
francia

francia

francia

francia

francia

francia

francia

francia

francia

350 A. ROSENTHAL AND J. A. PIN0

In most of the applications given below, each vertex v is to receive a volume
c(v) of traffic (e.g., messages) from a central facility in a network. For simplicity,
we restrict ourselves to a network T, which is a tree and to the case where the
central facility consists of exactly one vertex. Each message has only one recipient.
The traffic (denoted f~,,.,.J carried by an edge (u, v) depends on the placement of
the central facility; all vertices from the connected component of T-{(u, v)) not
containing the center have their traffic routed over (u, v). Given the cost structure
of a tree, we define the eccentricity of a vertex v in that tree (denoted simply ccc(v))
to be the cost of distributing to all the vertices of the tree from a center located
at v.

1.1 THE GENERAL PROBLEM. Given a tree and its cost structure, we want to
compute simultaneously the “eccentricities” for all vertices in the tree. (In practice,
this approach allows later choice of a center based on eccentricity and unquantifi-
able factors as well.) To compute eccentrity or “total” cost for all vertices, we
introduce a generalized “schematic” algorithm. The method for expressing the
algorithm’s generality merits attention. Formally, the local cost structure is specified
by subroutines (i.e., uninterpreted function symbols). Conditions are given explic-
itly such that for any admissible local cost functions, the algorithm will be valid
and will run in linear time. Admissible cost structures must satisfy the following
rather weak condition: If one roots the tree at an arbitrary vertex r,, it must be
possible to traverse the tree bottom-up, recursively computing information (called
limb weights) such that the eccentricity of vertex r,, may easily be computed from
the weights of limbs incident to r,,.

The user supplies subroutines that specify the cost structure by calculations to
be performed at each vertex. Our algorithm handles the global tree traversal and
the cost calculations for the limb weights.

The contribution of this paper lies in four points: First, it incorporates under
one framework many algorithms that were previously treated separately. Second,
we abstract the cost manipulation and handle our algorithm independently of the
details of the cost structure. Third, we observe that once we know the eccentricity
of an arbitrarily chosen root, then a single downward traversal can provide all
vertices’ eccentricities (this property was already used in some previous algorithms
[141). Finally, we provide some conditions that ensure the linearity of an algorithm
fitting the framework.

1.2 PREVIOUS WORK. In many of the applications below, attention has centered
on computing ecc(root) in linear time for a complicated cost structure. To find the
eccentricities of all vertices, one must repeat the computation for each vertex, for
a total time of 0(] V 1”). For some of the applications, there is no previous algorithm
that computes all the eccentricities for certain cost structures in linear time,
although many applications possess algorithms that find the center in linear time.

For graphs formed by composition rules with limited attachment points, Bern
et al. [l] and Takamizawa et al. [23] show how to find min/max weight subgraphs
satisfying some regular property P. Weight is the sum of weights in the selected
subgraph. Their algorithms perform a postorder traversal of the composition tree
that produced the graphs; during that traversal they execute a dynamic program
based on an assumption that each subgraph is in one of a small number of
equivalence classes with respect to P.

The algorithm we present also begins with a postorder traversal of a tree, and
makes assumptions about the cost function similar to the homomorphism assump-
tion of Bern et al. [l]. But our algorithm handles more general computations of

A Generalized Algorithm for Centrality Problems on Trees 351

weight (i.e., eccentricity) and performs mass production to find the eccentricity of
every vertex. There is no dynamic program either, and the second pass is different.

2. Terminology

Let V = {v,/i E I = { 1, . . . , n]) be a vertex set, and E = ((u, v)/u, v E V) an edge
set.

A path P(v;, v,) is a sequence v,, . . . , vj of distinct elements of V such that there
exists an edge (vk, v,) E E for any pair vk, v/ of consecutive vertices in the sequence.

We define a rooted tree T(V, E, r,,) as a triple such that

(i) r,, E V (called the root),
(ii) for any (u, v) E E, also (v, u) E E (directed tree, but all edges have their

symmetric pair),
(iii) there exists a unique path P(u, v) for any U, v E V.

Let v, w, . . . , r,, be the path P(v, r,,). Then w is called father(v) (r,, does not have
a father).

Adj(v) = (U/U E V and (u, v) E EJ,
Sons(v) = Adj(v) - (father(v)] (Sons(v) is empty if v is a leaf),

degree(v) = 1 Adj(v) 1,

1 (,,.“) is the length of the edge (u, v) (a nonnegative real number).
The edges satisfy /(,,.,,, = &,, .

d(u, v) = Lc,~;E~w 4r<,x,, is the distance from u to v.

ICj:V~Reals/jEJ=(l,..., m)) is a set of vertex cost functions defined for
some applications. {g(,,.“): Reals’ + Reals”/(u, v) E E, r, s E N) is a set of edge
functions defined for some applications.

For a tree T(V, E, r,,), we define T(,,., ,,(y,,.“), EC,,,,,, v) (see Figure 1) as a
triple where (u, v) E E, and &,.“) = (w E V/u @ P(v, 41 U (4 and Et,,.,.) =
Kx, Y)/(x, Y) E E; A Y E K,,.v)l.

Similarly, the limb L(,,.,,(V~r,,vJ, EC ,,,”), (u, v)) is a triple where (u, v) E E and
J$,.,,) = (w E V/u B P(v, w)) U {v) and E (u.v) = 0, Y)/(x, Y) E E; x, Y E Vrr.v)l u
ICU, 4, (VT UN-

In what follows, for simplicity, TN, E, r,,>, ~,,.,~(vC,,,,~, E(,,.,), v) and L(,,.vl(~(,,.v),
E (,,,, ,), (u, v)) will be denoted T, T(,,.,,, and L(,,,,,, respectively.

In each example application below, each limb L (,,.,,) is given an associated quantity
called “weight” denoted wt(u, v) from which the eccentricities are computed. The
weights are obtained from the input data and previously computed weights. The
input data may be the edge lengths, vertex cost functions, and/or edge functions
and depend on the specific application.

The computation of the eccentricities is also application-defined. The real-valued
quantity ccc(u) will be computed to mean the cost of the tree if the center is located
at vertex ~1.

The weight wt(u, v) of a limb L~,r,vl is a summary of the information about the
limb. The summary is sufficient in the sense that

(i) wt(u, v) contains all the information about I&,, relevant to computing ccc(u),
and

(ii) if L(,,,,,.) and L, ,,.,,) are limbs such that &,yI 2 VC ,,,”), then wt(tr, v) contains all
the information about L(,,,,, relevant to computing wt(w, y).

352 A. ROSENTHAL AND J. A. PIN0

FIG. 1. T, ,,.,,, andL,,,.+

The crucial idea is that for “reasonable” cost functions, it is possible to obtain
such a compact representation of any limb. Intuitively, this representation expresses
the contribution of the limb to the eccentricity of any vertex outside it.

The next two expressions define useful sets of weights.

WTS(v) = (wt(v, x)] such that x E Adj(v)J
OTHER-WTS(u, v) = WTS(u) - (wt(u, v))

3. Applications

Before presenting the algorithm, we list below some optimization problems, to-
gether with the corresponding definitions. The value of ccc(v) will be determined
by these (center-dependent) edge traffics.

(i) Minimizing a Sum of Traffic-Dependent Edge Costs. We wish to minimize
the total message costs. Suppose it costs g&t) to send t units of traffic across
edge@, v). Let ccc(v) be the sum of all these (traffic-dependent) edge costs when v
is the center:

ccc(v) = C scV..,,W.
.\EAdj(v)

References [6], [151, and [181 consider this problem in the special case where all
g(.) are linear (this reduces to the problem to finding the 1 -median of the tree).
Goldman [6] and Hua [151 describe how to find the eccentricity of the l-median
in linear time. Kariv and Hakimi [181 propose methods to find p-medians and
compute many eccentricities in a tree, but their algorithms are not linear, since
they address a more complicated problem. Hedetniemi et al. propose a linear time
algorithm to find the center [141.

(ii) Telecommunications Amplifier Problem (r-Domination Problem). In some
telecommunication systems (e.g., cable television) a signal can travel only a limited
distance without being amplified. We wish to locate the central signal distribution
point so as to minimize the number of amplifiers required. The problem has many
variants. Kariv and Hakimi [171 solve some of these versions in linear time. Other
references are [4] and [22]. The Appendix contains a detailed specification of one
of the variants.

A Generalized Algorithm for Centrality Problems on Trees 353

(iii) Minimize Maximum Congestion (Weighted Centroid). We wish to mini-
mize the maximum traffic carried by any single edge. If v is the center, the
maximum traffic will be on one of the edges (v, x) out of v.

Define ccc(v) = max(t(,,..,,] x E Adj(v)).
When each vertex receives 1 unit of trafIic, the example reduces to the problem

of finding the “centroid” of a tree [131. Linear time algorithms exist for finding
the weighted centroid [161. The general problem is actually equivalent to finding
the l-median [18].

(iv) Minimax Distance Location Problem (l-Center Problem). Consider the
problem of locating an emergency facility or pizza parlor for communities con-
nected by a tree of roads. We wish to minimize the longest distance a patient or
pizza must travel.

Define ccc(v) = max,EV(d(v, x)).
The simple case in which all the edge distances are the same is the problem of

finding the “center” of the tree as defined in graph theory [131.
Handler [1 I] proposed a linear-time algorithm to find the l-center for the general

problem of edges with arbitrary nonnegative lengths; all eccentricities can also be
found in linear time.

Halfin [lo] introduced an additional vertex-dependent time delay at each vertex.
Hakimi [8] and Hakimi et al. [9] proposed an alternative problem with vertex-
dependent weights added in instead of time delays. Linear time solutions exist for
all these problems [20]. See also [5], [7], and [171.

(v) Lossy Network. Let each vertex v have a “demand” c(v) and consider a
distribution network (e.g., power or water) in which to supply b units at end v of
edge (u, v) one must supply g,,,,,.,(b) units at vertex U. ccc(v) is the number of units
required at vertex v to supply the entire tree from v. Shekel [21] proposed an
O((V 1) algorithm to find the eccentricity of one vertex, restricted to linear g(.).
By performing a binary search on the tree, that algorithm finds a vertex of minimum
eccentricity in 0(] V] log (V I) time.

(vi) Minimum Expected Traffic Blockage. Consider a network whose vertices
and edges fail independently with known probabilities. Failed vertices block com-
munication. In one version, all traffic comes from the vertices to the center, and
ccc(v) = expected amount of blocked trafIic. A second version assumes that vertices
communicate pairwise, but with all trafftc routed via the center (e.g., for billing).
In this case, ccc(v) = expected number of vertex pairs disconnected by failures.
Kershenbaum and Van Slyke [191 gave an algorithm for each version of the
problem, in which O(I V I) time is required for each eccentricity computed.

4. Generalized algorithms
We want to separate the main algorithm from the details of the cost structure. For
each application, “weights” for limbs will be defined to serve as summaries which
are sufficient for eccentricity calculations. For instance, in the centroid example
(iii), the weight of a limb is simply the amount of traffic routed toward the limb.
(The Appendix contains weight definitions for the other applications.) The algo-
rithm to be proposed will work as long as the weights satisfy certain conditions
shown below.

Although traversing the tree, the generalized algorithm will call subroutines (i.e.,
uninterpreted functions) COMBINE and EXTRACT to compute weights and
eccentricities. EXTRACT takes the weights of all limbs incident to a vertex v, and
computes ccc(v). COMBINE takes a given information about the edge(u, v) and

354 A. ROSENTHAL AND J. A. PIN0

the vertex v and combines it with the weights of the limbs {L(,..,,] z # U) (i.e.,
OTHER-WTS(v, u)) and yields the weight wt(tl, v) of the limb L(,,,,,,. The task of
the tree traversal algorithm is to call COMBINE and EXTRACT in the proper
order with the proper arguments when the relevant weights are known.

The manipulations performed by COMBINE and EXTRACT are not compli-
cated. In all the applications mentioned, there are very simple algorithms that
traverse a rooted tree bottom-up to compute ecc(root). At each v # root, these
algorithms use a function analogous to COMBINE to compute wt(father(v), v)
from OTHER-WTS(v, father(v)). An analogue of EXTRACT is used to compute
ecc(root). Our contribution at this point is the observation that a single downward
traversal from the root can provide all vertices’ eccentricities.

Conditions 1 and 2 below apply to the cost structure. They give a rigorous
meaning to the statement that weights must effectively summarize limbs.

Conditions. There exist functions COMBINE and EXTRACT, and limb weights
such that

(1) ccc(v) = EXTRACT(v, WTS(v)).
(2) wt(u, v) = COMBINE(u, v, OTHER-WTS(v, u)).

Note that EXTRACT(v, WTS(v)) [respectively, COMBINE(u, v, OTHER-
WTS(v, u))] may be involved only after WTS(v) [OTHER-WTS(v, u))] has been
computed. Also note that when v is a leaf, OTHER-WTS(v, U) is empty. Thus, a
bottom-up tree traversal is needed to compute COMBINE for all vertices.

The mechanics of storing and passing the vector arguments to the subroutines
for EXTRACT and COMBINE are uninteresting, so we shall assume that the
vectors WTS(v) and OTHER-WTS(u, v) are available as soon as their component
weights have been computed.

In order to perform meaningful analysis of running time, it will be necessary to
specify running times for COMBINE and EXTRACT. It will not be sufficient to
count function calls, since some invocations take much more time than others.

Condition 1T. EXTRACT(v, WTS(v)) may be computed in time @degree(v)).

Condition 2T. COMBINE(u, v, OTHER-WTS(v, u)) may be computed in time
O(degree(v)).

Conditions 1T and 2T are designed so that the overall algorithm will take linear
time on trees without high-degree vertices (the “1T” and “2T” denomination
emphasizes the time complexity). These conditions also rule out trivially defining
the weight of a limb as (some appropriate encoding of) the limb itself. To satisfy
1T and 2T, weights will need to be succinct summaries.

5. A Simple (Nonlinear) Algorithm
After arbitrarily choosing a root r,, it will be necessary to traverse the tree twice,
once upward (i.e., from the leaves to the root), and once downward. In the first
traversal, before a vertex is processed, all of its sons must be processed. This will
be called a “bottom-up traversal.” In the second traversal, a vertex is always
processed before any of its sons. This will be called a “top-down traversal.” The
conventional postorder [preorder] traversal is a satisfactory bottom-up [top-down]
traversal.

We now present the first algorithm for computing eccentricities. During the
bottom-up traversal, the weights wt(father(v), v) are computed using COMBINE.

A Generalized Algorithm for Centrality Problems on Trees 355

Then, the top-down traversal computes wt(w, v), for w E Sons(v) using COMBINE,
and also the eccentricities using EXTRACT.

(1)
(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

it:;

PROCEDURE central-vertex
BEGIN

v := first-vertex-of-bottom-up-traversal
WHILE v # r,,

BEGIN
wt(father(v), v) := COMBINE(father(v), v, OTHER-WTS(v, father(v)));

// Note that entries in OTHER-WTS(v, father(v)) were computed //
// when Sons(v) were processed //

v := bottom-up-successor(v)
END;

v .= r,,; // SECOND TRAVERSAL //
ecc(r,,) := EXTRACT(r,,, WTS(r,,));
// All the entries in WTS(r,,) have been computed in the first phase //
REPEAT
FOR each son w of v
// This loop computes (wt(w, v) 1 w E Sons(v)] //
BEGIN

wt(w, v) := COMBINE(w, v, OTHER-WTS(v, w));
// All but one entry in OTHER-WTS(v, w) was computed in the first

phase. //
// The exception [wt(v, father(v))] was computed earlier in the second traversal,

when //
// father(v) was processed //
ccc(w) := EXTRACT(w, WTS(w));
// Step (8) just supplied the last entry in WTS(w) //

END;
v := top-down-successor(v); // (non-leaves) top down //

UNTIL all -non-leaf-vertices-have-been-visited
END;

Figure 2 illustrates the limb weight computations in the weighted centroid
problem (iii), Recall that the weight of a limb is the trafftc destined for vertices in
the limb. Each value wt(u, v) is represented on the edge (u, v).

The COMBINE function in this case is

wt(u, v) := c(v) + 2 wt(v, x).
.xEAdj(t,)

A-#11

Thus, wt(r,,, ~~‘4) is computed as 4 + (5 + 2 + 3).

Complexity. The tree traversal “successor” routines (lines (4) and (10)) take a
total time Q(] V I). We note that in a tree, as previously defined, C,, degree(v) =
(E] = 2((V (- 1) = O((V I). Appealing to Condition 1T [respectively, 2T], we
see that the total time over all interactions at lines (6) and (9) [respectively, (3)] is
O(] V I). A careful check of Condition 2T shows that line (8) requires time

C degree(v)
WE Sons(q

Thus, the time required for Algorithm 1 is O(] V] + 2 [degree(v)]“).

6. A Linear-Time Algorithm
For the algorithm to run in linear time on all trees, steps (7)-(9) must be altered to
mass-produce (wt(w, v) (w E Sons(v)1 in total time O(degree(v)).

356 A. ROSENTHAL AND J. A. PIN0

c(v,)=5

c(v,)=2

c(v3)=3

c(v,)=4

c(v,)=l

c(v,)=4

c(ro)=2

ccc (v,) = 16

ccc (v,) = 19

ecc(V3)= 18

ecc(v4)=7

ecc(v5) = 16

ccc (v,)= 17

ecc(rO)= 14

v 1 v2 v3 "6

FIG. 2. Tree rooted at r,,. Weights computed after the first (t) and second (J) loops
of Algorithm 1 for the weighted centroid problem.

A scheme to make those changes is based on these expressions for the vertex and
edge sets of the limbs:

~1~4 1 u Id, EC I,..,,, = U Ecu) u ((w, v), (v, w)].
rEAdj(v)-{wl 1

The obvious approach then is to compute a summary (called SMR(v)) of
the union of the vertex and edge sets of all limbs incident to v, and then find a
way to subtract off limb(v, w) and add in pertinent information on vertex v and
edges (w, v) and (v, w). Rather surprisingly, in every application considered, it is
possible to define such a “subtraction” operation (although occasionally SMR must
be defined for a 2 or 3-element vector).

A very simple example of a SMR function is found in the centroid problem (iii).
In this case the relevant information to be added is the cost c(v). Recall wt(w, v) =
&v(,V,vj C(X). If we define SMR by SMR(v) = xx.EAdj(\.) wt(v, x), then wt(w, v) =
SMR(v) - wt(v, w) + c(v).

The following are the conditions needed to modify the algorithm:

Condition 3. There exists a function MAKESUM such that

SMR(v) = MAKESUM(v, WTS(v)).

Condition 3T. MAKESUM(v, WTS(v)) can be computed in time O(degree(v)).

Condition 4. There exists a function SUBTRACT such that

wt(w, v) = SUBTRACT(v, w, SMR(v), wt(v, w)),

Condition 4T. SUBTRACT(v, w, SMR(v), wt(v, w)) can be computed in time
O(l).

The MAKESUM and SUBTRACT, together, form a COMBINE operation.
Time is saved because MAKESUM need only be performed once at each vertex.

Assuming Conditions 3 and 4 are satisfied, we replace the second loop (statements
(7)-(9) leaving (9) unchanged) by

(7.0) SMR(v) = MAKESUM(v, WTS(v))
(7.1) FOR each son w of v

BEGIN
wt(w, v) = SUBTRACT(v, w, SMR(v), wt(v, w))
ccc(w) = EXTRACT (wm, WTS(w))

END

A Generalized Algorithm for Centrality Problems on Trees 357

Conditions 3T and 4T are satisfied by all the applications listed in Section 3.
Under these assumptions, it is easy to see that new steps (7.0)-(S) take time
@degree(v)), and hence the entire algorithm is linear in time.

For the numerical example of the centroid problem shown in Figure 2, SMR(v)
is simply the total demand of the tree from vertices other than v, for example,
SMR(vJ = 5 + 2 + 3 + 7 = 17, and SUBTRACT is defined by

SUBTRACT(v, w, SMR(v), wt(v, w)) = SMR(v) - wt(v, w) -t c(v).

Thus, wt(v2, vq) = 17 - 2 + 4 = 19.

7. Final Remarks

The Appendix contains definitions of weights and summaries and the main
components of the MAKESUM, SUBTRACT, and EXTRACT functions for the
previously described applications. They show that the linear algorithm can indeed
be applied to obtain all eccentricities and the center for all these problems.

Future work to try to extend the current approach to more general classes of
graphs can be done. Chen et al. [2] have shown that if the l-median problem is
solved on the blocking graph (which is a tree if the original graph is connected),
then the solution obtained either solves the l-median problem on the original
graph or else identifies a single block that contains every l-median. Thus, an
interesting problem should be to extend the algorithm to the blocking graph to see
if similar results can be obtained for any of the applications. Also, research can be
done to handle sensitivity analysis problems for the more general classes of graphs
considered by Bern et al. [11, using their composition tree, but the second phase of
our algorithm.

Appendix. Algorithm CENTRAL- VERTEX Applied to the Problems Mentioned
in Section 3

The following gives a description of weights that can be used in the Algorithms 1
and 2 to compute the eccentricities in the problems mentioned under “Applica-
tions.” Equations are then given for the functions COMBINE and EXTRACT in
Algorithm 1. For Algorithm 2, a description of the SMR is given and then equations
for MAKESUM and SUBTRACT. Since the weight description for Algorithm 1 is
the same as for Algorithm 2, COMBINE and EXTRACT for Algorithm 2 are the
same as COMBINE and EXTRACT for Algorithm 1. Application 1 is more fully
annotated than the others.

The short notation f(v) will be used to represent father(v). The functions MAX
and TOTAL with vector arguments will yield the largest component of the vector
and the sum of the components of the vector, respectively. For example,

MAX(WTS,(v)) = Max(wt,(v, z) 1 z E Adj(v)J.

(i) Minimizing a Sum of Trafic-Dependent Edge Costs. Inputs to this problem
are the edge functions g(,,.,,): Reals += Reals (for each edge (u, v)), and the demands
c: V + Reals.

Algorithm 1. The weight of a limb L(,,,,., is a two-component vector. wt,(u, v) is
the total traffic in the subtree T(,,.+ wt2(u, v) is the cost of transporting the traffic
from u to the limb’s other vertices. The following formulas define COMBINE,
which is a vector-valued function,

wt,(u, v) := total(OTHER-WTS,(v, u)) + c(v),
wt>(u, v) := total(OTHER-WTS(v, u)) + g~,,.,,)(wt,(z~, v)).

358

The next formula defines EXTRACT:

A. ROSENTHAL AND J. A. PIN0

ccc(v) := total(WTS,(v)).

Algorithm 2. The SMR of a vertex is a two component vector. SMR,(v) is the
total traffic in the limb except for v. SMR*(v) is the total cost of transporting the
traffic to vertices other than v from v.

These formulas define MAKESUM:

SMR,(v) := total(WTS,(v)),
SMR2(v) := total(WT$(v)).

These formulas define SUBTRACT:

WV, f(v)) := SMR,(f(v)) - wtdf(v), 4 + CU’(v)),
wb(v, f(v)) := SMWf(v)) - e(f(v), 4 + gwp,,Wdv, f(v))).

(ii) Minimizing Amplifiers in a Telecommunications System. The telecommu-
nications problem was not fully specified in Section 3 because it has many variants
(all variants we have considered seem to satisfy the conditions). For the sake of
example, suppose:

(1) amplifiers may be placed anywhere on an edge,
(2) the distance downstream from an amplifier (or the distribution point) to the

next amplifier (or end of line) cannot exceed a fixed length L,
(3) there is no penalty for splitting a signal from an amplifier when it is received

by more than one place.

Inputs to the problem are then the real constant L and the edge lengths k,,.,.,.

Algorithm 1. The weight of a limb L(,,,,,, will be a vector with two components.
wt,(u, v) is the longest distance from u to an amplifier in the limb. wt2(u, v) is the
number of amplifiers in the limb. 6 is a small positive real number (smaller than L
or any distance).

Let

h(u, 4 :=
d(u, v) - 6 if v is leaf
d(u, ,,) otherwise

wt,(f(v), v) := [max(OTHER-WTS(v, f(v)) + h(f(v), v)]mod L,
wt2(f(v), v) := total(OTHER-WT&(v, f(v))

+ Truncate[[max(OTHER-WTS,(v, f(v)) + h(f(v), v)]/L],
ecc(v) := total(WT&(v)).

Algorithm 2. The SMR of a vertex v is a three element vector. SMR,(v) is the
largest distance from v to a needed amplifier (assuming v is the center). SMR2(v) is
the second largest distance from v to a needed amplifier. SMR,(v) is the total
number of amplifiers needed if v is the center (i.e., ccc(v)).

SMR,(v) := max(WTS,(v)).

Pick z such that wt,(v, z) = SMR,(v) (any such z will do if there is more than
one). Then,

SMR*(v) := max(OTHER-WTS,(v, z)),
SMR,(v) := total(WT&(v)).

A Generalized Algorithm for Centrality Problems on Trees

Define

s .= SMWv)
. {

if wt,(f(v), v) # SMR,(v)
SMRdv) otherwise

wt,(v, f(v)) := [S + h(v, f(v))]mod L,

wt2(v, f(v)) := SMR,(f(v)) - wt*(f(v), v) + Truncate (S+hiv,f(vN).

359

(iii) Centroid Problem. Inputs to this problem are the demands at vertices, c:
V + Reals.

Algorithm 1. The weight of a limb is the total demand of the vertices in the
limb.

wt(f(v), v) := total(OTHER-WTS(v, f(v))) + c(v),
ccc(v) := max(WTS(v)).

Algorithm 2. The SMR of a vertex v is the total demand of the tree from
vertices other than v.

SMR(v) := total(WTS(v)),
wt(v, f(v)) := SMR(f(v)) - wt(f(v), v) + c(f(v)).

(iv) Minimax Distance Location Problem (l-Center Problem). Inputs to this
problem are the edge lengths I(,,,,,,.

Algorithm 1. The weight of a limb Lcfc,.,,V, is the maximum distance from f(v)
to any vertex z in the limb. Note that the path from f(v) to z must have v as the
first vertex after f(v).

wt(f(v), v) := max(OTHER-WTS(v, f(v))) + l(f(Vj,l,j,
ccc(v) := max(WTS(v)).

Algorithm 2. The SMR of a vertex v is a two-component vector. SMR,(v) is
the maximum distance from v to any point in the tree (so it is also the eccentricity
of v!). If u is the first vertex on a path from v to a vertex where SMR,(v) is achieved,
then SMR,(v) is the longest distance from v to any point where the path does not
go through U.

SMR,(v) := max(WTS(v)).

Pick u such that wt(v, U) = SMR,(v) (any such u will do, if there is more than
one). Then,

SMR2(f(v)) := max(OTHER-WTS(v, u))

wt(v7 f(v)) := 1
SMR,(f(v)) + kv.r(d if wt(f(v), v) # SMR,(f(v)),
SMR,(f(v)) + Icy.& otherwise.

(v) Lossy Network. The inputs are the demands c: V + Reals and the edge
functions g(,,.,,): Reals ---, Reals.

Algorithm 1. The weight of a limb Lcfc,,,,,, is the number of units needed at f(v)
to supply the vertices in the limb.

wt(f(v), v) := gCS,,,,.,(total(OTHER_WTS(f(v), v)) + c(v)),
ccc(v) := total(WTS(v)).

360 A. ROSENTHAL AND J. A. PIN0

Algorilhnz 2. The SMR of a vertex v is the total power needed to supply the
vertices other than v from v.

SMR(v) := total(WTS(v)),
NV, f(v)) := g,,rw(SMR(f(v)) - Wf(v), 4 + c(f(v>>.

(vi) Minimizing Expected Blocked Traffc. The version shown here assumes
traffic coming from the vertices to the center. The inputs are the functions c;: V +
Reals, representing the traffic generated at each vertex, and P: V + Reals, the
probability of failure of each vertex (the range is, more precisely in this case, the
real interval [0, 11).

Algorithm 1. The weight of a limb Lcfc,.,.,,, has two parts. wt*(f(v), v) is the
expected traffic within the limb. wt,(f(v), v) is the normal traffic from the limb to
f(v).

wt,(f(v), v) := total(OTHER-WTS,(v, f(v))) + c(v),
wt*(f(v), v) := [1 - p(v)]*total(OTHER_WTS2(V, f(v))) + p(v)*wt,(f(v), v),

ccc(v) := [1 - p(v)]*total(WT!&(v)) + p(v)*[total(WTS,(v)) + c(v)].

Algorithm 2. The SMR of a vertex v is a two-component vector. SMR,(v) is
the normal traffic from the rest of the tree to v. SMR,(v) is the expected amount
of traffic that will not reach v from the rest of the tree.

SMR,(v) := total(WTS,(v)),
SMR2(v) := total(WTSz(v)),

wtdv, f(v)) := SMR,(f(v)) - Wf(v), v) + c(f(v)),
wdv, f(v)) := [l - p(f(vNl*NR(f(v>> - m(f(v), v>l + pMv))*W(v, f(v)).

ACKNOWLEDGMENTS. We would like to thank Mark Hersey and Michael Coulter
for their help in writing this paper. We also thank the anonymous referees for their
valuable contribution.

REFERENCES

1. BERN, M. W., LAWLER, E. L., AND WONG, A. L. Why certain subgraph computations require
only linear time. In Proceedings of the 26th Annual Symposium on Foundations of Computer
Science (Portland, Ore., Oct.). IEEE, New York, 1985, pp. 117- 125.

2. CHEN, M. L., FRANCIS, R. L., LAWRENCE, J. F., LOWE, T. J., AND TUFEKCI, S. Block-vertex duality
and the one-median problem. Networks 15 (1985), 395-412.

3. CHRISTOFIDES, N. Graph Theory, An Algorithmic Approach. Academic Press, Orlando, Fla., 1975,
Ch. 5-6.

4. COCKAYNE, E. J., GOODMAN, S. E., AND HEDETNIEMI, S. T. A linear algorithm for the domination
number of a tree. Znf: Proc. Left. 4 (1975), 41-44.

5. FARLEY, A. M. Vertex centers of trees. Trans. Sci. 16, 3 (Aug. 1982), 265-280.
6. GOLDMAN, A. J. Optimal center location in simple networks. Trans. Sci. 5, 2 (197 1), 2 12-22 1.
7. GOLDMAN, A. J. Minimax location of a facility in a network. Trans. Sci. 6, 4 (Nov. 1972),

407-4 18.
8. HAKIMI, S. L. Optimum locations of switching centers and the absolute centers and medians of a

graph. Op. Res. 12, 3 (May-June 1964), 450-459.
9. HAKIMI, S. L., SCHMEICHEL, E. F., AND PIERCE, J. G. On p-centers in Networks. Trans. Sci. 12, 1

(Feb. 1978), l-15.
10. HALFIN, S. On finding the absolute and vertex centers of a tree with distances. Trans. Sci. 8, 1

(Feb. 1974), 75-77.
11. HANDLER, G. Y. Minimax location of a facility in an undirected tree graph. Trans. Sci. 7, 3 (Aug.

1973), 287-293.
12. HANSEN, P., LABBE, M., PEETERS, D., AND THISSE, J. F. Single facility location on networks. Ann.

DiscreteMath. 31 (1987), 113-145.

A Generalized Algorithm for Centrality Problems on Trees 361

13. HARARY, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969, Ch. 2-4.
14. HEDETNIEMI, S. M.. COCKAYNE, E. J., AND HEDETNIEMI, S. T. Linear algorithms for finding the

Jordan center and path center of a tree. Trans. Sci. 15, 2 (May 1981), 98-114.
15. HUA, L. K., ET AL. Application of mathematical methods to wheat harvesting. Math. Sin. II, 1

(1961) 77-91.
16. KANG, A., AND AULT. D. Some properties of a centroid of a free tree. Inj Proc. Lctt. 4 (1975),

18-20.
17. KARIV, O., AND HAKIMI, S. L. An algorithmic approach to network location problems, I: The

p-centers. SIAM J. Appl. Mu/h. 37, 3 (1979) 5 13-538.
18. KARIV, O., AND HAKIMI, S. L. An algorithmic approach to network location problems, II: The

p-medians. SIAM J. Appl. Math. 37, 3 (1979). 539-560.
19. KERSHENBAUM, A., AND VAN SEYKE, R. Recursive analysis of network reliability. Networks 3

(1973) 81-94.
20. MEGIDDO, N. Linear-time algorithms for linear programming in R3 and related problems. SIAM

J. Cotnput. 12, 4 (Nov. 1983), 759-776.
21. SHEKEL, J. Optimal source location to feed a lossy distribution tree. IEEE Trans. Circ. Theory

20, 3 (May 1973), 246-250.
22. SLATER, P. J. R-Domination in Graphs. J. ACM 23 (1976), 446-450.
23. TAKAMIZAWA, K., NISHIZEKI, T., AND SAITO, N. Linear-time computability of combinatorial

problems on series-parallel graphs. J. .4CM 29, 3 (July 1982), 623-64 1.
24. TANSEL, B. C., FRANCIS, R. L., AND LOWE, T. J. Location on networks: A survey. Part I: The

p-center and p-median problems. Munagemenl Sci. 29, 4 (Apr. 1983) 482-5 11.

RECEIVED FEBRUARY 1987; REVISED FEBRUARY 1988 AND SEPTEMBER 1988; ACCEPTED NOVEMBER 1988

Journal of the Association for Computing Machinery, Vol. 36, No. 2, April 1989.

	Authors’

