ID on GitHub, the number of comments they triggered, the opening date, and
their status on the date when the data was collected (October 12th, 2016).

Table 3: Created Pull Requests
System ID #Comments Opening Date Status

FASTCLICK #500 0 01-Sep-16 Open
GRUNT #1549 2  31-Aug-16  Closed
SLICK #2494 5 25-Aug-16 Open
PARALLAX #159 1 01-Sep-16 Open
SOCKET.IO #2661 4 29-Aug-16 Open
ISOMER #387 3  05-Sep-16  Closed
ALGORITHMS.JS #117 4 23-Aug-16 Open
PIXI.JS #2936 14 09-Sep-16 Merged

Five PRs (62%) are still open. The PR for FASTCLICK has no comments. This
repository seems to be sparsely maintained, since its last commit dates from
April, 2016. The comments in the PRs for SLICK, SOCKET.I0, and PARALLAX
suggest that they are still under evaluation by the developer’s team. In the
case of ALGORITHMS.JS, the developer is in favor of ES6 classes, although he
believes that it is necessary to transpile the migrated code to ES5 for the sake of



compatibility.'® However, he does not want the project to depend on a transpiler,
such as Babelll, as stated in the following comment:

“I really like classes and I'm happy with your change. Even though most modern
browsers support classes, it would be nice to transpile to ES5 to secure compati-
bility. And I’'m not sure it would be good to add Babel as a dependency to this
package. So for now I think we should keep this PR on hold for a little while...”
(Developer of system ALGORITHMS.JS)

We have two closed PRs whose changes were not merged. The developer of
GRUNT chose not to integrate the migrated code because the system has to keep
compatibility with older versions of node.js, that do not support ES6 syntax, as
stated in the following comment:

“We currently support node 0.10 that does not support this syntax. Once we are
able to drop node 0.10 we might revisit this.” (Developer of system GRUNT)

In the case of ISOMER, the developers decided to keep their code according to
ES5, because they are not enthusiasts of the new class syntax in ES6:

“IMHO the class syntax is misleading, as JS “classes” are not actually classes.
Using prototypal patterns seems like a simpler way to do inheritance.” (Developer
of system ISOMER)

The PR for system PIX1.JS was the largest one, with 82 churned files, and all
the proposed changes were promptly accepted, as described in this comment:

“Awesome work! It is really great timing because we were planning on doing this
very soon anyways.” (Developer of PIX1.JS)

The developers also mentioned the need to use a transpiler to keep compati-
bility with other applications that do not support ES6 yet, and they chose to use
Babel for transpiling, as stated in the following comments:

“Include the babel-preset-es2015 module in the package.json devDependencies.”...
“Unfortunately, heavier dev dependencies are the cost right now for creating
more maintainable code that’s transpiled. Babel is pretty big and other tech like
TypeScript, Coffeescript, Haze, etc have tradeoffs too.” (Developer of PIXI.JS)

Finally, pPix1.Js developers also discussed the adoption of other ES6 features,
e.g., using arrow functions expressions and declaring variables with let and
const, as stated in the following comment:

“I think it makes more sense for us to make a new Dev branch and start working
on this conversion there (starting by merging this PR). I'd like to make additional
passes on this for const/let usage, fat arrows instead of binds, statics and other
ES6 features.” (Developer of PIXI.JS)

10 A transpiler is a source-to-source compiler. Transpilers are used, for example, to convert back
from ES6 to ES5, in order to guarantee compatibility with older browsers and runtime tools.

1 https://babeljs.io/



6 Threats to Validity

Ezxternal Validity. We studied eight open-source JavaScript systems. For this
reason, our collection of “bad” and “ugly” cases might not represent all possible
cases that require manual intervention or that cannot be migrated to the new
syntax of ES6. If other systems are considered, this first catalogue of bad and
ugly cases can increase.

Internal Validity. It is possible that we changed the semantics of the systems
after the migration. However, we tackled this threat with two procedures. First,
all systems in our dataset include a large number of tests. We assure that all tests
also pass in the ES6 code. Second, we submitted our changes to the system’s
developers. They have not pointed any changes in the behavior of their code.

Construct Validity. The classes emulated in the legacy code were detected by
JSClassFinder [8,9]. Therefore, it is possible that JSClassFinder wrongly identifies
some structures as classes (false positives) or that it misses some classes in the
legacy code (false negatives). However, the developers who analyzed our pull
requests did not complain about such problems.

7 Related Work

In a previous work, we present a set of heuristics followed by an empirical study
to analyze the prevalence of class-based structures in legacy JavaScript code [8].
The study was conducted on 50 popular JavaScript systems, all implemented
according to ES5. The results indicated that class-based constructs are present
in 74% of the studied systems. We also implemented a tool, JSClassFinder [9],
to detect classes in legacy JavaScript code. We use this tool to statically identify
class dependencies in legacy JavaScript systems [?] and also to identify the classes
migrated to ES6 in this paper.

Hafiz et al. [10] present an empirical study to understand how different
language features in JavaScript are used by developers. The authors conclude that:
(a) developers are not fully aware about newly introduced JavaScript features; (b)
developers continue to use deprecated features that are no longer recommended;
(c) very few developers are currently using object-oriented features, such as the
new class syntax. We believe this last finding corroborates the importance of our
work to assist developers to start using ES6 classes.

Rostami et al. [14] propose a tool to detect constructor functions in legacy
JavaScript systems. They first identify all object instantiations, even when there
is no explicit object instantiation statement (e.g., the keyword new), and then
link each instance to its constructor function. Finally, the identified constructors
represent the emulated classes and the functions that belong to these constructors
(inner functions) represent the methods.

Gama et al. [11] identify five styles for implementing methods in JavaScript:
inside/outside constructor functions using anonymous/non-anonymous functions
and using prototypes. Their main goal is to implement an automated approach to



normalize JavaScript code to a single consistent style. The migration algorithm
used in this paper covers the five styles proposed by the authors. Additionally,
we also migrate static methods, getter and setters, and inheritance relationships.

Feldthaus et al. [15] describe a methodology for implementing automated
refactorings on a nearly complete subset of the JavaScript language. The authors
specify and implement three refactorings: rename property, extract module, and
encapsulate property. In summary, the proposed refactorings aim to transform
ES5 code in code that is more maintainable. However, they do not transform the
code to the new JavaScript standard.

Previous works have also investigated the migration of legacy code, imple-
mented in procedural languages, to object-oriented code, including the transfor-
mation of C functions to C++ function templates [?] and the adoption of class
methods in PHP [?].

8 Final Remarks

In this paper, we report a study on replacing structures that emulate classes
in legacy JavaScript code by native structures introduced by ES6, which can
contribute to foster software reuse. We present a set of migration rules based
on the most frequent use of class emulations in ES5. We then convert eight
legacy JavaScript systems to use ES6 classes. In our study, we detail cases that
are straightforward to migrate (the good parts), cases that require manual and
ad-hoc migration (the bad parts), and cases that cannot be migrated due to
limitations and restrictions of ES6 (the ugly parts). This study indicates that
the migration rules are sound but incomplete, since most of the studied systems
(75%) contain instances of bad and/or ugly cases. We also collect the perceptions
of JavaScript developers about migrating their code to use the new syntax for
classes. Our findings suggest that (a) proposals to automatically translate from
ES5 to ES6 classes can be challenging and risky; (b) developers tend to move
to ES6, but compatibility issues are making them postpone their decisions; (c)
developer opinions diverge about the use of transpilers to keep compatibility with
ES5; (d) there are demands for new class-related features in JavaScript, such as
static fields, method deprecation, and partial classes.

As future work, we intend to enrich our research in two directions. First, we
plan to extend our study migrating a larger set of JavaScript systems. In this
way, we can identify other instances of bad and ugly cases. Second, we plan
to implement a refactoring tool for a JavaScript IDE. This tool should be able
to semi-automatically handle the good cases, and also alert developers about
possible bad and ugly cases.
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