Weighted Central Paths in a Tree

by

José A, Pino and Christian E. Moris
Departamento de Clencias de ia Computacion
Universidad de Chile
Casllla 2777
Santtago, Chile

Abstract. A generalized procedure is given to fina the central path in a tree, In particular, it is
applied to find the weighted path center and the weighted spine of a tree. The approach taken is to
build the path from an already found central vertex and computed limb weighis. If these are
provided, the presented algorithms are linear-time.

1. Introduction

There are facility location problems which can be modelled as the search for a central path in a
graph, such as the search for pieces of roads, pipelines or railroad lines which optimize a given cost
criterion. In a broad sense, typically these criteria are of the minimax type (minimize the largest
distance from any venex of the graph 1o the path) or the maxisum type (minimize the sum of the
distances from any graph component which does not include the path, to the path itself)f7].

In the particular case of a tre¢ graph, Stater [6] has presented linear-fime algorithms to find the
central paths for two definitions of it: the path center and the spine (path centroid). Hedetniemi et
al. [1] also provide a linear-time algorithm for the path center of a tree. Morgan and Siater [4]
develop a linear-time algosithm to find yet another kind of central path of a tree: the core (path
median),

The cited works, however, do not consider the case of a tree graph with vertex weights, This
situation may arise in practice. For instance, trying to replace with a subway line the most used
segment of a road network, such as the one depicted in Fig, 1, should take into account the traffic
generated at the vertices as well as the distances involved. '

A recently published paper by Rosenthal and Pino {5 gives a generalized algerithm to find a
CENTRAL VERTEX in a tree under a vatety of cost criteria. This algorithm is used here to
construct a procedure 1o find a weighted central path in a tree graph, In panticular, it can be apptied
to find the weighted spine or the weighted path center.

This work has been partially supported by grant No. 89-1106 from Fondo Nacional de Clencia y
Tecnologla (Chile)

299

Figure 1, Values inside the nodes represent traffic units generated at the vertices. Figures on arcs
represent distances..

2. Definitions and Terniinology
LetV=vi/ie I={1,..n)] beaverntexset,and E={ (uv)/uve V] anedge set.

A path P (v;,,v;) is asequence v;,, . . ., v, of k 2 1 distinct elements of V such that there exists
an edge (v,.v,) € E forany pair v,v, of consecutive vertices in the sequence.

A rooted tree T'(V ,E r,) is a triple such that
i)r,eV (called the roop),
ii) forany () € E, also (v) € E (dirccted tree, but all edges have their symmetric pair),
iii) there exists a unique path P(u,v) foranyu,ve V.

We atso define:
Adj(vi={u/ue Vand (uv) e E}
degree(v) = Adj(v) .

"If£ P =P(v,vy)is a path of a tree and 1 Agij(v,), we denote by u // P the path

V1, ,va. Asimilar concatenation to the right defines P/ u, 1Pt is the number of vertices of P.
Iwwy I8 the length of the edge {u,v) (a positive real number for u = v). The edges satisfy
luwy=louy

d(s,v) = 3, ey 15 the distance from u to v,
Pay)ePuy) rykE
If § ¢ V, then the distance from uw e V to S is defined d(u,S) = min { d(u,v),ve S }.

{¢;:V = R* [jeT=(1,.,m}]}, isasetofvertex cost fuifictions (vertex weights).

As in [5], for a tree T'(V £ ,7,), we define the limb Lot YV vy E) asa pair where (u,v)
cBand Vi,) = {we V/ud Pw) and By = ((53) /Gy € Bixy e Vi) U f (uy),
{v,u) } (see Figure 2),

360

In what foHows, for simplicity, T(V .E,r,) and L o)V w1 E g w11, v)y will be denoted T
and L g, 3. respectively.

L(u,v)

Figure 2
L (¢ 4y« the limb pointed to by (u,v)

The problem of finding a eentral venex in a tree is completely specified if there is a cost
definition of a tree when the central vertex is located ai each.vertex u € V. This cost is the real-
valued quantity e(u}, called the eccentricity of the tree atu. The goal, then, is to find a vertex v e V
such that e{v) is minimum.

The verex eccentricity for the I-center problem is:
e(u) = max, v { dlu,x) }, ue V, 7
For the weighted 1-center problem, the vertex eccentricily is defined by
e(u) = max, ey { c(X)du,x)}}, ue V. {1
The weighted cenfroid is the vertex which minimizes the maximum tralfic carricd by any
single edge. If u is the cemroid, the maximum traffic e x) Will be on the edge (u,x) out of
e =maxey (), uve V. {2}
Other vertex centrality criteria are described in [5].

The definition of eccentricity can be extended also to subsets of vertices of T. In particular, if
P(u,v) is a path, and the distance to a path is taken to the set of vertices of the path, then

e(P(u,v) } = max, ey { c{x) d(x, P{u,v)} }, for the weighted 1-center problem, 3
e(PQu,V)) = maKee pryy { max eyl ¥ € Adj(x), y ¢ P(u,v) }, for the weighted centroid problem.

The CENTRAL VERTEX algorithm {5] computes quantities called fimb weights wi{u,v),
associated to each limb Ly vy of the tree. The limb weight wi(u,v) is a summary of the information
about the limb. The summary is sufficient in the sense that:

i} wi(u,v) contains ali the information about L ¢ yyrelevant to computing e(u), and
L6 332 Ly wi{u,v} contains atl the information about L (. vy relevant to
computing wt{w,y).

301

Intuitively, the timb weight expresses the cost contribution of the limb to the eccentricity of
any vertex outside it. The next two expressions define useful sets of weights.

WTS(v) = { wi{v,x) ! such that x & Adj(v)}

OTHER_WTS{u,v) = WTS{u) - {wi{u,v}}

If P(u,v) is @ path in a tree T with e(P(u,v)) < e(P(x,y)} for any path P(x,y} in T, and, if there
does not exist a path P(x,y) in T with IP(x,y)f < IP(e,v)! for which e(P(x,y}} = e(P(u,v)), then P(u,v)
will be called weighted path center of T (eccentricity defined as in (1)) or weighted spine
{cceentricity defined as in (2)).

3. Weighted Gentral Paths
The CENTRAL VERTEX algorithm [S] finds the weighted centroid of a tree in O(fVI) time and also
computes the limb weights wi(e,v) for all {u,v) e E. Although CENTRAL VERTEX can also be
used to find the unweighted 1-center of a tree in linear time, the problem with weights violates the
required conditions, since in this case it is impossible to compute a limb weight from the weights of
the neighboring limbs, adjacent edge length and local vertex weight. Neventheless, the same
algorithm can be modified to find the weighted 1-center of a tree and corresponding limb weigths in
O¢1V 1Y time. The rest of this paper assumes that this algorithm is used to compute cither the
weighted 1-center and the imb weights of the tree, or the weighted centroid and associated limb
weights.

1t should be noted that Megiddo {3] gives a lingar-time algorithm 1o compute the weighted 1-
center of a tree, but does not provide all limb eccentricities. The same remark applies to a previous
algorithm by Kariv and Hakimi (2] which has O('VI togtVI) time complexity, Although the algorithm
by Hedemiemi et al. [1] finds a weighted 1-cemter of 2 tree in linear time, it refers to a simpler,
addilive weights case.
LEMMA 1, For any path P(u,v) =t W oWy v, the following inequality holds:

wi(i v > wilw 1 avg) > > wilwy V)
Froof. For the centroid problem, from [5):

wilu) = total (OTHER_WTS (w,u)) + e(w)
where total is a function Which yields the sum of the argument values. Since every value of
OTHER_WTS(w, u) is a posilive real number, one of them is wi{w y,w3). Thus,

total(OTHER_WTS(0v, u)) > wilw ,wy)
and since ¢c(w 3> 0,

wi{i,w) > wt{wq,waq)
An inductive argument proves the thesis. For the weighted t-center problem,

wi(t,wy) = max { o) dux) /X & Vg, } > max { ez} dwiz) /2 € Vil =
W{(Wl IWZ)

SINCE L gy 0y 2 Loy 800 d(u, w) > 0.

302

COROLLARY 1. Let v be a central veries in T such that
e(v) = max {wi(v,w) w € Adj{v)} < max,cy (WXyV/ye Adj(x)}

Then, for each path v 0wy, - - - ,wy 2 with v # 2, the eccentricity of z is e(z) = wi(z, wy).

COROLLARY 2. For any pair u,v ofédjacem vertices, the next inequality holds:
wi(u,v) > max [wi(x,w)/ ¥V x e Vg, oy, we Plux)]
0
Hedetniemi et al, [1} proved the uniqueness of the unweighted path center of a wee. With few
changes, it can be used to prove:
THEOREM 1. The weighted path center and the weighted spine of a tree are unique.
3

THEOREM 2. The weighted path center P*, or the weighted spine P*, of a tree T containg the
weighted 1-center vertex v, or the weighted centroid v, respectively.

Proof. P* satisfies, by definition, the following for any pathPin T,

max,epr { WHLX)/ x e Adj(u), x ¢ P* } Smax,.p [wi{u,x) /2 e Adi(u),x¢ P} {4
and v 1§ such: that,

e(v) =MaX, e agiey § WHY,Z) } S e(y) = max,caujeyy [Wiy.2} } forallye V, £5)
Assume v € P*and let Q be a path built ondy with v, L.e., Q= Q{v,¥). Then, for Q:

e{(vy=max { wi{v,z) } =max { wi{v2)/z ¢ Q} (6}

Let w e P* such that d{v,w) = d(v,P*), and R=R{v,w) be the path v.w, ..., w; w . By corollary |
1o lemma I,

e(w) = wilw,wy) = MaX, cagiey (WHW,Z)} Smax,pe {wl{ui)/zd P*] h
Using (6) and (7) in (), we have
max,eq {Wi(,z}/z¢ Q) Smax,cpe {Wtux)/x e Adj(u), x ¢ P*}

but this violates the uniqueness of the centrat path (Theorem 1}, therefore v e P*,
]

Theorem 2 suggests a method to ind the central path of & tree starting with the central vertex
{The approach is similar to the one described by Slater {6].) The next afgorithm builds o path £,
which after some pruning, will bé proved to be the central path,

ALGORITHM CPC (Central Path Constnuction)
feltbuildsapathPr=u, - -y vy, ¥
1. Letvbeacentral veriex and v be a vertex such that

elv) = wilv,y)) = max {wi{v,w) w & Adj(v)} /* fom the CENTRAE VERTEX
algorithm */
make Pt e—v ff v,

303

T ie2

2.2 Find vertex v; € Adj(v;.,) and v; ¢ P, such that
wiv_ v Y=max { wilv,o, wi/we PY)
If more than one vertex satisfies this condition, then s « i - 1 and go o step 3.
Else, Pt e~ P* [l v

2.3 If there are unvisited vertices which are adjacent 1o v;, 1 ¢~ i+ 1 and go 1o step 2.2
Else, s « L.

3. Find vertex u & Adj(v), u, & P*, such that
wi{v, #y=max { wi{v,w)fwe P}
and PY e uy i PY
ie2

4.2 Find vertex veriex i; € Adjiy;_y), u; & P, such that
Wity ot)y = max { wi{; ., w)/wd PTY,
If more than one veriex satisfy this condition, r « i -1 and stop.
Eise, Pt e~ u; /{ P,

4.3 Il there are unvisited vertices which are adjacent to u;, i & i+ 1 and go to step 4.2,

Else, r ¢~ 1 and stop.
0

LEMMA 2. Algorithm CPC takes O(IVI) time 1o build path P*,

Proof. Step I takes time O(degree(v)) = O(tVI). Loop 2 (sleps 2.2 and 2.3) assembles a path from v

10 al most a leal of T, visiting each veniex once; thus the loop is bounded by
iV
O(Y degree (v;) = 2IVL- 1= OQVI),
il

Step 3 is analogous to step 1, and loop 4 is similar to loop 2. Therefore, algorithm GPC takes O(tV1)

lme.
|

LEMMA 3. Any path 7 * butlt by algorithm CPC satisfies e(P ') < e(Q), forany path Q in T.

Proof. Suppose the contrary, i.e,, there is a path Q such thai
max, g p-{wt{a,w)/wée £*)>max, .o {wiluw)/wé Q} 8)

By step 1 of CPC, the central veriex v e P,

1) We first prove v € Q. Suppose the contrary, ic., v ¢ Q and let w & (be the closest vertexX to v
(Figure 3a). Let w, w ..., v be the path P{w,v).

By definition,
e(Q) = wilw ,w).
By corollary 2 10 lemma 1,

Wi wy) > wi(wy v).

304

By corollary 1 to the same lemma,
wiwy ,v) > e(v).
By algorithm CPC,
e(v) > max _p fWilx,yY y & P*).
Combining the previous relations,
e(Q)y = wilw w) > wihw ,v) > elv) > max, . p (WYY y ¢ P} =e(P ™).
But this contradicts (8), thus, ve Q.

Wy
Uy v v
(@) ()
Figure 3, Paths used to prove Lemma 3
2} We now prove that (8) cannot hold. Suppose P* and Q have verices 1y, n U RO 11

common (Figure 3b).
If max, . p-{Wt(u,w) / w ¢ P*} occurs in P(u, ,v), then e{P) < ¢(Q), contradicting (8). Fhen let
P =wilxy), forx e P*,yd PH (xy) e £, v, (the same argument applics 1o (x,y) €
Eﬂi.ﬂhl)
Then, by coroltary 2 to lemma 1 and by algorithm CPC,
WV v 41) > WKLY = e(P)
By definition {see Figure 3b),
e{Q) 2 wilv,vpyy)

Combining the last two relations, e(Q) > e(P*), contradicting (8).
[

It might be noted that F'* spans from one leaf to another feaf of the tree, unless in the process
of going to a leaf, two edges have identical Jimb weight (steps 2.2 and 4.2 of CPC}). The nitionale o
stop path building in the Jatter case is that adding a new vertex (and edge) 1o the path will not
decrease the maximum path weight, already bounded by the limb weight on the other edge,

It will be proved that a path P°, which is path P+ after some pruning, is the weighted central
path as defined previously. To do the pruning, we need 10 compuie e(P*). Expression (3) above

305

gives the precise definition of path eccentricity for the weighted path center problem. For the
weighted spine problem, we first notice that:

wi(u,v) = total (OTHER_WTS(v,u)} + ¢(v)
and

e(v) = max(WTS{v}).
Then,

e(P(u,v)) = maxye pg, vy {max { wi(x,y) /y ¢ P(u,v)}) (an
It is therefore easy to verify the next lemma for both versions of path centrality.

LEMMA 4. Computation of e(P*) can be done on O(VD) time if all limb weights are already
computed,
[

The pruning operation can be explained as follows. Let P* be the path i, ,... 4 [,V V¥, ..., V;.
If wi(u, y,1,) < &{P™), then it is clear by Lemma 1 that extracting u, from P* siill leaves P* with
the same eccentrigity. This idea can be applied iteratively, as in the next procedure:
ALGORITHM PP (Path Pruning)

/% The outpuwt is path P'= w,...01v.vy..v,, Staming with pah P*
Hey oo s YV Vs *f

H

1. ier
2. Mwi(y; y,u;) < elPYtheni « i+1 and repeat step 2.
Else, if wiu;_; ;) then p «i-1.
Else, if wi{u; ;Y then p e« 1.
3, i1es
4, Ifvwi(v;y,v;)<e(P*)then i« i+1 and repeat step 4.
Else, if wi(v;_;,v;) then q ¢ i-1.
Else, if wi{v;; v;) thenq « i,
5. Swp
8]

THEOREM 3. Path P* produced by algorithm PP is the weighted path center or the weighted
spine, depending on the eccentricity and limb weight definition.
Proof. P* has minimum eccentricity, since the pruning operation in algorithm PP prescrves this
eccentricity. By Theorem 1, there cannot be two (or more) paths with minimum eccentricity having
the same number of verticer.

There remains to be proved that there is no path with minimum eccentricity having less
number of verices than P *,

Let then Q be a path with minimum eccentricity suach that IQI < [Pl If v is the central vertex,

then v e P " by construction, and v € Q by Theorem 1. Thus, either Q P* orQ A P* # ¢ with Q .

having at least one vertex not in P'.

306

‘The first case, Q ¢ P 7, is impossible by steps 2 and 4 of algorithm PP (and steps 2.2 and 4.2 of
algorithm CPC). The second case, Q M P " # ¢ with at least one distinct vertex, is also impossible:
let v, € QrP", with Vi € P viad Q ze Qandze Adj(v). Since vy, is the vertex chosen
by algorithm CPC to expand P* (step 2.2),

wilvy v) > wit (v,2)

By step 2 of algorithm PP, vy, cannot be pruned without increasing the eccentricity of P*,
therefore, e(Q) > e(P *y and this contradicts the-assumption of Q having minimum eccentricity.
]

THEOREM 4. The time complexity of finding the weighted central path of a tre¢ is bounded by the
computation of limb weights.

Proof. P' is computed by:
1) Perform algorithm CENTRAL VERTEX on the tree,
i1) Perform algorithm CPC to yield P*,
iii) Compute e(P*) and
iv) Perform algorithm PP to yield P°,

Step i) takes O(IVY]) dme for the weighted centroid and O(1V 12) for the weighted 1-center (and
corresponding limb weights), Step ii) takes O(Vl) time (lemma 2). Step iii) also takes OIVI) time
(lemma 4), Finally, and since PP at most visits all the vertices on path P¥, step iv) takes O(IVI) time,

a
COROLLARY 1. The weighted spine of a tree can be found in O{IV}) ime.

£l
COROLLARY 2. The weighted path center of a tree can be found in O(1V %) fime.

(|

4. Concluding remarks

The procedures developed in the previous section de-not require the use of the CENTRAL VERTEX
algorithm; any algorithm which computes the central veriex and limb weights of the free can replace
it. The approach can be applied to any definition of central path built from a central vertex which is
part of it (see {5] for some definitions of central vertices). As noted in [6], the path median (core) of
a tree does not necessarily contain the median vertex, and is thus an example of a case where the
approach presented in this paper cannot be taken,

References

1. Hedetniemi, 8.M., Cockayne, E.J., Hedemiemi, -5.T., Linear Aigoriuuns for Finding the Jordan
Center and Path Center of a Tree. Trans. Sci. 15, 2 (May 1981), 98-114.

2. Kariv, 0. and Hakini, S.L., An Algorithmic Approach to-Network Location Problems, I: the
p-centers. SIAM J. on Applied Math. 37 ;3 (1979), 513-538.

3, Megiddo, N., Linear-Time Algorithms for Linear Programming in R* and related problems.
SIAM J. Comput. 12, 4 (Nov. 1983), 759-776.

307

Morgan, C.A. and Slater, P.J.,, A Linear Algorithm for a Core of 2 Tree,-J, of Algorithmy .
(1980}, 247-258,

Rosenthal, A, and Pino, J.A., A Generalized Algorithm for Centrality problems on Trees,
JACM 36, 2 (Apr. 1989), 349-361.

Slater, P.J., Locating Central Paths in a Graph, Trans, Scl. 16, 1 (Feb. 1982), 1-18.

Tansel, B.C., Francis, R.L. and Lowe, T.J., Location on Networks: A survey. Part It the p-
center and p-median problems. Management Scl. 29, 4 (Apr. 1983), 482-511.

#

308

