SATS: a microcomputer-based support for
teaching structural analysis

Ronald Corovic, José A. Pino and Mauricio Sarrazin*

Depto. de Ciencias de la Computacion and * Depro. de Ingenieria Civil, Universidad de
Chile, Casilla 2777, Santiago, Chile :

This paper describes an educational software system for structural analysis. The system
is intended to develop the students’ intuitive skills to build effort diagrams for plane
frames. It allows the students to draw the shear and moment diagrams for a given
problem on the terminal screen, and then, to compare them with the correct ones. The
instructor can generate an arbitrary number of new problems and store them on disk.
During his session, the student may choose the problems he wishes to work on, according
to his knowledge and interest. Moreover, the student can modify a problem statement to
ponder the effect of those changes on the effort diagrams.

1. Introduction

Brohn & Cowan [1] have published data concerning the understanding of structural
behaviour by civil engineering students and graduates. Their results are discouraging:
many subjects who have followed or are following a standard curriculum in structural
engineering are unable to sketch the shear force and bending moment diagrams for a
plane frame without solving the corresponding equations.

An intuitive knowledge of structural behaviour is then needed to really understand the
subject [2]. Moreover, such knowledge must be based on visual experiences, rather than
numerical analysis.

A number of batch computer programs exist to compute structural behaviour, such as
CAL [3], but such systems can be considered more like an extension of a calculator than
a device to improve the student’s understanding. CAL-GRAF [4] is a CAL extension
which allows the student to define a structure and to display deflections and stresses
using a set of commands.

Moss, Knowles & Ahmad [5] built a package to allow students to interactively design
steel beams. The computer checks, after each decision, its correctness and convenience.

Smith [6] developed STP, a program that displays a menu of ten problems to work on.
For each problem, the student is asked to give the value of the bending moment diagram
at the critical points in a scale from —10 to + 10; STP then plots the diagram thus
defined and the correct diagram as well as a mark awarded so that the student can assess
his performance.

Slater, Petrossian & Shyam-Sunder [7] describe MACAVITY, an expert system which
generates example beam problems or allows them to be input by the student. Then, the
program accepts student input equilibrium equations, solves them simultaneously if
required and judges the correctness of the student’s solution. Diagnostics on the sources
of errors in a set of equations are given to the student, who can interactively try again.

2. The design of SATS

Structural Analysis Teaching Support (SATS) is a program designed to execute in a
normal microcomputer environment. It runs on an IBM PC (or compatible) computer
with graphics capabilities and a mouse.

Those facilities are enough to provide an extensible and playful environment where
the student can improve his intuitive abilities in structural analysis by sketching shear
and bending diagrams on a variety of problems.

SATS consists of two modules: PRECEPTOR and LEARNER. The first is used to update a
plane frame problems database, whereas the second must be run to practise solving those
problems.

The problems database consists of a set of structural analysis problems of the plane
Jframe type, entered by the instructor by means of the PRECEPTOR module. A plane frame
problem is defined by a number of straight elements—also called members—laying on a
plane and joined at their ends by nodes, that is, ficticious points where the continuity of
displacements and rotations is maintained. In a few cases, the continuity is only partial,
as it is the case of the internal hinge node.

The members are subjected to external loadings consisting of concentrated and/or
distributed loads. The nodes may also have external loads or, instead, displacement
restrictions, in which case they are called supports.

Thus, a model includes members, nodes, external loadings and supports. A three-span
continuous beam, for instance, is represented by three consecutive straight lines con-
nected to four nodes, each of them externally supported. Almost any problem of the
plane frame type can be modeled using the components provided by the program.

The LEARNER module offers a menu containing the database problem names. Once the
student chooses a statically determinate or indeterminate problem, he can use the mouse
as a pointing device to draw the shear or bending diagrams on top of the frame presented
to him (see Figure 1). Then he can ask the system to plot the true diagram for a visual
comparison. To do this, the system uses the direct rigidity matrix method. (Figure 2).

The student can then work on a different problem, or if he feels he needs more practice
on the current problem, he can modify certain data (such as load values and angles) and
try again.

LEARNER does not attempt to grade the student’s achievements. The reason for this is
that grading is a complex task done better by the instructor (e.g., how many points
should be awarded to an answer including a curve which is short by 25% on one critical
point vs another giving a straight line instead of a curve?).

A context sensitive HELP option is always present to explain how to continue in the
current situation (see Figure 3), and error messages are also informative on the
procedures to either do more work or exit.

The PRECEPTOR module provides an interactive menu-based graphics environment to
create, change and delete models of the problems database.

To add a new model to the database, the instructor chooses length units, and draws
nodes, elements, supports, internal pins, loads (arbitrary angle), and moments. A simple
editor helps to iteratively complete the drawing. Again, a HELP option provides the
necessary guidance. Once the model is ready, the instructor may store it in the database
by simply choosing the corresponding menu option. For example, all problems proposed
by Brohn & Cowan [1] can be stored in the system.

Figure 1. Using LEARNER to draw the bending diagram for a statically determinate problem.

Figure 2. LEARNER has depicted the correct bending diagram (with thick line) for the same problem.

Figure 3. HELP has been asked to LEARNER to explain load modification.

3. Implementation of SATS

The programs are written in TURBO-PASCAL [8], which provides graphics primitives
through its package TURBO-GRAPHIX [9]. The object code of the LEARNER and PRECEPTOR
modules take 91 and 75 Kbyte of main memory, respectively. Since TURBO-PASCAL
requires that the object program must fit a 64 K storage assignment, an overlay structure
for each program was implemented.

A models database is stored in floppy or fixed disks as a set of files of the following
types:

Parameter file: a unique file containing the name of each problem of the database with

an entity file name associated with it.

Entity file: there is one of these for each model. It contains all the relevant

information, i.e., descriptions of every element, support, internal pin, load or moment

of the model. The data structure of this type of file is described below. Figure 4

illustrates a portion of the entity file contents for the model shown on Figure 1.

There are two types of records in an entity file. A node record contains its name, X and
Y coordinates, and a pointer to the next node record. A component record contains the
following fields:

a specification of the component type,

its name (only in the case of loads and moments),

pointers to two node records, specifying the location of the component within the

model,

two real fields containing data, which is specific for each type of component. For

example, for loads, these fields contain the value of the load and the angle with respect

to the X axis.

Node record

Node identifier ~ Xcoordinate Y coordinate Next node

From /V2 to /V4

_— N3 360 150 o
From the element to M,
i Component record ey

Load A Jl Null 0-76 270 e Null
Component type Name Initial node Second node Value Angle of the load Next Next load
of the load of the load with the X axis component

Figure 4. Component record for load F, and node record for node N, for the model shown in Figure 1. Node
N, is unnamed in the diagram. The second node of the load pointer in the component record is used for
distributed loads.

a pointer to the next component record, and

a pointer to the next component record of the same type; this field is used only for

loads.

This data structure was designed to get efficiency during execution, besides economy
in storage space.

Concerning efficiency during execution, LEARNER loads into memory the parameter
file. When the student chooses to work on a specific problem, LEARNER also loads the
corresponding entity file, and draws the model using the component records (and its
pointed node records). The linked list of load records speeds up the remaining
processing, particularly when the student modifies the model.

Storage space used is very small. On the average, a model is described by 350 bytes in
an entity file. The parameter file is similarly small: 88 bytes per problem is the average
space used in a typical database. Therefore, a complete problems database fits a normal
diskette.

In our implementation, a 4 MHz CPU was used to run the system. The response time
was adequate; the largest delay (10 s) was to obtain the plot of the true diagram of a 10-
element problem. That problem size is the maximum allowed by LEARNER 1-0. Another
version of the program —LEARNER 1-1—uses disk storage for intermediate results during -
computations; it allows larger problems, but its response time for plotting the true
diagram is increased nearly twofold. It was found that a 10-element maximum problem
size is enough for a normal database and therefore, LEARNER 1-0 is being used. Of course,
a faster CPU should provide quicker response times.

Due to its modular design and construction, the system can be modified to be useful in
other intuitive learning applications. In particular, the problem components and the true
diagram computing algorithm can be easily changed.

4. Conclusion

With very modest hardware, a software system has been built to provide a helpful and
amusing environment to develop intuitive abilities in structural analysis students.

The high interaction allowed by SATS lets the student to practice sketching diagrams
and immediately obtaining the right answers. This can be done at the student’s own
pace, doing non-repetitive work on a problem for as long as the student feels he knows it.

The instructor’s role in the use of SATS is important in preparing (or updating) the
problems database, motivating the students to learn with the system, and helping them
to explain why a certain correct diagram has the given shape. Of course, an expert system
could be built to assist in the latter task.

References

1. D. M. Brohn & J. Cowan 1977. Teaching towards an improved understanding of structural
behaviour. The Structural Engineer, 55 (1), 9-17.

2. D. M. Brohn 1983. Academic priorities in structural engineering— the importance of a visual
schema. The Structural Engineer, 61A (1), 17-19.

3. E. L. Wilson 1979. CAL—A computer analysis language for teaching structural analysis.
Computers & Structures, 10, 127-132.

4. K. R. Leimbach 1981. 14, CAL-GRAF—A computer-graphics supplement for CAL.
Computers & Structures, 14, No. 1-2, 135-141.

5. W.D.Moss,P. R. Knowles & K. Ahmad 1979. CAL packages for civil engineering hydraulics
and structural design. Computers & Education, 3, 391-399.

6.. J. W. Smith 1984. Using computers to teach structural analysis. Computers & Education, 8 (1),
101-105.

7. J. H. Slater, R. B. P. Petrossian & S. Shyam-Sunder 1985. An Expert Tutor for Rigid Body

Mechanics: ATHENA CATS—MACAVITY. Proceedings of the Expert Systems in

Government Symposium, IEEE/CS, McLean, VA, 1-11.

Borland International 1985. Turbo-Pascal Reference Manual {version 3.0).

Borland International 1985. Turbo-Graphix Reference Manual (version 1.0).

\0 00

R. W. Corovic (computer engineer, Universidad de Chile) was a research
assistant at the Computer Science Department of the Universidad de
Chile. He currently works for the Banco de Chile. His interest areas are
discrete event simulation and educational systems development.

J. A. Pino (MS, MSE, The University of Michigan, USA) is associate
professor of computer science at the Universidad de Chile. He is the
author of several papers and co-author of three books. His current
research interests are human-computer interfaces and information retrie-
val systems.

M. Sarrazin (MS, DSc, Massachusetts Institute of Technology, USA) is
professor of civil engineering at the Universidad de Chile and Dean of
the School of Engineering and Science at the same university. He has
published works in the area of structural engineering, particularly in
computer assisted structural analysis and design.

